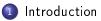
Equicontinuity criteria for metric-valued sets of continuous functions

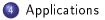
L. Tárrega

Departament de matemàtiques, Universitat Jaume I, Castelló, Spain

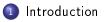
4th Workshop on Topological Groups December 3-4, 2015, Madrid, Spain

Joint work with M. V. Ferrer and S. Hernández





Index



2 Main Results

Let X and (M, d) be a topological space and a metric space respectively, and let $G \subseteq C(X, M)$.

Definition

- A point x ∈ X is an *equicontinuity point* of G when for every ε > 0 there is a neighborhood U of x such that diam(g(U)) < ε for all g ∈ G.
- G is *almost equicontinuous (AE)* when the subset of equicontinuity points of G is dense in X.
- G is hereditarily almost equicontinuous (HAE) when G|_A is almost equicontinuous for every subset A of X.

Consider the following two properties:

- (a) G is almost equicontinuous.
- (b) For every nonempty open subset U of X and e > 0, there exists a nonempty open subset V ⊆ U such that diam(g(V)) < e for all g ∈ G.</p>

Then (a) implies (b).

If X is a **Baire space**, then (a) and (b) are equivalent.

Proof :

- Consider the open set

$$O_{\epsilon} := \bigcup \{ U \subseteq X : U \text{ is a nonempty open subset } \land diam(g(U)) < \epsilon \quad \forall g \in G \}.$$

If X is a **Baire space**, then (a) and (b) are equivalent.

Proof :

- Consider the open set

$$egin{aligned} \mathcal{O}_\epsilon &:= igcup \{ U \subseteq X : \quad U ext{ is a nonempty open subset } \land \ diam(g(U)) < \epsilon \quad orall g \in G \}. \end{aligned}$$

- By (b), $O_\epsilon
eq \emptyset$ and dense in X.

If X is a **Baire space**, then (a) and (b) are equivalent.

Proof :

- Consider the open set

$$egin{aligned} \mathcal{O}_\epsilon &:= igcup \{ U \subseteq X : \quad U ext{ is a nonempty open subset } \land \ diam(g(U)) < \epsilon \quad orall g \in G \}. \end{aligned}$$

- By (b), $O_\epsilon
 eq \emptyset$ and dense in X.
- Since X is Baire, taking $W := \bigcap_{n \in \omega} O_{\frac{1}{n}} \neq \emptyset$, we obtain a dense G_{δ} subset which is the subset of equicontinuity points of G.

Example

Let $X = 2^{\omega}$ be the Cantor space and let $G = \{\pi_n\}_{n \in \omega}$ be the set of all projections of X onto $\{0, 1\}$. Then G is not AE.

Example

Let $X = \mathbb{R}$ and let $G = \{\arctan(nx)\}_{n \in \omega}$ Then G is HAE. Recall that a *dynamical system*, or a *G*-space, is a Hausdorff space X on which a topological group *G* acts continuously. For each $g \in G$ we have the self-homeomorphism $x \mapsto gx$ of X that we call g-translation.

Example (Glasner and Megrelishvili)

There are dynamical systems AE which are not HAE.

Index

Theorem A

Let X and (M, d) be a Čech-complete space and a **separable** metric space, respectively, and let $G \subseteq C(X, M)$ such that \overline{G}^{M^X} is compact. Consider the following three properties:

- (a) G is almost equicontinuous.
- (b) There exists a dense Baire subset $F \subseteq X$ such that $(\overline{G}^{M^X})|_F$ is metrizable.
- (c) There exists a dense G_{δ} subset $F \subseteq X$ such that $(F, t_p(\overline{G}^{M^X}))$ is Lindelöf.

Then $(b) \Rightarrow (c) \Rightarrow (a)$. If X is also a **hereditarily Lindelöf** space, then all conditions are equivalent.

