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BACKGROUND
CHANNELS, SIGNALS AND
MODULATION
Wireless channels can distort sent messages. two lines of
approach:

Low level (physical layer): physical/wave level. We focus
on this.

Logical level: digital signal level (classical Error
Correcting Codes).

There are two sources of noise:

Fading: Superposition, re�ection, Doppler e�ect,
obstacles. Independent sequence of Gaussian random
variables h = CN(0, 1).

Additive White Gaussian Noise (AWGN): At the receiver
side. Independent (white) sequence of Gaussian random
variables n = CN(0, σ).

We assume that the receiver knows h (sending pilots).
Signal coding is used to tackle the noise. Coding means
redundancy (diversity). We transmit simultaneously by
several antennas, and transmit versions of the signal
several times (space-time block codes).
Digital information is sent by modulating a baseband
signal. Used modulation schemes: PAM (phase/amplitude
modulation) and QAM (quadrature/amplitude
modulation). A QAM alphabet is a symmetric subset of
Z[i]2. Early designs of CODEC transmission used
non-uniform alphabets, as we will do.
SOME INFORMATION THEORY
De�nition
For a code C = {ci}Ni=1

, the signal-to-noise ratio is SNR = 10 log10
(
E/σ2

)
, where

E is the average energy of the code (i.e. E = 1/N
N∑
i=1

|ci|2). Denote by BEP the

bit error probability of decoding.

De�nition
Data rate: RC = k/n, k is the number of independent information items per
codeword and n is the number of channel uses.

,
Figure : left: QAM modulation, right: QAM alphabet and digital information

.
ALGEBRAIC CODES

Lattices from rings of integers of algebraic number �elds/cyclic division algebras are
used for coding. Decoding is by Maximum-Likelihood. Arithmetic properties
translate into diversity properties.

Golden code (IEEE802.16): Attached to Z
[
i, 1+

√
5

2

]
, rate 2, complexity

O(2|C |0.625).
Alamouti Code (3GPP, OMA): Attached to Hamilton Q-quaternions, rate 1,
complexity O(|C |0.5).
Example:Q(θ)/Q normal extension of degree n. If ⊕n

i=0
θiZ is the ring of

integers, we can use this lattice to encode. The skewer the fundamental
parallelogram, the harder to decode but the better the noise tolerance.

OUR APPROACH ([2])
Set H = {z ∈ C : =(z) > 0}. The group SL (2,R) acts on H by Möbius
transformations.

RATE 3 CODES
Our codes are C = {ci = γi(τ )}ni=1 where τ ∈ H,

γi =

(
xi +
√
ayi zi +

√
ati

b(zi −
√
ati) xi −

√
ayi

)
, with a > 0, b < 0

integers and (xi, yi, zi, ti) ∈ Z4 with
xi − ayi − bzi + abt2 = 1. For each codeword, only 3
symbols are independent. If we use 1 channel to transmit
γi(τ ), RC = 3. How to produce the 4-tuples? Nested use
of the Pell's equation in Z[

√
a].

Our matrices belong to arithmetic Fuchsian
group (see next section). The decoding complexity for
linear codes is typically O(|C |0.5). Our method uses a
point reduction algorithm ([1]) and the complexity is
O(log(|C |)). Fixed a fundamental region F for the group
and τ in the interior of F from now on.

Send (x , y , z , t) encoded as γ(τ ) (γ as
above).γ(τ ) ∈ γ(F). The receiver obtains γ(τ ) + n, n
an AWGN.

If Γ and τ are chosen in a suitable way, γ(τ ) + n ∈ γ(F)
with high probability. Decode γ(τ ) + n by point
reduction to obtain γ.
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Figure : left: performance of 4-codes, right: performance of 8-codes
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ARBITRARY RATE CODES

Let K/Q be a totally real number �eld of degree n and OK its ring of integers.
Take a, b ∈ OK \ {0}, with a totally positive and b totally negative (see next

section). Our code is C = {γi(τ )}n
i=1

where γi =

(
xi +
√
ayi zi +

√
ati

b(zi −
√
ati) xi −

√
ayi

)
,

with (xi, yi, zi, ti) ∈ O4

K
satisfying xi − ayi − bzi + abt2 = 1.

Theorem (Alsina, B., Hollanti, Remón)
The so-constructed code has data rate 3n (for one channel use).

THE TECHNICAL CORE
De�nition
Let K/Q be a number �eld. Given a, b ∈ OK \ {0}, the quaternion K -algebra(
a,b
K

)
is a ring of the form A = K ⊕ Ki ⊕ Kj ⊕ Kij with i2 = a, b2 = b, ij = −ji .

An order in A is an OK -lattice of maximal rank such that it is also a ring. The
reduced norm of a quaternion x + yi + zj + tij is de�ned as x2− ay 2− bz2 + abt2.

If O ⊆ A is a maximal order, denote by O∗
1
its multiplicative subgroup of elements

of reduced norm 1, and by Γ(O∗
1
) the matrix image of this group.

De�nition
An arithmetic Fuchsian group Γ is a discrete subgroup of SL(2,R) such that there
exists some Γ(O∗

1
) with [Γ ∩ Γ(O∗

1
) : Γ] <∞ and [Γ ∩ Γ(O∗

1
) : Γ(O∗

1
)] <∞.

APPLICATIONS
Our codes present arbitrary rates and logarithmic complexity. They can be regarded
as information-compressing codes since we can transmit several symbols by one
channel use. Our simulations for rate 3 codes show that some of our codes
outperform QAM for size 4 and 8. Higher size constellations behave worse, and a
correction mechanism is under research. For high SNR and small code size (for the
moment), our codes are a good alternative for linear codes.
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