AICA 2013

Algorithms and Applications in Real Algebraic and Tropical Geometry

Miguel Abanádes, Francisco Botana, Jorge Caravantes, Gema M. Díaz Toca, Jesús Escribano, Mario Fioravanti, Laureano González Vega, Adamou Ibrahim, Ioana Necula, Tomás Recio, Luis Felipe Tabera (Project MTM2011-25816-C02-02)

Introduction

The research of the members of the project MTM2011-25816-C02-02 includes the study of hypercircles and ultracuadrics, tropical geometry, reparametrization of rational curves, the computation of the topology of a curve given by values, the parametrization of bisectors of curves and surfaces, the Voronoi diagram of a family of half-lines, algebraic geodesy and GPS modeling, and some others. Part of this work has been done in collaboration with the researchers of Project [3].

For this poster, we have chosen four topics which have applications in industrial problems: Reparametrization of Swung surfaces, Transformation of coordinates, from Cartesian to hyperboloidal, Voronoi diagram of a family of parallel half-lines, and Bisectors of low degree surfaces.

Swung surfaces

A surface of revolution is a surface globally invariant by

Voronoi diagram of *n* parallel half-lines

The Voronoi diagram (VD) is a fundamental data structure in computational geometry with various applications in theoretical and practical areas (see, for example [4]). Consider the VD of a set of *n* parallel half-lines in

 $D_0 = [a_1, b_1] \times [a_2, b_2] \times [a_3, b_3] \subset \mathbb{R}^3$

of the following form

 $d_{i} = (x_{i} + t, y_{i}, z_{i}), t \ge 0, i = 1, \dots, n,$ $x_{l} \ne x_{k}, (y_{l}, z_{l}) \ne (y_{k}, z_{k}), \forall l \ne k$

This new kind of VD has applications in drilling system design, in mining, oil, and other industries (see [5], [8]).

Each cell of the VD is formed by the points in D_0 that are closer to a particular d_i than to any other d_j , $j \neq i$. The boundary of a cell is composed by:

- **Bisectors**: piecewise algebraic surfaces formed by pieces of planes and parabolic cylinders.
- **Trisectors**: piecewise algebraic curves formed by straight

The bisector of two low degree surfaces

The (untrimmed) bisector of two smooth surfaces is the set of centers of spheres which are tangent to both surfaces ([10], [7]). Bisectors are geometric constructions with applications in Tool path generation, Motion planning, NCmilling, and many others.

UNIVERSIDAD DE CANTABRIA

Let $S_1(s,t)$ and $S_2(u,v)$ be two rational surfaces. A point **B** = $(X, Y, Z)^T$ is in the bisector of S_1 and S_2 if

 $\begin{array}{lll} \langle (X,Y,Z) - S_1(s,t), \partial_s S_1(s,t) \rangle &=& 0, \\ \langle (X,Y,Z) - S_1(s,t), \partial_t S_1(s,t) \rangle &=& 0, \\ \langle (X,Y,Z) - S_2(u,v), \partial_u S_2(u,v) \rangle &=& 0, \\ \langle (X,Y,Z) - S_2(u,v), \partial_v S_2(u,v) \rangle &=& 0, \end{array}$

 $\langle (X, Y, Z), 2(S_2(u, v) - S_1(s, t)) \rangle + \|S_1(s, t)\|^2 - \|S_2(u, v)\|^2 = 0.$

rotations around a certain line (the axis of revolution). The intersection of the surface with planes containing the revolution axis yields the so called profile curves. We studied a natural extension of surfaces of revolution called *swung surfaces,* of relevance in CAGD. They are produced by sweeping around the *z*-axis a profile curve in the *yz*-plane along a trajectory curve in the *xy*-plane. • Profile curve (rational): $(0, \phi_1(t), \phi_2(t))$

• Trajectory curve (rational): $(\psi_1(s), \psi_2(s), 0)$ • Parametrized swung surface:

 $P(s,t) = (\phi_1(t) \,\psi_1(s), \phi_1(t) \,\psi_2(s), \phi_2(t))$

segments and pieces of parabolas.

• Quadrisectors: a point, intersection of four trisectors.

The algorithm

Input: d_i , i = 1, ..., n; a small constant $\mathcal{E} > 0$. **Output**: a list of rectangular boxes, and a mesh approximating the VD; the topology in each box is correct or the box is of size < \mathcal{E} .

• **Subdivision**: A box is said to be *t-regular* if the topology of bisectors, trisectors and quadrisectors is determined by its intersection with the faces of the box. Starting with D_0 , if a box is not t-regular is subdivided in two smaller boxes. The procedure continues, generating an adjacency graph, following a *kd-tree* structure, until all the boxes are either t-regular or of diameter < \mathcal{E} .

Algorithm for computing parametrizations of the bisector:

1. Solve for $\mathbf{B} = \mathbf{B}(u, v, s, t)$, using the generalized Cramer rule, or the Moore-Penrose inverse of A.

