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Abstract

The paper shows that shape optimization can be efficiently applied to ocean engineering.

This is a barred beach protection study in which the solution is to dispose a new type of

water wave attenuator device, called geotextile tube, in order to reduce the suspension of

sediments. A general and realistic parameterization for the geotextile tube is presented

and a refraction-diffraction model is used for the computation. A global optimization

algorithm, able to pursue beyond local minima, is used for the search of the optimum

properties of the geotextile tube.

Keywords. Shape optimization, global recursive multi-layer optimization, boundary-value
problem, water wave propagation, scattering, coastal engineering.

1 Introduction

Many minimization algorithms which perform the minimization of a cost function J can be seen
as discretizations of continuous first or second order dynamical systems with associated initial
conditions [15]. We will see that if one introduces an extra information on the infimum, solving
global optimization problems using these algorithms is equivalent to solving Boundary Value
Problems (BVP) for the same equations. A motivating idea is therefore to apply algorithms
solving BVPs to perform this global optimization.

In this paper we present a reformulation of global minimization problems in terms of over-
determined BVPs, discuss the existence of their solutions and present an algorithm solving
those problems.

The use of global optimization algorithms for shape optimization study is very important.
Indeed, because of excessive cost of global optimization, techniques usually only local minimiza-
tion algorithms are used for shape optimization of distributed systems, especially with fluids
[12, 7]. The semi-deterministic algorithm presented here allows global optimization of systems
governed by PDEs at reasonable cost.

To our knowledge, despite the fact that beach protection becomes a major problem, shape
optimization techniques have never been used in coastal engineering. Groins, breakwaters or
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many other structures are used to decimate water waves or to control sediment flows but their
shapes are usually determined using simple hydrodynamical assumptions, structural strength
laws and empirical considerations. In this study, we expose a general modelling for a new type
of defense structures, namely geotextile tubes, and apply a semi-deterministic algorithm to the
problem of beach protection between Sète and Marseillan (NW Mediterranean sea, Gulf of Lion,
France).

In section 2, we recall the state of art on geotextiles tubes. Section 3 presents the global
optimization method and mathematical background. In Section 4, the geotube modelling,
the physical optimization problem are presented. Finally, Section 5 exposes and discusses
optimization results.

2 Geotextile tubes

In order to decimate the water waves impact along the coastline, many devices are tested
before. Until recently, the most used are emerged break-waters or groins, built by using rocks
or concrete. However, these techniques require a hight cost and are not adapted, to long-
term, for the beach protection because they shift the erosion process at other places instead of
reducing it.

Currently, a new type of attenuator devices for the water waves acts on the coastal hydro-
sedimentary system more efficiently and softly than traditional emerged brake-waters. These
devices are geotextile tubes, also called geotubes (See Figure 1-Up). To some extent, attenu-
ator devices in geotextile only act on the intensity of the most destroying water waves. Thus,
geotubes must be, on one hand, developed on deep enough sea bottom to be sufficiently trans-
parent w.r.t the small water waves and on the other hand, developed sufficiently far from the
coastline so as to act before the water wave does not accentuate the erosive process. Practically,
efficient geotextile tubes will have to make it possible to attenuate the water waves higher than
2m (called destructive water waves) and to be as transparent as possible w.r.t the water waves
lower than 2m (called constructive water waves) .

This paper discusses specific shape optimization for the geotubes which solve the erosion
problem in a beach protection project referring to the coast, more precisely a barred beach,
between Sète and Marseillan (NW Mediterranean sea, France) (See Figure 1-Down). This
problem is proposed by BRL engineering (BRLi), a subsidiary of the Compagnie Nationale
d’Aménagement de la Région du Bas-Rhône et du Languedoc. It is a great challenge in term
of optimization because a agreement is in progress for the adjustment of the site in 2008.

3 Optimization method

We consider the following minimization problem:

min
x∈Ωad

J(x) (1)

where J : Ωad → IR is called cost function, x is the optimization parameter and belongs
to an admissible space Ωad ⊂ IRN , with N ∈ IN. We make the following assumptions [2]:
J ∈ C2(Ωad, IR) and coercive. The infimum of J is denoted by Jm.

