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Introduction

Let X and (M, d) be a topological space and a metric space respectively,
and let G ⊆ C (X ,M).

De�nition
1 A point x ∈ X is an equicontinuity point of G when for every ε > 0

there is a neighborhood U of x such that diam(g(U)) < ε for all
g ∈ G .

2 G is almost equicontinuous (AE) when the subset of equicontinuity
points of G is dense in X .

3 G is hereditarily almost equicontinuous (HAE) when G |A is
almost equicontinuous for every subset A of X .
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Introduction

Lemma

Consider the following two properties:

(a) G is almost equicontinuous.

(b) For every nonempty open subset U of X and ε > 0, there exists a
nonempty open subset V ⊆ U such that diam(g(V )) < ε for all g ∈ G .

Then (a) implies (b).

2 / 28



Introduction

If X is a Baire space, then (a) and (b) are equivalent.

Proof :

- Consider the open set

Oε :=
⋃
{U ⊆ X : U is a nonempty open subset ∧

diam(g(U)) < ε ∀g ∈ G}.
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Introduction

If X is a Baire space, then (a) and (b) are equivalent.

Proof :

- Consider the open set

Oε :=
⋃
{U ⊆ X : U is a nonempty open subset ∧

diam(g(U)) < ε ∀g ∈ G}.

- By (b), Oε 6= ∅ and dense in X .

- Since X is Baire, taking W :=
⋂
n∈ω

O 1
n
6= ∅, we obtain a dense Gδ subset

which is the subset of equicontinuity points of G .
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Introduction

Example

Let X = 2ω be the Cantor space and let G = {πn}n∈ω be the set of all
projections of X onto {0, 1}.
Then G is not AE.
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Introduction

Example

Let X = R and let G = {arctan(nx)}n∈ω
Then G is HAE.
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Introduction

Recall that a dynamical system, or a G -space, is a Hausdor� space X on
which a topological group G acts continuously. For each g ∈ G we have
the self-homeomorphism x 7→ gx of X that we call g -translation.

Example (Glasner and Megrelishvili)

There are dynamical systems AE which are not HAE.
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Main Results

Theorem A

Let X and (M, d) be a �ech-complete space and a separable metric

space, respectively, and let G ⊆ C (X ,M) such that G
MX

is compact.
Consider the following three properties:

(a) G is almost equicontinuous.

(b) There exists a dense Baire subset F ⊆ X such that (G
MX

)|F is
metrizable.

(c) There exists a dense Gδ subset F ⊆ X such that (F , tp(G
MX

)) is
Lindelöf.

Then (b)⇒ (c)⇒ (a). If X is also a hereditarily Lindelöf space, then all
conditions are equivalent.
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Main Results

Theorem B

Let X and (M, d) be a �ech-complete space and a metric space,

respectively, and let G ⊆ C (X ,M) such that G
MX

is compact. Then the
following conditions are equivalent:

(a) G is hereditary almost equicontinuous.

(b) L is almost equicontinuous on F , for all L ∈ [G ]≤ω and F a separable
and compact subset of X .

(c) (L
MX

)|F is metrizable, for all L ∈ [G ]≤ω and F a separable and
compact subset of X .

(d) (F , tp(L
MX

)) is Lindelöf, for all L ∈ [G ]≤ω and F a separable and
compact subset of X .
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Basic Results

De�nition

X is said to be hemicompact if there exists a sequence of compacts sets
{Xn}n∈ω such that X =

⋃
n∈ω

Xn and for every compact subset C of X there

is n ∈ ω such that C ⊆ Xn.
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Basic Results

Lemma 1

Let X and (M, d) be a �ech-complete space and a hemicompact metric

space, respectively, and let G be a subset of C (X ,M) such that G
MX

is
compact. If G is not almost equicontinuous, then for every Gδ and
dense subset F of X there exists a countable subset L in G , a compact
separable subset KF ⊆ F , a compact subset N ⊆ M and a continuous and
surjective map Ψ of KF onto the Cantor set 2ω such that if the maps l∗ are
de�ned to make the following diagram commutative

KF
Ψ //

l |KF

  

2ω

l∗

~~
N

then the subset L∗ := {l∗ : l ∈ L} ⊆ C (2ω,N) is not almost
equicontinuous on 2ω.
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Basic Results

Remark

Let X be a topological space, (M, d) be a metric space and G be a subset
of C (X ,M).
Set

K := {α : M → [−1, 1] : |α(m1)− α(m2)| ≤ d(m1,m2), ∀m1,m2 ∈ M}.

