THE GROTHENDIECK PROPERTY IN THE CLASS OF ORLICZ-TYPE
MODULAR SPACES

ANTONIO S. GRANERO

ABSTRACT. We introduce the class of Orlicz-type modular spaces, that includes the Orlicz-
Lorentz spaces, Orlicz spaces, Musielak-Orlicz spaces, etc., and we characterize the Grothendieck
property for this class of Banach spaces and some quotients.

1. INTRODUCTION AND PRELIMINARIES

A Banach space X is said to have the Grothendieck property (for short, X is Grothendieck) if,
for every sequence {u, : n > 1} of the dual X*  w, weak converges to 0 iff u, weak* converges
to 0. (see [2, pg. 179]). For instance, ¢ (I) and the space B(Q, %) of bounded real ¥-measurable
functions f : @ — R on a measurable space (,X), equipped with the supremum norm, are
Grothendieck spaces. The reader is referred to [2, p. 179] and [10, p. 348] for more information
about the Grothendieck property.

The aim of this paper is to study and characterize the Grothendieck property in the class
of Orlicz-type modular spaces (this class includes Orlicz spaces, Musielak-Orlicz spaces, Orlicz-
Lorentz spaces, etc., see below for definitions) and some quotients spaces of this class. As an
antecedent we cite the paper [4] in which it is proved that the quotient space £,(I)/hy(I) is a
Grothendieck M-space, ¢ being an Orlicz function, £,(I) the Orlicz space £,(I) :== {f € RT : IX >
0, icrp(Mfi) < oo} and hy,(I) the closure in £,(I) of the subspace integrated by the elements
with finite support.

_ Let us fix our notation, terminology and definitions. If / is an infinite set, let I be the Stone-
Cech compactification of I and I* = I\ I. If J is a subset of I, then ¢J := I\ J will be the

complement of J and J* = 7 \J C I*. If X is a Banach space, let B(X) and S(X) be the closed
unit ball and unit sphere of X, respectively, and X™ its topological dual.

If ¥ is a o-algebra of subsets of a set 2, let ba(X) denotes the space of bounded real signed finitely
additive measures on ¥ and B(X) the space of bounded real ¥-measurable functions f : @ — R.
Recall that B(X) with the supremum norm is a Grothendieck Banach space (see [2, Cor. 1.3, p.
149]) with dual B(X)* = ba(X). In the sequel we will deal with a I'-finite positive measure
space (£, X, 1) where: (i) I is an arbitrary set such that we have a finite positive measure space
(Qy, By, piy) for every v € Iy (iii) (92, %, p) is the sum (2,3, u) = @, cr (2, X5, 1), which means
the following;:

(1) @ =, cr 2y () means disjoint union).

(2) A C Q satisfies A € ¥ if and only if ANQ, € £,,VyeT.

(3) If A € X, then p(A) = >° cppuy(ANQ,), VA € B. Note that pu(A) = oo is allowed and
w(A) =0 iff u,(ANQ,)0.

We deal with I'-finite measures, instead of o-finite measures, in order to work with spaces like the
Orlicz sequence spaces £, (I), when I is uncountable. Of course, this strategy has some difficulties
because the usual measure theory refers to o-finite measures and so we must verify for I'-finite
measures the validity of some results, that we know hold for o-finite measures. Let us adopt the
following terminology:
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(a) Q, will be the union of all the atoms of 1 and Q4 := Q\ Q,. p, and pg indicate the
atomic part and the purely non atomic part of p, respectively. M(u) denotes the family
of all (equivalence classes of) p-measurable functions f : Q@ — R U {£oco}. We know that
M () is a o-complete lattice with the order z < y if and only z(t) < y(t) p-a.e. in Q. Lo(u) will be
the space of all (equivalence classes of) p-measurable real functions f : O — R. We know
that Lo(u) is a o-complete vector lattice, which is a sublattice of M (p). A function f € Lo(u) is
said to be a real simple function if f = """ | z;-14,, where ; € R and A; € ¥ with p(4;) < cc.
Let Sy denote the ideal of Ly(u) generated by the subspace of real simple Y-measurable
functions.

(b) A normed space (E, || - ||) is called a normed function space over (2, %, 1) if the following
requirements are fulfilled: (i) E is a subspace of Lo(p); (ii) if « € E,y € Lo(p) and |y| < |z|, p-
a.e., then y € F and ||y|| < ||z||. A Banach function space is a normed function space which is
complete in the norm.

(c) Let (E,|| - ||) be a Banach function space. A vector x € F is said to be order-continuous
(for short, o-continuous) if for every downward directed set {x;};c; in E such that z; | 0 and
0 < z; < |z|, pae., for some z € E, we have ||z;|]| | 0. Denote by E® the closed ideal of o-
continuous elements of E. If £ = E®, then FE is called o-continuous. We say that E has the Fatou
property if x, € E,0 <z, 1 z in order for some = € Lo() and sup,, ||| < co imply € E
and ||z|| = limy,— 00 |20 -

(d) Let Z be a real Banach lattice. Then: (i) Z is said to be an M-space if ||z V y|| = ||z|| V ||y]|
for every z,y € ZT; (ii) Z is said to be an Ly-space if ||z + y|| = ||| + ||y|| for every =,y € Z with
|z| A ly| = 0; (iii) recall that Z is an M-space if and only if Z* is an Li-space (see [12, p. 25]); (iv)
(B(%), ] - |lo.) is an M-space and so ba(X) = B(X)* is an L;-space.

Now we introduce several notions in order to define the concept of Orlicz-type modular space,
that will be the context in which we will work.

Definition 1.1. Let (2, %, ) be a positive I-finite measure space. Then
(1) A mapping p: M ()™ — [0, 00] is said to be
(1a) monotone if p(x) < p(y) whenever x,y € M ()™ and x < y.
(1b) left-continuous if p(x,) 1 p(x), whenever x,x, € M(u)",n > 1, and z,, T .
(1c) 1-convez if p(ax + By) < ap(x) + Bp(y) for z,y € M ()T and o, 3> 0, a+ 3 = 1.
(
(
(

2) A Kdthe semimodular on (0,3, 1) is a mapping p : Lo(p) U M ()™ — [0, +00] such that
2a) The restriction of p to M (u)™ is a monotone left-continuous and 1-convex mapping.

2b) p(f) = p(|f]) for every f € Lo(pn) and, if A € ¥ with pu(A) < oo, then p(Al4) < oo for
some A\ > 0.

(2¢) p(0) =0 and f =0 p-a.e. whenever f € M(u)* and p(Af) =0 for all A > 0.

(3) If p is a Kothe semimodular on (2, X, 1), we define the modular space L,(u) as follows
Ly(n) = {1 € Lo(u) : lim p(A) = 0}.
—0

Clearly, L,(u) satisfies L,(p) = {f € Lo(p) : 3X > 0, p(Af) < +o0}. For every f € L,(p), define
the Luzemburg norm || f||L as:

[fllz = inf{A>0:p(f/A) <1}

A subset A C L,(p) is said to be p-dense in L,(u) if for every f € L,(p) with p(f) < 400 and
every € > 0 there exists y. € A such that p(f —y.) < e.

(4) p is an Orlicz-type semimodular on (2,3, u) if and only if : (i) p is a K6the semimodular
on (9,3, ) such that p(f VvV g) < p(f) + p(g) for every pair f,g € M(u)*; (ii) p is finitely
determined, that is, if p(f) > a > 0, for some f € Lg(u), there exists a subset A € ¥ with
0 < p(A) < oo such that p(f - 14) > a.
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(5) A Banach space F is said to be an Orlicz-type modular space if and only if there exists a
I-finite measure space (€,3, ) and an Orlicz-type semimodular p on (Q, X, u) such that E :=

(Lp () [ - 1l )-

Remark 1.2. (1) The Orlicz spaces, Musielak-Orlizc spaces, Lorentz spaces, etc., are Orlicz-type
modular spaces. So all the theory developed in this paper holds for these spaces.

(2) Let p be a Kothe semimodular on (€, %, 1). The following facts are easily proved

(21) (Lp(m),|l-1l,) is a o-complete normed function space, that fulfills the Fatou property.
Actually it is a Banach function space. Moreover, Sy C L,(p) by (2b).

(22) If f € M (p) T satisfies p(f) < oo, then f < oo p-a.e. Indeed, let A := {w € Q: f(w) = o0}
and observe that tl4 < sf for every 0 < ¢ and s > 0. So, as p is monotone, for every 0 < ¢ and
s> 0 we have p(t14) < p(sf) 4 0 when s | 0. Thus 14 = 0 p-a.e. by (2¢), that is, u(A) = 0.

2. L,(n)/H(S) 1S A GROTHENDIECK M-SPACE
Let (Q,%, 1) be a T-finite measure space and p be an Orlicz-type semimodular on (2, %, u). If
S C L,(p) is an ideal, we will denote

H(S):={feLy(u):VYA>0, HSESbUChthatp(fA

) < +o0}.

It is easy to see that H(S) is a closed ideal of L,(u) such that H(H(S)) = H(S) = S. For each

f € Ly() we define
0(f) :=1inf{\ > 0: 3s € S such that p(f 3 ) < 400},

Observe that §(f) < +oo, Vf € L,(n), by definition of L,(u).

In the following we see a series of lemmas that we need in order to establish the fundamental
result of Theorem 2.8.

