Character groups of unusual topologies for \mathbb{R}^n

T. Christine Stevens, American Mathematical Society Providence, Rhode Island, USA

4th Workshop on Topological Groups, UCM, Madrid 3-4 December, 2015

T. Christine Stevens, American Mathematical SocietyProvidence Character groups

Topologies for \mathbb{R}^n that are metrizable, weaker than the usual topology, and make $(\mathbb{R}^n, +)$ a topological group.

id : $(\mathbb{R}^n, usual) \rightarrow (\mathbb{R}^n, new)$ is continuous.

Goal: Understand these groups.

One strategy: Study their continuous characters.

CHOOSE TWO SEQUENCES:

• a sequence $\{v_j\}$ of non-zero elements of \mathbb{R}^n that you want to force to converge to zero [the "converging sequence"]

• a sequence $\{p_j\}$ of positive real numbers that specifies the approximate rate at which $\{v_j\}$ will converge to zero $(p_j \rightarrow 0 \text{ in the usual metric})$ [the "rate sequence"] Create a groupnorm ν for \mathbb{R} such that $\nu(x) \leq |x|$ for all $x \in \mathbb{R}$ and $\nu(j!) \leq 1/j$ for all $j \in \mathbb{N}$.

Aside: A groupnorm $\nu : \mathbb{R} \to \mathbb{R}^{\geq 0}$ is similar to absolute value:

$$u(x) \ge 0 \text{ for all } x \in \mathbb{R};$$

 $u(x) = 0 \iff x = 0;$
 $u(-x) = u(x) \text{ for all } x \in \mathbb{R}$
 $u(x + y) \le v(x) + v(y) \text{ for all } x, y \in \mathbb{R},$
of multiplicative.

but not multiplicative.

If ν is a groupnorm, then $d(x, y) = \nu(x - y)$ is a metric that makes $(\mathbb{R}, +)$ a topplogical group (where $x, y \in \mathbb{R}$).

・ 回 と ・ ヨ と ・ ヨ と …

We need $\nu(1) \le 1, \nu(2) \le 1/2, \nu(6) \le 1/3, \nu(24) \le 1/4 \dots$

What can we say about $\nu(70)$? Clearly, $\nu(70) \le 70$, but also:

70 = 3(4!) - 2!, so
$$\nu(70) \le \frac{3}{4} + \frac{1}{2} = 1.25$$

70 = 5! - 2(4!) - 2!, so $\nu(70) \le \frac{1}{5} + \frac{2}{4} + \frac{1}{2} = 1.2$
If $70 = \sum a_j(j!)$, then we need to have $\nu(70) \le \sum |a_j|/j$.
Thus we define: $\nu(70) = \inf \{\sum |a_j|/j : 70 = \sum a_j(j!)\}$,
where $a_j \in \mathbb{Z}$ and sums are finite.

(《圖》 《문》 《문》 - 문

Creating ν : What if $x \notin \mathbb{Z}$?

If
$$x = \sum a_j(j!) + y$$
, where $y \in \mathbb{R}$,
then $\nu(x) \le \sum |a_j|/j + |y|$, so define $\nu(x)$ by
 $\nu(x) = \inf \left\{ \sum |a_j|/j + |y| : x = \sum a_j(j!) + y \right\}.$

PROPOSITION: ν is a groupnorm on \mathbb{R} .

Partial proof: If $m \in \mathbb{N}$ and $\nu(x) < 1/m$, then we can write $x = \sum a_j(j!) + y$, where $\sum |a_j|/j + |y| < 1/m$, so xis within 1/m (in the usual metric) of an element of the subgroup generated by (m+1)!. If this is true for all $m \in \mathbb{N}$, then x = 0. **THEOREM:** If $\{|v_j|\}$ is a non-decreasing sequence in \mathbb{R} ; $\{p_j\}$ is a non-increasing sequence in $\mathbb{R}^{>0}$; and

 $\left\{\frac{p_{j+1}|v_{j+1}|}{|v_j|}\right\}$

has a strictly positive lower bound, then there is a groupnorm ν on \mathbb{R} that is \leq than the usual norm and such that $\nu(v_j) \leq p_j$ for all j.