Theorem B

Let X and (M, d) be a Čech-complete space and a metric space, respectively, and let $G \subseteq C(X, M)$ such that \overline{G}^{M^X} is compact. Then the following conditions are equivalent:

- (a) G is hereditary almost equicontinuous.
- (b) L is almost equicontinuous on F, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- (c) $(\overline{L}^{M^X})|_F$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

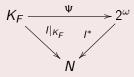
(d) $(F, t_p(\overline{L}^{M^X}))$ is Lindelöf, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

Index

Definition

X is said to be *hemicompact* if there exists a sequence of compacts sets $\{X_n\}_{n\in\omega}$ such that $X = \bigcup_{n\in\omega} X_n$ and for every compact subset C of X there is $n \in \omega$ such that $C \subseteq X_n$.

Let X and (M, d) be a Čech-complete space and a **hemicompact** metric space, respectively, and let G be a subset of C(X, M) such that \overline{G}^{M^X} is compact. If **G** is not almost equicontinuous, then for every G_{δ} and dense subset F of X there exists a countable subset L in G, a compact separable subset $K_F \subseteq F$, a compact subset $N \subseteq M$ and a continuous and surjective map Ψ of K_F onto the Cantor set 2^{ω} such that if the maps l^* are defined to make the following diagram commutative



then the subset $L^* := \{I^* : I \in L\} \subseteq C(2^{\omega}, N)$ is not almost equicontinuous on 2^{ω} .

Let X be a topological space, (M, d) be a metric space and G be a subset of C(X, M). Set

 $K := \{ \alpha : M \to [-1,1] : |\alpha(m_1) - \alpha(m_2)| \le d(m_1,m_2), \quad \forall m_1, m_2 \in M \}.$

K is a compact subspace of $[-1, 1]^M$.

Consider the evaluation map

$$egin{array}{cccc} arphi:X imes G&\longrightarrow&M\ (x,g)&\longmapsto&g(x) \end{array}$$

which is clearly separately continuous.

Consider the evaluation map

$$arphi: X imes G \longrightarrow M \ (x,g) \longmapsto g(x)$$

which is clearly separately continuous.

The map φ has associated a separately continuous map

$$egin{array}{rcl} arphi^*: \mathsf{X} imes (\mathsf{G} imes \mathsf{K}) & \longrightarrow & [-1,1] \ (x,(g,lpha)) & \longmapsto & lpha(g(x)) \end{array}$$

Set

$$\nu: \overline{G}^{M^{X}} \times K \longrightarrow [-1,1]^{X}$$
$$(h, \alpha) \longmapsto \alpha \circ h$$

Since $G \subseteq C(X, M)$, we have that $\nu(G \times K) \subseteq C(X, [-1, 1])$.

$\bar{d}: M \times M \to \mathbb{R}$ defined by $\bar{d}(m_1, m_2) := \min\{d(m_1, m_2), 1\} \ \forall m_1, m_2 \in M$

Let X and (M, d) be a topological and a metric space, respectively. If G is a subset of C(X, M), then G is equicontinuous at a point $x_0 \in X$ if and only if $\nu(G \times K)$ is equicontinuous at it.

Let X and (M, d) be a topological and a metric space, respectively. If G is a subset of C(X, M), then G is equicontinuous at a point $x_0 \in X$ if and only if $\nu(G \times K)$ is equicontinuous at it.

Proof:

 (\Rightarrow) Given $\epsilon > 0$, there is an open neighbouhood U of x_0 such that $d(g(x_0), g(x)) < \epsilon$ for all $x \in U$ and $g \in G$.

Let X and (M, d) be a topological and a metric space, respectively. If G is a subset of C(X, M), then G is equicontinuous at a point $x_0 \in X$ if and only if $\nu(G \times K)$ is equicontinuous at it.

Proof :

(⇒) Given $\epsilon > 0$, there is an open neighbouhood U of x_0 such that $d(g(x_0), g(x)) < \epsilon$ for all $x \in U$ and $g \in G$.