K is a compact subspace of [−1, 1]M .
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Basic Results

Remark

Consider the evaluation map

ϕ : X × G −→ M

(x , g) 7−→ g(x)

which is clearly separately continuous.
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Basic Results

Remark

Consider the evaluation map

ϕ : X × G −→ M

(x , g) 7−→ g(x)

which is clearly separately continuous.

The map ϕ has associated a separately continuous map

ϕ∗ : X × (G × K ) −→ [−1, 1]

(x , (g , α)) 7−→ α(g(x))
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Basic Results

Remark

Set

ν : G
MX

× K −→ [−1, 1]X

(h, α) 7−→ α ◦ h

Since G ⊆ C (X ,M), we have that ν(G × K ) ⊆ C (X , [−1, 1]).

d̄ : M ×M → R de�ned by d̄(m1,m2) := min{d(m1,m2), 1} ∀m1,m2 ∈ M
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Basic Results

Lemma 2

Let X and (M, d) be a topological and a metric space, respectively. If G is
a subset of C (X ,M), then G is equicontinuous at a point x0 ∈ X if and
only if ν(G × K ) is equicontinuous at it.
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Proof :
(⇒) Given ε > 0, there is an open neighbouhood U of x0 such that
d(g(x0), g(x)) < ε for all x ∈ U and g ∈ G .

Let α ∈ K , x ∈ U and g ∈ G , then we have

|ν(g , α)(x0)− ν(g , α)(x)| = |α(g(x0))− α(g(x))| ≤ d(g(x0), g(x)) < ε.
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Basic Results
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Basic Results

Proof :
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= d(m, g(x0)) for all m ∈ M. It is

easy to check that α0 ∈ K .

11 / 28



Basic Results

Proof :
(⇐) Given ε > 0, there is an open neighbouhood U of x0 such that
|ν(g , α)(x0)− ν(g , α)(x)| < ε for all x ∈ U, g ∈ G and α ∈ K .

Set α0 ∈ [−1, 1]M de�ned by α0(m)
def
= d(m, g(x0)) for all m ∈ M. It is

easy to check that α0 ∈ K .

It su�ces to observe that

|α0(g(x0))− α0(g(x))| = d(g(x), g(x0))

for all x ∈ U and g ∈ G .
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Basic Results

Corollary 1

Let X and (M, d) be a topological and a metric space, respectively. If G is
a subset of C (X ,M), then G is almost equicontinuous if and only if
ν(G × K ) is almost equicontinuous.

12 / 28



Basic Results

Theorem (Cascales, Namioka and Vera)

Let X be a compact space, (M, d) be a compact metric space and let

G be a subset of C (X ,M). If (X , tp(G
MX

)) is Lindelöf, then G is
hereditarily almost equicontinuous.
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Basic Results

Theorem 1

Let X be a �ech-complete space, (M, d) be a metric space and let G

be a subset of C (X ,M) such that G
MX

is compact. If there exists a a

dense Gδ subset F ⊆ X such that (F , tp(G
MX

)) is Lindelöf, then G is
almost equicontinuous.
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Basic Results

Theorem (Glasner, Megrelishvili and Uspenskij)

Let X be a compact metric space, (M, d) be a metric space and let

G ⊆ C (X ,M) and H = G
MX

. If H is compact hereditary almost
equicontinuous, then H is metrizable.

Lemma (Glasner and Megrelishvili)

Let X , Y and (M, d) be two arbitrary compact spaces and a metric
space, respectively, and let G be a subset of C (Y ,M). Suppose that
p : X → Y is a continuous onto map.

X
p //

G◦p3g◦p   

Y

g∈G~~
M

Then G ◦ p := {g ◦ p : g ∈ G} ⊆ C (X ,M) is HAE if and only if G is HAE.
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Basic Results

Proposition 1

Let X be a �ech-complete space, (M, d) be a hemicompact metric

space and G ⊆ C (X ,M) such that G
MX

is compact. Then the following
conditions are equivalent:

(a) G is hereditary almost equicontinuous.

(b) L is almost equicontinuous on F , for all L ∈ [G ]≤ω and F a separable
and compact subset of X .
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Basic Results

Proof :
(b)⇒ (a) Assume that (a) does not hold ⇒ ∃A ⊆ X such that G |A is not
AE.
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Basic Results

Proof :
(b)⇒ (a) Assume that (a) does not hold ⇒ ∃A ⊆ X such that G |A is not
AE.

By Lemma 1 there exists a compact and separable subset F of X included
in A, an onto and continuous map Ψ : F → 2ω, and a countable subset L
of G such that the subset L∗ ⊆ C (2ω,M) de�ned by l∗(Ψ(x)) = l(x) for
all x ∈ F is not AE.
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Basic Results

Proof :
(b)⇒ (a) Assume that (a) does not hold ⇒ ∃A ⊆ X such that G |A is not
AE.