 $(\{v_j\}, \{p_j\}, \nu)$ is a "SNT"

EXAMPLES: $u_1(j!+1) \le 1/\sqrt{j}, \quad \nu_2(j!+\sqrt{2}) \le 1/j, \\
\nu_3(2^{j^2}) \le 1/j^3$

THEOREM (tcs, 1982): If $\{||v_j||\}$ is a non-decreasing sequence in \mathbb{R}^n ; $\{p_j\}$ is a non-increasing sequence in $\mathbb{R}^{>0}$; and

$$\left\{\frac{p_{j+1}\|\mathsf{v}_{j+1}\|}{\|\mathsf{v}_{j}\|}\right\}$$

has a strictly positive lower bound, then there is a groupnorm ν on \mathbb{R}^n that is \leq than the usual norm and such that $\nu(v_j) \leq p_j$ for all j.

EXAMPLES:
$$\nu_4(j!, (-1)^j) \le 1/j$$
, $\nu_5(j, 3^{3^j}) \le 1/j^2$

Let (G, \mathcal{T}) be a topological group. A character of G is a homomorphism from G into the circle group:

$$f: G \to \mathbb{T}$$

The continuous characters of (G, \mathcal{T}) form a group, with the operation of pointwise multiplication: If f, h are two such characters and $x \in G$, then

$$(f h)(x) = f(x)h(x).$$

This group is the character group or dual group of (G, \mathcal{T}) , often denoted G^{\wedge} .

Does (\mathbb{R}^n, ν) have non-trivial continuous characters?

Notes:

• Duality theory of locally compact abelian groups does not apply.

• There exists a metrizable group topology for \mathbb{R} that is weaker than the usual topology and for which the only continuous character is the trivial one (J.W. Nienhuys, Fund. Math., 1971/2).

Let $(\{v_j\}, \{p_j\}, \nu)$ be a SNT for \mathbb{R} . Suppose that $f : (\mathbb{R}, \nu) \to \mathbb{T}$ is a continuous character.

Let $\mathcal U$ be the usual topology for $\mathbb R.$ The composition

$$(\mathbb{R},\mathcal{U})\xrightarrow{id}(\mathbb{R},\nu)\xrightarrow{f}\mathbb{T}$$

is continuous. Therefore f must have the form $f(x) = \exp(i\theta x)$ for some $\theta \in \mathbb{R}$.

For $\theta \in \mathbb{R}$, let f_{θ} denote the function $x \mapsto \exp(i\theta x)$. Let $B_{\nu} = \{\theta \in \mathbb{R} : f_{\theta} \text{ is } \nu\text{-continuous}\}$

向下 イヨト イヨト

For $\theta \in \mathbb{R}$, let f_{θ} denote the function $x \mapsto \exp(i\theta x)$. Let $B_{\nu} = \{\theta \in \mathbb{R} : f_{\theta} \text{ is } \nu\text{-continuous}\}$

THEOREM (tcs, 2013) : For every SNT on \mathbb{R} , B_{ν} is an uncountable dense subgroup of $(\mathbb{R}, \mathcal{U})$, and its complement is also uncountable and dense.

PROBLEM: Find the character group of $(\{j\}, \{1/j\}, \nu)$.

First step: Show $2\pi\mathbb{Z} \subseteq B_{\nu}$.

Define an invariant metric ρ on \mathbb{T} by

$$\rho(e^{ix}, e^{iy}) = \min\{|x - y - 2\pi m| : m \in \mathbb{Z}\}.$$

We claim that $f_{2\pi n} : x \mapsto \exp(2\pi i nx)$ is ν -continuous when $n \in \mathbb{Z}$. Given $\epsilon > 0$, there exists $\delta > 0$ such that $\rho(\exp(2\pi i ny), 1) < \epsilon$ whenever $|y| < \delta$. If $x \in \mathbb{R}$ and $\nu(x) < \delta$, then we can write $x = \sum a_j(j!) + y$, where $a_j \in \mathbb{Z}$, $y \in \mathbb{R}$, the sum is finite, and $\sum |a_j|/j + |y| < \delta$. Then

$$f_{2\pi n}(x) = \exp 2\pi in(\sum a_j(j!) + y) = \exp(2\pi iny),$$

and $\rho(f_{2\pi n}(x), 1) = \rho(\exp(2\pi i n y), 1) < \epsilon$. So $2\pi n \in B_{\nu}$.