To solve problem (1), we introduce a new class of global minimization methods based on
the solution of BVP.
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Figure 1: Up- An emerged geotextile tube; Down- The barred beach between Sète and Mar-
seillan (satellite picture).
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3.1 BVP formulation of optimization problems

Many minimization algorithms which perform the minimization of J can be seen as discretiza-
tions of continuous first or second order dynamical systems with associated initial conditions
[14, 2].

A numerical global optimization of J with one of those algorithms, called here core opti-
mization method, is possible if the following BVP has a solution:

{

First or second order initial value problem
mint∈[0,Z](|J(x(t)) − Jm|) < ǫ

(2)

where x(t) is the solution of the considered dynamical system found at time t ∈ IR, Z is a given
finite time Z ∈ IR and ǫ is the approximation precision. In practice, when Jm is unknown, we
set Jm to a lower value (for example Jm = 0 for a non-negative function J) and look for the
best solution for a given complexity and computational effort.

This BVP is over-determined as it includes more conditions than derivatives. This over-
determination can be removed for instance by considering one of the initial conditions in the
considered dynamical system as a new variable denoted by v. Then we could use what is known
on BVP theory, for example a shooting method [14], in order to determine a suitable v solving
(2).

3.2 General method for the resolution of BVP (2)

In order to solve previous BVP (2), we consider the following general method:

We introduce a function h : Ωad → IR given by:

h(v) = min
t∈[0,Z]

(J(x(t, v)) − Jm) (3)

where x(t, v) is the solution of the dynamical system (2) starting from the initial condition v,
defined previously, at time t. Z ∈ IR.

Solving BVP (2) can be performed by minimizing in Ωad function (3).

Depending on the selected optimization method, h is usually a discontinuous plateau func-
tion:

For example, if a Steepest Descent method is used as core optimization method, the asso-
ciated dynamical system reaches, in theory, the same local minimum when it starts from any
points included in a same attraction basin. In other words, if Z is large enough, h(v) is piece-
wise constant with values corresponding to the local minima of J(x(Z, v)). Furthermore, h(v)
is discontinuous where the functional reaches a local maximum, or has a plateau (see Figure
(2)).

Thus, one way to minimize such a kind of function is for instance to use a GA. But this
method is numerically expensive. We propose a cheaper multi-layers algorithm based on line
search methods [14]:

We first consider the following algorithm A1(v1, v2):

- (v1, v2) ∈ Ωad × Ωad given

- Find v ∈ argminw∈O(v2)h(w) where O(v2) = {v1 + t(v2 − v1), t ∈ IR} ∩ Ωad using a line
search method
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- return v

The line search minimization in A1 is defined by the user. It might fails. For instance, a
secant method [14] degenerates on plateaus and critical points. In this case, in order to have a
multidimensional search, we add an external layer to the algorithm A1 by minimizing h′ defined
by:

h′(v′) = h(A1(v
′, w′)) (4)

with w′ chosen randomly in Ωad.

This leads to the following two-layers algorithm A2(v
′
1, v

′
2):

- (v′
1, v

′
2) ∈ Ωad × Ωad given

- Find v′ ∈ argminw∈O(v′

2
)h

′(w) where O(v′
2) = {v′

1 + t(v′
2 − v′

1), t ∈ IR} ∩Ωad using a line
search method

- return v′

The line search minimization in A2 is defined by the user.

N.B Here we have only described a two-layers structure. But this construction can be pur-
sued by building recursively hi(vi

1) = hi−1(Ai−1(v
i
1, v

i
2)), with h1(v) = h(v) and h2(v) = h′(v)

where i = 1, 2, 3, ... denotes the external layer.

During this work, we call this general recursive algorithm: Semi-Deterministic Algorithm
(SDA). For each class of method used as core optimization method, we will describe more
precisely the SDA implementation.

3.3 1st order dynamical system based methods

We consider optimization methods that come from the discretization of the following dynamical
system [2, 13, 14]:

{

M(ζ, x(ζ))xζ(ζ) = −d(x(ζ))
x(ζ = 0) = x0

(5)

where ζ is a fictitious time. xζ = dx
dζ

. M is an operator, d : Ωad → IRN is a function giving a
suitable direction.

For example:

• If d = ∇J , the gradient of J , and M(ζ, x(ζ)) = Id, the identity operator, we recover the
classical steepest descent method.

