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The Baire property

Some notations and preliminary facts on precompact

abelian groups

Introduction

T is the subgroup of the multiplicative group C \ {0}
formed by all complex numbers with modulus 1, and
endowed with the usual topology.

We consider on T the arc-length group norm p,
normalized in such a way that p(—1) = 1/2. For every
€ > 0 we denote by T, the neighborhood of 1 defined by
{reT:p() <ce}.
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Let U be an open, dense subset of T.
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Let U be an open, dense subset of T.
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For every k € N, there exists a basic neighborhood ¢7
such that U contains the set of all kth roots of 7.
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If G is an abelian group, we call any element of
Hom(G, T) a character of G.

Let (G, 7) be a Hausdorff fopological abelian group. We
denote by (G, )" the subgroup of Hom(G, T) formed by
all 7-continuous characters of G. We say that (G, 7) is
MAP if the elements of (G, )" separate the points of G.
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We say that (G, 7) is precompact if G can be covered by
finitely many translates of any neighborhood of zero.
Equivalently, if the completion o(G, 7) of (G, 7) is a
compact group.

We say that (G, 7) is pseudocompact if every T-continuous
real function defined on G is bounded. Equivalently, if

(G, 1) is precompact and Gs-dense in its completion.
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bihomomorphism (-, -) : G x H — T. We will consider
separated dualities: for every g € G \ {0} and every

h € H\ {0} the characters (g, -) and (-, h) are not
identically 1.

Given any duality (G, H) the inverse duality (H, G) is
defined in the obvious way.

We denote by o(G, H) the initial topology on G with
respect to all characters of the form (-, h) where h € H.

A basis of neighborhoods of 0 for (G, H) is given by the
sets {g € G: (g, A) C T.} where A runs over all finite
subsets of H and € > 0.

0(G, H) is a Hausdorff, precompact group topology, and
(G,0(G,H))" = H in the natural way.
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If (G, T) is MAP, there is a natural duality (G, (G, 7)"). It
turns out that (G, 7) is precompact if and only if

7 =0(G,(G,7)").

Similarly, o((G, 7)", G) is the topology on (G, 7)" of
pointwise convergence on the elements of G.
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The duality (G, H) is bounded if for some m € N we have
mG = {0}, equivalently mH = {0}.

If (G, H) is bounded, a basis of neighborhoods of 0 for
o(G, H) is given by the subgroups

{g€G:(g,A) ={1}} =: AL where A runs over all
finite subsets of H.
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A topological space X has the Baire property, or is a Baire
space, if the intersection of any countable family of open
dense subsets of X is dense in X.

Equivalently, if the only open subset in X which is
expressable as a countable union of nowhere dense subsets
of X is the empty set.

Every locally compact space has the Baire property.

Every completely metrizable space has the Baire property.
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A topological group G has the Baire property, or is a
Baire group, if the intersection of any countable family of
open dense subsets of G is dense in G.

Equivalently, if the only open subset in G which is
expressable as a countable union of nowhere dense subsets
of G is the empty set.
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A topological group G has the Baire property, or is a
Baire group, if the intersection of any countable family of
open dense subsets of G is dense in G. It suffices that the
intersection of any countable family of open dense subsets
of G is nonempty.

Equivalently, if the only open subset in G which is

expressable as a countable union of nowhere dense subsets
of G is the empty set.
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of G is the empty set. It suffices that the whole G is not
expressable as a countable union of nowhere dense
subsets.
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A topological group G has the Baire property, or is a
Baire group, if the intersection of any countable family of
open dense subsets of G is dense in G. It suffices that the
intersection of any countable family of open dense subsets
of G is nonempty.

Equivalently, if the only open subset in G which is
expressable as a countable union of nowhere dense subsets
of G is the empty set. It suffices that the whole G is not
expressable as a countable union of nowhere dense
subsets.

The weaker sufficient conditions are consequences of
Banach’s Category Theorem.



. The Baire propert
Baire groups on precompact

abelian groups

Introduction

The Baire property plays a role in

the open mapping/closed graph theorems

joint continuity of bi-homomorphisms

Klee’s theorem on complete metrics

Mackey-type properties for topological abelian groups
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e Every pseudocompact group is a Baire space.

e If G is infinite abelian, then (G, o(G,Hom(G, T))) is not a
Baire space.

e The class of precompact Baire groups is closed with
respect to taking continuous homomorphic images and

arbitrary direct products (M. Bruguera, M. Tkachenko,
2012).

e If the precompact group (G, o (G, H)) is Baire, all
convergent sequences in (H, o(H, G)) are stationary
(same reference).



A characterization of the Baire property

Let (G, H) be a bounded duality of abelian groups. Fix
g € G and a finite subset A of H. The set g + AL is an
open o(G, H)—neighborhood of g. (It is the set of all
g € G which agree with g on A.)

Fix a sequence {g, } in G and a sequence {A,} of finite
subsets of H. Consider the sets ;> gk + AL, where
n € N. They are clearly (G, H)—open.

Moreover they are o (G, H)—dense in G if

(Ay) N (Ag) = {0} whenever n # k.

(We will check this later.)

So, if (G, 0(G, H)) is a Baire group, then

Muen Ugsn 8 + Ag is nonempty: there is some g such
that g € g + A,ﬂ- for infinitely many k € N.
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A characterization of the Baire property

Let (G, H) be a bounded duality of abelian groups.

