Department of Statistics and Operational Research I Universidad Complutense de Madrid. Spain



# THE DOUBLE TSP WITH MULTIPLE STACKS: A VARIABLE NEIGHBORHOOD SEARCH APPROACH

Ángel Felipe Ortega M. Teresa Ortuño Sánchez <u>Gregorio Tirado Domínguez</u>

## **Outline**

**1. Introduction** 

**2. Mathematical Model** 

**3. Neighborhood Structures** 

4. VNS approach

**5. Results and Further Work** 



The Double TSP with Multiple Stacks: a VNS approach

## The Double TSP with Multiple Stacks (DTSPMS)

- Introduced by Hanne L. Petersen (2006)
   L> real life application in Easy Cargo Systems A/S
- Extension of the well known TSP
  - $\succ$  pickups & deliveries  $\rightarrow$  two separated graphs
  - $\succ$  sequencing constraints  $\rightarrow$  multiple stacks
- Each order consists of a pickup location and a delivery location
- Load is organized in several rows in the container
   different stacks obeying LIFO principle (Last-In-First-Out)



## The Double TSP with Multiple Stacks (DTSPMS)

- Pickup & delivery problem with precedence constraints
- Two separated networks, one for pickups and one for deliveries
- All items are uniform
- No repacking allowed
- Transport between the depot of the pickup network and the depot of the delivery network (*longhaul transport*)
   Not part of the problem



## The Double TSP with Multiple Stacks (DTSPMS)

#### □ Input:

Set of orders (pickup location and delivery location)

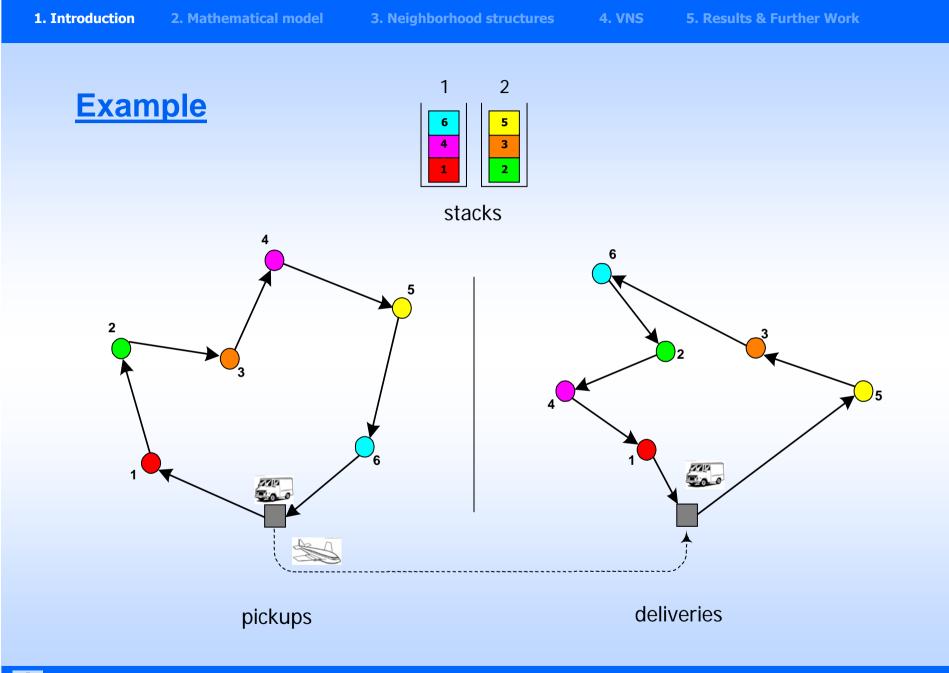
#### **Output:**

- > pickup route in the first graph
- delivery route in the second graph
- Ioading plan: how to store items

