# Symbolic solutions of algebraic ordinary differential equations 

G. Grasegger J.R.Sendra F. Winkler

This project was supported by the Austrian Science Fund (FWF): W1214-N15, project DK11
and by the Spanish Ministerio de Economía y Competitividad under the project MTM2011-25816-C02-01

## Introduction

## Problem

Given: autonomous AODE $F\left(y, y^{\prime}\right)=0$
Compute a rational/radical/ . . solution $y$

## Definitions

- Ring of differential polynomials: $\mathbb{K}(x)\{y\}=\mathbb{K}(x)\left[y, y^{\prime}, y^{\prime \prime}, \ldots\right]$
- AODE: $F\left(x, y, y^{\prime}, \ldots, y^{(n)}\right)=0$ with $F \in \mathbb{K}(x)\{y\}$ polynomial in $x$
- Autonomous: $x$ does not appear in coefficients
- Curve: $\mathcal{C}=\left\{(a, b) \in \mathbb{K}^{2} \mid f(a, b)=0\right\}$
- Parametrizations: $\mathcal{P}(t)=(r(t), s(t))$ such that $f(r(t), s(t))=0$ and $\mathcal{P}(t) \notin \mathbb{K}^{2}$
- Proper: $\mathcal{P}(t): \mathbb{A} \rightarrow \mathcal{C}$ is birational


## Rational Solutions

## Algorithm: Feng and Gao [1]

Given: AODE $F\left(y, y^{\prime}\right)=0$

- Compute a proper rational parametrization $P(t)=(r(t), s(t))$
- Compute $A=\frac{s(t)}{r^{\prime}(t)}$
- If $A \in \mathbb{Q}$ or $A=a(b+t)^{2}$ then $y(x)=r(A(x-c))$ or $y(x)=r\left(\frac{-1+a b(x-c)}{a(x-c))}\right)$
- Otherwise there is no rational solution

Note: $\left(y, y^{\prime}\right)$ is a proper rational parametrization

## Generalizations

- Non-autonomous AODEs $F\left(x, y, y^{\prime}\right)=0[9,10,11]$
- Higher order AODEs [5, 6]
- Transformations [7, 8]


## Radical Solutions

## Procedure

Given: AODE $F\left(y, y^{\prime}\right)=0$

- Compute a parametrization $\mathcal{P}(t)=(r(t), s(t))$ of $F(y, z)=0$
- Assume $\mathcal{P}(t)=\left(y(g(t)), y^{\prime}(g(t))\right)$ for some $g$
- Compute $A_{\mathcal{P}}(t):=\frac{s(t)}{r^{\prime}(t)}$
- Compute $g(t)$ (integration) and $g^{-1}(t)$ (inverse function)
- General solution $y(x)=r\left(g^{-1}(x+c)\right.$


## Radical Parametrizations

$\mathcal{P}(t)=(r(t), s(t))$ such that $F(r(t), s(t))=0$ and $r(t), s(t)$ are in some radical extension field of $\mathbb{K}(t)$. For a precise definition and further information see [13, 14, 4].

[^0]
## Theorem

Let $\mathcal{P}(t)=(r(t), s(t))$ be a radical parametrization of the curve $F(y, z)=0$. As sume $A_{\mathcal{P}}(t)=\frac{a t^{n}}{b+t^{m}}$ for some $a, b \in \mathbb{Q}$ and $m, n \in \mathbb{Q}$ with $m \neq n-1$ and $n \neq 1$ Then the AODE $F\left(y, y^{\prime}\right)=0$ has a radical solution if the function

$$
g(t)=\frac{1}{a} t^{1-n}\left(\frac{b}{1-n}+\frac{t^{m}}{1+m-n}\right)
$$

has a radical inverse $h(x)$. A general solution of the AODE is then $r(h(x+c))$.

## Theorem

Assume $1-n=\frac{z_{1}}{d_{1}}$ and $m-n+1=\frac{z_{2}}{d_{2}}$ with $z_{1}, z_{2} \in \mathbb{Z}, d_{1}, d_{2} \in \mathbb{N}$ such that $\operatorname{gcd}\left(z_{1}, d_{1}\right)=\operatorname{gcd}\left(z_{2}, d_{2}\right)=1$. Let $\bar{n}=\frac{(1-n) d_{1} d_{2}}{d}, \bar{m}=\frac{(m-n+1) d_{1} d_{2}}{d}$ and $d=\operatorname{gcd}\left(z_{1} d_{2}, z_{2} d_{1}\right)$.
The function $g(t)$ of (1) has an inverse expressible by radicals if

- $b=0$ or
- $\pm(\bar{m}, \bar{n}) \in \mathbb{N}^{2}$ and $\max (|\bar{m}|,|\bar{n}|) \leq 4$
- $\pm(-\bar{m}, \bar{n}) \in \mathbb{N}^{2}$ and $|\bar{m}|+|\bar{n}| \leq 4$.

It has no inverse expressible by radicals in the cases

- $\bar{m}, \bar{n} \in \mathbb{N}$ and $\max (\bar{m}, \bar{n})>4$,
- $-\bar{m},-\bar{n} \in \mathbb{N}$ and $\max (|\bar{m}|,|\bar{n}|)>4$.


## Example \& Conclusion

## Example

AODE: $y^{\prime 6}+49 y y^{\prime 2}-7=0$

$$
\begin{aligned}
& \mathcal{P}(t)=\left(-\frac{-7+t^{6}}{49 t^{2}}, t\right), \quad A_{\mathcal{P}}(t)=-\frac{49 t^{4}}{14+4 t^{6}} \\
& g(t)=\frac{2}{21 t^{3}}-\frac{4 t^{3}}{147}, \quad g^{-1}(t)=\frac{1}{2}\left(-147 t-\sqrt{7} \sqrt{32+3087 t^{2}}\right)^{1 / 3} \\
& y(x)=-\frac{4\left(-7+\frac{1}{64}\left(-147(c+x)-\sqrt{7} \sqrt{32+3087(c+x)^{2}}\right)^{2}\right)}{49\left(-147(c+x)-\sqrt{7} \sqrt{32+3087(c+x)^{2}}\right)^{2 / 3}} .
\end{aligned}
$$

## Conclusion

- General procedure for autonomous AODEs
- Radical solutions for some classes
- Also possible for non-radical solutions
- Solves AODEs not solveable by current CAS
- Generalizes rational case
- Future research: Complete decision algorithm


## References


 [3] G. Grseggere. A procedure for sosling autonomus AODEs. Teechical Report 2013-055, Doctoral Progam "Computational Mathematics", Johannes Kepler Univesity Linz, Austria, 2012


 T) . .X. Nob. . R. . .




[112] $\rfloor$ L.x.

[13] J.R. Sentra and D. Sevilla. Radical parametrizations of algebraic curves by adjoint curves. Journal of S Symolic Computation, 46(9):1030-1038, 2011


[^0]:    Theorem
    Let $\mathcal{P}(t)=(r(t), s(t))$ be a radical parametrization of the curve $F(y, z)=0$ and assume $A_{\mathcal{P}}(t)=a(b+t)^{n}$ for some $n \in \mathbb{Q} \backslash\{1\}$.
    Then $r(h(t))$, with $h(t)=-b+(-(n-1) a(t+c))^{\frac{1}{1-n}}$, is a radical general solution of the AODE $F\left(y, y^{\prime}\right)=0$

