Throughout this exercise sheet A will denote a ring and \mathbf{k} will denote a field.

- 1) Let $\mathfrak{m}_1, \ldots, \mathfrak{m}_s$ be distinct maximal ideals of A.
 - a) Prove that for any $1 \leq i \leq s$, $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_i$ and \mathfrak{m}_{i+1} are strongly coprime. Conclude that $\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_s = \mathfrak{m}_1 \cdots \mathfrak{m}_s$.
 - b) Prove that for any $k \in \mathbf{N}$, $(\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_s)^k = \mathfrak{m}_1^k \cdots \mathfrak{m}_s^k = \mathfrak{m}_1^k \cap \cdots \cap \mathfrak{m}_s^k$.
 - c) Prove that $A/(\mathfrak{m}_1 \cap \cdots \cap \mathfrak{m}_s)^k$ is isomorphic to $A/\mathfrak{m}_1^k \times \cdots \times A/\mathfrak{m}_s^k$.
 - Hint: use Exercise 1.3.
- 2) Let A be a finitely generated k-algebra. Prove that if A is a Artinian local ring, then A is a finite k-algebra. Hint: use short exact sequences similar to those of Exercise 3.15, a), Exercise 3.14 and Weak Nullstellensatz.
- 3) Let A be a finitely generated \mathbf{k} -algebra. Prove that the following are equivalent:
 - i) A is a finite **k**-algebra;
 - ii) A is an Artinian ring.

To give a proof, follow these steps:

- a) Exercise 3.11 proves i) implies ii).
 To prove ii) implies i) you may reduce the general case to the case proven in Exercise 5.2 by following these steps:
- b) By Exercise 3.15 b) we know that the \mathfrak{m} -SpecA is a finite set { $\mathfrak{m}_1, \ldots, \mathfrak{m}_s$ }. Use 3.12 b), 3.14 and 5.1 to prove the existence of $k \in \mathbb{N}$ such that $A \simeq A/\mathfrak{m}_1^k \times \cdots \times A/\mathfrak{m}_s^k$.
- c) Prove that A/\mathfrak{m}_i^k is an Artinian local ring. Then use Exercise 5.2 to conclude that ii) implies i).
- d) Is the result true if A is not a finitely generated \mathbf{k} -algebra?
- 4) Let I be an ideal of $\mathbf{k}[X_1, \ldots, X_n]$.
 - a) Assume that **k** is an algebraically closed field. Prove that V(I) is a finite subset of $\mathbf{A}_{\mathbf{k}}^{n}$ if and only if $\mathbf{k}[X_{1}, \ldots, X_{n}]/I$ is a finite **k**-algebra. Hint: for the "only if" part it might help you to use (after proving it) the following fact: for any ideal J of a Noetherian ring there exists $m \in \mathbf{N}$ such that $(\sqrt{J})^{m} \subset J$; then use Exercise 5.1.
 - b) What kind of result can you get if \mathbf{k} is an arbitraty field?
- 5) Let V and W be two algebraic varieties of $\mathbf{A}_{\mathbf{k}}^{n}$ and $\mathbf{A}_{\mathbf{k}}^{m}$ respectively. Recall that a morphism F from V to W is a map $F: V \longrightarrow W$ such that there exist $F_{1}, \ldots, F_{m} \in \mathbf{k}[X_{1}, \ldots, X_{n}]$ satisfying $F(x) = (F_{1}(x), \ldots, F_{m}(x))$, for all $x \in V$. Let I(V) and I(W) the ideals of V and W and let $A(V) = \mathbf{k}[X_{1}, \ldots, X_{n}]/I(V)$ and $A(W) = \mathbf{k}[Y_{1}, \ldots, Y_{m}]/I(W)$ be its coordinate rings.
 - a) Prove the existence of a one-to-one correspondence between the set of morphisms from V to W and the set of **k**-algebra homomorphisms between A(W) and A(V). Hint: First set up a map from the set of morphisms between $\mathbf{A}_{\mathbf{k}}^{n}$ and $\mathbf{A}_{\mathbf{k}}^{m}$ to the set of **k**-algebra homomorphisms between $\mathbf{k}[Y_{1}, \ldots, Y_{m}]$ and $\mathbf{k}[X_{1}, \ldots, X_{n}]$; then carry on the construction to V, W, A(W) and A(V) and show you get a one-to-one correspondence.
 - b) Decide if this statement is true or false: There exists a one-to-one correspondence between the set of morphisms from $\mathbf{A}_{\mathbf{k}}^{n}$ to $\mathbf{A}_{\mathbf{k}}^{m}$ and the set of \mathbf{k} -algebra homomorphisms between $\mathbf{k}[Y_{1}, \ldots, Y_{m}]$ and $\mathbf{k}[X_{1}, \ldots, X_{n}]$. Hint: argue separatedly when \mathbf{k} is a finite field and when \mathbf{k} is an infinite field.
 - c) Explain why the answer to b) does not contradict the statement proven in a). Hint: What is the ideal of $\mathbf{A}_{\mathbf{k}}^{n}$?
- 6) Let V and W be two algebraic varieties of $\mathbf{A}_{\mathbf{k}}^{n}$ and $\mathbf{A}_{\mathbf{k}}^{m}$. Let $F: V \longrightarrow W$ be a morphism and let $F^{\sharp}: A(W) \longrightarrow A(V)$ be the **k**-algebra homomorphism induced by F (see 5.5).
 - a) Prove that if F is surjective, then F^{\sharp} is injective. Is the converse true?
 - b) Assume that F^{\sharp} is injective and **k** is algebraically closed. Prove that if the extension given by F^{\sharp} is finite, then F is surjective and it has *finite fibers* (that is, for every $y \in W$, $F^{-1}(y)$ is a finite set). Is the finiteness of the extension a necessary condition for F to be surjective? Is it a necessary condition for F to have finite fibers?