• If d = ∇J and M(ζ, x(ζ)) = ∇2J(x(ζ)) the Hessian of J , we recover the Newton method.

In this case, BVP (2) can be rewritten as:







M(ζ, x(ζ))xζ = −d(x(ζ))
x(0) = x0

mint∈[0,Z](|J(x(t)) − Jm|) < ǫ
(6)

This BVP is over-determined by x0. i.e, the choice of x0 determines if BVP (6) admits or
not a solution. For instance, in the case of a steepest descent method, BVP (6) generally has
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Figure 2: Graphical representation of one iteration of the algorithm A1 considering a steepest
descent method as core optimization method. h(X2) is lower than h(X1), thus X3 is build

starting from X2 and considering the direction ~X1X2.

a solution if x0 is in the attraction basin of the global minimum. More usually, it exits a x0

solving BVP (6): x0 ∈ argminx∈Ωad
J(x).

In order to determine a such x0, we consider the implementation of algorithms Ai with
i = 1, 2, 3, ... (here we limit the presentation to i = 2).

The first layer A1 is applied with a secant method in order to perform line search. The
output is denoted byA1(v1, J, I, ǫ), and the algorithm reads:

Input: v1, J, I, ǫ
v2 chosen randomly
For l
from 1 to J
ol = D(vl, I, ǫ)
ol+1 = D(vl+1, I, ǫ)
If J(ol) = J(ol+1) EndFor
If min{J(om),m = 1, ..., l} < ǫ EndFor
vl+2 = vl+1 − J(ol+1)

vl+1−vl

J(ol+1)−J(ol)

EndFor
Output: A1(v1, J, I, ǫ):

argmin{J(om), p)m = 1, ..., l}

where v1 ∈ Ω, ǫ ∈ IR+ and (J, I) ∈ IN2 are respectively the initial condition, the stopping
criterion and the iteration numbers. D(v, I, ǫ) is the solution returned by the core optimization
algorithm starting from the initial point v after I iterations with a stopping criterion ǫ. A
graphical representation of one iteration of A1 is given by Figure 2.

The second layer A2 is applied with a secant method in order to perform line search. The
output is denoted by A2(w1,K, J, I, ǫ), and the algorithm reads:

Input: w1,K, J, I, ǫ
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Figure 3: Graphical representation of one iteration of the algorithm A2 considering a steepest
descent method as core optimization method. Cost function f : IR2 → IR is represented by its
iso-contours.A1(X

′
1) is lower than A1(X1), thus X ′′

1 is build starting from X ′
1 and considering

the direction ~X ′
1X1.

w2 chosen randomly
For l going from 1 to K
pl = A1(wl, J, I, ǫ)
pl+1 = A1(wl+1, J, I, ǫ)
If J(pl) = J(pl+1) EndFor
If min{J(pm),m = 1, ..., l} < ǫ EndFor
wl+2 = wl+1 − J(pl+1)

wl+1−wl

J(pl+1)−J(pl)

EndFor
Output: A2(w1,K, J, I, ǫ):

argmin{J(pm),m = 1, ..., l}

where w1 ∈ Ω, ǫ ∈ IR+ and (K,J, I) ∈ IN3 are respectively the initial condition, the stopping
criterion and the iteration numbers. A graphical representation of one iteration of A2 is given
by Figure 3.

3.4 2nd order dynamical system based methods

In order to keep an exploratory character during the optimization process, allowing us to escape
from attraction basins, we could use variants of previous methods after adding second order
derivatives.

For instance we could consider methods coming from the discretization of the following
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’heavy ball ’ dynamical system [1]:

{

ηxζζ(ζ) + M(ζ, x(ζ))xζ(ζ) = −d(x(ζ)),
x(0) = x0, xζ(0) = xζ,0

(7)

with η ∈ IR.
In this case, the associated BVP (2) is of the form:







ηxζζ(ζ) + M(ζ, x(ζ))xζ(ζ) = −d(x(ζ)),
x(0) = x0, xζ(0) = xζ,0

mint∈[0,Z](|J(x(t)) − Jm|) < ǫ
(8)

System (8) can be solved by considering x0 (as previously) or xζ,0 as a new variable. In
the first case the existence of solution for BVP (8) is trivial. In the second case, considering
particular hypothesis interesting in numerical analysis, when x0 is fixed it can be proved that
it exists a xζ,0 such that BVP (8) admits numerical solutions.