Lemma 2.1. Let (Q,%, u) be a T'-finite measure space and p be an Orlicz-type semimodular on
(05, 0. If {fn 0> 1} C M(u)*, then

plsup fn) < > ol fn)-

n>1

Proof. Since p satisfies p(g1 V g2) < p(g1) + p(g2), V91,92 € M(p)™, then

k
psup{firi=1,2,....k}) <> p(fi).
i=1

As sup{f; :i=1,2,...,k} T sup, >, f, when k — oo and p is left-continuous, we have
k
p(sup fu) = lim plsup{fi:i=1,2,....k}) < lim > of) = p(fi).
n =1 i>1

(]

Lemma 2.2. Let (2,3, u) be a I'-finite measure space, p an Orlicz-type semimodular on (Q, %, 1)
and S C L,(u) an ideal such that H(S) is p-dense in L,(p). Then

(1) For every f € L,(u), the distance
dist(f, H(S)) := i {|Lf — hll 1+ b € H(S)}
from f to H(S) satisfies dist(f, H(S)) = 6(f).
(2) If 2* € H(S)t :={z € L,(u)* : (z,x) =0, Yz € H(S)}, then
2" || = sup{(z", f) : f € Ly(u) with p(f) < +oo}.
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Proof (1) Let f € L,(p) and fix € > 0. By definition of §(f), there exists s € S such that
p(é(f)+s) < +oo. Since H(S) is p-dense in L,(p), there exist y € H(S) such that p(g(_fs)_T_i’) <1,
which implies dist(f, H(S)) < 6(f) + €, because s + y € H(S). Hence, as € > 0 is arbitrary, we
get dist(f, H(S)) < 6(f). Let us prove that dist(f, H(S)) > 6(f). If 6(f) = O this is clear. So,

suppose that 6(f) >0

Claim. For every y € H(S) and every positive number 0 < A < §(f) we have p(f YY) = +o0.

Indeed, otherwise for some 0 < A < §(f) and some y € H(S) we would have p(f ) < 4o0.
Take t > 0 such that A < ¢ < 6(f) and denote r := A/t. Then 0 < r < 1 and there exists s € §
such that p((1 )t) < +00. Since {22 = rf 24+ (11— 7“)(1 7> We have

t
p(52) <rp(54) + (1= 1)) < +oo.

Since t < §(f), taking into account the definition of §(f), we get a contradiction. So, the Claim
holds.

From the Claim we deduce that ||f —y|| > 6(f), Yy € H(S), that is, dist(f, H(S)) > §(f), and
this completes the proof of (1).

(2) First, since B(L,(u)) C {f € L,(u) with p(f) < 400}, it is clear that

[2"[] < sup{(z™, f) : f € Lp(p) with p(f) < +o0}.

On the other hand, since H(S) is p-dense in L,(u), for each f € L,(n) with p(f) < 400 there
exists yy € H(S) such that p(f —yy) < 1, which implies f —y; € B(L,(1)). So, as z* € (H(S))*
we have

sup{(z", f) : f € L,(p) with p(f) < +oo} =
=sup{(z", f —yy) : f € Ly(p) with p(f) < +oo} < [|z7||

and this completes the proof. (I

Throughout all this section p will be an Orlicz-type semimodular on (Q,%, ) and S an ideal

of L,(u) such that H(S) is p-dense in L,(u). Let X = I;f((g)) and let Q : L,(pn) — H((S)) be
Lﬂ(ﬂ)

the canonical quotient mapping. Observe that the dual space X* = ( 7S )* is isometrically

isomorphic with the subspace H(S)% of (L,(u))*. So, we identify both spaces and by simplicity
we write (z*, f) instead of (z*,Q(f)) for every * € X* and f € L,(11).

Lemma 2.3. Let (2,%,u) be a I-finite measure space and p an Orlicz-type semimodular on

y 2 ), & C an ideal such that 18 p-dense in . en = = 15 an M-
0, %, 0), S C Ly(u deal such that H(S) is p-d Lo(u). Then X := 2 M
space.

Proof. Let z,y € Xt and prove that ||z V y| = ||z| V ||y||. Since zVy > z, x Vy > y, then
Jov gl > llz], lyll, whence we get [l ]| > 2l|V [lyll Let us prove that vy < llo][ v [yl Pick
+00 > X > ||lz|| V|ly|| and choose f,g € L,(u)" such that Qf =z, Qg =y and | f|| <A, |lg]] < A.
So, by the definition of the Luxemburg norm, we have p(f/A) <1 and p(g/A) < 1. Since p is an
Orlicz-type semimodular we get

fvyg f g
) < p(= =) < 2.
p(5) <o(5) +0(3) <
By Lemma 2.2 we have dist(f V g, H(S)) < A, whence we get ||z V y| = |Q(f V g)|| = dist(f V
g9, H(S)) < A. So, |lzVy| <|lz|l V |ly|l and this completes the proof. O

IfX = H((S and £ € X*T = H(S)**, for each E € ¥ and h € L,(u) define &g : L,(1) — R as

¢r(h) = &(hg) where hg = h - 1g. Clearly, (g € X*T. Define the mapping ve : ¥ — [0, +00) as
ve(E) = [l€a]l
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Lemma 2.4. Ifz* € X*t, then v,- € ba(2) and, given ¢ > 0, there exists f € L,(1)" (depending
on z* and €) with p(f) < € such that

(A)VE € 3, vp-(E) = (2%, f); (B) Vg € B(X), vo-(g) = (27, f9g).
Proof. Let E, F € X be two disjoint subsets. Then

(i) ap p = =) + 3. Obvious.

(ii) % Az = 0. Indeed, for every f € Lp(,u)+ we have

0< (2 Aok, f) = nf{(al, 0) + (@5 f —9): 0< g < frg € L)'} <
(i) |lzgurll = legll + 2% First, [25upl < |25 + 25 because 2, p = 23 + 2% On the

other hand, given € > 0, by Lemma 2.2 there exist f,g € Lp(u)+ with p(f) < 400, p(g) < +o0
such that

(@F, f) > |25l — €/2 and (2F, g) > |2 [ — €/2.
So, as p(f V g) < p(f) + p(g) < 400 we have by Lemma 2.2
leEurll = @ror, [V 9) 2 (@, f) + (@5, 9) > |2kl + 27 — ¢
and from this fact we get ||z z || = 25| + 25|l
Therefore, the mapping v, : ¥ — [0. + 00) such that v+ (E) = |5, VE € %, satisfies
Ve € ba(X)7.

(A) Now we find the function f € L,(u)" fulfilling the requirements of the statement. By
Lemma 2.2 for each k € N we can choose a function f; € Lp(u)jL such that p(fk) < 400 and
(z*, fr) > ||a*| — +. As H(S) is p-dense in L,(u), we can find hj, € H(S) such that 0 < hy, < i
and p(fi — hi) < 55, k> 1. Let fi, = fi — hy, k > 1. Then p(fi) < 5 and, as 2* € (H(S))",
also

(@, fi) = (@, fi) = ll2"|| — &-
Let f :=sup{fx : k > 1}. Since p is an Orlicz-type semimodular, by Lemma 2.1 we have

LGRS INEDBE S

k<1 k>1

Hence, f € L,(u)" and ||z*|| > (z*, f) by Lemma 2.2. So, as f > f; we have
* * * * 1
1> (& 1) > (0", ) > o] — & W= 1.
Thus v+ (Q) = ||z*|| = («*, f). Let E € X. Then

var (E) = ||| = sup{(z", hi) : h € Ly(p), p(h) < +o0} = (27, fi).
Analogously, if °E = Q\ E, then v,«(°E) > (z*, feg). As

(@7, fo) + (27, fep) = (27, f) = var (Q) = v (E) + v2- (°E),
we get that v« (E) = (a*, fg).

(B) Let F C B(X) be the subspace of real ¥-measurable step-functions g : € — R such that
g= Z?:l a; - 14,, where a; € R and A4, ..., A,, are disjoint elements of . Observe that, if g € F,
it is trivial that v,«(g) = (z*,gf). So, let g € B(X). As F is dense in (B(X),]| - ||, ), there exists
a sequence {gn : n > 1} C F such that ||g — gnllcc = 0. S0, vp=(g9) = limy, o0 Vs~ (gn) because
vge € ba(X) = B(X)*.

Claim. g, f — gf in (Ly(p), | - [|z)-

Indeed, let A > 0 and choose ng € N such that ||g — gnlloo/A < (p(f) + 1)~ for every n > ng.
Since |f(g — gn)/A < |f/(p(f) + 1)|, for every n > ny we have

flg—gn) f p(f)
A GRS LT Fe
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So, | f(g — gn)llL < A and this proves that g, f — ¢f in (L,(r), | - ||z). Thus, we have
g+ (9) = nlgnéo g+ (gn) = nlggo (@, fgn) = (=", f9).
U

Lemma 2.5. Given {z% :n > 1} C X*t and e > 0, there exists f € L,(u)" with p(f) < € such
that for every n > 1 we have

(A)VE € 5, vy (E) = (27, fr); (B) Vg € B(X), vay (9) = (27, [9)-
Proof. By Lemma 2.4 for every n € N there exists f,, € Lp(,u)+ such that p(f,) < 57 and

(a) VE € X, vax (E) = (2%, fup); (b) Vg € B(X), va: (9) = (%, fng)-

Let f :=sup, >y fa. As p is an Orlicz-type semimodular, by Lemma 2.1 we get

PN o) <D 5 =e
n>1 n>1
So, for every n > 1 and every E € ¥ we have
Vay, (E) = (a5, fap) < (23, fE) < llzgpll = ve, (E),

whence we get v,- (E) = (z},, fg). Finally, if g € B(X) and n > 1, the argument of the part (B) of
the proof of Lemma 2.4 yields that v, (9) = (z;,, f9g). O

If z* € X* and z* = 2% — o*~ with 2*% 2"~ € X** define the mapping v« : ¥ — R
as Vg (E) = Vgt (E) — Vg (E) for every E € X. Since vgst,Vp— € ba(X), it is clear that
Vg € ba(X) = (B(X))* and 80 vgx(g) = vpet (9) — V- (g), Vg € B(X).

Lemma 2.6. Given {z} :n > 1} C X* and € > 0, there exists f € L,(u)" with p(f) < € such
that for every n > 1 we have
(A)VE € X, vor (E) = (27, fE); (B) Vg € B(X), vay(g9) = (273, f9)-
Proof. By Lemma 2.5 there exists f € Lp(,u)Jr such that p(f) < e and
Vw:+(E) = <x:;+va>v V;E:L_ (E) = <x7*1_va>7 V$:L+(g) = <x;+7fg>7 l/z:,_ (g) = <x;k7,_7fg>7
for every n € N, E € ¥ and g € B(X). So f satisfies the statement. O

Lemma 2.7. There exists an order-isomorphic and isometric embedding v of the space X* into
ba(X).