Let $\alpha \in K$, $x \in U$ and $g \in G$, then we have

 $|\nu(g,\alpha)(x_0)-\nu(g,\alpha)(x)|=|\alpha(g(x_0))-\alpha(g(x))|\leq d(g(x_0),g(x))<\epsilon.$

Proof :

(\Leftarrow) Given $\epsilon > 0$, there is an open neighbouhood U of x_0 such that $|\nu(g, \alpha)(x_0) - \nu(g, \alpha)(x)| < \epsilon$ for all $x \in U$, $g \in G$ and $\alpha \in K$.

Proof :

(\Leftarrow) Given $\epsilon > 0$, there is an open neighbouhood U of x_0 such that $|\nu(g, \alpha)(x_0) - \nu(g, \alpha)(x)| < \epsilon$ for all $x \in U$, $g \in G$ and $\alpha \in K$.

Set $\alpha_0 \in [-1,1]^M$ defined by $\alpha_0(m) \stackrel{\text{def}}{=} d(m,g(x_0))$ for all $m \in M$. It is easy to check that $\alpha_0 \in K$.

Proof :

(\Leftarrow) Given $\epsilon > 0$, there is an open neighbouhood U of x_0 such that $|\nu(g, \alpha)(x_0) - \nu(g, \alpha)(x)| < \epsilon$ for all $x \in U$, $g \in G$ and $\alpha \in K$.

Set $\alpha_0 \in [-1,1]^M$ defined by $\alpha_0(m) \stackrel{\text{def}}{=} d(m,g(x_0))$ for all $m \in M$. It is easy to check that $\alpha_0 \in K$.

It suffices to observe that

$$|\alpha_0(g(x_0)) - \alpha_0(g(x))| = d(g(x), g(x_0))$$

for all $x \in U$ and $g \in G$.

Corollary 1

Let X and (M, d) be a topological and a metric space, respectively. If G is a subset of C(X, M), then G is almost equicontinuous if and only if $\nu(G \times K)$ is almost equicontinuous.

Theorem (Cascales, Namioka and Vera)

Let X be a compact space, (M, d) be a compact metric space and let G be a subset of C(X, M). If $(X, t_p(\overline{G}^{M^X}))$ is Lindelöf, then G is hereditarily almost equicontinuous.

Theorem 1

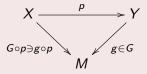
Let X be a **Čech-complete space**, (M, d) be a **metric space** and let G be a subset of C(X, M) such that \overline{G}^{M^X} is compact. If there exists a a dense G_{δ} subset $F \subseteq X$ such that $(F, t_p(\overline{G}^{M^X}))$ is Lindelöf, then G is almost equicontinuous.

Theorem (Glasner, Megrelishvili and Uspenskij)

Let X be a compact metric space, (M, d) be a metric space and let $G \subseteq C(X, M)$ and $H = \overline{G}^{M^X}$. If H is compact hereditary almost equicontinuous, then H is metrizable.

Lemma (Glasner and Megrelishvili)

Let X, Y and (M, d) be two arbitrary compact spaces and a metric space, respectively, and let G be a subset of C(Y, M). Suppose that $p: X \to Y$ is a continuous onto map.



Then $G \circ p := \{g \circ p : g \in G\} \subseteq C(X, M)$ is HAE if and only if G is HAE.

Proposition 1

Let X be a Čech-complete space, (M, d) be a **hemicompact metric** space and $G \subseteq C(X, M)$ such that \overline{G}^{M^X} is compact. Then the following conditions are equivalent:

- (a) G is hereditary almost equicontinuous.
- (b) L is almost equicontinuous on F, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

<u>Proof:</u> (b) \Rightarrow (a) Assume that (a) does not hold $\Rightarrow \exists A \subseteq X$ such that $G|_A$ is not AE.

Proof:

 $(b) \Rightarrow (a)$ Assume that (a) does not hold $\Rightarrow \exists A \subseteq X$ such that $G|_A$ is not AE.

By Lemma 1 there exists a compact and separable subset F of X included in A, an onto and continuous map $\Psi : F \to 2^{\omega}$, and a countable subset Lof G such that the subset $L^* \subseteq C(2^{\omega}, M)$ defined by $I^*(\Psi(x)) = I(x)$ for all $x \in F$ is not AE.