3.4.1 Existence of solution for BVP (8)

The following theorem proves, considering particular hypothesis, the existence of an initial
condition xζ,0 solving numerically BVP (8).

Theorem 1 Let J : IRn → IR be a C2-function such that minIRn J exists and is reached at
xm ∈ IRn. Then for every (x0, δ) ∈ IRn × IR+, exists (σ, t) ∈ IRn × IR+ such that the solution
of the following dynamical system:







ηxζζ(ζ) + xζ(ζ) = −∇J(x(ζ))
x(0) = x0

xζ(0) = σ
(9)

with η ∈ IR, passes at time ζ = t into the ball Bδ(xm).

Proof :

We assume x0 6= xm. Let ǫ > 0, we consider the dynamical system:







ηyττ (τ) + ǫyτ (τ) = −ǫ2∇J(x(τ))
y(0) = x0

yτ (0) = ̺(xm − x0)
(10)

with ̺ in IR+\{0}.

• Assume that ǫ = 0, we obtain the following system :







ηyττ,0(τ) = 0
y0(0) = x0

yτ,0(0) = ̺(xm − x0)
(11)

System (11) describes a straight line of origin x0 and passing at time θ̺ by the point xm,
i.e. y0(θ̺) = xm.
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• Assume that ǫ 6= 0. System (10) could be rewritten as:















(

y(τ)
ηyτ (τ)

)

τ

=

(

yτ (τ)
−ǫyτ (τ) − ǫ2∇J(y(τ))

)

y(0) = x0

yτ (0) = ̺(xm − x0)

(12)

System (12) is of the form yτ = f(τ, y, ǫ), with f satisfying the Cauchy-Lipschitz condi-
tions. Applying the Cauchy-Lipschitz Theorem [5]:

|yǫ(θ̺) − y0(θ̺)| →ǫ→0 0 uniformly.

Thus for every δ ∈ IR+\{0}, there exists ǫδ such that for every ǫ < ǫδ:
|yǫ(θ̺) − xm| < δ (T.1)

Let δ ∈ IR+\{0}. We consider the following variable changing ζ = ǫδτ and x(ζ) = yǫδ
( ζ

ǫδ
).

System (10) becomes:







ηxζζ(ζ) + xζ(ζ) = −∇J(x(ζ))
x(0) = x0

ẋ(0) = ̺
ǫδ

(xm − x0)
(13)

Let ϑ = ǫδθ̺. Under this assumption, x(ϑ) = yǫδ
(θ̺). Thus, due to (T.1) : |x(ϑ) − xm| < δ.

We have found σ = ̺
ǫδ

(xm − x0) ∈ IRn and t = ϑ ∈ IR+ such that the solution of system (9)

passes at time t into the ball Bδ(xm).

�

3.4.2 Algorithmic implementation

In order to determine a suitable x0 or xζ,0 solving BVP (8), we can consider, for instance, the
same algorithms A1 and A2 introduced in section 3.3.

3.5 Other hybridizations with SDA

In practice, any user-defined, black-box or commercial minimization package starting from an
initial condition can be used to build the core optimization sequences in the SDA presented
in section 3.2. In that sense, the algorithm permits the user to exploit his knowledge on his
optimization problem and to improve it. In the same way, preconditioning can be introduced
at any layer, and in particular at the lowest one.

3.6 Comparison of 1st and 2nd order system approaches on a bench-
mark function

In this section we apply algorithms, included in the class of semi-deterministic methods exposed
previously, to a typical benchmark optimization problem.

We consider various versions of our SDA algorithms Ai (where i equals to 1,2 or 3) presented
previously. The core optimization method is selected among the following list:
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MRF SD2A-1L SD2A-2L SD2A-3L HBSDA
n=10 / ǫ = 10−6 Fail 1000 1500 2000
n=100 / ǫ = 10−7 Fail 1200 2500 3000
n=1000 / ǫ = 10−8 Fail 1500 5000 6000

Table 1: MRF results: Iteration number needed to obtain a reduction ǫ of the initial value of
the cost function. from (top) to (bottom): n = 10 with a reduction ǫ = 10−6,n = 100 with a
reduction ǫ = 10−7 and n = 1000 with a reduction ǫ = 10−8.