Proof. For every z* € X* we define v(z*) = vy«, which is in ba(X) by Lemma 2.5.
Claim 1. v is linear.

Indeed, let z*,y* € X* and «, 8 € R. By Lemma 2.6 there exists f € Lp(,u)Jr with p(f) < oo
such that for every £ € ¥

Vaz*+py-(E) = (ax” + BY", fE), e+ (E) = (2%, fp) and vy- (E) = (¥, fE)-
So, for every E € 3. we have
Voc:r*+ﬂy* (E) = <OZ{17* + By*afE> = a<x*7fE> + ﬁ<y*va> = (O[Vm* + ﬁVy*)(E),
and this proves that v is linear.
Claim 2. vg«yyx = Ugs V vy« for every z*,y* € X*.
Indeed, by Lemma 2.6 there exists f € L,(u)" with p(f) < oo such that for every g € B(X)
Varvy+(9) = (2" VY™, gf), ver(9) = (2%, 9f) and vy-(9) = (y", 9f)-
So, for every g € B(X)* we have
Vaxvy* (g) = <$* \ y*7gf> = Sup{<a:*,fh1> + <y*7fh2> : h17 h2 € B(E)+7h1 + h2 = g} =
= sup{vu~(h1) + vy« (h2) : hi,ha € B(S)T, hy + ha = g} = (Ve V 1+)(9)
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and this proves that vg«yy« = Vg« V 1y«

Claim 3. v is an isometry.

Indeed, pick z* € X*T and observe that (v,)" = vge+ and (vz+)” = vg«— by Claim 2. So,
taking into account that ba(X) and X* are Li-spaces we have

= [z ) Tl + 1)~ = llvges

[V~ | =l + [l ] = fl="].

|+ e

Thus, v is an order-isomorphic and isometric embedding of the space X* into ba(X). O

Theorem 2.8. Let (2, X, 1) be a T'-finite measure space, p an Orlicz-type semimodular on (Q, %, 1)
and S C L,(p) an ideal such that H(S) is p-dense in L,(u). Then the space X = Lp(1)

S 5 a
Grothendieck M -space.

Proof. First, X = ?{"((g)) is an M-space by Lemma 2.3. Let {x} : n > 1} C X™* be a sequence such

that a7, N By Lemma 2.6 there exists f € L,(u)" with p(f) < 400 such that v, (g) = (x5, fg)
for every n > 1 and every g € B(X). Since fg € L,(n), Vg € B(X), and x}, N 0, then v,- (g) —
0, Vg € B(X), that is, v, %5 0in (B(X)*,w*). Since B(X) is Grothedieck, we get v,= — 0. Finally

observe that v : X* — ba(X) is an isomorphism by Lemma 2.7. So, 2* -3 0 and this completes the
proof. O

3. WHEN L,(¢) 18 GROTHENDIECK?
Let (Q,3, u) be a I'-finite measure space and X a Banach function space on (2, %, ). Then:

(1) A functional G € X* is said to be an integral functional if |G|(f5) = 0 whenever {f,, : n >
n (o)

1} is a sequence in X such that f, | 0. Let X C X* denote the subspace of integral functionals
of X*. The Kéthe dual X' of X is the subspace of all elements G € X* (in fact, G € X}) such that
there exists a function g € Lo(u) fulfilling fg € Ly (p) and G(f) = [, fgdp for every f € X. When
w is a o-finite measure it is well known (see [14, Th. 3, p. 462]) that X = X’. We claim that the
equality X = X’ also holds for I'-finite measure spaces. Indeed, fix G € X;. By [14, Th. 3, p.
462] for each v € T' there exists a X-measurable function g, : 2, — R such that fg, € Li(u) and
G(f) = wi fgydu for every f € X with supp(f) C Q. So, if g € Lo(p) is such that g | Q, = g,

then it is not hard to prove that fg € Li(p) and G(f) = [, fgdu for every f e X.

(2) A non-negative functional G € X** is called a singular functional whenever it follows from
Gy € X/ and 0 < G; < G that G; = 0. An arbitrary element G € X* is called singular if
the positive and negative components G, G~ of G are singular. Let X denote the subspace of
singular functionals of X*. It is well known that the subspaces X} and X are mutually disjoint
closed ideals of X* such that X* = X} @ X (see [14, Th. 2, p. 467]). It is easy to see that the
subspace X of o-continuous elements of X satisfies X% = (X})*. Moreover, if supp(X?) = Q,
then (X?)+ = X (see [14, p. 481]). So, if supp(X?) = €, then X* = X7 if and only if X = X°.

If a Banach lattice X is Grothendieck, then its dual X* is o-continuous (see [10, Theorem 5.3.13,
p. 355]). The converse is not true because ¢1(I) is o-continuous but c¢o(I) is not Grothendieck.
However, as we show in the following result, when X is an Orlicz-type modular space (with some
minor requirements), X is Grothendieck if and only if the subspace of integral functionals (or
Kothe dual) X} is o-continuous,

Theorem 3.1. Let (2,2, ) be a I'-finite measure space and p an Orlicz-type semimodular on
(Q,%, ). Assume that Si C L,(u) is an ideal such that: (i) H(S1) is p-dense in L,(u); (ii)
L,(p)* = H(S1), where L,(p)* is the subspace of o-continuous elements of L,(); (iii) supp(Si) =
Q. Then

(A) L,(1)/H(S1) is a Grothendieck M-space.

(B) The following statements are equivalent:
(1) L,(p) is Grothendieck; (2) L,(p); is o-continuous.

K2
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Proof. (A) follows from Proposition 2.8.

d
(B) First, recall that the dual space L,(u)* has the expression L,(u)* = L,(u); & Ly(1)%,

where Gda means the disjoint direct sum, L,(u); is the subspace of integral functionals and L,(u)%
the subspace of singular functionals. Since the support or carrier supp(L,(n)*) of L,(u)® is
supp(L,(1)®) = supp(H(S1)) = Q, then (L,(u)*)t = L,(u)% (see [14, pg. 481]). On the other
hand, under the conditions of the statement, L,(u)/H(S1) is Grothendieck by (A). Thus, as

L,(u)* = H(S1), we have

(Lp(n)/H(S1))" = (H(S1))" = (Lp()")" = Ly(w):-

So, the sequential weak* and weak convergences coincide in L,(u)i. Moreover, L,(u)% is o-
continuous, because it is the dual of a Grothendieck Banach lattice (see [10, Theorem 5.3.13,

p. 355]).

(1) = (2). Assume that L,(x) is Grothendieck. Then L,(u)* is o-continuous (see [10, Theorem
5.3.13, p. 355]). So L,(u); is o-continuous.

7

(2) = (1). In order to prove that L,(x) is Grothendieck we use [10, Theorem 5.3.13, p. 355].
So, we must check the following three conditions:

(i) First condition: L,(u) has the interpolation property (I). Recall ([10, Def. 1.1.7 , p. 7]) that
a vector lattice E has the interpolation property (I) if for all sequences (zy,)n>1, (Um)m>1 C E
such that z,, <y, Vn,m € N, there exists u € E such that z, < u < y,,,, Vn,m € N. In our case
L,(p) has the interpolation property (I) because L,(u) is o-complete.

*

(ii) Second condition: L,(u)* is o-continuous. This is true because we have the decomposition

d

Ly(p)* = Ly(p);®Ly(p)% and: (i) L,(p); is o-continuous by hypothesis; (ii) L, ()% is o-continuous
because it is the dual of the Grothendieck Banach lattice L,(u)/H(S1). So, L,(1t)* is o-continuous.

(iii) Third condition: if {z, : n > 1} C B(L,(p)*)" is a pairwise disjoint sequence satisfying
Zn ﬂi; 0, then z, 2 0. Let us prove this condition. Consider the decomposition z, = z1, + zon
with 21, € B(L,(p))* and 29, € B(L,(p)%)" so that {214, 22, : n > 1} are pairwise disjoint as
elements of L,(u)*. Moreover, since L,(u); C L°(u), each 21, can be considered as a function of
LO(u)™ such that supp(z1,)N supp(z1m) = 0 if n # m.

Claim 1. z,, 5 0.

Indeed, suppose that z1, does not converge to 0 in the weak*-topology. Then there exists a
vector u € B(L,(p)) and a positive number 0 < e < 1 such that, by passing to a subsequence if
necessary, we have (z1,,u) > ¢, Vn > 1. Let u, = 4 - Lgypp(z,,), 7 > 1. Notice that u, € L,(u),
12> Jlull = |lunll = (z1n, un) = (z1n,u) > € for all n > 1 and (z1,,u) = 0, if n # k. Since maybe
(zon, un) # 0, we need to pass to another vector v, € H(S7) such that |v,| < |u,| and (29, v,) = 0.
Let us choose v,,. As zi,u, € Li(u) and 400 > fQ |21ntn|dp > (Z1n,un) = (z1n,u) > €, by the
dominated convergence theorem there exist 0 < M,, < co and a finite subset I';, C I" such that, if

Un = ((un A M)V (=My)) - Lo, o 0
then Up € ‘SOa |Un| < |un|a <22n7vn> = Oa ||U7LH > <Znyvn> = <Zlnavn> > eand <Zkavn> = <Zlkavn> =0
if k # n. Define the operator S : log — L,(1t) as S((tn)n>1) = D_,,>1 tnUn for every (tn)n>1 € loo.
Observe that S is well defined because for every (t,)n>1 € oo Wwe have, on the one hand

1Y tovnll <sup{fta] :n > 13| Y onl <
n>1 n>1
< sup{[tn| : 7 = 1}H|ull < sup{[ta] :n 21} = [[(tn)n>1llen
and, on the other hand
1Y tnvnll = sup{[ta] - onll s n > 1} > esup{fta] : n > 1} = €l|(tn)n>1 ]l -
n>1

So, S is an isomorphism between (o, and S(¢s;) with ||.S|| < 1. Define the operator T : L,(1) — ¢o
as follows: for every x € L,(1), we put T(z) = (({(2n, Z))n>1). AS 2y N 0, it is clear that T is a
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linear operator such that ||T|| < 1. Now we consider the operator T o S : £o, — ¢o and prove the
following fact.