- 7) Prove the following properties of I and V (respectively, \mathscr{I} and \mathscr{V}) for $\mathbf{k}[X_1,\ldots,X_n]$ and $\mathbf{A}^n_{\mathbf{k}}$ (respectively, for A and SpecA):
 - a) If $I \subset J$ are ideals, then $V(J) \subset V(I)$.
 - b) If $S \subset T$ are subsets, then $I(T) \subset I(S)$.
 - c) If I_{λ} , $\lambda \in \Lambda$ are ideals, then $\bigcap_{\lambda} V(I_{\lambda}) = V(\bigcup_{\lambda} I_{\lambda}) = V(\sum_{\lambda} I_{\lambda})$.
 - d) If I_1 and I_2 are ideals, then $V(I_1) \cup V(I_2) = V(I_1 \cap I_2) = V(I_1 \cdot I_2)$.
 - e) If I is an ideal, then $V(I) = V(\sqrt{I})$.
 - f) For any subset X, V(I(X)) is the closure of X in the Zariski topology. In particular, if $\mathfrak{p} \in \mathcal{F}$ SpecA, conclude that $\mathscr{V}(\mathfrak{p})$ is the Zariski closure of the point $\mathfrak{p} \in \operatorname{SpecA}$. What are the *closed* points of SpecA?
 - g) If D(f) denotes the complement of V(f), then the sets D(f) form a basis for the Zariski topology.
- 8) Let $A_1 = \mathbf{R}[X, Y]/(Y^2 X)$ and let $A_2 = \mathbf{R}[X, Y]/(X^2 + Y^2 1)$. Let $f = X a, a \in \mathbf{R}$, and $g = X^2 + 1$. Find $\mathscr{V}(\overline{f})$ and $\mathscr{V}(\overline{g})$, both in Spec A_1 and Spec A_2 .
- 9) For each prime number $p \in \mathbf{Z}$, find V(p) in Spec $(\mathbf{Z}[i])$.
- **10)** Find a finite set of generators for the ideals of the following affine algebraic varieties:
 - a) $V(X_1,\ldots,X_r) \subset \mathbf{A}^n_{\mathbf{k}}$
 - b) $V(X,Z) \cup V(Y,Z) \subset \mathbf{A}^{3}_{\mathbf{k}}$ c) $V(X,Z) \cup V(Y,Z-1) \subset \mathbf{A}^{3}_{\mathbf{k}}$.
- 11) Describe the irreducible components of $V(J) \subset \mathbf{A}^3_{\mathbf{k}}$ for each of these ideals J of $\mathbf{k}[X, Y, Z]$:
 - a) $(Y^2 X^4, X^2 2X^3 X^2Y + 2XY + Y^2 Y);$
 - b) (XY + YZ + XZ, XYZ);
 - c) $((X-Z)(X-Y)(X-2Z), X^2-Y^2Z).$
 - Find if possible an element $f \in I(V(J))$ such that $f \notin J$.
- 12) Let $\mathbf{k} \subset K$ be a normal and separable field extension whose Galois group is $G = \operatorname{Gal}(K/\mathbf{k})$. Let J be an ideal of $\mathbf{k}[X_1, \ldots, X_n]$. A K-valued point of V(J) is a point $(a_1, \ldots, a_n) \in \mathbf{A}_K^n$ such that $f(a_1,\ldots,a_n)=0$ for all $f\in J$. Prove that two K-valued points, (a_1,\ldots,a_n) and (b_1,\ldots,b_n) , of V(J) correspond to the same maximal ideal of $\mathbf{k}[X_1, \ldots, X_n]$ if and only if there exists an element $\sigma \in G$ such that $(a_1, \ldots, a_n) = (\sigma(b_1), \ldots, \sigma(b_n)).$
- 13) Let A be a Noetherian ring. Prove that a closed set X of SpecA is irreducible if and only if $\mathscr{I}(X)$ is a prime ideal.
- 14) Let A be a Noetherian ring.
 - a) Prove that SpecA with the Zariski topology is a Noetherian topological space. Conclude that any closed set \mathscr{V} of SpecA has a unique irredundant decomposition $\mathscr{V} = \mathscr{V}_1 \cup \cdots \cup \mathscr{V}_s$. The \mathscr{V}_i are the *irreducible components* of \mathscr{V} .
 - b) Let I be an ideal of A and let $\mathscr{V} = \mathscr{V}(I)$. Prove that an irreducible component of \mathscr{V} is the same as a maximal irreducible closed subset of \mathscr{V} . Conclude that the irreducible components of \mathscr{V} are in one-to-one correspondence with the prime ideals which are minimal among those containing I.
- **15)** Let **k** be an algebraically closed field, let I be an ideal of $\mathbf{k}[X_1, \ldots, X_n]$ and let V = V(I). Prove that an irreducible component of V is the same as a maximal irreducible closed subvariety of V. Conclude that the irreducible components of V are in one-to-one correspondence with the prime ideals minimal among those containing I.
- 16) Let $\varphi: B \longrightarrow A$ be a ring homomorphism.
 - a) Prove that the map $\hat{\varphi}$ from SpecA to SpecB that sends every $\mathfrak{p} \in \text{SpecA}$ to $\varphi^{-1}(\mathfrak{p})$ is a well-defined continuous map with respect to the Zariski topology.
 - b) Let \mathbf{k} be an algebraically closed field, let V and W be two algebraic varieties over \mathbf{k} and let A and B be their rings of functions. Identify V with the maximal spectrum of A. Show that the restriction of $\hat{\varphi}$ to V is a morphism between V and W.