1- Steepest Descent method: It’s defined by the following algorithm with an output called
D(x0, I, ǫ), where the inputs x0 ∈ Ω, ǫ ∈ IR+ are respectively the initial condition and the
stopping criterion:

• Input: x0, I, ǫ
• x1 = x0

For n going from 1 to I
• Determine ρopt = argminρ(J(xn − ρ∇J(xn))) using dichotomy
• xn+1 = xn − ρopt∇J(xn)
• If J(xn+1) < Jm + ǫ EndFor

EndFor
• Output: D(x0, I, ǫ) = xn+1

where the input I, the iteration number, is set to 10.
This algorithm denoted by SD2A (Steespest Descent based SDA) is used with different

numbers of layer. We denotes:

• SD2A-1L when we consider the one-layer algorithm A1.

• SD2A-2L when we consider the two-layers algorithm A2.

• SD2A-3L when we consider the three-layers algorithm A3.

2- Heavy Ball dynamical system based algorithm: We discretize system (8) [2]. The
initial condition x0 and iteration number of the core algorithm I = 10 are fixed, xζ,0 becomes
the parameter of SDA method A2.

This algorithm will be denoted by HBSDA (Heavy Ball method based SDA)
In order to compare previous optimization methods we consider the minimization problem

of the following modified Rastringin function:

J(x) =

n
∑

j=1

(sin(xj)
2 − cos(18xj)), x ∈ [−2, 2]n (14)

with n = 10, 100 and 1000. The minimum of J , Jm = 0, is reached at the origin. A two-
dimensional representation of this function is presented by Figure 4.

This is a general non-convex function with a large number of minima. As we can observe
on Table 1 SD2A − 2L gives the best result in term of computational effort.

According to those results and other benchmark tests present in [6], we’ve decided to use
the algorithm SD2A − L2 with the following parameters (M,N, I, ǫ) = (5, 5, 10, 1.e−6). These
values give a good compromise between computation complexity and result accuracy. In order
to simplify notations, it will be denoted by SDA.
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Figure 4: Modified Rastringin Function: two dimensional representation.

3.7 A particular test case

As far as we are concerned, we are particularly interested in the search of the global optimum
when the control space is not connected. Actually, during the optimization of the position of
geotubes, we are brought to consider a unconnected search space, due to practical, economical
or political reasons which may forbid construction on a given zone. Consequently, to illustrate
the efficiency of the preceding in this particular test case, we consider the minimization of an
academic cost function defined on an unconnected domain. The admissible domain considered

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

X
2X

1

admissible space

Figure 5: In grey, the admissible space Ωad

for the parameters, also called search space, is Ωad = X1 ∪ X2 with X1 = [−3, 3] × [−3,−2] ∪
[−3,−2] × [−2, 2] ∪ [2, 3] × [−2, 2] ∪ [−3, 3] × [2, 3] and X2 = [−1, 1] × [−1, 1] (See in Figure
5). It is clearly an unconnected domain in R

2. The cost function to minimize is defined by
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J : X → R where J(x1, x2) = x1
2 + x2

2. It is clear that the exact global minimum of J is

0 and is obtained for xopt = (x
opt
1 , x

opt
2 ) = (0, 0). We choose voluntarily a starting point in

X1 because (x
opt
1 , x

opt
2 ) /∈ X1. We use the steepest descent method to solve this minimization

problem first in the classical form, then as a core method in our SDA. For the two optimizations,
the step of descent is fixed to ρ = 0.00001.

For the classical gradient method, the convergence is trapped in the domain X1 (See Figure
6-Left). We observe here that the algorithm cannot reach X2 (we have chosen a small step of
descent in order to be sure that the algorithm cannot reach to X2 by luck) and what is more, it
converges along the border toward the point (−2, 0), a global minimum of X1 but only a local
minimum for Ωad.

Concerning the optimization using SDA, we observe that the global minimum is found. We
observe, in Figure 6-Right, all the xk tested during the optimization. The space X2 is reached
thanks to the multi-layer property of the algorithm. Indeed, the fact of considering the initial
condition as a new unknown of the problem makes it possible, by the use of a shooting method,
to explore the field overall. An optimal research for the step of descent is not necessary any
more.

