COMMUTATIVE ALGEBRA. 2008-09. Exercise sheet 4

Throughout this exercise sheet A will denote a ring and \mathbf{k} will denote a field.

- 1) Let A be a UFD and let K be its field of fractions. Prove that if $b \in K \setminus A$, then b is not integral over A (this means that A is a *normal domain*).
- 2) Prove that the real number $\alpha = (1 + \sqrt{3})/2$ is not integral over Z.
- **3)** Let A be a UFD, let K be its field of fractions, let $K \subset L$ a field extension and let $\alpha \in L$ be algebraic over K. Prove that α is integral over A if and only if the coefficients of its minimal polynomial over K are in A.
- 4) Let $A \subset B$ an integral extension. Find an integral dependence relation over A for each $f \in B$ in the following cases:
 - a) $A = \mathbf{k}[X^2], B = \mathbf{k}[X]$ and $f \in B$.
 - b) $A = \mathbf{Z}, B = \mathbf{Z}[\tau], \tau = (1 + \sqrt{5})/2$ (the golden ratio) and $f \in B$.

 - c) $A = \mathbf{Z}$ and $f = \sqrt{3} + \frac{1+\sqrt{5}}{2}$; $f = \sqrt{3} \cdot \frac{1+\sqrt{5}}{2}$. d) Consider $y, z \in B$ satisfying $y^3 + a_2y^2 + a_1y + a_0 = 0$ and $z^3 + a'_2z^2 + a'_1z + a'_0 = 0$, $a_i, a'_j \in A$. Let f = y + z; $f = y \cdot z$.
- 5) Let d be a square-free integer (that is, without multiple factors). Prove that the integral closure of **Z** in $\mathbf{Q}(\sqrt{d})$ is $\mathbf{Z}[\frac{1+\sqrt{d}}{2}]$ if $d \equiv 1 \pmod{4}$ and $\mathbf{Z}[\sqrt{d}]$ otherwise (these are the rings of integers of the number fields of degree 2).
- 6) Let $A = \mathbf{k}[X, Y]/(Y^2 X^3)$.
 - a) Prove that A is isomorphic to the subring $\mathbf{k}[T^2, T^3]$ of $\mathbf{k}[T]$.
 - b) Prove that A is not a UFD (hint: prove that \overline{X} and \overline{Y} are non associated irreducible elements).
 - c) Prove that A and $\mathbf{k}[T]$ have the same field of fractions and that the normalization of A is $\mathbf{k}[T]$.
- 7) Think of $\mathbf{k}[X,Y]/(Y^2 X^2 X^3)$ as a subring of $\mathbf{k}[T]$ by identifying the class of the polynomial f(X, Y) with $f(T^2 - 1, T^3 - T)$. Prove that $\mathbf{k}[X, Y]/(Y^2 - X^2 - X^3)$ and $\mathbf{k}[T]$ have the same field of fractions, and that the normalization of $\mathbf{k}[X,Y]/(Y^2 - X^2 - X^3)$ is $\mathbf{k}|T|$.
- 8) Find the normalization of the following domains:
 - a) $\mathbf{k}[X, Y]/(X^2Y XY^2 (X + Y)^4).$
 - b) $\mathbf{k}[X,Y]/(Y^2 4X^3 6XY 3X^2 4Y).$
 - c) $\mathbf{k}[X, Y]/(Y^3 X^5)$.
- 9) Let $A = \mathbf{k}[X]$, let $f \in A$ and let $B = \mathbf{k}[X, Y]/(Y^2 f)$.
 - a) Find the necessary and sufficient condition that f must satisfy in order for B to be an integral domain.

Assume from now on that B is an integral domain.

- b) Let K be the field of fractions of B, that is, let $K = \mathbf{k}(X)(\sqrt{f})$. For each $\alpha =$ $\alpha_1 + \alpha_2 \sqrt{f} \in K \ (\alpha_1, \alpha_2 \in \mathbf{k}(X)), \text{ find a polynomial } h(T) \in A[T] \text{ such that } h(\alpha) = 0.$ Assume from now on that the characteristic of \mathbf{k} is different from 2.
 - c) Prove that B is normal if and only if f is square-free.
 - d) If B is not normal, find the normalization of B.

- e) Can you extend the results proved in c) and d) to a larger class of domains?
- 10) Prove that $\mathbb{C}[X, Y, Z]/(X^2 + Y^2 Z^2)$ is not a unique factorization domain but is a normal domain nevertheless.
- 11) Let **k** be an arbitrary field. Consider $A = \mathbf{k}[X, Y]/(XY 1)$. Let $\epsilon \in \mathbf{k}, \epsilon \neq 0$. Let $X' = X \epsilon Y$. Prove that $\mathbf{k}[X'] \subset A$ is a finite extension. Give a geometric interpretation of this fact and of the fact that $\mathbf{k}[X] \subset A$ is not a finite extension.
- 12) Let **k** be an arbitrary field and let $B = \mathbf{k}[X, Y, Z]/(X^2 Y^3 1, XZ 1)$. Find $\alpha, \beta \in \mathbf{k}$ such that B is integral over $A = \mathbf{k}[X + \alpha Y + \beta Z]$ and give, for these α, β , a family of generators of B as an A-module.
- **13)** Let **k** be a finite field. Find an example of $f \in \mathbf{k}[X, Y]$ such that the ring $B = \mathbf{k}[X, Y]/(f)$ is not a finite module over $A_{\alpha} = \mathbf{k}[X \alpha Y]$, for any $\alpha \in \mathbf{k}$.
- 14) Let $A \subset B$ be a ring extension with B finite over A.
 - a) Let $\mathfrak{p} \subset A$ be a prime ideal. Prove that there exists a prime ideal $\mathfrak{q} \subset B$ such that $\mathfrak{q} \cap A = \mathfrak{p}$.
 - b) In the situation of part a), prove that p is maximal if and only if q is maximal.
 - c) If $A = \mathbf{k}$ is a field, prove that B possesses finitely many prime ideals.
- **15)** Let G be a finite group of automorphisms of the ring A and let $A^G = \{a \in A | \sigma(a) = a \text{ for all } \sigma \in G\}$ be the subring consisting of those elements which are invariant by G. Prove that A is integral over A^G .
- **16)** Let A be a normal domain, let K be its field of fractions and let L be a finite, normal and separable field extension of K. Let G be the Galois group of L over K and let B be the integral closure of A in L. Prove that $\sigma(B) = B$ for all $\sigma \in G$ and that $B^G = A$.