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Introduction

Our group has worked on various problems for curves and surfaces dealing with algorithmic
questions and with their potential applications. We have, among others, investigated the
following problems: the development of new approaches for computing differential resultants
(see [12], [13], [14]), the approximate parametrization problem for curves (see below), the
algorithmic study of topological aspects of curves given in polar coordinates, jointly with
T. Recio’s group (see the poster [1]), briefly addressed here, the detection of symmetries
between curves (see below), the analysis of algebraic properties and parametrization algo-
rithms for conchoidal constructions of curves and surfaces as well as their relationship with
offset and convolutions of curves and surfaces (see [9], [10], [11]), and the problem of com-
puting (affine) surjective rational parametrizations of surfaces (see [8], [19]). In addition,
other treated questions, as the theoretical and algorithmic analysis of ultraquadrics and their
applications, have been developed jointly with T.Recio’s group, and the computation of ra-
tional and radical solutions of algebraic differential equations can be seen, respectively, in the
posters [1] and [6]. In this poster, we have chosen two of these lines of research to illustrate
our work: approximate parametrizations, and algorithmic-topological aspects of curves.

Approximate parametrization of curves

Many applications use algebraic curves and surfaces in their development. Examples of this
situation can be found in computer aided design, computer graphics, geometric modeling,
computer numerical control or pattern recognition, solving differential equations and dio-
phantine equations, modeling lenses for cameras, shape symmetry detection, etc. Moreover,
depending on the problem one uses different representations of the curve or the surface,
namely: implicit or parametric. However, although implicit representations are always avail-
able, rational parametric representations are not always possible. One may extend the class
of rational curves and surfaces to the class of curves and surfaces parametrizable by fractions
of nested radicals of polynomials (see [17], [18]). Nevertheless, this extension is still under-
developed. So the use of alternative approaches, like approximate techniques, is unavoidable.
The approximate parametrization problem for curves is as follows:

Problem

Given the implicit equation of a non-rational real plane curve C and a tolerance ǫ > 0,
decide whether there exists a rational real plane curve C at finite small Hausdorff dis-
tance (i.e. small related to the tolerance ǫ) to the input curve C and, in the affirmative
case, compute a real rational parametrization of C.

For instance, consider the curves
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(see in the figure above: C on the left and C on the right) The curve C cannot be rationally
parametrized, indeed its genus is 3, while C admits the rational parametrization
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In [15] we show how to solve the problem for the case of space curves. For this pur-
pose, the curve is projected birationally on an ǫ-rational plane curve. This plane curve
is parametrized approximately with the algorithm in [7]. Then, using Chinese remainder

techniques, the approximate plane curve is lifted to an approximate space curve. In [16],
we introduce the notion of Hausdorff rational divisor, and we prove that all curves in the
linear systems of curves associated to these divisors are solutions to problem. This allows
one to analyze optimal solutions under some fixed criteria.

Algorithmic-topological aspects of curves

Two different topics have been considered in this context. On the one hand, we have stud-
ied curves which are rational in polar coordinates, i.e. planar curves described by
means of a parametrization ψ(t) = (r(t), θ(t)), where the usual polar coordinates r, θ are
rational functions of a parameter t. Some well-known spirals, for instance, belong to this
kind. One can prove that the only real algebraic curves admitting such a parametrization are
lines and circles [3]; as a result, many of these curves show properties that are impossible
in the algebraic realm. For instance, they can have infinitely many self-intersections, and
they can wind infinitely around a circle centered at the origin, or the origin itself. In [3] we
analyze these phenomena, we give algorithms to detect them in advance (i.e. just from the
parametrization) and we provide an algorithm, implemented in Maple, that takes an input
parametrization and outputs a collection of plottings around the “most interesting” parts of
the curve. An example follows: the curve ψ(t) = (t, (t3 + 1)/(t2 − 3 t + 2)).
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On the other hand, we have considered symmetry detection and similarity detection

in rational curves. The key idea is to reduce all the computations to the parameter space
by making use of the following theorem [5].

Theorem

Let C be a rational plane or space curve properly parametrized by ψ(t). Then C is
symmetric if and only if there exist a symmetry f and a Möbius transformation ϕ for
which we have a commutative diagram
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This theorem leads to a polynomial system whose consistency characterizes the existence of
symmetry. In principle, solving this system is not efficient; however, one can write all the
parameters in terms of just one, in fact one of the parameters of the Möbius transformation,
so that only a univariate gcd is required. In the special case when the curve can be polyno-
mially parametrized [2], one eventually obtains closed formulae for the symmetry elements
of the curve, if any, that allow us to analyze curves of degree, say, 100 in just a few seconds.
The approach can be generalized to checking whether two given planar curves are similar,
an important problem in Pattern Recognition [4].
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