<u>Proof</u>: (b) \Rightarrow (a) Assume that (a) does not hold $\Rightarrow \exists A \subseteq X$ such that $G|_A$ is not AE.

By Lemma 1 there exists a compact and separable subset F of X included in A, an onto and continuous map $\Psi : F \to 2^{\omega}$, and a countable subset Lof G such that the subset $L^* \subseteq C(2^{\omega}, M)$ defined by $I^*(\Psi(x)) = I(x)$ for all $x \in F$ is not AE.

By Lemma GM L is not AE on F. Contradiction

Corollary 2

Let X be a Čech-complete space, (M, d) be a **metric space** and $G \subseteq C(X, M)$ such that $\overline{G}^{M^{X}}$ is compact. Then the following conditions are equivalent:

- (a) G is hereditary almost equicontinuous.
- (b) L is almost equicontinuous on F, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

- (a) G is hereditary almost equicontinuous.
- (b) L is almost equicontinuous on F, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

 $(a) \Leftrightarrow (b)$ Corollary 2.

- (a) G is hereditary almost equicontinuous.
- (c) $(\overline{L}^{M^{X}})|_{F}$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

 $(a) \Rightarrow (c)$ Let $L \in [G]^{\leq \omega}$ and let F be a separable and compact subset of X.

(a) G is hereditary almost equicontinuous.

(c) $(\overline{L}^{M^{X}})|_{F}$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

 $(a) \Rightarrow (c)$ Let $L \in [G]^{\leq \omega}$ and let F be a separable and compact subset of X.

 $x \sim y$ if and only if I(x) = I(y) for all $I \in L$.

- (a) G is hereditary almost equicontinuous.
- (c) $(\overline{L}^{M^{X}})|_{F}$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- $(a) \Rightarrow (c)$ Let $L \in [G]^{\leq \omega}$ and let F be a separable and compact subset of X.

$$x \sim y$$
 if and only if $I(x) = I(y)$ for all $I \in L$.

 $\widetilde{F}=F/{\sim}$ is the compact quotient space and $p:F
ightarrow\widetilde{F}$ is the quotient map.

(a) G is hereditary almost equicontinuous.

(c) $(\overline{L}^{M^{X}})|_{F}$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

 $(a) \Rightarrow (c)$ Let $L \in [G]^{\leq \omega}$ and let F be a separable and compact subset of X.

$$x \sim y$$
 if and only if $I(x) = I(y)$ for all $I \in L$.

 $\widetilde{F}=F/{\sim}$ is the compact quotient space and $p:F
ightarrow\widetilde{F}$ is the quotient map.

Each $I \in L$ has associated a map $\tilde{I} \in C(\tilde{F}, M)$ defined as $\tilde{I}(\tilde{x}) \stackrel{\text{def}}{=} I(x)$ for any $x \in F$ with $p(x) = \tilde{x}$.

Each $I \in \overline{L}^{M^F}$ has associated a map $\tilde{I} \in \overline{\tilde{L}}^{M^{\widetilde{F}}}$ such that $\tilde{I} \circ p = I$.

Each
$$I \in \overline{L}^{M^F}$$
 has associated a map $\tilde{I} \in \overline{\tilde{L}}^{M^{\widetilde{F}}}$ such that $\tilde{I} \circ p = I$.
 $(\widetilde{F}, t_p(\tilde{L}))$ is a compact metric space.

Each $I \in \overline{L}^{M^{F}}$ has associated a map $\tilde{I} \in \overline{\tilde{L}}^{M^{\widetilde{F}}}$ such that $\tilde{I} \circ p = I$. $(\tilde{F}, t_{p}(\tilde{L}))$ is a compact metric space. L is HAE on $F \xrightarrow{GM} \tilde{L}$ is HAE on $\tilde{F} \xrightarrow{GMU} \overline{\tilde{L}}^{M^{\widetilde{F}}}$ is metrizable.

