Throughout this exercise sheet A will denote a ring and \mathbf{k} will denote a field.

- 1) What rings among the following are Noetherian?
 - a) The ring of rational functions on z without poles on the unit circle |z| = 1.
 - b) The ring of power series in z with positive convergence radius.
 - c) The ring of power series in z with infinite convergence radius.
 - d) The ring of polynomials in z whose first k derivatives vanish at the origin, with k a given natural number.
 - e) The ring of polynomials in z, w all whose partial derivatives with respect to w vanish along the line z = 0.

In all cases the field of coefficients is **C**.

- 2) Let A be a Noetherian ring. Prove that if M is a finite A-module, then so is End(M).
- 3) Let I_1, \ldots, I_k be ideals such that A/I_i is a Noetherian ring. Prove that $\bigoplus A/I_i$ is a Noetherian A-module and deduce that if $\bigcap I_i = 0$, the A is also a Noetherian ring.
- 4) Prove that if A is a Noetherian ring and M is a finite A-module, then there exists an exact sequence of A-modules $A^q \longrightarrow A^p \longrightarrow M \longrightarrow 0$; that is, M is finitely generated and finitely *presented* over A. Deduce the existence of an exact sequence

$$\cdots \longrightarrow F_n \longrightarrow \cdots \longrightarrow F_1 \longrightarrow M \longrightarrow 0,$$

not necessarily of finite lenght, where the F_i are free modules of finite rank.

- 5) Let A be a Noetherian ring. Prove that any surjective ring homomorphism $\varphi : A \longrightarrow A$ is an isomorphism.
- 6) Let M be an A-module. We define the annhibitor of M as $\operatorname{ann} M = \{a \in A | am = 0 \text{ for all } m \in M\}.$
 - a) Check that $\operatorname{ann} M$ is an ideal of A.
 - b) Prove that if M is a Noetherian A-module, then A/annM is a Noetherian ring. Is this result still true if we replace Noetherian by Artinian?
- 7) If A[X] is Noetherian, is A necessarily Noetherian?
- 8) Prove that if A is a Noetherian ring, then so is the ring of formal power series A[[X]].
- 9) Let A be a non Noetherian ring and let Σ be the set of ideals of A that are not finitely generated. Prove that Σ has maximal elements and that the maximal elements of Σ are prime ideals. Deduce from this theorem by I. S. Cohen: A ring such that all of its prime ideals are finitely generated is Noetherian.
- **10)** Let $0 \to L \to M \to N \to 0$ be an exact sequence of A-modules.
 - a) Prove that M is Artinian if and only if L and N are.
 - b) Prove that the direct sum of finitely many Artinian A-modules Artinians is an Artinian A-module.
 - c) Prove that if A is Artinian and M is a finite A-module, the M is Artinian.
- 11) Let $\mathbf{k} \subset A$ be a subring of A (that is, A is a \mathbf{k} -algebra). Prove that if A is a finite dimensional \mathbf{k} -vector space (that is, if A is finite \mathbf{k} -algebra), then A is an Artinian ring.

- **12)** a) Prove that fields are the only Artinian integral domains.
 - b) Prove that in an Artinian ring, every prime ideal is a maximal ideal.
- a) Prove that, up to isomorphism (of C-algebras), there are only two finite C-algebras of dimension 2 (as vector space) over C.
 - b) Prove that, up to isomorphism (of **R**–algebras), there are only three finite **R**–algebras of dimension 2 (as vector space) over **R**.
 - c) Give examples of four **C**-algebras, non isomorphic as **C**-algebras, of dimension 3 (as vector spaces) over **C**. Say which of them are local rings.
 - d) Let $A_1 = \mathbb{C}[X, Y]/(X^2, Y^2)$ and $A_2 = \mathbb{C}[X, Y]/(X^3, XY, Y^2)$. Check that A_1 and A_2 have dimension 4 as \mathbb{C} -vector spaces and decide if they are isomorphic as \mathbb{C} -algebras. Remark: Exercise 11 implies that all the algebras in this exercise are Artinian rings.
- 14) Prove that if A is an Artinian ring, then $\sqrt{(0)}$ is nilpotent, that is, there is $k \in \mathbb{N}$ such that $(\sqrt{(0)})^k = 0$. Conclude that if (A, \mathfrak{m}) is an Artinian local ring, then \mathfrak{m} is nilpotent.
- **15)** Consider the ring A.
 - a) Prove that if the ideal $(0) \subset A$ is a product of maximal ideals (non necessarily distinct) $\mathfrak{m}_1, \ldots \mathfrak{m}_k$, then A is a Noetherian ring if and only if A is an Artinian ring. Hint: consider the family of short exact sequences

 $0 \longrightarrow \mathfrak{m}_1 \cdots \mathfrak{m}_i \longrightarrow \mathfrak{m}_1 \cdots \mathfrak{m}_{i-1} \longrightarrow (\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1})/(\mathfrak{m}_1 \cdots \mathfrak{m}_i) \longrightarrow 0$

of A-modules and the fact that $\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1} \longrightarrow (\mathfrak{m}_1 \cdots \mathfrak{m}_{i-1})/(\mathfrak{m}_1 \cdots \mathfrak{m}_i)$ is a vector space over A/\mathfrak{m}_{i-1} .

- b) Prove that if A is an Artinian ring, then A has finitely many maximal ideals (i.e., A is *semilocal*). Hint: argue by contradiction, using the definition of Artinian ring and studying what happens when $I_1 \cdots I_k \subset \mathfrak{p}$, for I_1, \ldots, I_k ideals and \mathfrak{p} prime ideal.
- c) Conclude that if A is an Artinian ring, then it is also a Noetherian ring. Hint: use 3.14 and 3.15.b).
- 16) Let (A, \mathfrak{m}) be local Artinian ring and let $\mathbf{k} = A/\mathfrak{m}$ be its residue filed. Prove that the following are equivalent:
 - i) each ideal of A is principal;
 - ii) the ideal \mathfrak{m} is principal;
 - iii) the **k**-vector space $\mathfrak{m}/\mathfrak{m}^2$ has dimension less than or equal to 1.