Claim: $2\pi \mathbb{Q} \subseteq B_{\nu}$.

Proof: Write $q \in \mathbb{Q}$ as q = m/k, where $m \in \mathbb{Z}, k \in \mathbb{N}$. Given $\epsilon > 0$, there exists $\delta > 0$ such that $\delta < 1/k$ and $\rho(\exp(2\pi i q y), 1) < \epsilon$ whenever $|y| < \delta$. If $x \in \mathbb{R}$ and $\nu(x) < \delta$, then we have $x = \sum a_j(j!) + y$, where $a_j \in \mathbb{Z}$, $y \in \mathbb{R}$, the sum is finite, and $\sum |a_j|/j + |y| < \delta < 1/k$. Moreover, for each $j \leq k$, we have $a_j = 0$. Therefore

$$f_{2\pi q}(x) = \exp 2\pi \frac{m}{k} i \left(\sum_{j \ge k+1} a_j(j!) + y \right) = \exp(2\pi i \frac{m}{k} y),$$

and $\rho(f_{2\pi n}(x), 1) = \rho(\exp(2\pi i q y), 1) < \epsilon$. So $2\pi q \in B_{\nu}$.

• $2\pi\mathbb{Q}$ is dense in $(\mathbb{R}, \mathcal{U})$.

• $2\pi\mathbb{Q}$ is countable, and B_{ν} is uncountable. What is in B_{ν} but not in $2\pi\mathbb{Q}$?

• The rate sequence $\{p_j\}$ played no role in these computations.

• What about other SNT's?

• For $(\{j!+1\}, \{1/j\}, \nu_1)$, the same proof shows that $2\pi\mathbb{Z} \subseteq B_{\nu_1}$, but not that $2\pi\mathbb{Q} \subseteq B_{\nu_1}$.

▲圖▶ ▲屋▶ ▲屋▶

• Find a non-trivial continuous character of $(\{j! + \sqrt{2}\}, \{1/j\}, \nu_2)$.

• The theorem says that B_{ν} is always uncountable.

 $(\{v_j\}, \{p_j\}, \nu)$ is an SNT on \mathbb{R} : ν is a groupnorm on \mathbb{R} that forces the sequence $\{v_j\}$ to converge to 0 at approximately the rate $\{p_j\}$. (With appropriate hypotheses, such a ν exists.)

A continuous character of (\mathbb{R}, ν) is a continuous homomorphism $(\mathbb{R}, \nu) \to \mathbb{T}$. Every continuous character has the form $f_{\theta} : x \mapsto \exp(i\theta x)$ for some $\theta \in \mathbb{R}$.

 (\mathbb{R}, ν) has uncountably many continuous characters, but they are hard to find.

Example: Is $x \mapsto \exp(2\pi i x \sqrt{2})$ a continuous character of the SNT ($\{j!\}, \{1/j\}, \nu$)? I have no idea!

(本部) (本語) (本語) (語)

Let $(\{v_j\}, \{p_j\}, \nu)$ be an SNT for \mathbb{R} .

IDEA: A homomorphism $f : \mathbb{R} \to \mathbb{T}$ should be ν -continuous if $f(v_j) \to 1$ at least as fast as $\nu(v_j) \to 0$ [Rephrase: at least as fast as $p_j \to 0$].

DEFINITION: Let $f : \mathbb{R} \to \mathbb{T}$ be a \mathcal{U} -continuous homomorphism. We say that f is a sequentially bounded (SB) character of (\mathbb{R}, ν) if there exists $\alpha > 0$ such that $\rho(f(v_j), 1) \leq \alpha p_j$ for all $j \in \mathbb{N}$. The set of all (SB) characters of (\mathbb{R}^n, ν) is denoted by H_{ν} .

