On nodal domains of u solution to $-\Delta u = \mu u + f$, $u \in H_0^1(\Omega)$ and μ close to an eigenvalue

Jacqueline Fleckinger -in collaboration with J.P.Gossez and F. de Thélin-*

Consider the Dirichlet problem

$$\begin{cases} -\Delta u = \mu u + f & \text{in } \Omega, \\ u = 0 & \text{on } \partial \Omega, \end{cases}$$

with Ω a smooth bounded domain in \mathbb{R}^N and $f \in L^q(\Omega)$, q > N. Let $\hat{\lambda}$ be an eigenvalue of $-\Delta$ on $H_0^1(\Omega)$, with $\hat{\varphi}$ an associated eigenfunction. We compare the nodal domains of u with those of $\hat{\varphi}$. In particular, under suitable assumptions on f (in particular $\int_{\Omega} f\hat{\varphi} > 0$) and on the nodal domain of $\hat{\varphi}$, for μ sufficiently close to $\hat{\lambda}$, then the solution u of the problem has the same number of nodal domains as $\hat{\varphi}$, and the nodal domains of u appear as small deformations of those of $\hat{\varphi}$. But this is not always the case and we exhibit some examples and counterexamples for various hypotheses.

^{*}Inst. Math. Toulouse, UMR 5219, Ceremath, Univ. Toulouse 1, 31042 TOULOUSE CEdex jfleckinger@gmail.com