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Introduction

Problem
Given: autonomous AODE F (y, y′) = 0
Compute a rational/radical/. . . solution y

Definitions

•Ring of differential polynomials: K(x){y} = K(x)[y, y′, y′′, . . .]

•AODE: F (x, y, y′, . . . , y(n)) = 0 with F ∈ K(x){y} polynomial in x

•Autonomous: x does not appear in coefficients

•Curve: C = {(a, b) ∈ K2 | f (a, b) = 0}
•Parametrizations: P(t) = (r(t), s(t)) such that f (r(t), s(t)) = 0 and P(t) 6∈ K2

•Proper: P(t) : A → C is birational

Rational Solutions

Algorithm: Feng and Gao [1]
Given: AODE F (y, y′) = 0
•Compute a proper rational parametrization P (t) = (r(t), s(t))

•Compute A = s(t)
r′(t)

• If A ∈ Q or A = a(b + t)2 then y(x) = r(A(x− c)) or y(x) = r(−1+ab(x−c)
a(x−c)) )

•Otherwise there is no rational solution
Note: (y, y′) is a proper rational parametrization

Generalizations

•Non-autonomous AODEs F (x, y, y′) = 0 [9, 10, 11]

•Higher order AODEs [5, 6]
•Transformations [7, 8]

Radical Solutions

Procedure
Given: AODE F (y, y′) = 0
•Compute a parametrization P(t) = (r(t), s(t)) of F (y, z) = 0

•Assume P(t) = (y(g(t)), y′(g(t))) for some g

•Compute AP(t) :=
s(t)
r′(t)

•Compute g(t) (integration) and g−1(t) (inverse function)

•General solution y(x) = r(g−1(x + c)

Radical Parametrizations
P(t) = (r(t), s(t)) such that F (r(t), s(t)) = 0 and r(t), s(t) are in some radical ex-
tension field of K(t). For a precise definition and further information see [13, 14, 4].

Theorem
Let P(t) = (r(t), s(t)) be a radical parametrization of the curve F (y, z) = 0 and
assume AP(t) = a(b + t)n for some n ∈ Q \ {1}.
Then r(h(t)), with h(t) = −b + (−(n− 1)a(t + c))

1

1−n, is a radical general solution
of the AODE F (y, y′) = 0.

Theorem
Let P(t) = (r(t), s(t)) be a radical parametrization of the curve F (y, z) = 0. As-
sume AP(t) =

atn

b+tm for some a, b ∈ Q and m,n ∈ Q with m 6= n − 1 and n 6= 1.
Then the AODE F (y, y′) = 0 has a radical solution if the function

g(t) =
1

a
t1−n

(

b

1− n
+

tm

1 +m− n

)

(1)

has a radical inverse h(x). A general solution of the AODE is then r(h(x + c)).

Theorem
Assume 1 − n = z1

d1
and m − n + 1 = z2

d2
with z1, z2 ∈ Z, d1, d2 ∈ N such

that gcd(z1, d1) = gcd(z2, d2) = 1. Let n̄ = (1−n)d1d2
d , m̄ = (m−n+1)d1d2

d and
d = gcd(z1d2, z2d1).
The function g(t) of (1) has an inverse expressible by radicals if
• b = 0 or

•±(m̄, n̄) ∈ N2 and max(|m̄|, |n̄|) ≤ 4.

•±(−m̄, n̄) ∈ N2 and |m̄| + |n̄| ≤ 4.
It has no inverse expressible by radicals in the cases

• m̄, n̄ ∈ N and max(m̄, n̄) > 4,

•−m̄,−n̄ ∈ N and max(|m̄|, |n̄|) > 4.

Example & Conclusion

Example
AODE: y′6 + 49yy′2 − 7 = 0

P(t) =

(

−−7 + t6

49t2
, t

)

, AP(t) = − 49t4

14 + 4t6

g(t) =
2

21t3
− 4t3

147
, g−1(t) =

1

2

(

−147t−
√
7
√
32 + 3087t2

)1/3

y(x) = −
4

(

−7 + 1
64

(

−147(c + x)−
√
7
√

32 + 3087(c + x)2
)2
)

49
(

−147(c + x)−
√
7
√

32 + 3087(c + x)2
)2/3

.

Conclusion

•General procedure for autonomous AODEs
•Radical solutions for some classes
•Also possible for non-radical solutions

• Solves AODEs not solveable by current CAS
•Generalizes rational case
• Future research: Complete decision algorithm
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