Groups and topologies related to *D*-sequences

Daniel de la Barrera Mayoral

Universidad Complutense de Madrid

Thanks: Ministerio de Economía y Competitividad grant: MTM2013-42486-P. ORCID: 0000-0002-0024-5265.

Daniel de la Barrera Mayoral Groups and topologies related to D-sequences

p-adic topologies.

Definition

Let *p* be a prime number. The family

```
\{p^n\mathbb{Z}:n\in\mathbb{N}_0\}
```

is a neighborhood basis for a group topology on \mathbb{Z} . This topology is called the *p*-adic topology, $\lambda_{\mathbf{p}}$.

p-adic topologies.

Definition

Let p be a prime number. The family

```
\left\{ p^{n}\mathbb{Z}:n\in\mathbb{N}_{0}
ight\}
```

is a neighborhood basis for a group topology on \mathbb{Z} . This topology is called the *p*-adic topology, $\lambda_{\mathbf{p}}$.

Properties

- λ_p is metrizable.
- λ_p is precompact.
- $\lambda_{\mathbf{p}}$ is linear.
- λ_p is locally quasi-convex.
- $(\mathbb{Z}, \lambda_{\mathbf{p}})^{\wedge} = \mathbb{Z}(\mathbf{p}^{\infty}).$

D-sequences.

Definition

Let $\mathbf{b} = (b_n)_{n \in \mathbb{N}_0} \subset \mathbb{N}$, satisfying that:

- $b_0 = 1$.
- $b_n \mid b_{n+1}$.
- $b_n \neq b_{n+1}$.

Then **b** is a *D*-sequence. Let \mathscr{D} be the family of all *D*-sequences. For a *D*-sequence we define the sequence of ratios $q_n := \frac{b_n}{b_{n-1}}$.

Example

- $b_n = p^n$ is a *D*-sequence and $q_n = p$ for all *n*.
- $b_n = (n+1)!$ is a *D*-sequence and $q_n = n+1$ for all *n*.
- Let q_n be a sequence of natural numbers satisfying $q_n \neq 1$ for all *n*. Then $b_n := \prod_{i=1}^n q_i$ is a *D*-sequence.

Proposition

Let **b** be a D-sequence. Suppose that $q_{j+1} \neq 2$ for infinitely many j. For each integer number $L \in \mathbb{Z}$, there exists a natural number N = N(L) and **unique** integers k_0, \ldots, k_N , such that:

(1)
$$L = \sum_{j=0}^{N} k_j b_j.$$

(2) $k_j \in \left(-\frac{q_{j+1}}{2}, \frac{q_{j+1}}{2}\right], \text{ for } 0 \le j \le N.$

D-sequences (3)

Proposition

Let **b** be a *D*-sequence. Then any $y \in \mathbb{R}$ can be written **uniquely** in the form

$$y = \sum_{n=0}^{\infty} \frac{\beta_n}{b_n} = \frac{\beta_0}{b_0} + \frac{\beta_1}{b_1} + \frac{\beta_2}{b_2} + \dots + \frac{\beta_s}{b_s} + \dots,$$
(1)

where $\beta_n \in \mathbb{Z}$ and $|\beta_{n+1}| \leq \frac{q_{n+1}}{2}$. Further,

$$-\frac{1}{2b_n} < y - \sum_{j=0}^n \frac{\beta_j}{b_j} \le \frac{1}{2b_n}$$

holds for all $n \in \mathbb{N}_0$.

Definition

The sequence

$$(k_0,k_1,\cdots,k_{N(L)},0,\ldots)\in\prod_{n=1}^{\infty}\left(-rac{q_n}{2},rac{q_n}{2}
ight],$$

will be called the **b-coordinates of** *L*. The sequence

$$(\beta_0,\beta_1,\dots)\in\mathbb{Z}\times\prod_{n=1}^{\infty}\left(-\frac{q_n}{2},\frac{q_n}{2}\right]$$

will be called the **b-coordinates of** *y*.

