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The subject of this research project

Topologies for Rn that are metrizable, weaker than the
usual topology, and make (Rn,+) a topological group.

id : (Rn, usual)→ (Rn, new) is continuous.

Goal: Understand these groups.

One strategy: Study their continuous characters.
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The topologies

CHOOSE TWO SEQUENCES:

• a sequence {vj} of non-zero elements of Rn that you
want to force to converge to zero
[the “converging sequence”]

• a sequence {pj} of positive real numbers that
specifies the approximate rate at which {vj} will
converge to zero (pj → 0 in the usual metric)
[the “rate sequence”]
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An example on R

Create a groupnorm ν for R such that ν(x) ≤ |x | for all
x ∈ R and ν(j !) ≤ 1/j for all j ∈ N.

Aside: A groupnorm ν : R→ R≥0 is similar to absolute
value:

ν(x) ≥ 0 for all x ∈ R;
ν(x) = 0 ⇐⇒ x = 0;
ν(−x) = ν(x) for all x ∈ R
ν(x + y) ≤ ν(x) + ν(y) for all x , y ∈ R,

but not multiplicative.

If ν is a groupnorm, then d(x , y) = ν(x − y) is a metric
that makes (R,+) a topplogical group (where x , y ∈ R).
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Creating ν: Want ν(j !) ≤ 1/j

We need ν(1) ≤ 1, ν(2) ≤ 1/2, ν(6) ≤ 1/3, ν(24) ≤ 1/4 . . .

What can we say about ν(70)? Clearly, ν(70) ≤ 70, but
also:

70 = 3(4!)− 2!, so ν(70) ≤ 3
4
+ 1

2
= 1.25

70 = 5!− 2(4!)− 2!, so ν(70) ≤ 1
5
+ 2

4
+ 1

2
= 1.2

If 70 =
∑

aj(j !), then we need to have ν(70) ≤
∑
|aj |/j .

Thus we define: ν(70) = inf {
∑
|aj |/j : 70 =

∑
aj(j !)} ,

where aj ∈ Z and sums are finite.
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Creating ν: What if x /∈ Z?

If x =
∑

aj(j !) + y , where y ∈ R,

then ν(x) ≤
∑
|aj |/j + |y |, so define ν(x) by

ν(x) = inf
{∑

|aj |/j + |y | : x =
∑

aj(j !) + y
}
.

PROPOSITION: ν is a groupnorm on R.

Partial proof: If m ∈ N and ν(x) < 1/m, then we can

write x =
∑

aj(j !) + y , where
∑
|aj |/j + |y | < 1/m, so x

is within 1/m (in the usual metric) of an element of the

subgroup generated by (m + 1)!. If this is true for all
m ∈ N, then x = 0.
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This construction works for other sequences in R

THEOREM: If {|vj |} is a non-decreasing sequence in R;
{pj} is a non-increasing sequence in R>0; and{

pj+1|vj+1|
|vj |

}
has a strictly positive lower bound, then there is a
groupnorm ν on R that is ≤ than the usual norm and
such that ν(vj) ≤ pj for all j .

({vj}, {pj}, ν) is a “SNT”

EXAMPLES: ν1(j ! + 1) ≤ 1/
√
j , ν2(j ! +

√
2) ≤ 1/j ,

ν3(2
j2) ≤ 1/j3
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This construction works for sequences in Rn

THEOREM (tcs, 1982): If {‖vj‖} is a non-decreasing
sequence in Rn; {pj} is a non-increasing sequence in
R>0; and {

pj+1‖vj+1‖
‖vj‖

}
has a strictly positive lower bound, then there is a
groupnorm ν on Rn that is ≤ than the usual norm and
such that ν(vj) ≤ pj for all j .

EXAMPLES: ν4
(
j !, (−1)j

)
≤ 1/j , ν5(j , 3

3j ) ≤ 1/j2
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The character group

Let (G , T ) be a topological group. A character of G is a
homomorphism from G into the circle group:

f : G → T

The continuous characters of (G , T ) form a group, with
the operation of pointwise multiplication: If f , h are two
such characters and x ∈ G , then

(f h)(x) = f (x)h(x).

This group is the character group or dual group of
(G , T ), often denoted G∧.
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The character group of a SNT

Does (Rn, ν) have non-trivial continuous characters?

Notes:

• Duality theory of locally compact abelian groups does
not apply.

• There exists a metrizable group topology for R that is
weaker than the usual topology and for which the only
continuous character is the trivial one
(J.W. Nienhuys, Fund. Math., 1971/2).
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Characters of SNT’s

Let ({vj}, {pj}, ν) be a SNT for R. Suppose that
f : (R, ν)→ T is a continuous character.

Let U be the usual topology for R. The composition

(R,U) id−→ (R, ν) f−→ T

is continuous. Therefore f must have the form
f (x) = exp(iθx) for some θ ∈ R.