Each $I \in \overline{L}^{M^F}$ has associated a map $\tilde{I} \in \overline{\tilde{L}}^{M^{\tilde{F}}}$ such that $\tilde{I} \circ p = I$. $(\tilde{F}, t_p(\tilde{L}))$ is a compact metric space.

L is HAE on $F \stackrel{GM}{\Longrightarrow} \widetilde{L}$ is HAE on \widetilde{F} . $\stackrel{GMU}{\Longrightarrow} \overline{\widetilde{L}}^{M\widetilde{F}}$ is metrizable.

 \overline{L}^{M^F} is canonically homeomorphic to $\overline{\widetilde{L}}^{M^{\widetilde{F}}} \Rightarrow \overline{L}^{M^F}$ is metrizable.

- (c) $(\overline{L}^{M^{X}})|_{F}$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- (d) $(F, t_{\rho}(\overline{L}^{M^{\times}}))$ is Lindelöf, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

$$(c) \Rightarrow (d) H := ((\overline{L}^{M^{\chi}})|_{F}, t_{p}(F))$$
 is compact metric.

- (c) $(\overline{L}^{M^{\times}})|_{F}$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- (d) $(F, t_p(\overline{L}^{M^{\times}}))$ is Lindelöf, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

$$(c) \Rightarrow (d) H := ((\overline{L}^{M^{\chi}})|_{F}, t_{p}(F))$$
 is compact metric.

We may assume that M is separable without loss of generality.

- (c) $(\overline{L}^{M^{X}})|_{F}$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- (d) $(F, t_{\rho}(\overline{L}^{M^{\times}}))$ is Lindelöf, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

$$(c) \Rightarrow (d) H := ((\overline{L}^{M^{\chi}})|_{F}, t_{p}(F))$$
 is compact metric.

We may assume that M is separable without loss of generality.

Every element $x \in F$ has associated an element $\hat{x} \in \overline{M}^H$ defined by $\hat{x}(h) \stackrel{\text{def}}{=} h(x)$ for all $h \in H$.

- (c) $(\overline{L}^{M^{X}})|_{F}$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- (d) $(F, t_{\rho}(\overline{L}^{M^{\times}}))$ is Lindelöf, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

 $(c) \Rightarrow (d) H := ((\overline{L}^{M^{\chi}})|_{F}, t_{p}(F))$ is compact metric.

We may assume that M is separable without loss of generality.

Every element $x \in F$ has associated an element $\hat{x} \in \overline{M}^H$ defined by $\hat{x}(h) \stackrel{\text{def}}{=} h(x)$ for all $h \in H$.

Set $\widehat{F} := {\hat{x} : x \in F}.$

Since H is compact metric \Rightarrow (F, $t_{\infty}(H)$) is separable and metrizable \Rightarrow (F, $t_{\infty}(H)$) is Lindelöf.

Since H is compact metric \Rightarrow (F, $t_{\infty}(H)$) is separable and metrizable \Rightarrow (F, $t_{\infty}(H)$) is Lindelöf.

 \Rightarrow (*F*, *t*_p(*H*)) is Lindelöf.

- (b) L is almost equicontinuous on F, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- (d) $(F, t_{\rho}(\overline{L}^{M^{\times}}))$ is Lindelöf, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

 $(d) \Rightarrow (b)$ Apply **Theorem 1**.

Index

Corollary 3

Let X and (M, d) be a Čech-complete topological group and a metric separable group, respectively, and let G be a subset of CHom(X, M) such that \overline{G}^{M^X} is compact. Consider the following three properties:

- (a) G is equicontinuous.
- (b) G is relatively compact in CHom(X, M) with respect to the compact open topology.
- (c) There exists a dense Baire subset $F \subseteq X$ such that $(\overline{G}^{M^X})|_F$ is metrizable.

(d) There exists a dense G_{δ} subset $F \subseteq X$ such that $(F, t_p(\overline{G}^{M^X}))$ is Lindelöf.