THEOREM (tcs, 2014): If f is sequentially bounded, then f is ν -continuous.

ロンス部とスモンスモンニモ

PROOF: Assume $\alpha > 0$ and $\rho(f(v_j), 1) \leq \alpha p_j$ for all $j \in \mathbb{N}$. Let $\epsilon > 0$ be given. Because f is \mathcal{U} -continuous, there is a $\delta > 0$ such that $\rho(f(y), 1) < \epsilon/2$ whenever $|y| < \delta$. We may assume that $\delta < \epsilon/(2\alpha)$. If $\nu(x) < \delta$, then we can write $x = \sum c_j v_j + y$, where $c_j \in \mathbb{Z}$, $y \in \mathbb{R}$, the sum is finite, and $|y| + \sum |c_j|p_j < \delta$. Since $|y| < \delta$, we know that $\rho(f(y), 1) < \epsilon/2$. Using the fact that $\rho(f(v_j), 1) \leq \alpha p_j$ for all j and the invariance of ρ , we find that

$$egin{aligned} &
ho(f(x),1) =
ho(f(y+\sum c_j v_j),1) \leq
ho(f(y),1) + \sum |c_j|
ho(f(v_j),1) \ &< \epsilon/2 + lpha \sum |c_j| p_j < \epsilon/2 + \delta lpha < \epsilon/2 + \epsilon/2 = \epsilon. \end{aligned}$$

Hence f is ν -continuous.

\mathcal{D} -expansions

Assume the converging sequence $\{v_j\}$ is also a \mathcal{D} -sequence: $v_j \in \mathbb{Z}$ and $v_j | v_{j+1}$ for all $j \in \mathbb{N}$ (but start with $v_1 = 1$, not v_0).

PROPOSITION (de la Barrera Mayoral, 2014): Let $\theta \in \mathbb{R}$. Then θ has a \mathcal{D} -expansion:

$$\theta = \sum_{j=1}^{\infty} \frac{a_j}{v_j} = a_1 + \frac{a_2}{v_2} + \frac{a_3}{v_3} + \cdots,$$

where all $a_j \in \mathbb{Z}$, $|a_j| \le \frac{v_j}{2v_{j-1}}$ for all $j \ge 2$, and

$$-rac{1}{2 extsf{v}_n} < heta - \sum_{j=1}^n rac{a_j}{ extsf{v}_j} \leq rac{1}{2 extsf{v}_n} \quad extsf{ for all } n \in \mathbb{N}$$

(4回) (4回) (4回)

Deciding whether a character is SB

THEOREM (tcs): Let $\theta = \sum_{j=1}^{\infty} \frac{a_j}{v_j} \in \mathbb{R}$. Then $f_{2\pi\theta}$ is SB if and only if

$$\left\{\frac{a_{j+1}v_j}{p_jv_{j+1}}: j \in \mathbb{N}\right\}$$

is a bounded set.

EXAMPLE: $(\{j!\}, \{1/j\}, \nu)$, $\theta = e$. Then

4

For the SNT $(\{j!\}, \{1/j\}, \nu)$

$$\frac{a_{j+1}v_j}{p_jv_{j+1}} = \frac{a_{j+1}(j!)}{(1/j)(j+1)!} = \frac{ja_{j+1}}{j+1}.$$

Thus

$$\left\{\frac{a_{j+1}v_j}{p_j\,v_{j+1}}: j\in\mathbb{N}\right\}$$

is a bounded set if and only if the coefficients a_j in the \mathcal{D} -expansion of θ are bounded.

PROPOSITION: For this SNT, if the coefficients a_j in the expansion $\theta = \sum_{j=1}^{\infty} \frac{a_j}{v_j}$ are bounded, then $f_{2\pi\theta}$ is SB, hence ν -continuous. [B_{ν} is uncountable.]

Claim: For the SNT $(\{j!\}, \{1/j\}, \nu)$, the character $f_{2\pi e} : x \mapsto \exp(2\pi i e x)$ is SB, hence ν -continuous.