D-sequences (5)

•
$$\mathscr{D} := \{ \mathbf{b} : \mathbf{b} \text{ is a } D\text{-sequence} \}$$

•
$$\mathscr{D}_{\infty} := \{ \mathbf{b} \in \mathscr{D} : \frac{b_{n+1}}{b_n} \to \infty \}.$$

•
$$\mathscr{D}^{\ell}_{\infty} := \{ \mathbf{b} \in \mathscr{D} : \frac{b_{n+\ell}}{b_n} \to \infty \}.$$

•
$$\mathscr{D}_{\infty}(\mathsf{b}) := \{\mathsf{c} \sqsubset \mathsf{b} : \mathsf{c} \in \mathscr{D}_{\infty}\}.$$

•
$$\mathscr{D}^\ell_\infty(\mathsf{b}) := \{\mathsf{c} \sqsubset \mathsf{b} : \mathsf{c} \in \mathscr{D}^\ell_\infty\}.$$

- b has bounded ratios if there exists L such that q_n < L for all n.</p>
- **b** is basic if *q_n* is a prime number for all *n*.

•
$$\mathbb{Z}(\mathbf{b}^{\infty}) := \bigcup_{n \in \mathbb{N}_0} \left\langle \frac{1}{b_n} + \mathbb{Z} \right\rangle \leq \mathbb{T}.$$

• $\mathbb{Z}_{\mathbf{b}} := \prod_{n \in \mathbb{N}} \left(\left(-\frac{q_n}{2}, \frac{q_n}{2} \right] \cap \mathbb{Z} \right).$

b-adic topologies.

Definition

Let **b** be a *D*-sequence. The family

```
\{b_n\mathbb{Z}:n\in\mathbb{N}_0\}
```

is a neighborhood basis for a group topology on \mathbb{Z} . This topology is called the **b**-adic topology, $\lambda_{\mathbf{b}}$.

Definition

Let **b** be a *D*-sequence. The family

```
\{b_n\mathbb{Z}:n\in\mathbb{N}_0\}
```

is a neighborhood basis for a group topology on \mathbb{Z} . This topology is called the **b**-adic topology, $\lambda_{\mathbf{b}}$.

Properties

- λ_b is metrizable.
- λ_b is precompact.
- $\lambda_{\mathbf{b}}$ is linear.
- λ_b is locally quasi-convex.
- $(\mathbb{Z}, \lambda_{\mathbf{b}})^{\wedge} = \mathbb{Z}(\mathbf{b}^{\infty}).$

In (Chasco et. al, 1999), the authors state that any locally quasi-convex group topology is the topology of uniform convergence on certain subsets of the dual. In order to define a topology of uniform convergence on \mathbb{Z} we choose a family that is formed by only one subset which is precisely the range of a sequence \underline{b} in \mathbb{T} .

Proposition

Let **b** be a *D*-sequence. Fix $\underline{\mathbf{b}} := \{ \frac{1}{b_n} + \mathbb{Z} : n \in \mathbb{N}_0 \} \subset \mathbb{T}$. Define $V_{\mathbf{b},m} := \left\{ z \in \mathbb{Z} : \frac{z}{b_n} + \mathbb{Z} \in \mathbb{T}_m \text{ for all } n \in \mathbb{N}_0 \right\}$ and $\mathscr{V}_{\mathbf{b}} := \{ V_{\mathbf{b},m} : m \in \mathbb{N} \}$. Then $\mathscr{V}_{\mathbf{b}}$ is a neighborhood basis for the topology of uniform convergence on $\underline{\mathbf{b}}$ in the group of the integers. We call this topology $\tau_{\mathbf{b}}$.

Properties

Let **b** be a D-sequence. Then:

- $\tau_{\mathbf{b}}$ is a metrizable topology.
- $V_{\mathbf{b},m} = \bigcap_{\chi \in \underline{\mathbf{b}}} \chi^{-1}(\mathbb{T}_m)$. Hence $\tau_{\mathbf{b}}$ is locally quasi-convex.
- $\mathbb{Z}(\mathbf{b}^{\infty}) = \langle \underline{\mathbf{b}} \rangle \leq (\mathbb{Z}, \tau_{\mathbf{b}})^{\wedge}.$

Theorem

Let **b** be a D-sequence such that $\mathbf{b} \in \mathscr{D}_{\infty}^{\ell}$. Then $(\mathbb{Z}, \tau_{\mathbf{b}})^{\wedge} = \mathbb{Z}(\mathbf{b}^{\infty})$.

Definition

Let **b** be a *D*-sequence. Define

$$\delta_{f b}:= {
m sup}\{ au_{f c}: {f c}\in \mathscr{D}^\ell_\infty({f b})\}.$$

Definition

Let **b** be a *D*-sequence. Define

$$\delta_{f b}:= \sup\{ au_{f c}: {f c}\in \mathscr{D}^\ell_\infty({f b})\}.$$

Properties

δ_b is locally quasi-convex.