For θ ∈ R, let fθ denote the function x 7→ exp(iθx). Let
Bν = {θ ∈ R : fθ is ν-continuous}
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There are many characters

For θ ∈ R, let fθ denote the function x 7→ exp(iθx). Let
Bν = {θ ∈ R : fθ is ν-continuous}

THEOREM (tcs, 2013) : For every SNT on R, Bν is an
uncountable dense subgroup of (R,U), and its
complement is also uncountable and dense.

PROBLEM: Find the character group of ({j !}, {1/j}, ν).

First step: Show 2πZ ⊆ Bν.
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Finding characters of ({j !}, {1/j}, ν)

Define an invariant metric ρ on T by

ρ(e ix , e iy ) = min{|x − y − 2πm| : m ∈ Z}.

We claim that f2πn : x 7→ exp(2πinx) is ν-continuous
when n ∈ Z. Given ε > 0, there exists δ > 0 such that
ρ(exp(2πiny), 1) < ε whenever |y | < δ. If x ∈ R and
ν(x) < δ, then we can write x =

∑
aj(j !) + y , where

aj ∈ Z, y ∈ R, the sum is finite, and
∑
|aj |/j + |y | < δ.

Then

f2πn(x) = exp 2πin(
∑

aj(j !) + y) = exp(2πiny),

and ρ(f2πn(x), 1) = ρ(exp(2πiny), 1) < ε. So 2πn ∈ Bν.
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Finding more characters

Claim: 2πQ ⊆ Bν.

Proof: Write q ∈ Q as q = m/k , where m ∈ Z, k ∈ N.
Given ε > 0, there exists δ > 0 such that δ < 1/k and
ρ(exp(2πiqy), 1) < ε whenever |y | < δ. If x ∈ R and
ν(x) < δ, then we have x =

∑
aj(j !) + y , where aj ∈ Z,

y ∈ R, the sum is finite, and
∑
|aj |/j + |y | < δ < 1/k.

Moreover, for each j ≤ k, we have aj = 0. Therefore

f2πq(x) = exp 2π
m

k
i(
∑
j≥k+1

aj(j !) + y) = exp(2πi
m

k
y),

and ρ(f2πn(x), 1) = ρ(exp(2πiqy), 1) < ε. So 2πq ∈ Bν.
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Comments

•2πQ is dense in (R,U).
•2πQ is countable, and Bν is uncountable. What is in
Bν but not in 2πQ?

• The rate sequence {pj} played no role in these
computations.

• What about other SNT‘s?
• For ({j ! + 1}, {1/j}, ν1), the same proof shows that

2πZ ⊆ Bν1, but not that 2πQ ⊆ Bν1.
• Find a non-trivial continuous character of(

{j ! +
√
2}, {1/j}, ν2

)
.

• The theorem says that Bν is always uncountable.
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Summary of the first lecture

({vj}, {pj}, ν) is an SNT on R: ν is a groupnorm on R
that forces the sequence {vj} to converge to 0 at
approximately the rate {pj}. (With appropriate
hypotheses, such a ν exists.)

A continuous character of (R, ν) is a continuous
homomorphism (R, ν)→ T. Every continuous character
has the form fθ : x 7→ exp(iθx) for some θ ∈ R.

(R, ν) has uncountably many continuous characters, but
they are hard to find.

Example: Is x 7→ exp(2πix
√
2) a continuous character of

the SNT ({j !}, {1/j}, ν)? I have no idea!
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Today: One way to prove a character is continuous

Let ({vj}, {pj}, ν) be an SNT for R.

IDEA: A homomorphism f : R→ T should be
ν-continuous if f (vj)→ 1 at least as fast as ν(vj)→ 0
[Rephrase: at least as fast as pj → 0].

DEFINITION: Let f : R→ T be a U-continuous
homomorphism. We say that f is a sequentially
bounded (SB) character of (R, ν) if there exists α > 0
such that ρ(f (vj), 1) ≤ αpj for all j ∈ N. The set of all
(SB) characters of (Rn, ν) is denoted by Hν.

THEOREM (tcs, 2014): If f is sequentially bounded,
then f is ν-continuous.

T. Christine Stevens, American Mathematical SocietyProvidence, Rhode Island, USACharacter groups



f is sequentially bounded =⇒ f is ν-continuous.