2. Eliminate s and t, using the rank condition $det(|\mathbf{A}, \mathbf{R}|) = 0$, and (*).

3. Substitute to obtain one or more parametrizations for the different components of the bisector: B(u, v).

Bisector of a circular cylinder and a quadric or a torus

 $\sigma_s(u, v) = \|\partial_u \mathbf{S} \times \partial_v \mathbf{S}\|$

Theorem. If the surface **S** is of revolution and share the same axis as **C**, the algorithm gives four components $\mathbf{B}_i(u, v)$, i = 1, ..., 4, for the parametrization of the bisector, that may contain a square root of a positive expression. If σ_s is rational, then so are \mathbf{B}_i .

The offset of an ellipsoid (half)

 $\begin{array}{l} -240\,y^2z^2x^2+66\,y^2z^4x^2+30\,y^4z^2x^2+30\,y^2z^2x^4+450\,z^2y^2\\ -120\,y^4z^2-210\,y^2z^4-30\,y^4x^2-30\,y^2x^4-120\,z^2x^4-210\,z^4x^2\\ +450\,z^2x^2+18\,x^2y^2+40\,y^2z^6+10\,y^6z^2+33\,y^4z^4+4\,y^6x^2\\ +6\,y^4x^4+4\,y^2x^6+33\,z^4x^4+40\,z^6x^2+10\,z^2x^6-207\,z^4-324\,z^2\\ +9\,x^4+9\,y^4+8\,z^6-10\,y^6-10\,x^6+16\,z^8+y^8+x^8=0 \end{array}$

Surfaces of revolution and all quadrics are swung surfaces.

Assume that the coefficients of the parametrization are in $\mathbf{K}(i)$, where \mathbf{K} is a computable subfield of \mathbf{R} (e.g. \mathbf{Q}) and *i* is the imaginary unit.

Does every swung surface admit a reparametrization with real coefficients?

Theorem. A swung surface admits a real reparametrization, if and only if, the surface is "real", in the sense of having a two dimensional piece in \mathbb{R}^3 . • **Meshing**: In each t-regular box, a mesh of polygonal faces is determined. The mesh is isotopic to the boundaries of the VD cells inside that box.

• Reconstruction of approximate VD cells: The adjacency graph is traversed using a DFS (Depth First Search) algorithm.

If $\sigma_s \in \mathbb{Q}[\delta](u,v)$ then $B_i \in \mathbb{Q}[\delta](u,v), i = 1, ..., 4$.

The algorithm gives rational parametrizations for the bisector of a plane and any of the following quadrics:

- Parabolic cylinder
- Circular cylinder or cone
- Sphere
- Ellipsoid
- Paraboloid
- Hyperboloids

One component of the bisector of a cylinder and an ellipsoid

From 3D Cartesian to hyperboloidal coordinates

Some references

Hyperboloidal coordinates (λ , ϕ , h) are used in Geodesy. In particular, in hyperboloidal building and cooling tower construction.

The transformation problem is reduced to find the smallest positive root of a polynomial of degree 4 (see [6]). The analysis of the roots is performed by an algebraically complete stra-tification, based on symbolic techniques (Sturm-Habicht sequences), of a planar region situated in the positive quadrant. We propose two approaches:

- using the Merriman method,
- using the Computer Algebra System Maple.

[1] Adamou, I., Fioravanti, M., Gonzalez-Vega, L. (2012) *Parametrization of the Bisector of Two Low Degree Surfaces*. Submitted to R. De Amicis and G. Conti, editors, Future Vision and Trends on Shapes, Geometry and Algebra, Springer.

[2] Adamou, I., Fioravanti, M., Gonzalez-Vega, L., Mourrain, B. (2012) *Bisectors and Voronoi diagram of a family of parallel half-lines*. Submitted to SAGA Official Book, Springer.

[3] Alcázar, J.G., Rueda, S.L., Sendra, J., Sendra, J.R., Sevilla, D., Villarino, C. (2013) Algorithms and Applications in Geometry of Curves and Surfaces, Poster AICA 2013.

[4] Aurenhammer, F., Klein, R (2000) Voronoi diagrams, in J.-R. Sack and J. Urrutia, eds., Handbook of computational geometry, North-Holland, Amsterdam, 201-290.

[5] Barros, P.G., Pessoa, D.A., Leite, P.J.S., Teichrieb, V., Kelner, J. (2006), *Three dimensional Oil Well Planning in Ultra-deep Water*, in Proc. of Symposium on Virtual Reality (SVR), Belém, v. 1, 285-296.

[6] Diaz-Toca, G., Necula, I. (2012) Direct symbolic transformation from 3D cartesian into hyperboloidal coordinates, submitted.

[7] Elber, G., Kim, M-S. (2000) A computational model for non-rational bisector surfaces: curve-surface and surface-surface bisectors. Proc. Geometric Modeling and Processing 2000, Hong Kong, 364-372.

[8] Hasan, M., Gavrilova, M.L. (2010) A Geometric Approach to Drill Path Collision Avoidance, Proc. of the 2010 InternI. Symposium on Voronoi Diagrams in Sc. and Engineering (ISVD'10), 244-253.

[9] Ibrahim, A. (2013) Curve and Surface Bisectors, and Voronoi Diagram of a family of parallel half-lines in R³, Ph.D. Thesis, Universidad de Cantabria.

[10] Peternell, M. (2000) Geometric properties of bisector surfaces, Graphical Models, 62(3), 202-236.