By Lemma 1 there exists a compact and separable subset F of X included
in A, an onto and continuous map Ψ : F → 2ω, and a countable subset L
of G such that the subset L∗ ⊆ C (2ω,M) de�ned by l∗(Ψ(x)) = l(x) for
all x ∈ F is not AE.

By Lemma GM L is not AE on F. Contradiction
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Basic Results

Corollary 2

Let X be a �ech-complete space, (M, d) be a metric space and

G ⊆ C (X ,M) such that G
MX

is compact. Then the following conditions
are equivalent:

(a) G is hereditary almost equicontinuous.

(b) L is almost equicontinuous on F , for all L ∈ [G ]≤ω and F a separable
and compact subset of X .
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Basic Results

Proof of Theorem B

(a) G is hereditary almost equicontinuous.

(b) L is almost equicontinuous on F , for all L ∈ [G ]≤ω and F a separable and
compact subset of X .

(a)⇔ (b) Corollary 2.
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Basic Results

Proof of Theorem B

(a) G is hereditary almost equicontinuous.

(c) (L
MX

)|F is metrizable, for all L ∈ [G ]≤ω and F a separable and compact
subset of X .

(a)⇒ (c) Let L ∈ [G ]≤ω and let F be a separable and compact subset of X .
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Basic Results

Proof of Theorem B

(a) G is hereditary almost equicontinuous.

(c) (L
MX

)|F is metrizable, for all L ∈ [G ]≤ω and F a separable and compact
subset of X .

(a)⇒ (c) Let L ∈ [G ]≤ω and let F be a separable and compact subset of X .

x ∼ y if and only if l(x) = l(y) for all l ∈ L.

F̃ = F/∼ is the compact quotient space and p : F → F̃ is the quotient map.

Each l ∈ L has associated a map l̃ ∈ C (F̃ ,M) de�ned as l̃(x̃)
def
= l(x) for any

x ∈ F with p(x) = x̃ .
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Basic Results

Proof of Theorem B

Each l ∈ L
MF

has associated a map l̃ ∈ L̃
M F̃

such that l̃ ◦ p = l .
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such that l̃ ◦ p = l .

(F̃ , tp(L̃)) is a compact metric space.

L is HAE on F
GM
==⇒ L̃ is HAE on F̃ .

GMU
===⇒ L̃

M F̃

is metrizable.

L
MF

is canonically homeomorphic to L̃
M F̃

⇒ L
MF

is metrizable.
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Basic Results

Proof of Theorem B

(c) (L
MX

)|F is metrizable, for all L ∈ [G ]≤ω and F a separable and compact
subset of X .

(d) (F , tp(L
MX

)) is Lindelöf, for all L ∈ [G ]≤ω and F a separable and compact
subset of X .

(c)⇒ (d) H := ((L
MX

)|F , tp(F )) is compact metric.
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(c)⇒ (d) H := ((L
MX

)|F , tp(F )) is compact metric.

We may assume that M is separable without loss of generality.

Every element x ∈ F has associated an element x̂ ∈ M
H
de�ned by x̂(h)

def
= h(x)

for all h ∈ H.
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Basic Results

Proof of Theorem B

(c) (L
MX
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subset of X .

(c)⇒ (d) H := ((L
MX

)|F , tp(F )) is compact metric.

We may assume that M is separable without loss of generality.

Every element x ∈ F has associated an element x̂ ∈ M
H
de�ned by x̂(h)

def
= h(x)

for all h ∈ H.

Set F̂ := {x̂ : x ∈ F}.
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Basic Results

Proof of Theorem B

Since H is compact metric ⇒ (F , t∞(H)) is separable and metrizable ⇒
(F , t∞(H)) is Lindelöf.
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Basic Results

Proof of Theorem B

Since H is compact metric ⇒ (F , t∞(H)) is separable and metrizable ⇒
(F , t∞(H)) is Lindelöf.

⇒ (F , tp(H)) is Lindelöf.
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Basic Results

Proof of Theorem B

(b) L is almost equicontinuous on F , for all L ∈ [G ]≤ω and F a separable and
compact subset of X .

(d) (F , tp(L
MX

)) is Lindelöf, for all L ∈ [G ]≤ω and F a separable and compact
subset of X .

(d)⇒ (b) Apply Theorem 1.
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Applications

Topological Groups

Corollary 3

Let X and (M, d) be a �ech-complete topological group and a metric
separable group, respectively, and let G be a subset of CHom(X ,M) such

that G
MX

is compact. Consider the following three properties:

(a) G is equicontinuous.

