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Introduction

Let X and (M, d) be a topological space and a metric space respectively,
and let G C C(X, M).

Definition

Q A point x € X is an equicontinuity point of G when for every ¢ > 0

there is a neighborhood U of x such that diam(g(U)) < e for all
g€ G.

@ G is almost equicontinuous (AE) when the subset of equicontinuity
points of G is dense in X.

© G is hereditarily almost equicontinuous (HAE) when G|, is
almost equicontinuous for every subset A of X.




Introduction

Lemma

Consider the following two properties:

(a) G is almost equicontinuous.

(b) For every nonempty open subset U of X and € > 0, there exists a
nonempty open subset V' C U such that diam(g(V)) < e for all g € G.

Then (a) implies (b).




Introduction

If X is a Baire space, then (a) and (b) are equivalent. J

Proof:
- Consider the open set

O.:={UC X : U is a nonempty open subset A
diam(g(U)) <e Vg e G}.



Introduction

If X is a Baire space, then (a) and (b) are equivalent.

Proof .
- Consider the open set

O :=J{U C X : U is a nonempty open subset A
diam(g(U)) <e Vg e G}.

- By (b), O # 0 and dense in X.



Introduction

If X is a Baire space, then (a) and (b) are equivalent. )

Proof:
- Consider the open set
O = J{U C X : U is a nonempty open subset A
diam(g(U)) <e Vg e G}.
- By (b), Oc # () and dense in X.
- Since X is Baire, taking W := [ O1 # (), we obtain a dense G; subset

ncw "
which is the subset of equicontinuity points of G.



Introduction

Let X = 2% be the Cantor space and let G = {7}, be the set of all
projections of X onto {0,1}.
Then G is not AE.
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Introduction

Let X =R and let G = {arctan(nx)}
Then G is HAE.

new
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Introduction

Recall that a dynamical system, or a G-space, is a Hausdorff space X on
which a topological group G acts continuously. For each g € G we have
the self-homeomorphism x — gx of X that we call g-translation.

Example (Glasner and Megrelishvili)

There are dynamical systems AE which are not HAE.

3/28



Main Results

Index

© Main Results

4/28



Main Results

Theorem A

Let X and (M, d) be a Cech-complete space and a separable metric
space, respectively, and let G C C(X, M) such that EMX is compact.
Consider the following three properties:

(a) G is almost equicontinuous.

—_MX
(b) There exists a dense Baire subset F C X such that (GM )|Fis

metrizable.
X
(c) There exists a dense Gs subset F C X such that (F, tp(GM ) is

Lindelof.

Then (b) = (c) = (a). If X is also a hereditarily Lindel6f space, then all
conditions are equivalent.




Main Results

Theorem B

Let X and (M, d) be a Cech-complete space and a metric space,
respectively, and let G C C(X, M) such that EMX is compact. Then the
following conditions are equivalent:

(a) G is hereditary almost equicontinuous.

J=

(b) L is almost equicontinuous on F, for all L € [G]=* and F a separable

and compact subset of X.

—MX
(c) (LM )| is metrizable, for all L € [G]= and F a separable and
compact subset of X.

(d) (F, tp(ZMX)) is Lindeldf, for all L € [G]=“ and F a separable and
compact subset of X.
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Basic Results

Definition

X is said to be hemicompact if there exists a sequence of compacts sets
{Xn}new such that X = |J X, and for every compact subset C of X there

new

is n € w such that C C X,,.
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Basic Results

Lemma 1

Let X and (M, d) be a Cech-complete space and a hemicompact metric

space, respectively, and let G be a subset of C(X, M) such that EMX is
compact. If G is not almost equicontinuous, then for every G5 and
dense subset F of X there exists a countable subset L in G, a compact
separable subset Kr C F, a compact subset N C M and a continuous and
surjective map W of K onto the Cantor set 2% such that if the maps /* are
defined to make the following diagram commutative

v

2 W
\lKF y
N

then the subset L* := {/I* : I € L} C C(2¥, N) is not almost
equicontinuous on 2%,

Kr




Basic Results

Remark
Let X be a topological space, (M, d) be a metric space and G be a subset
of C(X, M).

Set

K:={a:M—[-1,1]: |a(m) — a(mz)| < d(mi,m2), Vmi,my e M}.

K is a compact subspace of [—1,1]M.




Basic Results

Consider the evaluation map

p: XxG — M
(x,8) — &(x)

which is clearly separately continuous.




Basic Results

Consider the evaluation map

p: XxG — M
(x.8) — &(x)

which is clearly separately continuous.