Fact. The restriction T o S| ¢y of T o S to the canonical subspace ¢y of f is a (natural)
isomorphism between ¢y and the final space ¢g. Moreover, T o S(B(cg)) D e€B(cp), and so, T o
S(B(¢ss)) D €B(co)-

Indeed, let y := (y1,y2,...) € €B(co). Since (zp,vn) = (21n,vn) > € and |y,| < €, we can
find ¢, € [-1,1], n > 1, such that ¢, — 0 and ¢, (2, vn) = yn. So, t := ((tn)n>1) € B(cp) and
ToS(t)=y.

Thus, ¢q is a quotient of £, a contradiction which proves the Claim 1.

Claim 2. (LP(.U);)* = (LP(M):); = Lp(ﬂ)~

*

Indeed, since by hypothesis L,(u); is o-continuous we have (L,(u)f)* = (L,(p););, that is,

7 7

if G € (Ly(n);)*, there exists g € Lo(u) such that for every Hy € L,(p)f, with f € Lo(p)
representing the functional Hy, then fg € Li(u) and (G,Hy) = [, fgdp. Let us prove that
(Lp(1)7); = Ly(p). When g1 is o-finite, this fact holds true because L,(x) has the Fatou property
and by [14, Th. 1, p. 470]. Let us consider the general case, that is, p I-finite. First, clearly
L,(p) C (Lp(w))* = (Lp(w)7)i. Prove that (L,(u)}); C L,(p). It is enough to show that, if

7 1/ 1/

G € (Ly(p)7); with |G/, <1, G >0, and g € Lo(p)* represents G (that is, fg € L1(p)

K3
and (G, Hy) = [, fgdp, YHy € L,(1n);), then p(g) < 1. Suppose that p(g) > 1. By the definition
of Orlicz-type semimodular, there exists A € ¥ with u(A) < oo such that p(gla) > 1. Let pa be
the restriction of p to A. Then L,(pta) := {fla : f € L,(1)}. Since pra is o-finite and L,(u4)
has the Fatou property, then (L,(pa);); = Ly(pa) and the norms || - ||z, a2 and || - ||z, (ua)
coincide (see [14, Th. 1, p. 470]). Since gla € (L,(1a)f); = Ly(pa) and L,(pa) C Ly(p), then
gl € L,(p). Moreover

lgLallz, ) = ll91allz,(ua) = l192allz, )y S NGl L, <1
Hence we get p(gla) < 1, a contradiction, which proves that p(g) <1 and so g € L,(u).

Claim 3. z1, — 0.

Indeed, by Claim 2 we have (L,(u);)* = (Ly()f)f = Ly(n). So, on L,(u)! coincide the

w*-topology o(L,(u)}, L,()) and the w-topology o (L,(1)%, (L,(p):)*). Hence, we get 21, — 0

because z1,, ﬂi; 0 by Claim 1.
Claim 4. 29, = 0.

Indeed, as 25, = z, — z1n, then 2, 11) 0, because z1, u—); 0 and z, w—; 0. Now we apply that
L,(u)/H(S1) is Grothendieck and the fact that L,(u): = (L,(x)/H(S1))*. So, we obtain za,, — 0.

Finally, from Claim 3 and Claim 4 we obtain z, — 0 and this completes the proof. (]

4. THE GROTHENDIECK PROPERTY FOR ORLICZ-LORENTZ SPACES

Let us introduce the notion of Orlicz-Lorentz spaces. If (€2, 3, i) is a complete I'-finite measure
space, for every h € M (u), the distribution function py, : [0,00) — [0, 00] associated to h is defined
by

() = u({w € Q: [h(w)] > 1)), ¢ € [0,00),
and the nonincreasing rearrangement function h* : (0,00) — [0, 00] of h is defined by
R*(t) = inf{\A > 0: pup(N) < ¢}, inf @ = oco.

Let ¢ : RU {£o0} — [0,+00] denote an Orlicz function, i.e. a convex function which is even,
nondecreasing and left continuous for z > 0, »(0) = 0 and p(z) = oo as z — oo (see [1],[9]).
Define a(y) = sup{t > 0 : p(t) = 0} and 7(¢) := sup{t > 0 : ¢(t) < oco}. The complementary
function of ¢ is a new Orlicz function v defined for u > 0 as ¢(u) = sup{tu — p(t) : 0 < t < oo}.
The Orlicz function ¢ satisfies: (i) the As-condition at 0 (for short, ¢ € AY) if p(t) > 0 for t >0
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and lim sup e o 00; (ii) the Ag-condition at oo (for short, ¢ € AS°) if p(t) < oo for every
t—0 "o(t) ¥ 2 ¥

0 <t < oo and limsup,_, W((Qtt)) < oo; (iii) the Ag-condition (for short, ¢ € Ay) if p € AY and

Y€ A‘X’. A function w : (O oo) (0,00) is said to be a weight function if it is nonincreasing,
fo t)dt < oo and [~ w(t)dt =

Let ¢ be an Orlicz function and w : (0,00) — (0, 00) a weight function. We define the mapping
Iwy : Lo(p) UM (p)™ — [0, 00] associated to ¢ and w as

T () = / o(f*ywdt, € Lo(u).

Let us check that I(, ., is an Orlicz-type semimodular.

(0) Let fe M(u)*t, A:={weQ: f(w) > alp)} and g :== f14. Then it is easy to see that
@(f*) = 90(9*) and so I(go,w)(f) = I(go,w)(g)'

(1) Clearly, I(Lp)w)(()) =0, I(go,w) (f) = [(%w)(—f) and, if I(Lp,w)(/\f) =0, YA > 0, then f = 0.
Moreover, I(, .,)(f) = oo as soon as 0o = u({|f| > t}) =: uy(t) for some t > a(yp).

(2) I(pw) is monotone because 0 < g* < f* and 0 < ¢(g*) < o(f*) whenever [g| < |f].

(3) I () is left-continuous. Indeed, if {f, : n > 1} € M(u)™ is a sequence such that 0 < f,, T fo,

)

then f 1 fi. Since ¢ is left-continuous, also ¢(f) 1 ¢(f3) and so by the monotone convergence
theorem we have I(y, .\ (fn) T L(4,w)(fo)-

*

(4) If A € ¥ with u(A) < oo and X > 0 satisfies p(A) < 0o, then I, ) (A1) fo Mwdt <
0.

(5) I(4,w) is 1-convex and satisfies I(y, ) (fV 9) < L) (f) + Lipw)(9), V.9 € Lo(p) UM (p) "
To prove these properties we proceed in several steps, namely:

Step 1. We suppose that f, g are real Y-measurable step-functions, that is, f := Z?:l a;1a4,
and g == > " blp, with 0 < a;,b; and A;, B, € ¥ with A, N 4; = 0 = B, N B, whenever
i # j,p # q. In this case it is easy to see that I\, ., (af + B9) < alig ) (f) + BI(pw)(g), When
0<a,B8, a+p=1,and I, u)(fV9) < Lpuw)(f) + Lipuw(9)

Step 2. Let f,g € M ()" and o, 8 > 0 with a + 8 = 1. Find two sequences of YX-measurable
step-functions 0 < f, < fop1 T f, 0 < gn < gnt1 T g Then 0 < af, + ﬂgn T af + Bg and
0< fuVgntfVg, whence 0 < (af, + Bgn)* T (af + 8g)* and 0 < (f, V. gn)* T (f V g)*. Thus,
I(gp,w)(afn + Bgn) T I(LP,'UJ) (af + Bg) and I(go,w)(fn Vgn) T I(Lp,w)(f V g). By Step 1

I(Lp,’w) (afn + ﬁgn) < aI(ga,w)(fn) + 6I(gp,w) (gn) < O‘I(go,w)(f) + 61(4,0,10) (g)v
and
I(gp,w)(fn \4 gn) < I(@,w)(fn) + I(Lp,w)(gn) < I(Lp,ﬂ))(f) + I(@,w) (g)
Therefore, we finally get

I(ga,w)(af + /Bg) < al(@,w) (f) + Bl(w,w) (g) and I(Lp,w) (f \ g) < I(ga,w)(f) + I(LP,’LU) (g)

(6) I(p,w) is finitely determined. Indeed, let f € M(u)* be such that I, .\ (f) > a > 0. Put
Ag :={w € Q: f(w) > al(p)} and A, == {w € Q: f(w) > a(p) + L}, Vn > 1. Then fl,, 1
J1a, and s0 Iy ) (fLa,) T Lipw)(f1La,), because I(, ) is left-continuous. Since I(, ) (f1a,) =
Iip.u)(f) (by (0)), there exists p € N such that I(, .,)(f1a,) > a. If u(A,) < oo we are done.
Otherwise, (1(A,) = oo and we can choose a sequence {A,,, : m > 1} C ¥ such that p(Ap,,) <
00, Apm C Apmy1 C Ap, m>1, and p(Apn,) T o0o. Then

N(Apm)
Iipuw)(fla,,) > / o(ale) + %)wdt — oo for m — oo.
0
So, there exists ¢ € N such that I, .,)(f14,,) > a.

