FUCHSIAN CODES: A NON-LINEAR PROPOSAL FOR THE PHYSICAL LAYER M. Alsina (Polytechnic University of Catalonia), I. Blanco-Chacón (Aalto University), C. Hollanti (Aalto University), D. Remón (University of Barcelona)

BACKGROUND CHANNELS, SIGNALS AND MODULATION

Wireless channels can distort sent messages. two lines of approach:

Low level (physical layer): physical/wave level. We focus on this.

•Logical level: digital signal level (classical Error Correcting Codes).

There are two sources of noise:

• Fading: Superposition, reflection, Doppler effect, obstacles. Independent sequence of Gaussian random

OUR APPROACH

Set $\mathcal{H} = \{z \in \mathbb{C} : \Im(z) > 0\}$. The group $SL(2,\mathbb{R})$ acts on \mathcal{H} by Möbius transformations.

RATE 3 CODES

Our codes are $C = \{c_i = \gamma_i(\tau)\}_{i=1}^n$ where $\tau \in \mathcal{H}$, $\gamma_i = \begin{pmatrix} x_i + \sqrt{a}y_i & z_i + \sqrt{a}t_i \\ b(z_i - \sqrt{a}t_i) & x_i - \sqrt{a}y_i \end{pmatrix}, \text{ with } a > 0, b < 0$ integers and $(x_i, y_i, z_i, t_i) \in \mathbb{Z}^4$ with $x_i - ay_i - bz_i + abt^2 = 1$. For each codeword, only 3 symbols are independent. If we use 1 channel to transmit $\gamma_i(\tau)$, $R_c = 3$. How to produce the 4-tuples? Nested use of the Pell's equation in $\mathbb{Z}[\sqrt{a}]$. Our matrices belong to arithmetic Fuchsian group (see next section). The decoding complexity for linear codes is typically $O(|C|^{0.5})$. Our method uses a point reduction algorithm ([1]) and the complexity is $O(\log(|C|))$. Fixed a fundamental region \mathcal{F} for the group and au in the interior of $\mathcal F$ from now on. •Send (x, y, z, t) encoded as $\gamma(\tau)$ $(\gamma$ as above) $\gamma(\tau) \in \gamma(\mathcal{F})$. The receiver obtains $\gamma(\tau) + n$, n an AWGN.

variables h = CN(0, 1).

•Additive White Gaussian Noise (AWGN): At the receiver side. Independent (*white*) sequence of Gaussian random variables $n = CN(0, \sigma)$.

We assume that the receiver knows *h* (sending pilots). Signal coding is used to tackle the noise. Coding means redundancy (diversity). We transmit simultaneously by several antennas, and transmit versions of the signal several times (space-time block codes).

Digital information is sent by modulating a baseband signal. Used modulation schemes: PAM (phase/amplitude modulation) and QAM (quadrature/amplitude modulation). A QAM alphabet is a symmetric subset of $\mathbb{Z}[i]^2$. Early designs of CODEC transmission used

olf Γ and au are chosen in a suitable way, $\gamma(au)+n\in\gamma(\mathcal{F})$ with high probability. Decode $\gamma(\tau) + n$ by point reduction to obtain γ .

non-uniform alphabets, as we will do.

SOME INFORMATION THEORY

Definition

For a code $C = \{c_i\}_{i=1}^N$, the signal-to-noise ratio is $SNR = 10 \log_{10} (E/\sigma^2)$, where E is the average energy of the code (i.e. $E = 1/N \sum |c_i|^2$). Denote by BEP the

bit error probability of decoding.

Definition

Data rate: $R_C = k/n$, k is the number of independent information items per codeword and *n* is the number of channel uses.

Figure : left: QAM modulation, right: QAM alphabet and digital information

1111

0111

1011

Figure : left: performance of 4-codes, right: performance of 8-codes

ARBITRARY RATE CODES

Let K/\mathbb{Q} be a totally real number field of degree *n* and \mathcal{O}_K its ring of integers. Take $a, b \in \mathcal{O}_K \setminus \{0\}$, with a totally positive and b totally negative (see next section). Our code is $C = \{\gamma_i(\tau)\}_{i=1}^n$ where $\gamma_i = \begin{pmatrix} x_i + \sqrt{ay_i} & z_i + \sqrt{at_i} \\ b(z_i - \sqrt{at_i}) & x_i - \sqrt{ay_i} \end{pmatrix}$ with $(x_i, y_i, z_i, t_i) \in \mathcal{O}_K^4$ satisfying $x_i - ay_i - bz_i + abt^2 = 1$

Theorem (Alsina, B., Hollanti, Remón)

The so-constructed code has data rate 3n (for one channel use).

Definition

Let K/\mathbb{Q} be a number field. Given $a, b \in \mathcal{O}_K \setminus \{0\}$, the quaternion K-algebra $\left(\frac{a,b}{K}\right)$ is a ring of the form $A = K \oplus Ki \oplus Kj \oplus Kij$ with $i^2 = a$, $b^2 = b$, ij = -ji. An order in A is an \mathcal{O}_K -lattice of maximal rank such that it is also a ring. The reduced norm of a quaternion x + yi + zj + tij is defined as $x^2 - ay^2 - bz^2 + abt^2$.

ALGEBRAIC CODES

Lattices from rings of integers of algebraic number fields/cyclic division algebras are used for coding. Decoding is by Maximum-Likelihood. Arithmetic properties translate into diversity properties.

• Golden code (IEEE802.16): Attached to $\mathbb{Z}\left[i, \frac{1+\sqrt{5}}{2}\right]$, rate 2, complexity $O(2|C|^{0.625}).$

• Alamouti Code (3GPP, OMA): Attached to Hamilton \mathbb{Q} -quaternions, rate 1, complexity $O(|C|^{0.5})$.

Example: $\mathbb{Q}(\theta)/\mathbb{Q}$ normal extension of degree *n*. If $\bigoplus_{i=0}^{n} \theta'\mathbb{Z}$ is the ring of integers, we can use this lattice to encode. The skewer the fundamental parallelogram, the harder to decode but the better the noise tolerance.

If $\mathcal{O} \subseteq A$ is a maximal order, denote by \mathcal{O}_1^* its multiplicative subgroup of elements of reduced norm 1, and by $\Gamma(\mathcal{O}_1^*)$ the matrix image of this group.

Definition

An arithmetic Fuchsian group Γ is a discrete subgroup of $SL(2,\mathbb{R})$ such that there exists some $\Gamma(\mathcal{O}_1^*)$ with $[\Gamma \cap \Gamma(\mathcal{O}_1^*) : \Gamma] < \infty$ and $[\Gamma \cap \Gamma(\mathcal{O}_1^*) : \Gamma(\mathcal{O}_1^*)] < \infty$.

APPLICATIONS

Our codes present arbitrary rates and logarithmic complexity. They can be regarded as information-compressing codes since we can transmit several symbols by one channel use. Our simulations for rate 3 codes show that some of our codes outperform QAM for size 4 and 8. Higher size constellations behave worse, and a correction mechanism is under research. For high SNR and small code size (for the moment), our codes are a good alternative for linear codes.

Bayer, P. Remón, D.: A reduction pont algorithm for cocompact Fuchsian groups (submitted).

Blanco-Chacón, I.; Hollanti, C.; Remón, D.: Fuchsian codes for AWGN channels. Proceedings of The International Workshop on Coding and Cryptography, WCC 2013. p. 496–507. Bergen (2013).