The map ¢ has associated a separately continuous map

e i X x(GxK) — [-1,1]
(x;(g:@)) — alg(x))




Basic Results

Set

X
v G XK — [-1,1]%
(h,a) — «oh

Since G C C(X, M), we have that v(G x K) C C(X,[-1,1]).

d: M x M — R defined by d_(ml, my) := min{d(my, my),1} Ymy, my € MJ
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Basic Results

Let X and (M, d) be a topological and a metric space, respectively. If G is
a subset of C(X, M), then G is equicontinuous at a point xp € X if and
only if (G x K) is equicontinuous at it.

11/28



Basic Results

Let X and (M, d) be a topological and a metric space, respectively. If G is
a subset of C(X, M), then G is equicontinuous at a point xp € X if and
only if ¥(G x K) is equicontinuous at it.

Proof:
(=) Given € > 0, there is an open neighbouhood U of xp such that
d(g(x0),g(x)) < eforall xec Uand g € G.
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Basic Results

Let X and (M, d) be a topological and a metric space, respectively. If G is
a subset of C(X, M), then G is equicontinuous at a point xg € X if and
only if (G x K) is equicontinuous at it.

Proof:
(=) Given € > 0, there is an open neighbouhood U of xp such that
d(g(x0),g(x)) <eforall x e Uand g € G.

Let « € K, x € U and g € G, then we have

v(g,a)(x0) — v(g, a)(x)| = [a(g(x0)) — alg(x))] < d(g(x0), g(x)) < e

11/28



Basic Results

Proof:
(<) Given € > 0, there is an open neighbouhood U of xp such that
v(g,a)(x) —v(g,a)(x)| <eforall xe U, g€ G and a € K.
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Basic Results

Proof:
(<) Given € > 0, there is an open neighbouhood U of xp such that
lv(g,a)(x0) —v(g,a)(x)| <eforall xe U, g € G and a € K.

Set ap € [—1,1]M defined by ag(m) def d(m,g(xo)) for all me M. It is
easy to check that o € K.

11/28



Basic Results

Proof:
(<) Given € > 0, there is an open neighbouhood U of xp such that
v(g,a)(x) —v(g,a)(x)| <eforall xe U, g€ G and a € K.

Set ap € [—1,1]M defined by ag(m) o d(m, g(xp)) for all me M. It is
easy to check that ag € K.

It suffices to observe that

|ao(g(x0)) — ao(g(x))| = d(g(x), g(x0))

forall x € Uand g € G.

11/28



Basic Results

Let X and (M, d) be a topological and a metric space, respectively. If G is
a subset of C(X, M), then G is almost equicontinuous if and only if
v(G x K) is almost equicontinuous.
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Basic Results

Theorem (Cascales, Namioka and Vera)

Let X be a compact space, (M, d) be a compact metric space and let

—_MX
G be a subset of C(X, M). If (X, t,(G" )) is Lindelsf, then G is
hereditarily almost equicontinuous.
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Basic Results

Let X be a Cech-complete space, (M, d) be a metric space and let G
—pX
be a subset of C(X, M) such that " s compact. If there exists a a

X
dense Gs subset F C X such that (F, tp(GM )) is Lindeldf, then G is
almost equicontinuous.
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Basic Results

Theorem (Glasner, Megrelishvili and Uspenskij)

Let X be a compact metric space, (M, d) be a metric space and let

—MX
G C C(X,M)and H= ¢ I His compact hereditary almost
equicontinuous, then H is metrizable.

Lemma (Glasner and Megrelishvili)

Let X, Y and (M, d) be two arbitrary compact spaces and a metric
space, respectively, and let G be a subset of C(Y, M). Suppose that
p: X — Y is a continuous onto map.

X i 14
GOPEA A G
M

Then Gop:={gop:ge G} C C(X,M) is HAE if and only if G is HAE.
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Basic Results

Proposition 1

Let X be a Cech-complete space, (M, d) be a hemicompact metric

— X
space and G C C(X, M) such that M s compact. Then the following
conditions are equivalent:

(a) G is hereditary almost equicontinuous.

J=

(b) L is almost equicontinuous on F, for all L € [G]=% and F a separable

and compact subset of X.

16 /28



Basic Results

Proof:
(b) = (a) Assume that (a) does not hold = 3A C X such that G| is not
AE.

16 /28



Basic Results

Proof:
(b) = (a) Assume that (a) does not hold = 3A C X such that G| is not

AE.