•
$$(\mathbb{Z}, \delta_{\mathsf{b}})^{\wedge} = \mathbb{Z}(\mathsf{b}^{\infty}).$$

$\delta_{\mathbf{b}}$ if **b** has bounded ratios.

Theorem

Let **b** be a basic D-sequence with bounded ratios and let

 $(x_n) \subset \mathbb{Z}$ be a non-quasiconstant sequence such that $x_n \stackrel{\lambda_b}{\to} 0$. Then there exists a metrizable locally quasi-convex compatible group topology $\tau (= \tau_c$ for some subsequence **c** of **b**) on \mathbb{Z} satisfying: (a) τ is compatible with λ_b . (b) $x_n \stackrel{\tau}{\to} 0$.

(c) $\lambda_b < \tau$.

Theorem

Let **b** a basic D-sequence with bounded ratios. Then the topology $\delta_{\mathbf{b}}$ has **no** non-trivial convergent sequences. Hence, it cannot be non-discrete metrizable. Since $(\mathbb{Z}, \delta_{\mathbf{b}})^{\wedge} \neq \mathbb{T}$, it is non-discrete.

$\delta_{\mathbf{b}}$ if **b** has bounded ratios. (2)

Remark

If **b** is a basic *D*-sequence with bounded ratios, then $\mathscr{D}^k_{\infty}(\mathbf{b}) \neq \mathscr{D}^{k+1}_{\infty}(\mathbf{b}).$

Remark

If **b** is a basic D-sequence with bounded ratios, then τ_{b} is discrete.

Proposition

Let **b** be a basic D-sequence such that $\mathbf{b} \in \mathscr{D}_{\infty}^{\ell}$. The following facts can be easily proved:

- The sequence **b** has unbounded ratios.
- We have that $\mathscr{D}^k_{\infty}(\mathbf{b}) = \mathscr{D}^{\ell}_{\infty}(\mathbf{b})$, for any natural number $k \ge \ell$.
- We have $\delta_{\mathbf{b}} = \tau_{\mathbf{b}}$.
- The topology δ_b is metrizable. Hence, it has non-trivial convergent sequences.

$\delta_{\mathbf{b}}$ if $\mathbf{b} \in \mathscr{D}^{\ell}_{\infty}$. (2)

Proposition

Let **b**, **c** be the D-sequences defined as follows:

•
$$b_{3n+1} = 2 \cdot b_{3n}$$
 • $b_{3n+2} = p_{n+1}b_{3n+1}$ • $b_{3n+3} = 3 \cdot b_{3n+2}$
and
• $c_{3n+1} = 3 \cdot c_{3n}$ • $c_{3n+2} = p_{n+1}c_{3n+1}$ • $c_{3n+3} = 2 \cdot c_{3n+2}$,

where p_n is the *n*-th prime number.

Then $\mathbb{Z}(\mathbf{b}^{\infty}) = \mathbb{Z}(\mathbf{c}^{\infty})$ and $\delta_{\mathbf{b}} \neq \delta_{\mathbf{c}}$.

Notation

We shall denote by τ_U the topology in $\mathbb{Z}(\mathbf{b}^{\infty})$ inherited from the one of the complex plane.

Proposition (Aussenhofer, Chasco)

Let H be a dense and metrizable subgroup of a topological group G. Then $G^{\wedge} = H^{\wedge}$.

Corollary

 $(\mathbb{Z}(\mathbf{b}^{\infty}), \tau_U)^{\wedge}$ is isomorphic to the discrete group of the integers.

Proposition

Let
$$(x_n + \mathbb{Z}) \subset \mathbb{Z}(\mathbf{b}^{\infty})$$
. Write $x_n = \sum_{k \ge 1} \frac{\beta_k^{(n)}}{b_k}$. Then the following

assertions are equivalent:

$$1 x_n + \mathbb{Z} \to 0 + \mathbb{Z} \text{ in } \tau_U.$$

$$(a) |x_n| \to 0 \text{ in } \mathbb{R}.$$

So For any $k \in \mathbb{Z}$ there exists n_k such that $\beta_1^{(n)} = \cdots = \beta_k^{(n)} = 0$ if $n \ge n_k$.