Then $(d) \Rightarrow (c) \Rightarrow (a) \Leftrightarrow (b)$. If X is also ω -narrow, then all conditions are equivalent. Furthermore (c) and (d) are also true for F = X.

Definition

A topological group G is said to be ω -**narrow** if for every neighborhood V of the neutral element, there exists a countable subset E of G such that G = EV.

Corollary 3

Let X and (M, d) be a Čech-complete topological group and a metric separable group, respectively, and let G be a subset of CHom(X, M) such that \overline{G}^{M^X} is compact. Consider the following three properties:

- (a) G is equicontinuous.
- (b) G is relatively compact in CHom(X, M) with respect to the compact open topology.
- (c) There exists a dense Baire subset $F \subseteq X$ such that $(\overline{G}^{M^X})|_F$ is metrizable.

(d) There exists a dense G_{δ} subset $F \subseteq X$ such that $(F, t_p(\overline{G}^{M^X}))$ is Lindelöf.

Then $(d) \Rightarrow (c) \Rightarrow (a) \Leftrightarrow (b)$. If X is also ω -narrow, then all conditions are equivalent. Furthermore (c) and (d) are also true for F = X.

Corollary 4

Let X and (M, d) be a Čech-complete topological group and a metric group, respectively, and let G be a subset of CHom(X, M) such that \overline{G}^{M^X} is compact. Then the following conditions are equivalent:

- (a) G is equicontinuous.
- (b) L is equicontinuous on F, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- (c) $((\overline{L}^{M^{X}})|_{F}, t_{p}(F))$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

(d) $(F, t_p(\overline{L}^{M^X}))$ is Lindelöf, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

Dynamical Systems

Corollary 5

Let X be a Polish G-space such that \overline{G}^{X^X} is compact. The following properties are equivalent:

- (a) X is almost equicontinuous.
- (b) There exists a dense Baire subset $F \subseteq X$ such that $(\overline{G}^{X^X})|_F$ is metrizable.

(c) There exists a dense G_{δ} subset $F \subseteq X$ such that $(F, t_p(\overline{G}^{X^X}))$ is Lindelöf.

Dynamical Systems

Corollary 5

Let X be a complete metrizable G-space such that \overline{G}^{X^X} is compact. Then the following conditions are equivalent:

- (a) X is hereditary almost equicontinuous.
- (b) L is almost equicontinuous on F, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- (c) $((\overline{L}^{M^{X}})|_{F}, t_{p}(F))$ is metrizable, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.
- (d) $(F, t_p(\overline{L}^{M^X}))$ is Lindelöf, for all $L \in [G]^{\leq \omega}$ and F a separable and compact subset of X.

- Akin, E., Auslander, J., and Berg, K. (1998).

Almost equicontinuity and the enveloping semigroup. *Contemp. Math.*, 215:75-81.

Cascales, B., Namioka, I., and Vera, G. (2000). The Lindelöf property and fragmentability. *Proc. Amer. Math. Soc.*, 128(11):3301–3309.

Christensen, J. (1981).

Joint Continuity of separately continuous functions. Proceedings of the American Mathematical Society, 82(3):455-461.

Engelking, R. (1989).

General topology. Heldermann Verlag.

Glasner, E. and Megrelishvili, M. (2006).

Hereditarily non-sensitive dynamical systems and linear representations. *Collog. Math.*, 104(2):223–283.

Glasner, E. L. I., Megrelishvili, M., and Uspenskij, V. V. (2006). On metrizable enveloping semigroups.

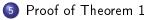
Israel Journal of Mathematics, 164(1):317–332.

Troallic, J. (1996).

Sequential criteria for equicontinuity and uniformities on topological groups. *Topology and its Applications*, 68(1):83–95.

Thank you for your attention!

Index



Consider the (continuous) map $\nu_F : (\overline{G}^{M^X})|_F \times K \to [-1,1]^F$ defined by $\nu_F(h,\alpha) \stackrel{\text{def}}{=} \alpha \circ h$ for all $h \in (\overline{G}^{M^X})|_F$ and $\alpha \in K$.