Thus, I(,,) is an Orlicz-type semimodular on (€,3, 1) and so we can apply the results of
Sections 2 and 3 to the associated modular Banach space (Lo())1,.,,,, Which is called the Orlicz-
Lorentz space and denoted by A, .)(1). When (t) = [t[, then A, ,)(p) is the Lorentz space
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Ay (). If w(0F) == limg o w(t) < oo and limy_, o) w(t) > 0, it is clear that A, () is order-
isomorphic to the Orlicz space Ly (u1). Let HA(, ) (1) be the ideal HA(, ) (1) := {f € Apw) (1) :
Ip.w)(Af) <00, YA > 0}.

Proposition 4.1. Let (Q, 3, u) be a complete I'-finite measure space, ¢ be an Orlicz function and
w: (0,00) = (0,00) a weight function. Then Sp is I(y )-dense in A, ) (1). Moreover, if i = pq
(that is, p is purely atomic) and S, is the subspace spanned by the functions of the form 14, A
being an atom, then Sy is I(y ) -dense in A, ) (1)

Proof. (1) Let us prove that Sy is I(, ,)-dense in A, ,)(p). Pick f € A, (1) such that
T4 w)(f) <ooandlet 0 < e < oo. We have to find a function g € H(Sp) such that I, ., (f—g) <e.
If 0 < a(p) = 7(¢p), then f* < a(p) and so p(f*) = 0 and actually I, .,)(f) = 0. Thus taking
g:=0¢€ S8y we have I, ,)(f —9) =0<e

Assume now that a(p) < 7(¢). Observe that the measurable set A := {w € Q : |f(w)| > a(p)} is
o-finite, we say, A := Up>1{w € Q: [f(w)| > a(p)+ L}, with p({w € Q: [f(w)| > alp)+1}) < oo
Define

I = I s aerdy  Misisny m 2 1

Observe that f, € So, n > 1. If g, == f — fn, n > 1, it is clear that {|g,| > a(¢) + £} C {|f] >
a(@)+ £}, Vn,k > 1, and {|gn| > a(¢) + £} | 0 when n — oo, whence we get ,Vk > 1, pg, (a(p)+
+)10 when n — co. Thus g} lgo when n — oo for some measurable function go : [0, oo) — [0, 0]
such that 0 < gy < a(p) and this implies ¢(g) | 0, because a(p) < 7(p). Therefore, as

n— oo

0 < g, < f*and I, .)(f) < oo, by the dominated convergence theorem we get I(, ) (f — fn) =
Iigw)(gn) fooo ¢(go)wdt = 0. So, there exists ng € N such that I(, .,)(f — fn) <€, ¥n > ng,
n—oo

and this proves that Sp is I(, )-dense in A, ) (1) when a(p) < 7(p).

(2) Assume that 4 = p, and pick f € A, (@) such that I(, ) (f) < oo and let 0 < € < oco.
We have to find a function g € S, such that I, .)(f —g) < e If 0 <a(p) = 7(p), we can pick
g=0¢€S8, as in the part (1).

Assume that a(¢) < 7(p). As the measurable set A := {w € Q: |f(w)| > a(p)} is o-finite, then
A =W,>14,, where {4, :n > 1} is a disjoint sequence of atoms with u(A,,) < co. Define
= . . n . > 1.
Tni= T psageye dy - Loiaan n 211

Observe that f, € S,, Vn > 1. As in the part (1), there exists ng € N such that I(, ) (f — fn) <
€, Yn > ng, and this proves that S, is I(, ,)-dense in A, (1) when a(p) < 7(p). O

Proposition 4.2. Let (2,3, u) be a complete T-finite measure space, ¢ be an Orlicz function and
w: (0,00) = (0,00) a weight function. Then

(A) If o is finite we have HA(y ) (1) = H(So) = (Ap,w) (1))

(B) If 7(¢) < 00 and Q = Qq W Qa, 1= pia+ fta, then H(Sq) = Sa = (A(pu)(1)*, where S, is
the subspace spanned by the functions of the form 14, A being an atom.
Proof. (A) Let us see that HA, ) (1) = H(So) = (A(p,w)(1))* when ¢ is finite.

(i) First, HA(, ) (1) C H(So) by the definitions of these subspaces.

(ii) As (A(p,w)(1))* is a closed ideal and H(Sy) = S, in order to prove that H(Sp) C (A w) (1)),
it is enough to check that 14 € (A(,w)(1))* whenever A € ¥ and pu(A) < co. Since Ay ) (1)
is g-o-complete, it is enough to show that, if 0 < f,, < f,—1 < 14 is a sequence of elements
of Ayw)(p) such that f, | 0 in order, then ||f,[| { 0 when n — oco. As u(A) < oo, then
Ju 1 0. So, let A > 0 and observe that I(, .,)(1a/)\) < oo (because ¢ is finite and p(A) < oo)
and o((La/A)*) > o((fu/N)*) 1 0. Thus, we get I, ) (fn/A) L 0 by the dominated convergence
theorem and so || f]| J 0 when n — oc.

(iii) Finally let us see that (A, ) (1))* C HApw) (). So, pick f € A w) (1) \ HA () (1) and
prove that f ¢ (A,,w)(p))®. Without loss of generality, assume that 0 < f and [(,, ., (f) = oo.
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For each (F,n) € F x N (F = finite subsets of I") define

fEny = (f Luer,) AN
Observe that fp,) € HAw) (1) and {f — f(pn) @ (Fyn) € F x N} is a downward directed set
such that f > f — f(pn) | 0. Moreover
+00 = I(ap,w)(f) = I(t,a,w)((f - f(F,n)) + f(F,n)) =
= L) (32(f = frm)) + 52f () < 3L0) 20 = firm)) + 51 (0.w) (2f(5m));

whence we get I(,.)(2(f — f(rn))) = +o0 and so ||f — firnll > 1/2 for every (F,n) € F x N.
Thus f is not o-continuous.

(B) First, we know that H(S,) = S,. Since clearly Sq C (A(p,w)(1))* we get Sq C (A(p,w)(1))”
because (A(,,w) (1)) is a closed ideal.

Claim. If f € (A¢g ) (1)), then supp(f) C Q.

Indeed, it is enough to prove that if A € ¥ with A C Qg and p(A) > 0, then 1a ¢ (A w) (1))
Since pg4 is diffuse and pq(A) > 0, without loss of generality we can suppose that there exists a
sequence {A, : n > 1} C ¥ such that A, + A and pu(A\ A,) > 0, n > 1. Then L4, | 0
and also I(,..)((T(®) +€) - Laa,) = 400, Ve > 0. Thus [[La\a,[ > T(lw) > 0 and this yields
1a ¢ A(Lp,w) (M)a'

Now let f € A w)(p)® and prove that f € S.. By the Claim we have supp(f) C €,. Let
{A; : i € I} be the family of atoms of p and f; := f [ A;. Then [f — >, fi- 14,| | 0 when
J C 1 is a finite subset. Thus ||[f —> .., fi- 1a,|| 0 when J C I is a finite subset, because f is
o-continuous. Since Y, ; fi - 1a, € S, for J C I a finite subset, we conclude that f € S,. d

Proposition 4.3. Let (2,3, 1) be a complete T-finite measure space, ¢ an Orlicz function and
w: (0,00) = (0,00) a weight function. Then

(A)IfS C Apw) (1) is an ideal such that H(S) is I(,,)-dense in Ay ) (1), then Ay ) (1) /H(S)
is a Grothendieck M-space. In particular, A, .)(1)/H(So) is a Grothendieck M -space
(B) If either ¢ is a finite Orlicz function or p = ug, the following statements are equivalent:

(1) Ay (1) is Grothendieck ; (2) (Mg w)(1)); is o-continuous.
Proof. (A) This follows from Proposition 2.8 and Proposition 4.1.

(B) This follows from Proposition 3.1, Proposition 4.1 and Proposition 4.2. |

Looking at Proposition 4.3, it is clear that, in order to see if A(, (1) is Grothendieck, the key
is to determine who is (A, ) (1)); and when this space is o-continuous. If o(t) = [t| (or more

generally, ¢ is equivalent to g(t) = t) we have the following result.

Proposition 4.4. Let (Q,%, 1) be a T-finite measure space, ¢ an Orlicz function equivalent to
g(t) =t and w : (0,00) — (0,00) a weight function. Then the space Ay, (1), which is isomorphic
to the Lorentz space Ay, (1), is not Grothendieck, provided it is infinite-dimensional.

Proof. This holds true because it is well known (see [13, pg. 177], [3, Th. 5.1]) that every
infinite dimensional Lorentz space A, (1) contains a complemented copy of ¢1. As a quotient of a
Grothendieck spaces is also Grothendieck and ¢; is not, we conclude the statement. ([l

It is well known that the Kothe-dual (A, (1)); = Mg where (Mg, || - ||g) is the Marcinkiewicz
space, which is defined as follows:

(4.1) Mg = {f € Lo(u) : |flls = sup L% < oo},
te(0,00) ®

s

S(t) being S(t) = [; w(s) - ds.
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Corollary 4.5. Let (2,%,u) be a T-finite measure space and w : (0,00) — (0,00) a weight
function.

(1) If ¢ is an Orlicz function equivalent to g(t) = t, then the Kithe-dual space (A ) (1t)); is
not o-continuous, provided A, .,)(1) is infinite-dimensional.

(2) The Marcinkiewicz space (Mg, | - ||g) (defined in (4.1)) is not o-continuous, provided it is
infinite-dimensional.

Proof. O

Let (2,%, 1) be a complete T'-finite measure space, ¢ be an Orlicz function and w : (0,00) —
0,00) a weight function. Define the functional Ji, ., : Lo — [0, o0] so that
g (p,w) H

o) = / o(f* fwywdt, Vf € Lo(u),

and let
Mg w)(p) == {f € Lo(t) : Jpw)(Af) < oo for some A > 0}

and

HMy)(1) :={f € Lo() = J(p,w)(Af) < 00 for every A > 0}.

Let us remark the following observations

(O1) The weight w is said to be regular when S(2t) > (1 + a)S(t), t > 0, for some 0 < a < 1,
where S(t) = fg w(s)ds. Thus S(2t) — S(t) > aS(t) — oo when t — oo. It is very easy to see the
equivalence of the following statements: (i) w is regular; (ii) S(t) < btw(t), t > 0, with 1 < b < oo;
(iil) w(t/2) < Cw(t),t > 0, with 2 < C < 0.

