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Abstract

Coastal erosion is and will be an increasing major environmental
issue. We apply shape optimization techniques to the design of coastal
structures such as breakwaters, groins and other innovative shapes. Ac-
tually, we compute the solution of a boundary value problem describing
the water waves scattered by the structure and modify accordingly its
shape, in order to minimize a pre-defined cost function taking into
account the strength (energy) of the waterwaves. The optimization
procedure relies on a new global semi-deterministic algorithm, able to
pursue beyond local minima.

keywords. shape optimization, global recursive multi-layer optimization,
coastal engineering, water waves, scattering, Helmholtz equation.

1 Hydrodynamics of water waves scattering.

We consider the case of a coastline provided with identical vertical emerged
structures which we seek to control and optimize. These structures are fully
reflective. In order to simplify the computation, we assume that the response
of structures on a given incident wave is periodically reproduced along the
coastline. So, we study the reflection on only one structure by using periodic
lateral conditions (See figure 1). The depth in Ω is a constant equal to h. We
assume an inviscid and irrotational flow with velocity u = (u, v, w) solution
of

u = −∇Φ (1.1)

where Φ = Φ(x, z, t) is a three dimensional velocity potential in the domain
Ω and x = (x, y). Owing to boundary conditions (free surface and no-
penetration at the bottom), the classical expression for the potential Φ is (
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Figure 1: The coastline with five structures of defense

see [2])

Φ(x, z, t) = i
g

σ

cosh k(h + z)

cosh kh
η(x, t) (1.2)

where free surface displacement η(x, t) is the free surface displacement. Wa-
ter waves, assumed to be time harmonic, are described by the following
expression :

η(x, t) = ξ(x)e−iσt.

Thus, we are only interested in the space component ξ(x). The incoming
waves are assumed monochromatic.

ξi(x) = aeik·x (1.3)

Moreover, we have the dispersion equation. σ2 = gk tanh(kh) which for
deep water waves (case kh ≫ π) is reduced to σ2 = kg and ξ(x) solves the
Helmholtz equation.

∂2ξ

∂x2
+

∂2ξ

∂y2
+ k2ξ(x) = 0 (1.4)

To compute the reflected free surface elevation, we decompose the total field
as a sum ξ = ξi + ξr where ξi is a given incident field and ξr the reflected
field solution of a boundary value problem described below. The domain
Ω is described in figure 1 where Γ0 (shoreline and structures) is a fully
reflective boundary, Γ1 (off-shore)is an open boundary and Γ2,(a,b) (lateral
sides) a periodic boundary. Thus ξr is solution of the following boundary
value problem,
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∆ξr(x, y) + k2ξr(x, y) = 0 on Ω
∂ξr

∂n
= −

∂ξi

∂n
on Γ0

∂ξr

∂n
− ikξr = 0 on Γ1

(ξi + ξr)|Γ2,a
= (ξi + ξr)|Γ2,b

(1.5)
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This is a well-posed problem, see [1]. The numerical computation of the
solution is performed with Femlab R© finite element solver on triangular
grids.

2 Optimization.

A shape optimization problem consists in the minimization of a functional
J ∈ R, also called cost function. This function depends on x, a design
parameter defining the shape within the admissible set X, also called control

space ([5]). We have a direct calculation loop for the functional: from a
parameterization x we define a domain Ω(x) on which we compute the state
equation solution u(Ω(x)) and the cost function J(x):

J : x ∈ X 7→ Ω(x) 7→ u(Ω(x)) 7→ J(x, Ω(x), u(Ω(x)))

The functional J can be penalized to include geometric and state constraints.
To find numerically the minimum of J , it is necessary to use a minimization
algorithm, e.g. steepest descent, genetic algorithms . . . here we use a new
global recursive algorithm ([3, 4]).

We present some examples of parameterizations for vertical emerged
structure and cost function allowing to control the free surface elevation
along the coastline. These choices are illustrative and other parameters and
cost functions can be considered.

The incident waves will be either an unidirectional incident water wave
of south-east direction (mono-directional case)or a set of incident wave direc-
tion (south-east,south,south-west) (multi-directional case). It is clear that
the choice of J greatly influences the quality of optimization. The more phys-
ically relevant the cost function is, the better the results. We consider that
the shape of the structure is efficient if it decreases the energy norm L2 of
water waves free surface in the admissible area Ωad representing the coastline
between two successive structures. In addition, we ask for the solution to be
as uniform as possible near the coastline by penalizing its standard deviation

‖ ∇ξ(x)−∇ξ(x) ‖L2(Ωad) where ∇ξ(x) = ( ∂ξ
∂x

, ∂ξ
∂y

) is a 2-dimensional average.

Thus we want to minimize the following cost function J : X → R, in the
mono-directional case

J(x) =‖ ξθ0
(x) ‖L2(Ωad) + ‖ ∇ξθ0

(x) −∇ξθ0
(x) ‖L2(Ωad) (2.6)

in the multi-directional case

J(x) =
∑

θ=−π
4

,−π
2
,− 3π

4

(

‖ ξθ(x) ‖L2(Ωad) + ‖ ∇ξθ(x) −∇ξθ(x) ‖L2(Ωad)

)

(2.7)
where ξθ(x) is the total water wave resulting from the incident water wave
of direction θ in the domain defined by the parameterization x.

3



3 Some results

For the optimization, we consider a main wave period T of 2 seconds and
an amplitude a of 2 meters. For the shape optimization of structures, we
choose two different configurations. In a first case, we restrict ourselves with
classical shapes (groins). In the second case, we remove all shape constraints
and obtain innovating and non-intuitive shapes. The optimized case reduces
the value of the cost function by 75% w.r.t. classical groins perpendicular to
the shoreline. The shape obtained for the multi-directional case is all in all
better than the one obtained in the mono-directional case. Surprisingly, the
values of the cost function, for the SE direction, only differ by 4% whereas
for incidental waves of southern (resp. SW) direction, they are 15% (resp.
60% ) more effective (see fig. 2).

Figure 2: Free surface elevation ξ resulting from a reflection (-Up) on
optimized structures for the mono-directional case, (-Down) on optimized
structures for the multi-directional case.

Last, we let optimization be carried out without any constraints on the
structures. So the optimized shapes obtained are not rectangular any more,
and thus might be more difficult to realize in the real world. . . . The free
surface elevation is shown on figure 3. For this configuration, the cost func-
tion decreases by more than 85% compared to case of rectangular structure
perpendicular at the coastline ( see fig. 3).
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Figure 3: Free surface elevation ξ resulting from a reflection (-
Up) on rectangular structures perpendicular at the coastline, (-Down) on
optimized zig-zag structures.
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