(b) G is relatively compact in CHom(X ,M) with respect to the compact
open topology.

(c) There exists a dense Baire subset F ⊆ X such that (G
MX

)|F is
metrizable.

(d) There exists a dense Gδ subset F ⊆ X such that (F , tp(G
MX

)) is
Lindelöf.

Then (d)⇒ (c)⇒ (a)⇔ (b). If X is also ω-narrow, then all conditions
are equivalent. Furthermore (c) and (d) are also true for F = X .
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Applications

Topological Groups

De�nition

A topological group G is said to be ω-narrow if for every neighborhood V
of the neutral element, there exists a countable subset E of G such that
G = EV .
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Applications

Topological Groups

Corollary 4

Let X and (M, d) be a �ech-complete topological group and a metric

group, respectively, and let G be a subset of CHom(X ,M) such that G
MX

is compact. Then the following conditions are equivalent:

(a) G is equicontinuous.

(b) L is equicontinuous on F , for all L ∈ [G ]≤ω and F a separable and
compact subset of X .

(c) ((L
MX

)|F , tp(F )) is metrizable, for all L ∈ [G ]≤ω and F a separable
and compact subset of X .

(d) (F , tp(L
MX

)) is Lindelöf, for all L ∈ [G ]≤ω and F a separable and
compact subset of X .
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Applications

Dynamical Systems

Corollary 5

Let X be a Polish G -space such that G
XX

is compact. The following
properties are equivalent:

(a) X is almost equicontinuous.

(b) There exists a dense Baire subset F ⊆ X such that (G
XX

)|F is
metrizable.

(c) There exists a dense Gδ subset F ⊆ X such that (F , tp(G
XX

)) is
Lindelöf.
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Applications

Dynamical Systems

Corollary 5

Let X be a complete metrizable G -space such that G
XX

is compact. Then
the following conditions are equivalent:

(a) X is hereditary almost equicontinuous.

(b) L is almost equicontinuous on F , for all L ∈ [G ]≤ω and F a separable
and compact subset of X .

(c) ((L
MX

)|F , tp(F )) is metrizable, for all L ∈ [G ]≤ω and F a separable
and compact subset of X .

(d) (F , tp(L
MX

)) is Lindelöf, for all L ∈ [G ]≤ω and F a separable and
compact subset of X .
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Proof of Theorem 1

Sketch of the Proof :

Consider the (continuous) map νF : (G
MX

)|F × K → [−1, 1]F de�ned by

νF (h, α)
def
= α ◦ h for all h ∈ (G

MX

)|F and α ∈ K .
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Reasoning by contradiction, suppose that ν(G × K ) is not AE.

By Lemma 1 there exists a compact and separable subset KF of F , an
onto and continuous map Ψ : KF → 2ω, and a countable subset L of
ν(G × K ) such that the subset L∗ ⊆ C (2ω, [−1, 1]) de�ned by
l∗(Ψ(x)) = l(x) for all x ∈ KF is not AE.
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Proof of F

Let L be a countable subset of G ⊆ C (X ,M). We denote by XL the
topological space (X̃ , tp(L̃)), which is metrizable because L̃ is countable.

Consider the map p∗ : (M X̃ , tp(X̃ ))→ (MX , tp(X )) de�ned by

p∗(f̃ ) = f̃ ◦ p, for each f̃ ∈ M X̃ .

Proposition

p∗ is a homeomorphism of L̃
M X̃

onto L
MX

.

Proof :
We observe that p∗ is continuous, since a net {f̃α}α∈A tp(X̃ )-converges to

f̃ in L̃
M X̃

if and only if {f̃α ◦ p}α∈A tp(X )-converges to f̃ ◦ p in L
MX

.

Let's see that p∗(L̃
M X̃

) = L
MX

. Indeed, since p∗ is continuous we have

that p∗(L̃
M X̃

) ⊆ p∗(L̃)
MX

= L
MX

. We have the other inclusion because

L
MX

is the smaller closed set that contains L and L ⊆ p∗(L̃
M X̃

).
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Proof of F

Proof :

Let f̃ , g̃ ∈ L̃
M X̃

such that f̃ 6= g̃ , then there exist x̃ ∈ X̃ such that
f̃ (x̃) 6= g̃(x̃). Let x ∈ X an element such that x̃ = p(x), then
(f̃ ◦ p)(x) 6= (g̃ ◦ p)(x). So, p∗ is injective because f̃ ◦ p 6= g̃ ◦ p.
Finally, we arrive to the conclusion that p∗|

L̃
MX̃ is a homeomorphism

because it is de�ned between compact spaces.
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