(02) If w is a regular weight, we say, w(t/2) < Cw(t),t > 0, with 2 < C' < oo, then J, ) (f +
9) < Jo0)2Cf)+J () (2Cg) for every f,g € Lo(u). Indeed, since (f+g)*(t) < f*(t/2)+g"(t/2)
and go(ﬁ)w(t) < @(%)u;(t/?) for every a > 0 and ¢ > 0, we have

J(W,u;)(f+g):/0 @(W)w(t)dt</o ¢(22f (t/Q)wJ(rt)ﬂg (9/2)

L[ 2f*(t/2) 1> 29°(t/2)
< §/0 ¢(W)w(t)dt+§/o go(Tt))w(t)dtS

< /()mw(%)w(t/z)d(t/m + Amw(%)w(tﬂ)d(tﬂ) -
= J(L,O,'UJ) (2Cf) + J(gp,w) (209)

Observe that this fact implies that M, ,,)(p) is a linear subspace of Lo(x). If the weight w is not
regular, the subset M, ) (1) can be not linear.

Jw(t)dt <

(O3) Suppose that either ¢(t) = t or ¢ is an Orlicz N-function (see [9]) and w is a regular
weight. Under these conditions Hudzik, Kaminska and Mastylo (see [7, Th. 2], see [9]) proved
that the Kéthe dual (A, ) (1)) of A(g.w) (1) coincides, as a set, with the subspace My, (1) of
Lo(w), ¥ being the Orlicz function complementary of ¢. Moreover, if we define the homogeneous
functional

A= nt{A > 0 Jiyuy(§) < 1} f € Mgy (),

then ||| - ||| is a quasinorm equivalent to the dual norm of (A, ., (x)); such that by a calculus like
in (O2) we have

V9 € My,w) (), IIf 4+ glll < 2CAIA I+ [lgll])-

So, in what follows we restrict ourself to the case such that ¢ is an Orlicz N-function and w is a
regular weight.

Lemma 4.6. Let (Q,%, 1) be a complete I'-finite measure space, ¢ an Orlicz function and w a
weight. Then

(1) If f € Lo(p) satisfies J(p.u)(f) < 00, then u({|f] >t +a(p)}) < oo, Vt > 0.
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(2) If w is a regular weight, there exists 1 < K < oo such that <K, Vn>1.

_w(n)
w(n+1)
(3) If ¢ is an Orlicz N-function and w is a regular weight, then HMy ) (1) = (Meyp,w)(1))®,
1 being the Orlicz function complementary of ¢.

Proof. (1) If u({|f| > to + a(v)}) = oo for some tg > 0, then f*(u) > to + a(p), Yu > 0, whence
J(pw)(f) = 00, a contradiction.

(2) As w is regular, then S(2t) > (1 4 a)S(t) for some 0 < a < 1, where S(¢ fo
Choose ng € N such that % an (s)ds < §, Vn > ng. Suppose that the statement fails. Then

n

we can pick m > ng such that w(T+)1) <3 and so for every s € (m + 1,2m], we have
w(s) < w(s) < w(m + 1) <2
w(s—m—1) —wlm) =  w(m) 2
Thus
2m m+1 2m 2m
S(2m) — S(m) = / w(s)ds = / w(s)ds +/ w(s)ds < §S8(m) +/ Sw(s —m —1)ds
m m m—+1 m—+1

$S(m) + /om Sw(s)ds < §5(m) + §S(m) = aS(m).

Therefore S(2m) < (14 a)S(m), a contradiction.

(3) First, we show that HMy ) (1) C (Myp,w)(p))®. Let 0 < f € HMy ) (1) and choose a
sequence 0 < f,11 < f,, < f of measurable functions such that f,, | 0. Then {f, >t} C {f > ¢}
and {f, >t} | 0 for every ¢ > 0. Since v is an N-function, then a(¢) = 0. Thus u({f > t}) <
00, Vt > 0, by (1) and we get u({fn > t}) J 0, V¢t > 0, whence f; ¢ 0. Let A > 0 and observe
that [;° zﬂ(%)wdt < 00 because f € HMy ,)(p). Thus, since w( —Jw > w( n )w 1 0, by the
dominated convergence theorem we get Jiy ) (fn/A) J 0 and so |||fn||| 10 AS f is o-complete,
this proves that f is o-continuous.

Let us prove the converse inclusion, that is, (M, w)(1))* C H My w) (). Pick f € My (1) \
HMy (1) and prove that f & (My . (1))*. Without loss of generality, assume that 0 < f and
Jepw) (f) = 00. For each (F,n) € F x N (F = finite subsets of I') define

fEny = (f - 1u,epn,) AN
Observe that firny € HMy ) (@) and {f — fipn) : (Fyn) € F x N} is a downward directed set
such that f > f — f(pn) I 0. Moreover, if the regular weight w satisfies w(t/2) < Cw(t) with
2 < C < o0, then by (02)
+00 = Jiyuw) (f) = Jpw)(f = f(rn) + FEn) < Jpw)RC(f = frn) + Jpw)(2C frn))-

Since J(w,w)(2cf(F,n)) < 00, we get J(w,w)(2c(f - f(F,n))) = 400 and so |||f - f(F,n)H| > 1/(20)7
for every (F,n) € F x N. Thus f is not o-continuous. O

Lemma 4.7. Let (2, %, 1) be a complete I'-finite measure space, 1 an Orlicz N -function and w a
regular weight. Then

(1) If p is atomless and 0 < () < 0o, then My ) (1) is o-continuous if and only if p € AS°.

(2) If pu is atomless and pu(Q) = oo, then My (1) is o-continuous if and only if 1 € As.

(3) If (2, X, p) is the counting measure space on an infinite set I, then My (1) is o-continuous
if and only if v € AY.

Proof. First, observe that we ask for ¢ and w to be an Orlicz N-function and a regular weight,
respectively, because only under these conditions we know that My .,)(p) is, as a set, the Kéthe
dual (A w)(1)); of Ay w)(p) and the quasinorm ||| - ||| is equivalent to the norm of (A, . (1));
(see [7]), ¢ being the Orlicz N-function complementary of ).

(1) Suppose that ¢ € AS® and pick some 0 < f € My ) (1). We have to prove that f is
o-continuous. Assume that J(y .,)(f) < oo and let A > 1. Since ¢ € A3°, there exists 0 < K < oo
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such that ¥(At) < Kxy(t), Vt > 1. Thus, as pu(2) < oo, we have

B(€) g = N A F*
J(w,w)(/\f)z/o o( i )wdtz/{f*q}qp( f )wdt—i—/{f* o( / Jwdt <

w P w
—>1}

w(€2) () *
gw()\)/o wdt+K,\/O w({u)wdt<oo

Since A > 1 is arbitrary we get f € HMy .,)(1). This proves that f is o-continuous because
H My ) () = (M(w’w)(u))a by Lemma 4.6.

Now we prove the converse statement. Without loss of generality, we assume that Q = [0, 1]
and that g is the Lebesgue measure on [0,1]. We suppose that ¢ ¢ AS° and we construct in
M4y, (1) an order-isomorphic copy of £o.. Let 2 < C' < oo be such that w(t) < Cw(2t) for every
t > 0. Since ¢ ¢ AP, there exists a sequence {uk : k> 1} C (0,00) such that 0 < ug T oo,
w((%)uk) > 2k+1y) (), w 7 < fo wdt and 2*+1w(uk+1) < 4112kw1(u 5> k= 1. Then

1
L 1 1442 _ 2
ZWSW<1+4 +4 +"')—3w(u)_/0wdt
E>1

Let {ry : k > 1} C (0,1], rx J 0, be such that 3, -, m = [, wdt and
1. Observe that for n > 1

Trnt1
Tt )T < / wdt = Z 2’“wl(uk) < 2"¢1(un) (471 +472 - )=
0 k>n

1 Tn
1 1 1

= 5—— =3 ’U)dt<*7'—7’ w\r
3 (uy) 2 / < 3 = TnprJulras),

whence 4r,411 < r,. Denote py := rp — rry1 and define fj = Wiy, 1 s k>1,and f :=
Zk21 f&. Then

(a) Clearly the functions f; have disjoint Supports f *= f and

J(w,w)(f)Z/Ol “Jwdt =Y " (un)wd = > ok =

k>1Y Tk+1 E>1

S wdt, k>
k+1

1 _
2k (ug)

Thus [ felll < AT < 1.

(b) Let us compute J(y ,)((C + 1) fx). Observe that: (I) fi(t) = upw(t + rr41), if 0 <t < py,
and fi(t) =0if t > py; (IT) if t > 7441, then 2¢ > t 4+ 1441 and so w(t) < Cw(2t) < Cw(t + r41)-
Thus

Pk * Pk
J(wyw)((C—kl)fk):/O w((C—i—l)%)wdtZ/r' w((c+1)m)wdt:

Pk C 1 Pk
= / ¥( hs uy, ) wdt > o(k+1) W (ug)wdt.
Tk+1 ¢ Tk+1
Since w is decreasing and py > 711 + 5 (that is, py is equal or greater than the middle point
rre1 + 5 of the interval [rgi1,7%]) then

Pk Tk
Y(up)wdt > 1 Y(up)wdt = 27571,

Tkl Thil
Thus, finally we have J(y ) ((C+1)fx) > 1 and so ||| fx]|| > (C'+1)~*, k > 1. Taking into account
the equivalence between the quasinorm ||| - ||| and the dual norm of (A, ) (x));, it is clear that
the mapping T': foo — My ) (1) such that T'((ap)r>1) = > p>q @k fr, (ar)r>1 € Loo, is an order-
isomorphism between lo, and T'({s;). Therefore My, (1) contains an order-isomorphic copy of
{0, a contradiction, because M, . (1) is o-continuous by hypothesis.

