Numerical Analysis of a closed loop Thermosyphon model with a viscoelastic fluid

Ángela Jiménez-Casas, Mario Castro and Justine Yasappan *

We analyze the motion of a viscoelastic fluid in the interior of a closed loop thermosyphon under the effects of natural convection and a given external heat flux. Numerical experiments are performed in order to describe the behavior of the solution for different ranges of the relevant parameters.

$$\varepsilon \frac{d^2 v}{dt^2} + \frac{dv}{dt} + G(v)v = \oint Tf, v(0) = v_0, \frac{dv}{dt}(0) = w_0$$

$$\frac{\partial T}{\partial t} + v \frac{\partial T}{dx} = h(x, v, T) + \gamma \frac{\partial^2 T}{\partial x^2}, T(0, x) = T_0(x)$$
(1)

Where v(t) is the velocity, T(t, x) is the distribution of the temperature of the viscoelastic fluid in the loop, γ is the temperature diffusion coefficient, G(v) is the friction law at the inner wall of the loop, the function f is the geometry of the loop and the distribution of gravitational forces, h(x) is the heat flux and ε is the viscoelastic parameter. Suitable parameters are chosen to carry out the different numerical analysis. The numerical experiments are summarized for a detailed analysis of the behaviour of the system. The experiments made in this poster come to verify the complex nature of the behavior of the models of the thermosyphon system.

References

- Ángela Jiménez Casas, "Dinámica en dimensión infinita: modelos de campos de fase y un termosifón cerrado". PhD Thesis, University of Complutense, Madrid, (1996).
- [2] Ångela Jiménez Casas, Aníbal Rodríguez -Bernal, "Finite-dimensional asymptotic behavior in a thermosyphon including the Soret effect", Math. Meth. in the Appl. Sci., 22,117-137 (1999).
- [3] Ángela Jiménez Casas and Alfonso Matías Lozano Ovejero, "Numerical analysis of a closed-loop thermosyphon including the Soret effect", Appl. Math. And Computation, 124 (2001) 289-318.
- [4] Ángela Jiménez Casas, "A coupled ODE/PDE system governing a thermosyphon model", Nonlin. Analy., 47, 687-692 (2001).
- [5] Ángela Jiménez Casas and Mario Castro, "Asymptotic Behavior for a general thermosyphon model with a viscoelastic fluid", Mathematical Models and Methods in Applied Sciences, World Scientific Publishing Company, submitted (2010).
- [6] Aníbal Rodríguez -Bernal, "Attractors and Inertial manifolds for the dynamics of a closed thermosyphon", Journal of mathematical analysis and appl, 193, (1995) 942-965.18.
- [7] Aníbal Rodríguez -Bernal and E.S. Van Vleck, "Complex oscillations in a closed loop thermosyphon", Int. J. Bif. Chaos, 8(1) (1998) 41-56.
- [8] J.J. L. Velázquez, "On the dynamics of a closed thermosyphon", SIAM J. Appl. Math. 54 (6) (1994) 1561-1593.

^{*}Grupo de Dinámica No Lineal.Universidad Pontificia Comillas, 28015 Madrid (Spain). ajimenez@upcomillas.es, justemmasj@gmail.com