PROOF: Assume α > 0 and ρ(f (vj), 1) ≤ αpj for all
j ∈ N. Let ε > 0 be given. Because f is U-continuous, there
is a δ > 0 such that ρ(f (y), 1) < ε/2 whenever |y | < δ. We
may assume that δ < ε/(2α). If ν(x) < δ, then we can write
x =

∑
cjvj + y , where cj ∈ Z, y ∈ R, the sum is finite, and

|y |+
∑
|cj |pj < δ. Since |y | < δ, we know that

ρ(f (y), 1) < ε/2. Using the fact that ρ(f (vj), 1) ≤ αpj for all j
and the invariance of ρ, we find that

ρ(f (x), 1) = ρ(f (y +
∑

cjvj), 1) ≤ ρ(f (y), 1) +
∑
|cj |ρ(f (vj), 1)

< ε/2 + α
∑
|cj |pj < ε/2 + δα < ε/2 + ε/2 = ε.

Hence f is ν-continuous.
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D-expansions

Assume the converging sequence {vj} is also a
D-sequence: vj ∈ Z and vj |vj+1 for all j ∈ N (but start
with v1 = 1, not v0).

PROPOSITION (de la Barrera Mayoral, 2014): Let
θ ∈ R. Then θ has a D-expansion:

θ =
∞∑
j=1

aj
vj

= a1 +
a2
v2

+
a3
v3

+ · · · ,

where all aj ∈ Z, |aj | ≤ vj
2vj−1

for all j ≥ 2, and

− 1

2vn
< θ −

n∑
j=1

aj
vj
≤ 1

2vn
for all n ∈ N.
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Deciding whether a character is SB

THEOREM (tcs): Let θ =
∑∞

j=1
aj
vj
∈ R. Then f2πθ is SB

if and only if {
aj+1vj
pj vj+1

: j ∈ N
}

is a bounded set.

EXAMPLE: ({j !}, {1/j}, ν), θ = e. Then

e = 2 +
1

2!
+

1

3!
+ · · · = 2

1!
+
∞∑
j=2

1

j !
and

aj+1vj
pj vj+1

=
1(j !)

(1/j)(j + 1)!
=

j

j + 1
< 1.

So f2π e is SB and therefore ν-continuous.
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More SB characters

For the SNT ({j !}, {1/j}, ν)

aj+1vj
pj vj+1

=
aj+1(j !)

(1/j)(j + 1)!
=

jaj+1

j + 1
.

Thus {
aj+1vj
pj vj+1

: j ∈ N
}

is a bounded set if and only if the coefficients aj in the
D-expansion of θ are bounded.

PROPOSITION: For this SNT, if the coefficients aj in
the expansion θ =

∑∞
j=1

aj
vj

are bounded, then f2πθ is SB,

hence ν-continuous. [Bν is uncountable.]
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A computational proof

Claim: For the SNT ({j!}, {1/j}, ν), the character
f2π e : x 7→ exp(2πiex) is SB, hence ν-continuous.

Proof: The D-expansion of e is e = 2 +
∑∞

j=2
1
j! . First

compute e(k!) for k ∈ N, k ≥ 2:

e(k!) = 2(k!) + k!
k∑

j=2

1

j!
+ k!

∞∑
j=k+1

1

j!
= integer + k!

∞∑
j=k+1

1

j!
.

Thus

f2πe(k!) = exp

2πi

k!
∞∑

j=k+1

1

j!

 .
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More computations

Now

k!
∞∑

j=k+1

1

j!
=

1

k + 1
+

1

(k + 1)(k + 2)
+

1

(k + 1)(k + 2)(k + 3)
+. . .

=
1

k + 1

(
1 +

1

k + 2
+

1

(k + 2)(k + 3)
+ . . .

)
<

e

k + 1
.

Therefore

ρ

exp

2πik!
∞∑

j=k+1

1

j!

 , 1

 <
2πe

k + 1
<

2πe

k
.

Thus ρ(f2πe(k!), 1) <
2πe
k , and f2πe is SB.
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Another example

For the SNT
(
{j !}, {1/

√
j}, ν

)
Let

θ1 =
∞∑
j=1

j

(j2)!
.

The coefficents in this expansion are unbounded, but
the only non-zero coefficents are aj2 = j . For those
coefficents, we have, for all j ≥ 2,

aj2vj2−1
pj2−1vj2

=
j(j2 − 1)!

(1/
√

j2 − 1)(j2)!
=

j
√

j2 − 1

j2
=

√
j2 − 1

j
,

which converges to 1 as j →∞. Thus the relevant set
is bounded, and f2πθ1 is SB and ν1-continuous.
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Open questions

Does a SNT have any continuous characters that are
not sequentially bounded?

Rephrase: Let Gν denote the set of all ν-continuous
characters. We know that Hν ≤ Gν. Are these groups
ever equal? Are they always equal?

Partial result: We can show that, if 2πθ ∈ Gν, then
aj+1vj
vj+1
→ 0 as j →∞. But does{

aj+1vj
pj vj+1

: j ∈ N
}

have to be bounded?
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THANK YOU!

T. Christine Stevens

stevensc@slu.edu
tcs@ams.org
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