Consider the (continuous) map $\nu_F : (\overline{G}^{M^X})|_F \times K \to [-1,1]^F$ defined by $\nu_F(h,\alpha) \stackrel{\text{def}}{=} \alpha \circ h$ for all $h \in (\overline{G}^{M^X})|_F$ and $\alpha \in K$.

$$\nu_{F}(G|_{F} \times K) \text{ is a subset of } C(F, [-1, 1]) \text{ such that:}$$
(i) $\nu_{F}(G|_{F} \times K) = \nu(G \times K)|_{F}$
(ii) $(\overline{\nu(G \times K)}^{[-,1,1]^{X}})|_{F} = \nu_{F}((\overline{G}^{M^{X}})|_{F} \times K) = \nu(\overline{G}^{M^{X}} \times K)|_{F}$

Consider the (continuous) map $\nu_F : (\overline{G}^{M^X})|_F \times K \to [-1,1]^F$ defined by $\nu_F(h,\alpha) \stackrel{\text{def}}{=} \alpha \circ h$ for all $h \in (\overline{G}^{M^X})|_F$ and $\alpha \in K$.

$$\nu_{F}(G|_{F} \times K) \text{ is a subset of } C(F, [-1, 1]) \text{ such that:}$$
(i) $\nu_{F}(G|_{F} \times K) = \nu(G \times K)|_{F}$
(ii) $(\overline{\nu(G \times K)}^{[-,1,1]^{X}})|_{F} = \nu_{F}((\overline{G}^{M^{X}})|_{F} \times K) = \nu(\overline{G}^{M^{X}} \times K)|_{F}$

 $(F, t_p(\nu_F((\overline{G}^{M^X})|_F \times K)))$ is Lindelöf.

Consider the (continuous) map $\nu_F : (\overline{G}^{M^X})|_F \times K \to [-1,1]^F$ defined by $\nu_F(h,\alpha) \stackrel{\text{def}}{=} \alpha \circ h$ for all $h \in (\overline{G}^{M^X})|_F$ and $\alpha \in K$.

$$\begin{split} \nu_F(G|_F \times K) &\text{ is a subset of } C(F, [-1, 1]) \text{ such that:} \\ (i) \quad \nu_F(G|_F \times K) = \nu(G \times K)|_F \\ (ii) \quad (\overline{\nu(G \times K)}^{[-,1,1]^X})|_F = \nu_F((\overline{G}^{M^X})|_F \times K) = \nu(\overline{G}^{M^X} \times K)|_F \\ (F, t_p(\nu_F((\overline{G}^{M^X})|_F \times K))) \text{ is Lindelöf.} \end{split}$$

Reasoning by contradiction, suppose that $\nu(G \times K)$ is not AE.

Consider the (continuous) map $\nu_F : (\overline{G}^{M^X})|_F \times K \to [-1,1]^F$ defined by $\nu_F(h,\alpha) \stackrel{\text{def}}{=} \alpha \circ h$ for all $h \in (\overline{G}^{M^X})|_F$ and $\alpha \in K$.

$$\nu_{F}(G|_{F} \times K) \text{ is a subset of } C(F, [-1, 1]) \text{ such that:}$$
(i) $\nu_{F}(G|_{F} \times K) = \nu(G \times K)|_{F}$
(ii) $(\overline{\nu(G \times K)}^{[-,1,1]^{X}})|_{F} = \nu_{F}((\overline{G}^{M^{X}})|_{F} \times K) = \nu(\overline{G}^{M^{X}} \times K)|_{F}$

$$(F, t_p(\nu_F((\overline{G}^{M^{\times}})|_F \times K)))$$
 is Lindelöf.

Reasoning by contradiction, suppose that $\nu(G \times K)$ is not AE.

By Lemma 1 there exists a compact and separable subset K_F of F, an onto and continuous map $\Psi : K_F \to 2^{\omega}$, and a countable subset L of $\nu(G \times K)$ such that the subset $L^* \subseteq C(2^{\omega}, [-1, 1])$ defined by $l^*(\Psi(x)) = l(x)$ for all $x \in K_F$ is not AE.