Proof: The \mathcal{D} -expansion of e is $e = 2 + \sum_{j=2}^{\infty} \frac{1}{j!}$. First compute e(k!) for $k \in \mathbb{N}, k \geq 2$:

$$e(k!) = 2(k!) + k! \sum_{j=2}^{k} \frac{1}{j!} + k! \sum_{j=k+1}^{\infty} \frac{1}{j!} = \text{integer} + k! \sum_{j=k+1}^{\infty} \frac{1}{j!}.$$

Thus

$$f_{2\pi e}(k!) = \exp\left(2\pi i \left(k! \sum_{j=k+1}^{\infty} \frac{1}{j!}\right)\right)$$

・回 ・ ・ ヨ ・ ・ ヨ ・ …

2

More computations

Now

$$k! \sum_{j=k+1}^{\infty} \frac{1}{j!} = \frac{1}{k+1} + \frac{1}{(k+1)(k+2)} + \frac{1}{(k+1)(k+2)(k+3)} + \dots$$
$$= \frac{1}{k+1} \left(1 + \frac{1}{k+2} + \frac{1}{(k+2)(k+3)} + \dots \right) < \frac{e}{k+1}.$$

Therefore

$$\rho\left(\exp\left(2\pi ik!\sum_{j=k+1}^{\infty}\frac{1}{j!}\right),1\right) < \frac{2\pi e}{k+1} < \frac{2\pi e}{k}.$$

・ロン ・回と ・ヨン ・ヨン

æ

Thus $\rho(f_{2\pi e}(k!), 1) < \frac{2\pi e}{k}$, and $f_{2\pi e}$ is SB.

Another example

For the SNT $(\{j!\}, \{1/\sqrt{j}\}, \nu)$ Let

$$\theta_1 = \sum_{j=1}^{\infty} \frac{j}{(j^2)!}.$$

The coefficients in this expansion are unbounded, but the only non-zero coefficients are $a_{j^2} = j$. For those coefficients, we have, for all $j \ge 2$,

$$\frac{a_{j^2}v_{j^2-1}}{p_{j^2-1}v_{j^2}} = \frac{j(j^2-1)!}{(1/\sqrt{j^2-1})(j^2)!} = \frac{j\sqrt{j^2-1}}{j^2} = \frac{\sqrt{j^2-1}}{j},$$

which converges to 1 as $j \to \infty$. Thus the relevant set is bounded, and $f_{2\pi\theta_1}$ is SB and ν_1 -continuous.

Does a SNT have any continuous characters that are not sequentially bounded?

Rephrase: Let G_{ν} denote the set of all ν -continuous characters. We know that $H_{\nu} \leq G_{\nu}$. Are these groups ever equal? Are they always equal?

Partial result: We can show that, if $2\pi\theta \in G_{\nu}$, then $\frac{a_{j+1}v_j}{v_{j+1}} \to 0$ as $j \to \infty$. But does

$$\left\{\frac{a_{j+1}\mathsf{v}_j}{\mathsf{p}_j\,\mathsf{v}_{j+1}}:j\in\mathbb{N}\right\}$$

have to be bounded?

• D. de la Barrera Mayoral, $\mathbb Q$ is not a Mackey group. Topology Appl. 178 (2014), 265-275.

• J. W. Nienhuys, A solenoidal and monothetic minimally almost periodic group, Fund. Math. 73 (1971/72), 167-169.

• T. C. Stevens, Decisive subgroups of analytic groups, Trans. Amer. Math. Soc. 274 (1982), 101-108.

• T. C. Stevens, Continuous characters of weakened group topologies for \mathbb{R}^n , Top. Proc. 43 (2014), 319-330.

• T.C. Stevens, Lipschitz-like conditions and continuous characters of group topologies for \mathbb{R} (in preparation).

< A > < B > <

THANK YOU!

T. Christine Stevens stevensc@slu.edu tcs@ams.org

T. Christine Stevens, American Mathematical SocietyProvidence Character groups