#### **Objective:**

Minimize the sum of travelled distances







# **Mathematical Model**

$$D = \{1, \cdots, n\}$$
 (m) orders

$$P = \{1, \cdots, m\}$$

m available stacks maximum capacity:  $oldsymbol{Q}$ 

$$N^{\delta}_* = \{1, \cdots, n\} \iff n$$
 nodes in each graph

$$N^\delta = N^\delta_* \cup \{0\}$$

$$\forall \delta \in \{1,2\}$$



## **Variables**

#### **Routing variables:**

$$x_{ij}^{\delta} = \left\{egin{array}{cccc} 1 & ext{if} \ j ext{ follows } i ext{ in route } \delta & \forall i,j\in N^{\delta} \ 0 & ext{otherwise} \end{array}
ight.$$

#### □ Precedence variables:

$$y_{ij}^{\delta} = \left\{egin{array}{cccc} 1 & ext{if} \ j \ ext{is visited after} \ i \ ext{in route} \ \delta \ 0 & ext{otherwise} \end{array} 
ight. rac{d}{d} y_{ij}^{\delta} = \left\{egin{array}{ccccc} 1 & ext{if} \ j \ ext{is visited after} \ i \ ext{in route} \ \delta \ 0 & ext{otherwise} \end{array} 
ight. rac{d}{d} y_{ij}^{\delta} = \left\{egin{array}{cccccccccc} 1 & ext{if} \ j \ ext{is visited after} \ i \ ext{in route} \ \delta \ ext{if} \ y_{ij} \in N_{*}^{\delta} \end{array}
ight.$$

## **Loading variables:**

$$z_{ip} = \left\{egin{array}{cccc} 1 & ext{if order } i ext{ is asigned to stack } p \ 0 & ext{otherwise} \end{array} 
ight. egin{array}{ccccc} orall i & ext{otherwise} \end{array} 
ight. orall i & ext{if order } i ext{ is asigned to stack } p \ orall i \in D, orall p \in P \end{array} 
ight.$$



## **Constraints**

#### □ Flow balance:

#### □ Precedence:

$$egin{aligned} y_{ij}^{\delta} + y_{ji}^{\delta} &= 1 & & orall i, j \in N_*^{\delta}, \ i 
eq j, \ orall \delta & & \ y_{ik}^{\delta} + y_{kj}^{\delta} \leq y_{ij}^{\delta} + 1 & & orall i, j, k \in N_*^{\delta}, \ orall \delta & & \ x_{ij}^{\delta} \leq y_{ij}^{\delta} & & orall i, j \in N_*^{\delta}, \ orall \delta & & \ orall i, j \in N_*^{\delta}, \ orall \delta & & \ orall i, j \in N_*^{\delta}, \ orall \delta & & \ \end{array}$$



### **Constraints**

#### **LIFO principle:**

$$y_{ij}^1+z_{ir}+z_{jr}\leq 3-y_{ij}^2 \hspace{1cm} orall i,j\in N_*^\delta, \; orall p\in P$$

#### **Loading plan:**

$$\sum_{p \in P} z_{ip} = 1 \qquad \forall i \in D$$
$$\sum_{i \in D} z_{ip} \leq Q \qquad \forall p \in P$$

#### **Binary variables:**

$$x,y,z\in\{0,1\}$$



# **Objective function**

$$\min \sum_{\substack{i,j \in V^\delta \ \delta \in \{1,2\}}} c_{ij}^\delta \cdot x_{ij}^\delta$$

Minimize the sum of travelled distance in both graphs

### **Exact solutions**

- DTSPMS is a NP-hard problem, more difficult than TSP
- Mathematical model can be solved up to 12 orders in reasonable time







$$S=(\pi_1,\pi_2,\lambda)$$

 $\pi_1 \Rightarrow$  route 1 (pickups)  $\pi_2 \Rightarrow$  route 2 (deliveries)  $\lambda \Rightarrow$  loading plan

**🗆 After operator** 
$$\hat{S} = (\hat{\pi}_1, \hat{\pi}_2, \hat{\lambda})$$

 $\hat{\pi}_1 \Rightarrow ext{route 1 (pickups)} \qquad \hat{\pi}_2 \Rightarrow ext{route 2 (deliveries)} \ \hat{\lambda} \Rightarrow ext{loading plan}$ 