$\frac{\textit{Sketch of the Proof:}}{(K_F, t_p(\nu_{K_F}((\overline{G}^{M^X})|_{K_F} \times K)))} \text{ is Lindelöf.}$

Sketch of the Proof:
$$(K_F, t_p(\nu_{K_F}((\overline{G}^{M^X})|_{K_F} \times K)))$$
 is Lindelöf.

$$(2^{\omega}, t_{
ho}(\overline{L^*}^{[-1,1]^{2^{\omega}}}))$$
 is also Lindelöf.

Sketch of the Proof:
$$(K_F, t_P(\nu_{K_F}((\overline{G}^{M^X})|_{K_F} \times K)))$$
 is Lindelöf.

 $(2^{\omega}, t_{\rho}(\overline{L^*}^{[-1,1]^{2^{\omega}}}))$ is also Lindelöf.

By **CNV**, L^* is an HAE family on 2^{ω} . Contradiction

$$\frac{Sketch of the Proof:}{(K_F, t_p(\nu_{K_F}((\overline{G}^{M^X})|_{K_F} \times K)))} \text{ is Lindelöf.}$$

 $(2^{\omega}, t_{p}(\overline{L^{*}}^{[-1,1]^{2^{\omega}}}))$ is also Lindelöf.

By **CNV**, L^* is an HAE family on 2^{ω} . Contradiction

By Corollary 1, G is AE.

Index

Proof of ★

Let L be a countable subset of $G \subseteq C(X, M)$. We denote by X_L the topological space $(\tilde{X}, t_p(\tilde{L}))$, which is metrizable because \tilde{L} is countable. Consider the map $p^* : (M^{\tilde{X}}, t_p(\tilde{X})) \to (M^X, t_p(X))$ defined by $p^*(\tilde{f}) = \tilde{f} \circ p$, for each $\tilde{f} \in M^{\tilde{X}}$.

Proposition

 p^* is a homeomorphism of $\overline{\tilde{L}}^{M^{\tilde{X}}}$ onto $\overline{L}^{M^{X}}$.

Proof :

We observe that p^* is continuous, since a net $\{\tilde{f}_{\alpha}\}_{\alpha\in A} t_p(\tilde{X})$ -converges to \tilde{f} in $\overline{\tilde{L}}^{M^{\tilde{X}}}$ if and only if $\{\tilde{f}_{\alpha} \circ p\}_{\alpha\in A} t_p(X)$ -converges to $\tilde{f} \circ p$ in $\overline{L}^{M^{\tilde{X}}}$. Let's see that $p^*(\overline{\tilde{L}}^{M^{\tilde{X}}}) = \overline{L}^{M^{\tilde{X}}}$. Indeed, since p^* is continuous we have that $p^*(\overline{\tilde{L}}^{M^{\tilde{X}}}) \subseteq \overline{p^*(\tilde{L})}^{M^{\tilde{X}}} = \overline{L}^{M^{\tilde{X}}}$. We have the other inclusion because $\overline{L}^{M^{\tilde{X}}}$ is the smaller closed set that contains L and $L \subseteq p^*(\overline{\tilde{L}}^{M^{\tilde{X}}})$.

Proof :

Let $\tilde{f}, \tilde{g} \in \overline{\tilde{L}}^{M^{\tilde{X}}}$ such that $\tilde{f} \neq \tilde{g}$, then there exist $\tilde{x} \in \tilde{X}$ such that $\tilde{f}(\tilde{x}) \neq \tilde{g}(\tilde{x})$. Let $x \in X$ an element such that $\tilde{x} = p(x)$, then $(\tilde{f} \circ p)(x) \neq (\tilde{g} \circ p)(x)$. So, p^* is injective because $\tilde{f} \circ p \neq \tilde{g} \circ p$. Finally, we arrive to the conclusion that $p^*|_{\overline{\tilde{L}}^{M^{\tilde{X}}}}$ is a homeomorphism because it is defined between compact spaces.