By Lemma 1 there exists a compact and separable subset F of X included
in A, an onto and continuous map W : F — 2“, and a countable subset L
of G such that the subset L* C C(2¥, M) defined by /*(W(x)) = I(x) for
all x € F is not AE.
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Basic Results

Proof:
(b) = (a) Assume that (a) does not hold = 3A C X such that G| is not

AE.

By Lemma 1 there exists a compact and separable subset F of X included
in A, an onto and continuous map W : F — 2“, and a countable subset L
of G such that the subset L* C C(2¥, M) defined by /*(W(x)) = I(x) for
all x € F is not AE.

By Lemma GM L is not AE on F. Contradiction

16 /28



Basic Results

Corollary 2
Let X be a Cech-complete space (M, d) be a metric space and

G C C(X, M) such that " s compact. Then the following conditions
are equivalent:
(a) G is hereditary almost equicontinuous.

(b) L is almost equicontinuous on F, for all L € [G]=¥ and F a separable
and compact subset of X.

17 /28



Proof of Theorem B

(a) G is hereditary almost equicontinuous.

(b) L is almost equicontinuous on F, for all L € [G]=* and F a separable and
compact subset of X.

(a) & (b) Corollary 2.

18/28



Proof of Theorem B

(a) G is hereditary almost equicontinuous.

X
(c) (LM )|F is metrizable, for all L € [G]=“ and F a separable and compact
subset of X.

(a) = (c) Let L € [G]= and let F be a separable and compact subset of X.
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Basic Results

Proof of Theorem B

(a) G is hereditary almost equicontinuous.

X
(c) (LM )|F is metrizable, for all L € [G]=* and F a separable and compact
subset of X.

(a) = (c) Let L € [G]=* and let F be a separable and compact subset of X.

x ~ y if and only if /(x) = I(y) for all / € L.
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Proof of Theorem B

(a) G is hereditary almost equicontinuous.

X
(c) (LM )| is metrizable, for all L € [G]=“ and F a separable and compact
subset of X.

(a) = (c) Let L € [G]= and let F be a separable and compact subset of X.
x ~ y if and only if /(x) = I(y) for all I € L.

F = F/~ is the compact quotient space and p: F — F is the quotient map.
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Proof of Theorem B

(a) G is hereditary almost equicontinuous.

V%
(c) (LM )|F is metrizable, for all L € [G]=“ and F a separable and compact
subset of X.

(a) = (c) Let L € [G]=¥ and let F be a separable and compact subset of X.
x ~ y if and only if /(x) = I(y) for all | € L.

F= F/~ is the compact quotient space and p: F — F is the quotient map.

Each / € L has associated a map | € C(F, M) defined as (%) def I(x) for any
x € F with p(x) = X.
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Proof of Theorem B

—MF i ~ iMF ~
Each / € L™ has associated amap / € L such that f[op =1.
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Proof of Theorem B

—MF i ~ iMF ~
Each / € L™ has associated amap / € L such that f[op = 1.

(F,ty(L)) is a compact metric space.
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Proof of Theorem B

—MF i ~ iMF ~
Each / € L™ has associated amap / € L such that fop = 1.

(F, tp(L)) is a compact metric space.

- - =MF
Lis HAE on F <M T is HAE on F. <MY T is metrizable.

19/28



Proof of Theorem B

—MF i ~ iMF ~
Each / € L™ has associated amap / € L such that fop = 1.

(F,ty(L)) is a compact metric space.

~ ~ =MF
Lis HAE on F <M Tis HAE on F. <MY T is metrizable.

—MF . : : =M yF :
L™ is canonically homeomorphicto L = L~ is metrizable.
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Proof of Theorem B

Y
(c) (LM )| is metrizable, for all L € [G]=“ and F a separable and compact
subset of X.

VS
(d) (F, tp(LM )) is Lindeldf, for all L € [G]=“ and F a separable and compact
subset of X.

X

(c) = (d) H = (L' )|F. t,(F)) is compact metric.
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Proof of Theorem B

X
(c) (LM )| is metrizable, for all L € [G]=“ and F a separable and compact
subset of X.

X
(d) (F, tp(LM )) is Lindeldf, for all L € [G]=“ and F a separable and compact
subset of X.

X

(c) = (d) H = (L' )|F. t,(F)) is compact metric.

We may assume that M is separable without loss of generality.
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Proof of Theorem B

X
(c) (LM )| is metrizable, for all L € [G]=“ and F a separable and compact
subset of X.

(d) (F, tp(ZM )) is Lindeldf, for all L € [G]=“ and F a separable and compact
subset of X.