## **Neighborhood structures**

Route Swap (RS)

Complete Swap (CS)

> In-Stack Swap (ISS)

Reinsertion (R)

k – Route Permutation (k-RP)

> k - Stack Permutation (k-SP)

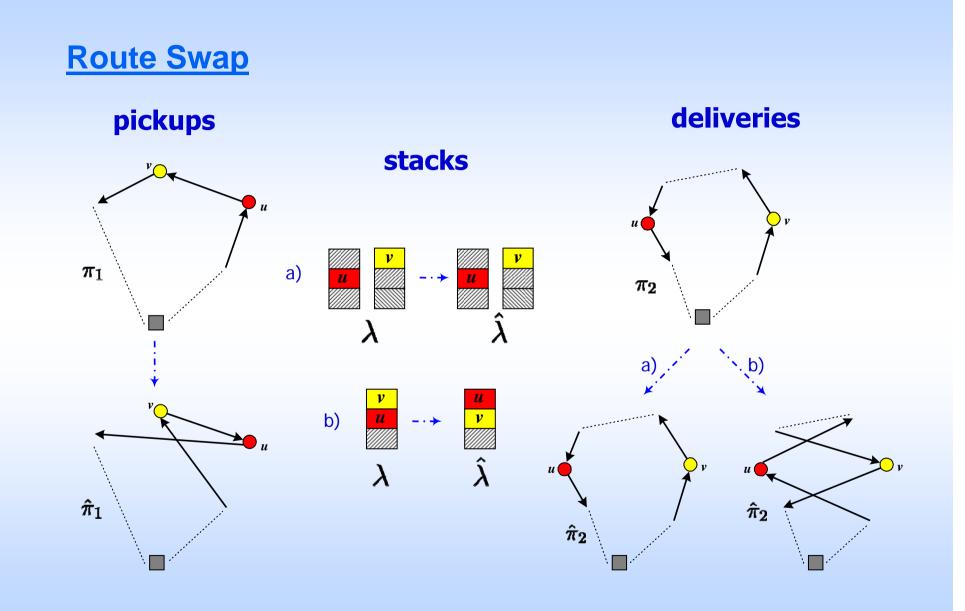
4 new operators

2 operators borrowed from

Hanne L. Petersen (2006)

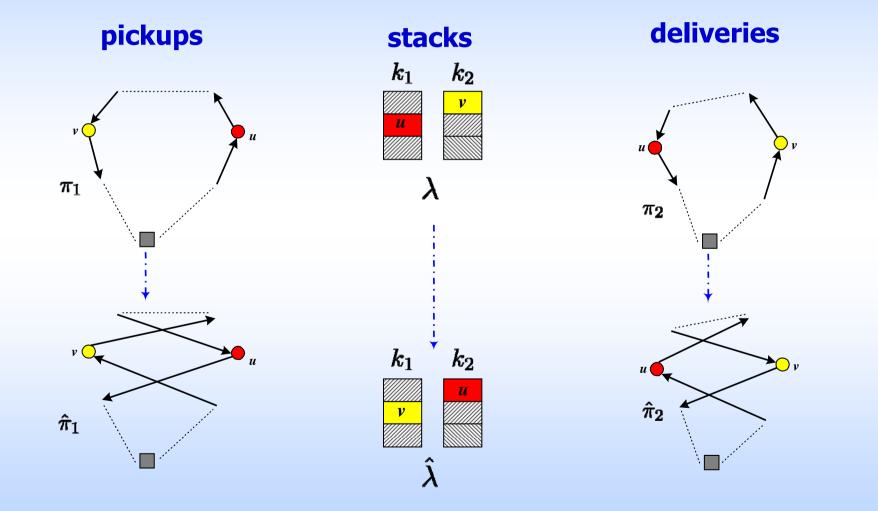
Tabu Search, Simulated Annealing







## **Complete Swap**





The Double TSP with Multiple Stacks: a VNS approach





## **Reinsertion**

#### **Choose:**

- > An order *u*
- A stack k
- $\succ$  A position  $i^*$  in route 1
- > A position  $j^*$  in route 2

Order u is assigned to stack k and moved to position  $i^*$ in route 1 and position  $j^*$  in route 2

- Stack *k* must have room for new items
- $\Box$  Positions  $i^*$  and  $j^*$  have to be compatible
- The way reinsertion is implemented in route 1 (route 2) depends on the relative order between the position of *u* in the corresponding route and *i*\* (*j*\*).