(2) Suppose that 1) € Ay and prove that My .,)(p) is o-continuous. Let f € My (1) and
assume that J, ) (f) < oo. Then for every A > 0 we have Jiy ,)(Af) < oo because 1) € Ay, that
is, f € HM(y,u)(p). Now apply that H My ) (1) = (My,w)(1))* by Lemma 4.6.
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Suppose that My .,)(u) is o-continuous and prove that ¢ € Ay. First, ¢ € AS° by the part
(1). Assume that ¢» ¢ AY. We have to construct in My (1) an order-isomorphic copy of £ by
using an argument similar to the one of the part (1). Without loss of generality, we suppose that
) = [0,00) and that p is the Lebesgue measure. Let 2 < C' < oo be such that w(t) < Cw(2t) for
every t > 0. Since ¢ ¢ A3, there exists a sequence {uy : k > 1} C (0,00) and a two sequences of
integers {ry : k > 1} and {py : k > 1} such that:

(1) 0 < upqr < ug and Y((SL)uy) > 25429 (uy), k> 1.

()0 =1y <ro <13 <--- withpp = 741 —78, Pr > 278, k > 2,and 2751 < f;’““ W(ug)w(t)dt <
27k k> 1.

To do this construction we proceed step by step:

Step 1. Choose u; > 0 such that (()ur) > 2'+2¢(uy) and folw(ul)wdt < 27171 So,
there exists 7y € N, 73 > 2, such that 27171 < [ ¢ (up )w(t)dt < 271

Step 2. Choose 0 < wup < w such that ¥((%)us) > 22*2Y(up) and
fim P(ug)wdt < 27271 So, there exists 73 € N, 73 > 3ry, such that 27271 < f:;’ (uz)w(t)dt <
272, Observe that, if ps := 13 — ro, then py > 2rs.

Further we proceed by iteration. For k > 1 define fi, € Lo(u) as fi := up - w - L¢py o, ). Let
f= ZkZI f&. Then
(a) Clearly the functions f; have disjoint supports, f* = f and

Tk+1

Jp,w) (f) = /Omlﬂ(?];)wdt = Z/k Ylup)wdt < 27F =1,

E>17T" k>1

Thus [[|Ifelll < AT < 1.

(b) Let us compute Jiy ) ((C 4 1) fx). Observe that: (I) fi(t) = wpw(t + k), if 0 <t < py, and
fi(t) =0if t > pg; (1) if t > 7, then 2t >t + 7, and so w(t) < Cw(2t) < Cw(t + 7). Thus

) (CH+ 1) fr) = /Opk Y((C+ 1)%)wdt >

= /pk e+ I)W)w‘it = /pk 1#(0; 1uk)wdt > 2(k+2) /pk Y (ug)wdt.

Since w is decreasing and py > i + &= (that is, py, is equal or greater than the middle point ry 4 £
of the interval [r, . + pi]) then

Pk Tk +Dk
Y (ug)wdt > %/ Y (up)wdt > 27572,
Tk Tk
Thus, finally we have J(y ) ((C+1)fx) > 1 and so ||| fx]|| > (C'+1)~*, k > 1. Taking into account
the equivalence between the quasinorm ||| - [|| and the dual norm of (A, ) (x));, it is clear that
the mapping 7" : foo — M(y ) (1) such that T'((ap)r>1) = D p>q @k fr, (ar)r>1 € Loo, is an order-
isomorphism between /o, and T'({s). Therefore My, (1) contains an order-isomorphic copy of
{0, a contradiction, because M, ., (1) is o-continuous by hypothesis.

(3) Suppose that 1 € AJ and prove that My .)(i) is o-continuous. Pick f := (f;)ies €
M) (1) and assume that J, ) (f) < oo.

Claim. f, f* and {U—* are bounded functions.

Indeed, first f; — 0 when ¢ € I (that is, (f;)ier € co(I)) because otherwise f* > d > 0 on [0, 00)
and this contradicts the fact that J(y .,)(f) < co. So, f and f* are bounded and f*(¢) | 0 when
t — oo. Moreover, f*/w is bounded. Indeed, assume that f*/w is not bounded on (0,00). As
f*/w is bounded on the interval (0,0) for every § > 0, there exists a sequence {z} : k > 1} C R
such that x 1 oo and f*(xy)/w(zr) > k, VE > 1. Then, taking into account that f* and w are
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non-increasing functions, and the fact w(t/2) < Cw(t), Vt > 0, we have:

P Fe) | )
w(t) — w(xg/2) — Cw(zy)

Vk > 1, Vt € [Z, ], > >

k
Yok
So, for every k > 1 we have
T = [ oEywae> [* wDywars [° w(Gwa = (@)@ - s,
0 w x5 /2 w zr/2 C C
On the other hand, S(z;) — S(zr/2) — 400 when k — oo by (O1) and so (k/C)(S(zx) —
S(x1/2)) — oo, a contradiction because J(y ) (f) < c0.

Therefore, as ¢ € AJ, we have Jpu)(2"f) < 00, Vn > 1, and so f € HMy (). Hence
M4y, (1) is o-continuous by Lemma 4.6.

Now we prove the converse statement. We suppose that ¢ ¢ A9 and we construct in My ) (1)
an order-isomorphic copy of /.. Without loss of generality, we assume that I = N. Moreover, if \ is
the Lebesgue measure on [0, 00), we shall work in the subspace M&)’w) ([0,00), A) of My, ([0, 00), \)
consisting of those elements which are constant in each interval (n — 1,n], n > 1, because

(M) (L, ), ||| - |l]) is order-isometric to (M(Od) w)([0,00), A), [ - [[]). Since 1 ¢ A, by the above
part (2) there exist a sequence {ux : k¥ > 1} C R, 0 < ugy1 < ugx < .., a sequence of integers
0 =17 <ry < -, and asequence {fx : k > 1} C My ) ([0,00), ) with disjoint supports

supp(f) C (rk, Tk+1) such that the mapping T'((ar)k>1) = D51 @k fr, (ar)k>1 € leo, is an order-
isomorphism. For every k > 1 define

—1+4+rg41

T = Z ’LLk;’lU(] + 1) . ]]'(j,J+1]

J=Tk

Clearly, {z) : k > 1} is a sequence in M(Ow w)([O, 00), A) whose elements are pairwise disjoint. As

w is a regular weight, there exists (see Lemma 4.6) a constant 1 < K < oo such that wI(UTE:L—)l) <
K, Vn > 1. It is easy to see that for k > 2 we have
—14+res1
zp < fi < Z upw(j) - 141 < Kag.
J=rk
So, for k > 2 we have: (i) [l|lzxlll < | sz @illl < I Xis2 filll < 15 () okl > K| fill] >
K=1(C + 1)7'. Thus the mapping S((ak)k>1) = D ok>1 @kTr1, (ar)k>1 € Lloo, is an order-
isomorphism, and this completes the proof of the part (3). O

Corollary 4.8. Let (2, X, 1) be a complete T'-finite measure space, ¢ an Orlicz N -function, v the
complementary Orlicz function of ¢ and w a regular weight. Then

(1) If p is atomless and 0 < () < oo, then A, ) (1) is Grothendieck if and only if ¢ € AS°.
(2) If pu is atomless and pu(Q2) = oo, then A, (1) is Grothendieck if and only if ) € As.

(3) If (2, %, p) is the counting measure space on an infinite set I, then A, (1) is Grothendieck
if and only if 1 € AY.

Proof. The proof follows from Proposition 4.3, Lemma 4.7 and the result of [7] that states that,
under the given conditions, the Kéthe dual (A, ) (1)); of A(y w) (1) coincides, as a set, with the
space My ) (1) O

5. THE GROTHENDIECK PROPERTY FOR ORLICZ SPACES

Let (92,%, 1) be a I'-finite measure space, Sy the ideal of Lo(p) generated by the simple X-
measurable real functions, ¢ and Orlicz function and I, : Lo(p) UM (p)™ — [0, +00] be the Orlicz
functional such that I,(f) = [, @(f) - dp. It is easy to see that I, is an Orlicz-type semimodular.
Let Ly(p) == {f € Lo(p) : IX > 0 such that I,(f/\) < +oo} be he corresponding Orlicz space
with the Luxemburg norm ||f|| = inf{\ > 0 : I,(f/A) < 1}. When we work with the counting
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measure 4 on a set I, we put £,(I) instead of L,(u). Observe that the functional I, and the
Orlicz space L,(u) coincide with the functional I(, ., and the Orlicz-Lorentz space A, .)(1),
respectively, when w is the regular weight w(t) = 1, Vt € (0,00). So, we can apply all the results
of the previous section. Let

Hy(p) :=={f € Ly(p) : VA > 0,1,(\f) < 400}
Clearly, H,(jt) is a closed ideal of L, () such that, if 7(¢) < oo, then H,(u) = {0}.

Proposition 5.1. Let (0,3, i) be a complete T'-finite measure space, ¢ an Orlicz function and 1)

d
the Orlicz function complementary of . Let L,(u)* = Ly, (p)f @ L, (1)} be the disjoint decomposition
of L,(p)* into the subspace of integral functionals Ly, (p); and singular functionals Ly(p)%. Then

[ s
(A) Ly(p); = Ly ().
(B) H(So) is I,-dense in L,(u) and, if @ = pa, then H(S,) is I,-dense in L, (1), Sq being the
ideal generated by the functions of the form 14, A being an atom of .

(C) If ¢ is finite then H,(p) = H(Sp) = Ly (1)®.
(D) If 7(p) < oo, then Ly(u)* = H(S,) = S,.

Proof. (A) It is well known that the subspace of integral functionals L (u); on an Orlicz space

L,(p) with the Luxemburg norm is the Orlicz space Ly(p) with the Amemiya-Orlicz norm,
being the Orlicz function complementary of .