(c)=(d) H:= ((ZMX)|F, t,(F)) is compact metric.

We may assume that M is separable without loss of generality.

def

Every element x € F has associated an element X € M defined by %X(h) = h(x)

for all h e H.

20/28



Proof of Theorem B

YL
(c) (LM )| is metrizable, for all L € [G]=* and F a separable and compact
subset of X.

X
(d) (F, tp(LM )) is Lindelsf, for all L € [G]=“ and F a separable and compact
subset of X.

X
(c)=(d) H:= ((LM )F, to(F)) is compact metric.
We may assume that M is separable without loss of generality.

Every element x € F has associated an element X € M defined by X(h) = h(x)
for all h € H.

Setl?::{fuxeF}.
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Proof of Theorem B

Since H is compact metric = (F, ts(H)) is separable and metrizable =
(F, tso(H)) is Lindelsf.

20/28



Proof of Theorem B

Since H is compact metric = (F, t(H)) is separable and metrizable =
(F, tso(H)) is Lindelsf.

= (F,tp(H)) is Lindelsf.
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Proof of Theorem B

(b) L is almost equicontinuous on F, for all L € [G]=* and F a separable and
compact subset of X.

X
(d) (F, tp(LM ) is Lindeldf, for all L € [G]=“ and F a separable and compact
subset of X.

(d) = (b) Apply Theorem 1.
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Topological Groups

|

Corollary 3

Let X and (M, d) be a Cech-complete topological group and a metric
separable group, respectively, and let G be a subset of CHom(X, M) such

that G is compact. Consider the following three properties:

(a) G is equicontinuous.

(b) G is relatively compact in CHom(X, M) with respect to the compact
open topology.

(c) There exists a dense Baire subset F C X such that (G )\F is
metrizable.
X
(d) There exists a dense G subset F C X such that (F, tp(GM ) is
Lindelof.

Then (d) = (¢) = (a) & (b). If X is also w-narrow, then all conditions
are equivalent. Furthermore (c) and (d) are also true for F = X.

A

N
N
N
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Topological Groups

Definition

A topological group G is said to be w-narrow if for every neighborhood V
of the neutral element, there exists a countable subset E of G such that

G=EV.

22 /28



Topological Groups

|

Corollary 3

Let X and (M, d) be a Cech-complete topological group and a metric
separable group, respectively, and let G be a subset of CHom(X, M) such

that G is compact. Consider the following three properties:

(a) G is equicontinuous.

(b) G is relatively compact in CHom(X, M) with respect to the compact
open topology.

(c) There exists a dense Baire subset F C X such that (G )\F is
metrizable.
X
(d) There exists a dense G subset F C X such that (F, tp(GM ) is
Lindelof.

Then (d) = (¢) = (a) & (b). If X is also w-narrow, then all conditions
are equivalent. Furthermore (c) and (d) are also true for F = X.

A

N
N
N
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Topological Groups

Corollary 4

Let X and (M, d) be a Cech-complete topological group and a metric

X
group, respectively, and let G be a subset of CHom(X, M) such that c"
is compact. Then the following conditions are equivalent:

(a) G is equicontinuous.
(b) L is equicontinuous on F, for all L € [G]=* and F a separable and
compact subset of X.

— X
(c) ((LM )£, to(F)) is metrizable, for all L € [G]=* and F a separable
and compact subset of X.

—_MX
(d) (F,t,(C"")) is Lindelsf, for all L € [G]S¥ and F a separable and
compact subset of X.
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Applications

Dynamical Systems

Corollary 5

. —XX .
Let X be a Polish G-space such that G is compact. The following
properties are equivalent:

(a) X is almost equicontinuous.

—_xX
(b) There exists a dense Baire subset F C X such that (GX )| F is
metrizable.
X

(c) There exists a dense Gs subset F C X such that (F, tp(GX ) is
Lindelsf.
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Applications

Dynamical Systems

Corollary 5

. —=XX .
Let X be a complete metrizable G-space such that G* is compact. Then
the following conditions are equivalent:

(a) X is hereditary almost equicontinuous.

)=

(b) L is almost equicontinuous on F, for all L € [G]=“ and F a separable

and compact subset of X.

(c) ((ZMX)\F, t,(F)) is metrizable, for all L € [G]=“ and F a separable
and compact subset of X.