## **Reinsertion**

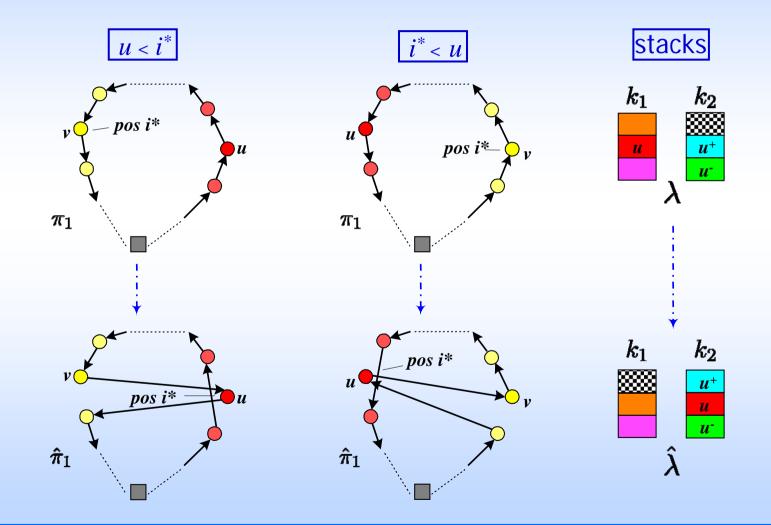
- $\succ$  Move order *u* to position  $i^*$  in route 1
- $\succ$  Reassign order *u* from stack  $k_1$  to  $k_2$
- ➤ Reinsertion in route 2 is done the same way







- Move order u to position i\* in route 1
  Reassign order u from stack k<sub>1</sub> to k<sub>2</sub>
- Reinsertion in route 2 is done the same way

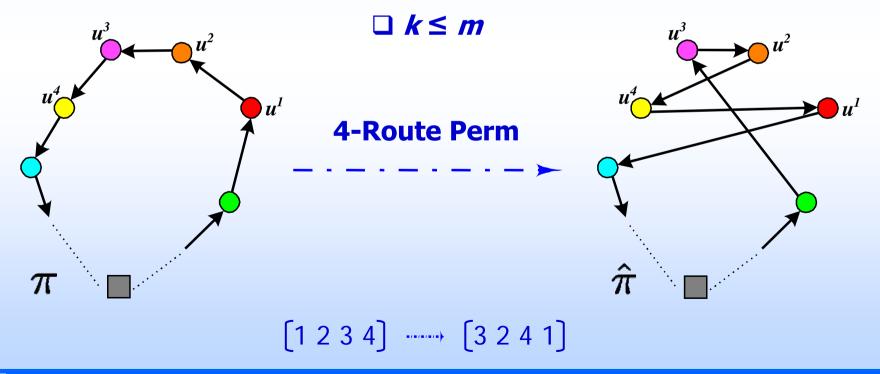




## **k** - Route Permutation

Choose k consecutive orders in one route, assigned to different stacks, and permute them