−3 −2 −1 0 1 2 3

−3

−2

−1

0 

1

2 

3

−3 −2 −1 0 1 2 3

−3

−2

−1

0

1

2

3

Figure 6: The circles represent all the xk tested during the optimization for the computation
of J. Left : for the classical gradient method. Right : for the gradient method as a core method
in the SDA.

4 Geotextile tubes modelling

The Semi-Deterministic Algorithm above is used to optimize the shape of a given geotube and
the distance to the coast in order to reduce the suspension of sediments that can be expressed
as a function of E = 1

8ρgH2. This energy is crucial in the erosion process. Near the coastline,
the more this energy raises, the more the sediments are detached and move under the water
wave action. The resulting sand loss on the beach generates erosion.

4.1 Shape design

To generalize, a geotextile tube can be compared to a large stocking made of synthetic textile
and filled with sand. When it is full, the device is completely stable. Along a cross-shore profile,
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a general geotube can be assimilated to a flattened ellipsoid. The objective is to parameterize
a geotube in our domain such that we can control its shape, position, height and width.

Before given the parameterization considered, we show, in Figure 7, the planned solution for
the studied beach protection. As we can see, the improvement consists to restructure the beach
and the two natural sandbars by sand recharging, and after, to place two geotubes side-by-side
behind the second natural sandbar in order to protect the new beach. For the parameterization,
we assume that the two geotubes side-by-side can be assimilated to one geotube twice as large.

Figure 7: The improvement of the considered site

For the computation, the model uses a finite-difference mesh grid defined by a couple
(mr, nr) representing the distance in the

−→
0x and

−→
0y direction. dxr and dyr are respectively the

step in the x-axis and the y-axis. So, in each node (i, j), we can compute the (x, y)-coordinates
by x = (mr − i) ∗ dxr and y = (nr − j) ∗ dyr and we have a value bath(i, j) corresponding to
the initial topobathymetry.

We parameterize the position by using a series of control points (xk, yk)k∈{1,...,N} in the grid
[0,mr ∗ dxr] × [0, nr ∗ dyr], where N equals the number of points used to define the geotube
(two control points give a straight classical geotube instead of three or more control points give
more original shape by using splines). The shape of the geotube is parameterized by the use

of a gaussian function of the form f(x) = He−sx2

where x is the distance between a point
of the mesh and its orthogonal projection on the line defining the geotube. Thus we have, in
each node (i, j), a new value addbath(i, j) which permit to build the new topobathymetry (see
Figure 8-Left). This add two supplementaries parameters (s,H) for the control of the height
and the width.

In this paper, due to industrial constraints given by BRLi, we reduce the total number of
parameters to 2 by considering only the distance from the coast and the height of the geotube.
We expose, in Figure 8-Right, the initial and the modified topobathymetry of the shoreface.

So, we account for the following constraints:

• The studied coastal zone is 2.4 km long.

• One geotube is considered with a length equal to the length of the beach.

• The geotube is assumed straight.

• The width is fixed to 12 m.

• The propagation is computed for water waves data at 1.2 km far from the coastline.
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Figure 8: Left : The profile parameterization for the geotube in a academic linear topography;
Right : Up- The initial topobathymetry of the barred beach, Down- Implementation of geotube
in the topobathymetry. Note that both ends are smoothed by a suitable function.

• The position far from the coastline for the geotube belongs to the unconnnected space
[100, 200]∪ [300, 850] meters, i-e the geotube cannot be located in the top of the secondly
natural sandy bar.

• Starting from data given by CANDHIS (National Center Archive for In Situ Wave Data,
http://www.cetmef.equipement.gouv.fr/donnees/candhis/), we compute for the two cat-
egories of the water waves (see section 2) the following mean significative height Hs,
mean period Ts and mean frequency of observation p for four significant directions of
propagation. We display the data in the following Table 2.