If (G,0(G, H)) is a Baire group, then

for every sequence {g, } in G and every sequence {A,} of
finite subsets of H with (A,) N (Ax) = {0} whenever

n # k, there is g € G such that g € g, + A;- for infinitely
many n € N. (That is, g agrees with g, on A, for infinitely
many n.)

This necessary condition is actually also sufficient!
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A characterization of the Baire property

e Let (G, H) be a bounded duality of abelian groups.
(G,0(G,H)) is a Baire group if and only if
for every sequence {g, } in G and every sequence {A,} of
finite subsets of H with (A,) N (Ax) = {0} whenever
n # k, there is g € G such that g € g, + AL for infinitely

many n € N. (That is, g agrees with g, on A,, for infinitely
many n.)
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A characterization of the Baire property

Let (G, H) be a bounded duality of abelian groups. Let
{gn} be a sequence in G and {A, } a sequence of finite
subsets of H with (A,) N (Ag) = {0} whenever n # k.
Then for every n € N the set | J;~,, gk + A is
0(G,H)—dense in G.
Proof: Fix n € N and a basic (G, H)—open set go + Ay
in G. We need to find some
g € (g0 + A7) N (Uis, & + Aib). This means
(g, h) = (go, h) forevery h € A
(g, h) = (gk, h) for every h € Ay (we can choose k > n.)
Pick k > n so that (Ag) N (Ag) = {0}. Consider the
character on (Ag) @ (A) acting as (g, -) on Ag and as
(8x, -) on Ay. Since (Ag) @ (Ay) is finite, this character
can be extended to a continuous character of the
precompact group (H, o (H, G)), that is, to some element
of G as required.
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Compact subsets of a precompact,
bounded Baire group

By using similar techniques one can prove that

e Let (G, H) be a bounded duality of abelian groups.
Suppose that (G, o (G, H)) is a Baire space. Then every
o(H,G)—compact subset of H is finite.

This was known for pseudocompact (not necessarily
bounded) groups.

It is not true with “countably compact” instead of
“compact”, even in the Boolean case.
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Compact subsets of a precompact,
bounded Baire group

Let (G, H) be a bounded duality of abelian groups.
Suppose that (G, o(G, H)) is a Baire space. Then every
o(H, G)—compact subset of H is finite.

Some consequences:

e If G is a bounded, precompact abelian group which is a
Baire space, then its topology is the only locally
quasi-convex one with its group of continuous characters.

e If G is a bounded, precompact abelian group which is a
Baire space and has only finite compact subsets then G is
reflexive.
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Compact subsets of a
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When is S a Baire group?
Note that S is only pseudocompact in the case S = T.



The Baire property

Baire subgroups of T e

abelian groups

e Let S be a dense subgroup of T. Then $ has the Baire
property iff

Baire subgroups of T



The Baire property

Baire subgroups of T e

abelian groups

e Let S be a dense subgroup of T. Then $ has the Baire
property iff

Baire subgroups of T



The Baire property

Baire subgroups of T e

abelian groups

e Let S be a dense subgroup of T. Then $ has the Baire
property iff

t — ¢

Baire subgroups of T



Baire subgroups of T

e Let S be a dense subgroup of T. Then $ has the Baire
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e Let S be a dense subgroup of T. Then $ has the Baire

property iff
t — M
S t17T,
R
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e Let S be a dense subgroup of T. Then $ has the Baire
property iff
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Baire subgroups of T

e Let S be a dense subgroup of T. Then $ has the Baire
property iff

t—
...—N\ t— tMme2 tlTsl

t2T€2

for every sequence (#7,) of basic neighborhoods in T
and every faithfully indexed sequence of exponents
(my) € ZN there is some ¢ € S with ™ € T, for
infinitely many k.
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Let S be a dense subgroup of T. Then S has the Baire
property iff for every (i) € (0,00)N, every () € TV and
every faithfully indexed (my) € ZN there is some t € S
with t" € T, for infinitely many k.

Sketch of the proof of < : Fix a decreasing sequence (U,,)
of open, dense subsets of T; let us show that

N,U, NS # (). Any open, dense subset of T contains the
set of all kth roots of a convenient basic neighborhood 7.
Find #, g (k € N) with u* € #T., = u € Uy. Apply our
hypothesis with ny; = k : we find t € S with t* € T, for
infinitely many k. We deduce that ¢t € Uy for infinitely
many k, thus actually for all k.

Baire subgroups of T
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Let (G, H) be a bounded duality of abelian groups.
(G,0(G,H)) is a Baire group if and only if for every
sequence {g,} in G and every sequence {A,} of finite
subsets of H with (A,) N (Ag) = {0} whenever n # k,
there is g € G such that g agrees with g on Ay for
infinitely many k.

Baire subgroups of T

Note that the topology on S is exactly o (S, Z).

[S is precompact, hence its topology is o (S, S"). But
SN=TN=17.]

We have just seen that

S = (S,0(S,Z)) is a Baire group iff for every sequence
(t,) in T and every faithfully indexed sequence {m,} in Z
there exists some ¢ € § such that 7 “almost agrees” with #,
on {m,} for infinitely many n.
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