Throughout this exercise sheet A will denote a ring and \mathbf{k} will denote a field.

- 1) Let B and C be rings and let $A = B \times C$ be its cartesian product which is a ring with the obvious operations. Prove that B and C are ring of fractions of A.
- 2) Let S be a multiplicative set of A and let I be an ideal of A. Prove that $S^{-1}\sqrt{I} = \sqrt{S^{-1}I}$.
- 3) Let A be a ring and let S be a multiplicative set. Prove that if A is Noetherian then so is $S^{-1}A$. Prove the same for Artinian.
- 4) Let $A \subset B$ be an extension of rings and let S be a multiplicative set of A.
 - a) Prove that if B is integral over A, so is $S^{-1}B$ over $S^{-1}A$
 - b) Prove that is \tilde{A} is the integral closure of A in B, then $S^{-1}\tilde{A}$ is the integral closure of $S^{-1}A$ in $S^{-1}B$.
- **5)** Let $A = \mathbb{Z}[\sqrt{-5}]$ and let $I = (2, 1 + \sqrt{-5})$. Prove that:
 - a) I is a prime ideal.
 - b) If \mathfrak{p} is a prime ideal that does not contain 2, then $IA_{\mathfrak{p}} = A_{\mathfrak{p}}$.
 - c) If **p** is a prime ideal that contains 2, then $\mathfrak{P} = I$ and $IA_{\mathfrak{p}} = (1 + \sqrt{-5})A_{\mathfrak{p}}$.
 - d) For each prime ideal \mathfrak{p} of A, the ideals $IA_{\mathfrak{p}}$ and $A_{\mathfrak{p}}$ are isomorphic as $A_{\mathfrak{p}}$ -modules, but I and A are not isomorphic as A-modules.
- 6) Let $A = \mathbf{k}[X, Y, Z]/(X^3 YZ, Y^2 XZ, Z^2 X^2Y)$, let $\mathbf{p} = (\overline{X} 1, \overline{Y} 1, \overline{Z} 1)$ and let $\mathbf{q} = (\overline{X}, \overline{Y}, \overline{Z})$.
 - a) Find a generator for the maximal ideal of A_{p} .
 - b) Can the maximal ideal of A_{q} be generated by one element?
- 7) Consider the ring $\mathbf{k}[X, Y, Z]/(XY)$ and let R be its localization at the prime ideal $(\overline{X}, \overline{Z})$. Prove that the maximal ideal of R is principal and that R is isomorphic to $\mathbf{k}[Y, Z]_{(Z)}$.
- 8) Let A be a UFD, let $f \in A$ be an irreducible element of A and let $\mathfrak{p} = (f)$. Prove that there exists an element $t \in A_{\mathfrak{p}}$ such that for any $0 \neq x \in A_{\mathfrak{p}}$, there exists $n \in \mathbb{N} \cup \{0\}$ and a unit u of $A_{\mathfrak{p}}$ such that $x = u \cdot t^n$.
- 9) Let $\mathfrak{p} = (X_1, \ldots, X_n)$. Prove the existence of a natural monomorphism

$$\mathbf{k}[X_1,\ldots,X_n]_{\mathfrak{p}} \hookrightarrow \mathbf{k}[[X_1,\ldots,X_n]].$$

- 10) Let $f \in A$.
 - a) Prove that $\operatorname{Spec}(A_f)$ can be identified with the complement of $\mathscr{V}(f)$ in SpecA.
 - b) Let A be the ring of functions of a variety V of $\mathbf{A}_{\mathbf{k}}^{n}$ (that is, $A = \mathbf{k}[X_{1}, \dots, X_{n}]/I(V)$) and let $f \in A$. Prove that A_{f} is isomorphic to the ring of functions of a variety V_{f} of $\mathbf{A}_{\mathbf{k}}^{n+1}$, which is, in a natural way, in one-to-one correspondence with $V \smallsetminus V(f)$.
 - c) Prove that if A is a finitely generated **k**–algebra, so is A_f .
- 11) Let V be an irreducible subvariety of $\mathbf{A}_{\mathbf{k}}^{n}$ and let $\mathbf{p} = I(V)$ be the ideal of V in $A = \mathbf{k}[X_{1}, \ldots, X_{n}]$.
 - a) Let $f/g \in \mathbf{A}_{\mathfrak{p}}$. Prove the existence of a Zariski open set U of $\mathbf{A}_{\mathbf{k}}^{n}$ such that $U \cap V$ is a dense Zariski open set of V and f/g gives a well-defined function on U. Prove that the class of f/g in $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ induces a well-defined function on $U \cap V$.
 - b) Show that an element of $\operatorname{Frac}(A/\mathfrak{p})$ also induces a well–defined function on some dense Zariski open set of V.
 - c) Give an algebraic and a geometric explanation of why the geometric interpretations of the elements of $A_{\mathfrak{p}}/\mathfrak{p}A_{\mathfrak{p}}$ and the elements of $\operatorname{Frac}(A/\mathfrak{p})$ seem to be the same.

Definition. We say that a property P for a ring A (respectively, for a module M; respectively, for a homomorphism Φ) is a *local property* if the following happens: A (respectively, M; respectively) Φ) satisfies P if and only if $A_{\mathfrak{p}}$ (respectively $M_{\mathfrak{p}}$; respectively $S^{-1}\Phi = \Phi_{\mathfrak{p}}$ ($S = A \smallsetminus \mathfrak{p}$)) satisfies P, for all prime ideals \mathfrak{p} of A.

The remaining exercises provide some examples of local properties.

- **12)** Let M be an A-module. Prove that the following are equivalent:
 - i) M = 0;
 - ii) $M_{\mathfrak{p}} = 0$ for all prime ideals \mathfrak{p} of A;
 - iii) $M_{\mathfrak{m}} = 0$ for all maximal ideals \mathfrak{m} of A.
- 13) Let M and N be modules over A and let $\Phi: M \longrightarrow N$ be a homomorphism of A-modules. Prove that the following are equivalent:
 - i) Φ is injective;

 - ii) Φ_p: M_p → N_p is injective for all prime ideals p of A;
 iii) Φ_m: M_m → N_m is injective for all maximal ideals m of A.
- 14) Let M and N be modules over A and let $\Phi: M \longrightarrow N$ be a homomorphism of A-modules. Prove that the following are equivalent:
 - i) Φ is surjective;
 - ii) $\Phi_{\mathfrak{p}}: M_{\mathfrak{p}} \longrightarrow N_{\mathfrak{p}}$ is surjective for all prime ideals \mathfrak{p} of A;
 - iii) $\Phi_{\mathfrak{m}}: M_{\mathfrak{m}} \longrightarrow N_{\mathfrak{m}}$ is surjective for all maximal ideals \mathfrak{m} of A.
- **15)** Let A be an integral domain. Prove that the following are equivalent:
 - i) A is normal;
 - ii) $A_{\mathfrak{p}}$ is a normal domain for all prime ideals \mathfrak{p} of A;
 - iii) $A_{\mathfrak{m}}$ is a normal domain for all maximal ideals \mathfrak{m} of A.

Hint: consider the inclusion of A in its normalization and use exercises 6.4, 6.13 and 6.14.

- 16) Let $n \in N$ and let $A = \mathbf{k}[X, Y]/(X^nY 1)$. Prove that A is a normal domain.
- 17) Write the rings that appear in Exercises 1.22 b) and 2.7 as localizations of $\mathbf{k}[X,Y]$ at suitable prime ideals.