South South South East East South East East

reconstructives Hs = 0.76m Hs = 0.85m Hs = 0.85m Hs = 0.66m
water Ts = 4.96s Ts = 5.21s Ts = 5.21s Ts = 4.99s
waves p = 24.66% p = 22.75% p = 22.75% p = 17.5%

destructives Hs = 2.91m Hs = 3.233m Hs = 3.233m Hs = 3.55m
water Ts = 7.54s Ts = 7.78s Ts = 7.78s Ts = 8.03s
waves p = 2.84% p = 3.25% p = 3.25% p = 2.5%

Table 2: Hydrodynamics data for the computation

4.2 State equation

The water wave propagation and the transformation of a forward scattered wave field along an
irregular mild slope is computed by using the refraction-diffraction model REF/DIF developed
at the Center for Applied Coastal Research (University of Delaware, US) [8, 9]. This program
is implemented in Fortran.
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This finite-difference model is based on a combination between the following elliptic mild-
slope equation [3, 16, 4]

∇ · (CCg∇ξ) + ω2

(

Cg

C

)

ξ = 0 (15)

where h is the depth, k the wave number, g the gravity acceleration, C =
√

g
k

tanh kh the

velocity of the wave and Cg = C
(1+ 2kh

sinh 2kh
)

2 the group velocity, and the following parabolic
model for the diffraction [11, 10],

2i
∂A

∂x
+

1

k

∂A2

∂2y
− K ′|A|2A = 0 (16)

where A the complex amplitude such that ξ(x, y) = A(x, y)eikx and

K ′ = k3

(

C

Cg

)

cosh 4kh + 8 − 2 tanh2 kh

8 sinh4 kh
. (17)

Moreover, the wave number satisfies the dispersion equation

w2 = gk tanh kh (18)

where ω is the angular frequency.

4.3 Cost function

The longshore sediment drift is mainly due to water waves breaking on the barred beach with
a big mechanic energy.

The aim of the device is to prematurely release this energy by breaking the water waves
sufficiently far away from the coastline.

Dire ici la zone choisi et pourquoi?
However, as we have seen in section 2, we consider two categories of water waves for the

study, the constructive and the destructive ones, and we consider the following cost function to
minimize

J =

∫

D
Edestrucds

∫

D
Econstrucds

(19)

where, for a point (xi, yi) in D = [100, 250] × [0, 2400], the energy is given by the expression

E(xi, yi) =
1

8
ρgH(xi, yi)

2 (20)

where ρ is the water density and H(xi, yi) = 2A(xi, yi).
From a physical point of view, this cost function aim at decreasing the energy for the

destructive water waves and to be non active for the constructive water waves.

5 Results and discussion

In order to show that global optimization is of great interest for coastal engineering, we fix the
height of the geotube to 3m, sample the offshore distance between 100 and 750 seaward. We
compute the cost function value for a geotube located at each sampled position. We obtain the
cost function evolution w.r.t the geotube position presented in Figure 9. We clearly see that
the minimum is obtained for a geotube located about 350m far from the coastline and that the
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Figure 9: Cost function evolution w.r.t to the geotube position

cost function is obviously non-convex. The objective here is to recover the global optimum by
starting the algorithm in a local attraction basin. The optimization problem is performed using
the two-layer algorithm A2 with a conjugate steepest descent algorithm as core optimization
method. Each steepest descent iteration number equals to 100. The layer iteration number
is set to 5 (i.e. K = L = 5). SDA starts from an initial topobathymetry created with a
geotextile tube located 550m far from the coast with a height of 3m. The optimal configuration
is obtained for a geotube located 353m far from the coast with a height equals to 2.5m. We
can observe, in Table 3, that the optimized geotube is, on the one hand, transparent for the
constructive water waves, i-e it does not affect the small water waves, and on the other hand,
efficient for the four propagation directions considered, i-e it significantly weakens the energy
in each case compared to the topography without geotube. In general, the cost function is
reduced by 21% with this optimized geotube. We show the cost function convergence histories
in Figure 10. We point out that SDA has visited several attraction basins before exploring the
best element basin. Each state evaluation requires about 15 min on a 3 GHz 1 Gb Ram PC
computer. To illustrate, we show in Figure 11 the comparison between the height H resulting
from the propagation over the optimized geotube and the height for a water waves propagation
over the initial barred beach topobathymetry. The water wave considered is a destructive water
wave with a direction of propagation SSE. We notice that H is indeed lower between 100 et
250 meters far from the coast when we locate a geotube to 353 meters of the coast. This shows
us that a geotube laid immediately downstream from the second natural sandy bar makes it
possible to break the water wave close to the coast. Moreover, the Figure 12 ensures us that
this optimized configuration does not increase the bottom orbital velocity, the fluid particle
velocity, compared to the initial configuration. One is thus assured that shearing at the bottom
is not amplified by this optimal configuration.
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South South South East East South East East