(B), (C) and (D) follow from Proposition 4.1 and Proposition 4.2. O

Proposition 5.2. Let (2, %, 1) be a complete I'-finite measure space, ¢ an Orlicz function and ¢
the Orlicz function complementary of . Then

(A) Ly(p)/H(So) is a Grothendieck M -space.
(B) If either ¢ is a finite Orlicz function or p = g, the following statements are equivalent:

(1) Ly(p) is Grothendieck ; (2) Ly(p) is o-continuous.

Proof. This follows from Proposition 5.1 and Proposition 4.3. O

Lemma 5.3. Let (Q, %, 1) be a complete I'-finite measure space and 1p an Orlicz function. Then
(1) If p is atomless and 0 < () < 0o, then Ly (p) is o-continuous if and only if 1 € AF.
(2) If p is atomless and p(2) = oo, then Ly (p) is o-continuous if and only if ¢ € As.
(8) If (2,3, p) is the counting measure space on a infinite set I, then £y (I) is o-continuous if
and only if 1 € AY.

Proof. The proof is analogous to the one of Lemma 4.7, using the regular weight w(t) = t and
taking into account that now we do not ask for ¢ to be an Orlicz N-function and so it can be
a(y) > 0 and 7(y) < oo. O

Proposition 5.4. Let (2,3, u) be a complete T'-finite measure space, pq and pq the atomic and
purely non-atomic parts of u, respectively, and v an Orlicz function. Then the following statements
are equivalent:

(1) Ly(p) is o-continuous.
(2) The following conditions C(1, uq) and C(¢, pg) are fulfilled:
(A) Condition C(3, pa). If pa = 0, then C(¢, uq) is nothing. Suppose that pg > 0. Then

C(, pua) is the following condition: (A1) if 0 < u(Qq) < oo, ¥ € A, and (A2) if u(Qq) = oo,
P € Ay,
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(B) Condition C(¢, ug). If the family of atoms {4; : i € I} is finite, then C (¢, pa) is nothing.
Suppose that the family of atoms {A; :€ I} is infinite. Then C(v, ug) is the fact that (u(A;)Y)ier
satisfies the condition 63 (see the next section).

d
Proof. First, as Ly () = Ly (1a) @ Ly (ta), it is clear that Ly, (u) is o-continuous if and only if both
Ly (1q) and Ly (u,) are o-continuous.

(A) Suppose that 0 < 14(24). Then by Lemma 5.3 Ly (uq) is o-continuous if and only the
condition C(¢, ug) is fulfilled.

(B) If the family of atoms {4, : ¢ € I} is finite, then L (p,) is finite-dimensional and so it
is o-continuous. Suppose that the family of atoms {A4; : ¢ € I} is infinite. Observe that the
space Ly (iq) is order-isometric to the Musielak-Orlicz space £,(I) (see the next section), where
¢ = (u(A))¥)ier. Thus Ly(pe) is o-continuous if and only the condition C(v, ug) is fulfilled,
because it is well known that a Musielak-Orlicz sequence space {,(I) (where ¢ = (¢;)ier is a
family of Orlicz functions) is o-continuous if and only if ¢ satisfies the condition &9. O

Corollary 5.5. Let I be an infinite set, ¢ an Orlicz function and v the Orlicz function complementary
of ¢. Then {,(I) is Grothendieck if and only if 1 € AJ.

Proof. By Proposition 5.2, £,(I) is Grothendieck if and only if £, (I) is o-continuous if and only if
¥ € AY by Lemma 5.3. O

Corollary 5.6. Let ¢ be an Orlicz function and v the Orlicz function complementary of . Then:
(A) Ly([0,400)) is Grothendieck if and only if ¢ € As.
(B) L,(]0,1]) is Grothendieck if and only if 1 € AS°.

Proof. This follows from Proposition 5.2 and Proposition 5.4. (|

6. THE GROTHENDIECK PROPERTY FOR MUSIELAK-ORLICZ SPACES
If (2,3, i) is a complete I'-finite measure space, a function ¢ : 2 x (RU{zxo0}) — [0, o0] is said
to be a Musielak-Orlicz function (see [11, p. 33]) if: (i) p(w,-) : RU {xo0} — [0, 00] is an Orlicz
function for each w € Q; (ii) (-, t) : Q@ — [0, 00] is a X-measurable function for every t € RU{+o0}.
Define the functional I, : Lo(p) U M () — [0, 00] as follows

VF € Lol UM (), 1,(5) = | ol fw))d

It is easy to see that I, is an Orlicz-type semimodular. The Musielak-Orlicz space L, (p) is the
modular space (Lo(u))r, associated to the semimodular I, that is

Ly(p) :={f € Lo(p) : IX > 0 such that I, (Af) < co}.

When p is the counting measure on a set I, we put £, (/) instead of L, (1), ¢ being in this case a
family of Orlicz functions ¢ := (¢;)icr. We consider in L, (p) the Luxemburg norm

1]l = inf{A > 0 I,(f/A) < 1}.

Proposition 6.1. Let (Q,%, 1) be a complete T-finite measure space and ¢ a Musielak-Orlicz
function. Then

(A) H(Sy) is I,-dense in L,(p) and, if pp = o, then H(S,) is I,-dense in L,(p).

(B) If either ¢ is locally integrable (that is, [, p(w,t)dp < oo for everyt € R and every A € X
with w(A) < 00) or u = pa, then the following statements are equivalent

(a) Ly(p) is Grothendieck; (b) (Ly,(p); is o-continuous.

K2

Proof. (A) Let us prove that H(Sy) is I,-dense in Ly, (). Let f € Ly (1) be such that I,(f) < oo
and € > 0. Since [, p(w, f(w))dp < oo, then Tg := {y € I': [, o(w, f(w))dp > 0} is countable,

we say, I'o := {7y, : n > 1}. Moreover, [, ¢(w, f(w))dp = funzmw o(w, f(w))dp. Let fr, = ((f ]
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Uis1€2,) An) V (=n). Clearly fy € So, |f| = [f — fa| and so p(w, f(w)) = (v, (f = fn)(w)) a-e.
and p(w, (f — fn)(w)) | 0 a.e. Thus by the dominated convergence theorem we have I,(f — f,) 1 0
and there exists p € N such that I,(f — f,) <e.

Analogously it is proved that H(S,) is I,-dense in Ly (u), if i = fiq.

(B) We consider two cases, namely: (I) ¢ is locally integrable; (II) p = .

(I) Suppose that ¢ is locally integrable. Then I,(Af) < oo for every A € R and every f € Sy and
also for every f € H(Sy). Actually H(Sy) = {f € Lyo(1) : Io(Af) < oo, VA > 0}. By Proposition
3.1 it is enough to prove that H(Sy) = Ly (1)®.

(i) As (L,(p))® is a closed ideal and H(Sp) = Sy, in order to see that H(Sy) C (L, (n))?, it is
enough to verify that 14 € (L, (1))® whenever A € ¥ and p(A) < oo. Since Ly (p) is o-o-complete,
it is enough to show that, if 0 < f, < f,—1 < 14 is a sequence of elements of L, (x) such that
fn 1 0 in order, then ||f,|| J 0 when n — oco. So, let A > 0 and observe that I,(14/)\) < oo
(because p1(A) < oo and ¢ is locally integrable) and 14/A > f,/A | 0. Thus, we get I,(f,/A) 10
by the dominated convergence theorem and so || f|| | 0 when n — cc.

(ii) Let us see that (L, (p))* C H(Sp). So, pick f € L, (1) \ H(So) and prove that f ¢ (L, (1))®.
Without loss of generality, assume that 0 < f and I,(f) = oco. For each (F,n) € F x N (F = finite
subsets of I') define

frny = (f - 1u,cr,) AN
Observe that f(p,) € So and {f — fipn) : (Fyn) € F x N} is a downward directed set such that
f=f— frn) 4 0. Moreover

00 = I,(f) = L, ((f = firn)) + frm)) =
=1,(32(f = firn) + 32f(mny) < 31.02(F = frn)) + 312 f (),

whence we get 1,(2(f — f(rn))) = +00 and so ||f — fipn)ll > 1/2 for every (F,n) € F x N. Thus
f is not o-continuous.

(IT) By (A) and Proposition 3.1 it is enough to prove that H(S,) = L,(u)*. Since clearly
14 € Ly(p)® when A € ¥ is an atom, then S, C L, (u)® and so H(S,) = S, C Ly, (p).

Now let f € L,(p)® and prove that f € S,. Let {4; : i € I} be the family of atoms of u. Then
|f =2 ics fi- 14,/ 1 0 when J C I is a finite subset. Thus ||f — >, fi-14,[| | 0 when J C I is
a finite subset, because f is o-continuous. Since ), ; fi- 14, € S, when J C I is a finite subset,
we conclude that f € S,. O

We are interested in the Musielak-Orlicz sequence space £, (I), I being a set and ¢ := (;)icr a
family of Orlicz functions. For this space clearly Sp = S,.

Definition 6.2. A family of Orlicz functions ¢ := (p;)icr satisfies the 89 condition if there are
two positive constants a and K, a finite subset Iy C I and a family {c¢; : i € I} C [0,00] such
that ZiGI\Io ¢; < oo and for every i € I and u € R satisfying v;(u) < a there holds ¢;(2u) <
Kp;(u) + ¢;.

Corollary 6.3. Let I be a set, ¢ := (¢;)ic1 a family of Orlicz functions and ¢ := (¢;);cr the
complementary function of ¢. Then

(1) 1?(‘(;0)) is a Grothendieck M-space.

(2) The following statement are equivalent
(a) L,(I) is Grothendieck; (b) ¢ € 89.
Proof. (1) This follows from Proposition 3.1 and Proposition 6.1.

(2) Observe that (€,(I)); = £y(I), where 1) := (1);)ier and 1; is the Orlicz function complementary
of ; for all ¢ € I. On the other hand, it is well known that a Musielak-Orlicz sequence space £y (1)
is o-continuous if and only if 1) € 63. Now it is enough to apply Proposition 6.1. (]
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