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Throughout this work I will prove that every extension of topological

abelian groups of the form 0→ K → X → A(Y )→ 0 splits when

K is compact and A(Y ) is a free abelian topological group group

generated by a zero-dimensional kω-space Y .

This result is related with the splitting problem. The splitting problem

consists in finding conditions on two topological abelian groups G and H

so that every extension of topological abelian groups of the form

0→ H → X → G → 0 splits.
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I We will work on topological abelian groups

I A topological abelian group G is zero-dimensional if there exists a

system of neighbourhoods of the neutral element consisting of clopen

sets.

I A topological space X is kω if it can be represented as the direct

limit of an increasing sequence of compact spaces.
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Extensions

I An extension of topological abelian groups:

E : 0→ H
ı→ X

π→ G → 0 short exact sequence [i , π relatively open

continuous homomorphisms] E splits it is equivalent to the trivial

extension i. e. if there is a topological isomorphism T : X → H ×G

making commutative the diagram

X

T

��

π

##
0 // H

i

;;

ıH
##

G // 0

H ×G

πG

;;

Suppose that we can find a continuous homomorphism S : G → X

such that π ◦ S = IdG , then E splits.
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Free abelian topological groups

I Let Y be a topological space. The free abelian topological group

A(Y ) is the unique topological abelian group containing Y such

that, given any topological abelian group H and any continuous map

f : Y → H , there exist a continuous homomorphism f̃ : A(Y )→ H

extending f i. e. making commutative the following diagram:

Y �
�

//

f

��

A(Y )

f̃||

H
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I It is known that free abelian groups are projective in the category of

abelian groups i. e. every extension of abelian groups

0→ H → X → G → 0 splits if G is free.

I Consequently, it is natural to ask ourselves in which conditions every

extension of topological abelian groups of the form

0→ H → X → A(Y )→ 0 splits when A(Y ) is a free abelian

topological group.
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The following lemma contains the technical part of the proof of the main

result

Lemma

Let π : X → G be a continuous open and onto homomorphism such that

kerπ is compact and metrizable. Suppose that a subspace Y ⊂ G is

zero-dimensional and kω-space, then there exists an embedding s : Y ↪→ X

satisfying π ◦ s = IdY (this function is called a continuous cross-section)
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Proof.

Since Y is a kω-space, we can represent it as the direct limit of an

increasing sequence {Yn : n ∈ N} of compact subspaces. Consider

Xn = π−1(Yn).

Step 1. For every n ∈ N call Xn = π−1(Yn) ⊂ X and construct a

continuous map sn : Xn → Yn such that π ◦ sn = IdYn
.

X
π //

P

��

j

''

G Xn

j|Xn &&

π|Xn // Yn

tn

}}

M G ×M
pM

oo

pG

OO

j (Xn)

pG

OO

sn = j−1 ◦ tn

Step 2. Consider the limit s = lim→sn . Since s|Xn
= sn , for every n ∈ N,

we obtain that π ◦ s = IdY .

Hugo J. Bello Splittings and products of topological abelian groups



Preliminaries Extensions of topological abelian groups Free abelian topological groups Main Result

Proof.

Since Y is a kω-space, we can represent it as the direct limit of an

increasing sequence {Yn : n ∈ N} of compact subspaces. Consider

Xn = π−1(Yn).

Step 1. For every n ∈ N call Xn = π−1(Yn) ⊂ X and construct a

continuous map sn : Xn → Yn such that π ◦ sn = IdYn
.

X
π //

P

��

j

''

G Xn

j|Xn &&

π|Xn // Yn

tn

}}

M G ×M
pM

oo

pG

OO

j (Xn)

pG

OO

sn = j−1 ◦ tn

Step 2. Consider the limit s = lim→sn . Since s|Xn
= sn , for every n ∈ N,

we obtain that π ◦ s = IdY .

Hugo J. Bello Splittings and products of topological abelian groups



Preliminaries Extensions of topological abelian groups Free abelian topological groups Main Result

Proof.

Since Y is a kω-space, we can represent it as the direct limit of an

increasing sequence {Yn : n ∈ N} of compact subspaces. Consider

Xn = π−1(Yn).

Step 1. For every n ∈ N call Xn = π−1(Yn) ⊂ X and construct a

continuous map sn : Xn → Yn such that π ◦ sn = IdYn
.

X
π //

P

��

j

''

G Xn

j|Xn &&

π|Xn // Yn

tn

}}

M G ×M
pM

oo

pG

OO

j (Xn)

pG

OO

sn = j−1 ◦ tn

Step 2. Consider the limit s = lim→sn . Since s|Xn
= sn , for every n ∈ N,

we obtain that π ◦ s = IdY .

Hugo J. Bello Splittings and products of topological abelian groups



Preliminaries Extensions of topological abelian groups Free abelian topological groups Main Result

Proof.

Since Y is a kω-space, we can represent it as the direct limit of an

increasing sequence {Yn : n ∈ N} of compact subspaces. Consider

Xn = π−1(Yn).

Step 1. For every n ∈ N call Xn = π−1(Yn) ⊂ X and construct a

continuous map sn : Xn → Yn such that π ◦ sn = IdYn
.

X
π //

P

��

j

''

G Xn

j|Xn &&

π|Xn // Yn

tn

}}

M G ×M
pM

oo

pG

OO

j (Xn)

pG

OO

sn = j−1 ◦ tn

Step 2. Consider the limit s = lim→sn . Since s|Xn
= sn , for every n ∈ N,

we obtain that π ◦ s = IdY .

Hugo J. Bello Splittings and products of topological abelian groups



Preliminaries Extensions of topological abelian groups Free abelian topological groups Main Result

Main Result

Theorem

Let K be a compact abelian group and A(Y ) be the free abelian

topological group on a zero-dimensional kω-space Y . Then every extension

of topological abelian groups of the form 0→ K → X
π→ A(Y )→ 0

splits.
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Proof.

Step 1. Find a continuous map s : Y → X such that π ◦ s = IdY

How?

First, we represent X as the limit of an inverse system

P = {Xα, πα,β : Xα → Xβ : β < α < τ} such that X0 = A(Y ) and

kerπα+1,α is compact and metrizable for every α.

We are going to use the previous Lemma to construct a family of

embeddings {sα : Y ↪→ Xα : α < κ} such that πα+1,α ◦ sα+1 = sα.

So we have obtained a map s : Y → X such that π ◦ S = IdY .
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Step 2. Construct a continuous homomorphism S : A(Y )→ X such that

π ◦ S = IdA(Y ).

From the definition of free abelian topological group follows that

s : Y → X can be extended to a continuous homomorphism

S : A(Y )→ X such that S|Y = s. It follows trivially that π ◦ S = IdA(Y ).
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Thank you for your attention!
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