constructive
water == == == ==
waves

destructive
water 15% gain 30% gain 16% gain 15% gain
waves

global gain 21%

Table 3: Optimization results in terms of cost function considered
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Figure 10: Cost function convergence during the optimization
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Figure 11: (solid line) Profile view of the topobathymetry including the optimized geotube and
the resulting height H - (dashed line) the height H resulting of the propagation on the initial
topobathymetry without geotube.
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Figure 12: (solid line) Profile view of the topobathymetry including the optimized geotube
and the resulting orbital velocity Uorb - (dashed line) the orbital velocity Uorb resulting of the
propagation on the initial topobathymetry without geotube.
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Figure 13: free surface elevation for a East destructive water wave on (Up)- the initial topo-
bathymetry; (Down)- on the optimized topobathymetry
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6 Conclusion

An specific formulation for deterministic global optimization based on the solution of initial
and boundary-value problems (BVPs) for the steepest descent method has been presented.
It is applied in a particular beach protection problem similar to the ones we study in coastal
engineering. The obtained results are satisfactory of course they could be improve by increasing
the number of control parameters to construct the geotextile tube.

7 Acknowledgements

This work is part of the COPTER research project (2006-2009) NT05 - 2-42253 funded by
French National Research Agency, which we gratefully acknowledge.

References

[1] H. Attouch and F. Alvarez. The heavy ball with friction dynamical system for convex
constrained minimization problems. Lecture Notes in Economic and Mathematic Systems,
481:25–35, 2000.

[2] H. Attouch and R. Cominetti. A dynamical approach to convex minimization coupling
approximation with the steepest descent method. Journal of Differential Equations,
128(2):519–540, 1996.

[3] J. C. W. Berkhoff. Computation of combined refraction-diffraction. In ASCE., editor,
Proc. 13th Coastal Eng. Conf., Vancouver, pages 471–490, 1972.

[4] N. Booij. Gravity waves on water with non-uniform depth and current. (PhD thesis)
Technical University of Delft, The Netherlands, 1981.

[5] Verhulst F. Nonlinear differential equations and dynamical systems. Springer-Verlag., 1990.

[6] B. Ivorra. Semi-deterministic global optimization. PhD. University of Montpellier 2, 2006.

[7] A. Jameson, F. Austin, M.J. Rossi, W. Van Nostrand, and Knowles G. Static shape control
for adaptive wings. AIAA Journal, 32(9):1895–1901, 1994.

[8] J. T. Kirby and R. A. Dalrymple. A parabolic equation for the combined refraction diffrac-
tion of stokes waves by mildly varying topography. J. Fluid. Mechanics., 136:443–466, 1983.

[9] J. T. Kirby and R. A. Dalrymple. Refdif1 v2.5 refraction diffraction model. Technical re-
port, CACR. Short A.D 1999. Beach and Shoreface Morphodynamics., Wiley:380pp, 1995.

[10] C.C. Mei and E.O. Tuck. Forward scattering by long thin bodies. SIAM J. Appl. Math.,
39(1):178–191, 1980.

[11] C.C. Mei and D.K.P. Yue. Forward diffraction of stokes waves by a thin wedge. J. Fluid
Mech., 99(1):33–52, 1980.

[12] B. Mohammadi and O. Pironneau. Applied shape optimisation for fluids. Oxford University
Press, 2001.

[13] B. Mohammadi and O. Pironneau. Applied Shape Optimization for Fluids. Oxford Uni-
versity Press, 2001.

20



[14] B. Mohammadi and J-H. Saiac. Pratique de la simulation numérique. Dunod, 2002.

[15] B. Mohammadi and J-H. Saiac. Pratique de la simulation numérique. Dunod, 2003.

[16] A. C. Radder. On the parabolic equation method for water-wave propagation. Journal of
Fluid Mechanics, 95(1):159–176, 1979.

21