(d) (F, tp(ZMX)) is Lindeldf, for all L € [G]=“ and F a separable and
compact subset of X.
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Thank you for your attention!
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Proof of Theorem 1

Sketch of the Proof:
X
Consider the (continuous) map vf : (GM )F x K — [~1,1]F defined by

X
ve(h, @) ©f o hforall he (GM )|F and a € K.
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Proof of Theorem 1

Sketch of the Proof:

X
Consider the (continuous) map 1/;: (GM )F x K = [-1,1] defined by
I/F(ha)faohforallhe( )\;:andozEK

ve(Glg X K) is a subset of C(F,[—1,1]) such that:
(I) I/F(G‘F X K) = V(G X K)‘F

(i) (G x K" e = ve((G™))e x K) = w(G™

x K)lF
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Proof of Theorem 1

Sketch of the Proof:
X
Consider the (continuous) map vg : (G c" ) x K — [~1,1]F defined by

e

MX
yp(h,a)d_ aohforall he (G )| and a € K.

ve(Glge X K) is a subset of C(F,[—1,1]) such that:
() ve(Glr x K) =v(G x K)|F

(i) (16 x K )e = (6"l x K) = (G

x K)|F

(F. t(ve((C™ )£ x K))) is Lindelsf.
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Proof of Theorem 1

Sketch of the Proof:
X
Consider the (continuous) map vF : (GM ) x K — [~1,1]F defined by

def

MX
ve(h,a) = aohforall he (G )|F and a € K.

ve(Glg x K) is a subset of C(F,[—1,1]) such that:
() ve(Glr x K) =v(G x K)|F

(i) (16 x K)T )]k = (6" x K) = (G

x K)|F

(F. t,(ve((C™ )£ x K))) is Lindelsf.

Reasoning by contradiction, suppose that v(G x K) is not AE.
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__ Proofof Theorem 1|
Sketch of the Proof:

Consider the (continuous) map VF (7MX)]F x K — [~1,1]F defined by

def

ve(h,a) = aohforall he (G )\FandaeK

ve(G|F x K) is a subset of C(F,[—1,1]) such that:
() ve(Glr x K) =v(G x K)|F

(i) (G x KM e = ve (@ )1F x K) = w(@™

x K)l|F

X
(F. t,(vr((G")|F x K))) is Lindelsf.
Reasoning by contradiction, suppose that v(G x K) is not AE.

By Lemma 1 there exists a compact and separable subset K¢ of F, an
onto and continuous map W : Kg — 2“, and a countable subset L of
v(G x K) such that the subset L* C C(2¥,[—1,1]) defined by
I*(W(x)) = I(x) for all x € K¢ is not AE.
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Proof of Theorem 1

Sketch of the Proof:
—mX
(Ke, toi, (G )|k, % K))) is Lindelof.
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Proof of Theorem 1

Sketch of the Proof:
— X
(Ke, to(i (G )|k, x K))) is Lindelof.

2w

(2¢, tp(F[fl’I] )) is also Lindelof.
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Proof of Theorem 1

Sketch of the Proof:
—_pX
(Ke, to(vi, (G )|k, x K))) is Lindelof.

w

(2%, l“p(F[_l’l]2 )) is also Lindelsf.

By CNV, L* is an HAE family on 2*. Contradiction
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Proof of Theorem 1

Sketch of the Proof:
— X
(Ke, ok (G )|k, x K))) is Lindelof.

w

(2v, tp(F[fl’I] )) is also Lindelof.
By CNV, L* is an HAE family on 2“. Contradiction

By Corollary 1, G is AE.
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Proof of %

Let L be a countable subset of G C C(X, M). We denote by X the
topological space (X, t,(L)), which is metrizable because L is countable.

Consider the map p* : (MX, t,(X)) — (MX, t,(X)) defined by

p*(f) = f o p, for each f € MX.

Proposition

: : =MX —MX
p* is a homeomorphism of L  onto L .

Proof:

We observe that p* is continuous, since a net {f,}qca tp(X)-converges to
X ~ ~ —MX
if and only if {f, o p}aca tp(X)-converges to f o pin M

X

L =M
finlL
; =M —MX . . .
Let's see that p*(L ) =L . Indeed, since p* is continuous we have
X X

M M —MX i i
that p*(L ) C p*(L) =L . We have the other inclusion because

—pX

—_MpX =
™" is the smaller closed set that contains L and L Cp*(L ).
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Proof of %

Proof:

. =MX . .
Let f,g € L  such that f # g, then there exist X € X such that
f(X) # &(X). Let x € X an element such that X = p(x), then
(f o p)(x) # (& o p)(x). So, p* is injective because 7 o p # & o p.
Finally, we arrive to the conclusion that p*|_, x is a homeomorphism
i

because it is defined between compact spaces.
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