$\operatorname{Hom}(\mathbb{Z}(\mathbf{b}^{\infty}),\mathbb{T}).$

- We want to find a topology of uniform convergence on $\mathbb{Z}(\mathbf{b}^{\infty})$.
- To that end we need a subset of Hom(ℤ(b[∞]), 𝔅); i. e, of ℤ_b, the group of b-adic integers.
- Describe the action of an element of $\mathbb{Z}_{\mathbf{b}}$ on $\mathbb{Z}(\mathbf{b}^{\infty})$. Let $k = \sum_{n \in \mathbb{N}} k_n b_n \in \mathbb{Z}_{\mathbf{b}}$. We define $\chi_k : \mathbb{Z}(\mathbf{b}^{\infty}) \to \mathbb{Z}$ where

$$\chi(x) := xk + \mathbb{Z} = \lim_{N \to \infty} \sum_{n=0}^{N} k_n b_n x + \mathbb{Z}.$$

Since x ∈ Z(b[∞]) implies that β_n = 0 for n ≥ n₀ for some n₀ we have that xb_n ∈ Z if n ≥ n₀ and lim_{N→∞} ∑_{n=0}^N k_nb_nx + Z stabilizes.

The topology $\eta_{\mathbf{b}}$ on $\mathbb{Z}(\mathbf{b}^{\infty})$.

Definition

Let **b** be a *D*-sequence we define $W_{\mathbf{b},m} := \{x + \mathbb{Z} \in \mathbb{Z}(\mathbf{b}^{\infty}) : xb_n + \mathbb{Z} \in \mathbb{T}_m \text{ for all } n\}.$

Proposition

The family {W_{b,m}}_{m∈ℕ} is a neighborhood basis for a locally quasi-convex group topology on ℤ(b[∞]). We will call this topology η_b.

Proposition

Let
$$x_n + \mathbb{Z} \in \mathbb{Z}(\mathbf{b}^{\infty})$$
. Write $x_n = \sum_{k \ge 1} \frac{\beta_k^{(n)}}{b_k}$. Then, the following assertions are equivalent:

$$1 \quad x_n + \mathbb{Z} \to 0 + \mathbb{Z} \text{ in } \eta_b.$$

So For all $m \in \mathbb{N}$ there exists n_m such that $\left|\beta_k^{(n)}\right| \le \frac{q_k}{8m}$ if $n \ge n_m$.

Corollary

- Let $\mathbf{b} \in \mathscr{D}_{\infty}$. Then $\frac{1}{b_n} + \mathbb{Z} \to \mathbf{0} + \mathbb{Z}$ in $\eta_{\mathbf{b}}$.
- There exists L such that q_n ≤ L for all n if and only if the topology η_b in ℤ(b[∞]) is discrete.

Proposition

 $au_U < \eta_{\mathsf{b}}.$

Theorem

If
$$\mathbf{b} \in \mathscr{D}_{\infty}$$
 then $(\mathbb{Z}(\mathbf{b}^{\infty}), \tau_U)^{\wedge} = (\mathbb{Z}(\mathbf{b}^{\infty}), \eta_{\mathbf{b}})^{\wedge}$.

Theorem

If $\mathbf{b} \in \mathscr{D}$ then $(\mathbb{Z}(\mathbf{b}^{\infty}), \tau_U)$ is not a Mackey group.

Theorem

The group \mathbb{Q} of rational numbers endowed with the usual topology is not a Mackey group.

The topology ∧_b.

Definition

Let **b** be a *D*-sequence. Define

$$U_n := \{\mathbf{x} \in \mathbb{Z}_{\mathbf{b}} : x_0 = \cdots = x_{n-1} = 0\}$$

for $n \geq 1$. Put $U_0 = \mathbb{Z}_{\mathbf{b}}$.

Proposition

Let **b** be a D-sequence. Then the family $\{U_n\}_{n \in \mathbb{N}_0}$ is a neighborhood basis of 0 for a linear metrizable group topology on \mathbb{Z}_b . We will denote this topology by Λ_b .

Theorem

Let **b** be a D-sequence. Then $(\mathbb{Z}_{\mathbf{b}}, \Lambda_{\mathbf{b}})$ is the completion (up to isomorphism) of $(\mathbb{Z}, \lambda_{\mathbf{b}})$.

Thank you for your attention.