□ The other route and the loading plan do not change





## **k** - Stack Permutation

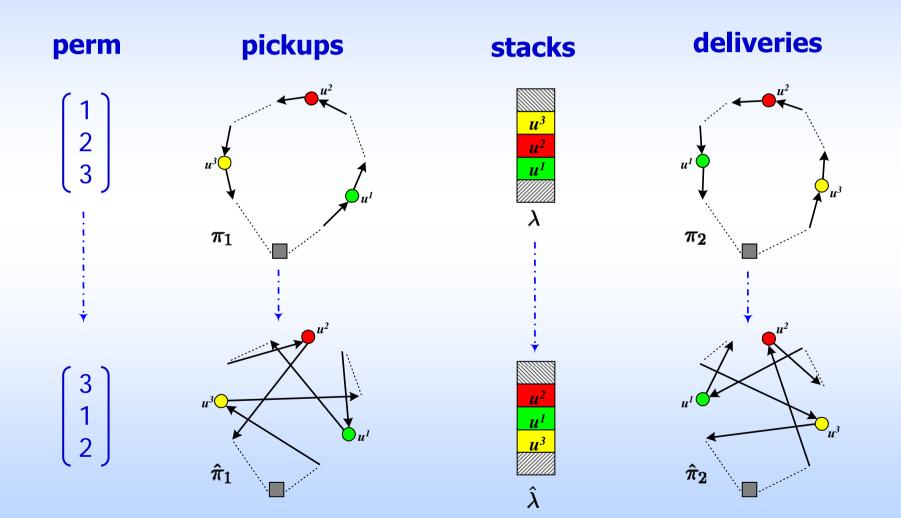
□ Choose *k* **consecutive** orders in one stack and permute them

4. VNS



# **k** - Stack Permutation

□ Choose *k* **consecutive** orders in one stack and permute them





## Variable Neighborhood Search (VNS)

- □ Metaheuristic introduced by Hansen y Mladenovic (1997)
- Main idea: use different neighborhood structures and change between them when finding a local optimum
- Local optimum with respect to one neighborhood structure is not necessarily local optimum with respect to another one
- Global optimum is local optimum with respect to every neighborhood structure
  - Using different neighborhood structures usually provides local optima closer to the global optimum



## Variable Neighborhood Descent (VND)

1. Initialization:

1.1. Construct initial solution S1.2.  $A = \{\Delta_1, \dots, \Delta_{j_A}\} = \{RS, CS, ISS, R, k-RP, k-SP\}$ 1.3.  $j \leftarrow 1$ 

2. Repeat until  $j = j_A$ :

2.1. Local Search in  $\Delta_j$  with initial solution  $S \rightsquigarrow S'$ 2.2. If  $z(S') < z(S) \implies S = S', j = 1$ Otherwise  $\implies j = j + 1$ 

3. S is a local minimum with respect to every neighborhood structure in A.



# **General Variable Neighborhood Search (GVNS)**

1. Initialization:

1.1. Construct initial solution S and define A for VND 1.2.  $B = \{\Omega_1, \dots, \Omega_{j_B}\} = \{RS, CS, ISS, R\}$ 1.3.  $n \leftarrow 1$ 

2. Repeat until  $n = n_{max}$ :

2.1.  $j \leftarrow 1$ 2.2. Perturbation: choose  $S' \in \Omega_j(S)$  at random 2.3. Perform VND with S' and  $A \rightsquigarrow S''$ 2.4. If  $z(S'') < z(S) \implies S = S''$ , go to step 2.1. 2.5. If  $j < j_B \implies j = j + 1$ , go to step 2.2. 2.6.  $n \leftarrow n + 1$ 



#### **Test Problems**

Testing has been performed on two sets of 10 randomly generated problems with 33 orders, 3 available stacks with capacity of 11 units.
 Euro pallets

Best results obtained using Simulated Annealing

□ Algorithm used: **GVNS** 

➤ 4 operators for Perturbation: RS, CS, ISS, R

➢ 6 operators for VND : RS, CS, ISS, R, k-RS, k-SS

*(Hanne L.)* Petersen, 2006)



# <u>Set 0</u>

| Heur | _ | 1 | 0 | r |
|------|---|---|---|---|
| Best | • | T | U | U |

|         |     |      | 10 seconds      |      | 3 n | ninutes |  |
|---------|-----|------|-----------------|------|-----|---------|--|
| Problem | LB  | Best | SA GVNS         |      | SA  | GVNS    |  |
| R00     | 914 | 1069 | 25              | 11.6 | 12  | 6.2     |  |
| R01     | 875 | 1072 | 13              | 7.6  | 4   | 3.8     |  |
| R02     | 935 | 1070 | 18              | 9.7  | 10  | 8.1     |  |
| R03     | 961 | 1111 | <b>21</b>       | 10.0 | 11  | 3.9     |  |
| R04     | 933 | 1090 | <b>21</b>       | 8.7  | 7   | 4.6     |  |
| R05     | 898 | 1055 | 17              | 4.6  | 10  | 3.2     |  |
| R06     | 998 | 1118 | 18              | 8.3  | 10  | 2.0     |  |
| R07     | 962 | 1118 | 21              | 11.1 | 9   | 7.7     |  |
| R08     | 976 | 1111 | 21              | 12.4 | 11  | 9.0     |  |
| R09     | 982 | 1106 | 13              | 6.6  | 6   | 5.0     |  |
| average |     |      | <mark>19</mark> | 9.1  | 9   | 5.3     |  |





| <u>Heur</u> | _ | 100 |
|-------------|---|-----|
| Best        | • | 100 |

|             |      |      | 10 seconds      |      | 3 minutes |      |
|-------------|------|------|-----------------|------|-----------|------|
| Problem     | LB   | Best | SA GVNS         |      | SA        | GVNS |
| R10         | 901  | 1021 | 23              | 13.1 | 14        | 7.1  |
| <b>R</b> 11 | 892  | 1040 | 19              | 5.1  | 6         | 5.3  |
| R12         | 984  | 1113 | 21              | 10.7 | 12        | 4.9  |
| R13         | 956  | 1102 | 21              | 3.4  | 6         | 4.4  |
| R14         | 879  | 1059 | 19              | 9.4  | 9         | 4.9  |
| R15         | 985  | 1162 | 19              | 7.3  | 8         | 4.8  |
| <b>R16</b>  | 967  | 1105 | 19              | 9.6  | 9         | 6.0  |
| R17         | 946  | 1096 | 21              | 10.5 | 10        | 8.1  |
| R18         | 1008 | 1180 | 15              | 4.5  | 8         | 2.1  |
| R19         | 938  | 1123 | 14              | 6.9  | 8         | 3.9  |
| average     |      |      | <mark>19</mark> | 8.1  | 9         | 5.1  |



## **Comparison between Operators**

|       |      | GVNS  | (%  using all) - (%  removing one) |            |     |      |              |      |
|-------|------|-------|------------------------------------|------------|-----|------|--------------|------|
|       | Time | All   | RS                                 | CS         | ISS | R    | $k	ext{-RP}$ | k-SP |
| Set 0 | 2 s  | 10.9% | -1.7                               | 6.7        | 0.1 | 17.9 | -1.3         | 0.1  |
|       | 10 s | 9.1%  | -0.9                               | <b>6.4</b> | 0.1 | 14.8 | 0.1          | 0.2  |
| Set 1 | 2 s  | 9.7%  | 1.0                                | <b>6.5</b> | 0.7 | 19.1 | 0.4          | 0.2  |
|       | 10 s | 8.1%  | 0.0                                | 8.7        | 0.1 | 18.1 | 0.0          | 0.1  |

 $\Box \text{ More operators } \xrightarrow{} \text{ Better solution}$ 



**Reinsertion is the most effective neighborhood structure** 



## **Further work**

- Generate initial solutions using different methods
- Use different versions of Variable Neighborhood Search

#### algorithms

- Try other metaheuristics: GRASP, Genetic algorithms,
  - Ant Colony Systems, etc.
- Examine exact approaches



Department of Statistics and Operational Research I Universidad Complutense de Madrid. Spain



# **THANK YOU FOR**

# YOUR ATTENTION

THE DOUBLE TSP WITH MULTIPLE STACKS: A VARIABLE NEIGHBORHOOD SEARCH APPROACH

Gregorio Tirado Domínguez

Email: gregoriotd@mat.ucm.es