Mathematical modeling and simulation for the diffusion of an epidemic of classical swine fever within and between farms

Diego de Pereda Benjamin Ivorra Ángel Manuel Ramos

noma

MINISTERIO DE MEDIO AMBIENTE Y MEDIO RURAL Y MARINO

Outlines

Introduction to epidemiology

Basic concepts

Mathematical modeling

SIR models

Numerical simulations

Application to Classical Swine Fever

Introduction to epidemiology

Definition and objectives

DEFINITION:

Epidemiology consist on the study of spread patterns and associated risk factors of the diseases of humans or animals

The main objectives are:

Describe the **distribution**

Indentify risk factors

Prevention and control

Historical evolution

Historically, epidemics had a great impact on populations, causing demographic changes

Nowadays, some epidemics are persistent (HIV, malaria, tuberculosis, flu, ...)

Historical evolution

Some important achievements:

Daniel Bernouilli (1760): First "statistical" model for smallpox virus variolation

William Heaton (1906): Discrete time model to explain the recurrence of measles

Ronald Ross (1911): PDE model to study the link between malaria and mosquitoes

Differences between diseases

Ways of **transmission**:

Between humans or animals (flu)

By the **environment** (cholera)

By vectors, such as insects (malaria)

Infectious agents (for instance):

Virus. Possible immunity

Bacteria. No immunity

Possible states

Population density distribution

S + E + I + C + R = 1

Basic reproduction number (R₀)

DEFINITION:

 $\mathbf{R}_{\mathbf{0}}$ is the expected number of secondary cases produced by a single infection in a completely susceptible population

lf	$R_0 \leq 1$	then infection will disappear from population
lf	$R_0 > 1$	then infection can be endemic

$$R_0 = \int_0^\infty b(a) F(a) da$$

b(a) is the average **number of infected** individuals that an infectious will produce per unit time when infected for a total time *a F(a)* is the probability that a newly infected individual **remains infectious** for at least time *a*

Mathematical modeling

Deterministic SIR models

New infectious individuals depends on density of susceptible S and infectious I states

Permanent resistant state R in virus infections (S+I+R=1)

Infectious individuals remain $1/\alpha$ days until becoming resistant

$$S \xrightarrow{\beta \text{ SI}} I \xrightarrow{\alpha \text{ I}} R$$

$$S' = -\beta \text{ SI}$$

$$I' = \beta \text{ SI} - \alpha \text{ I}$$

$$R' = \alpha \text{ I}$$

$$R' = \alpha \text{ I}$$

SIR models: Natural death

Individuals have a life expectancy of $1/\mu$ days

Total population is constant (#births = #deaths)

SIR models: Disease death

A proportion θ of individuals that left infectious state I, die because of the disease

Total population stills constant (#births = #deaths)

R₀ value study

R₀ value

$$F(a) = e^{-\theta \alpha a - (1-\theta)\alpha a - \mu a} = e^{-(\alpha + \mu)a}$$
Prob. remains
infectious

$$b(a) = \beta$$
Infected pigs
per unit of time
And apply formula
$$R_0 = \frac{\beta}{\alpha + \mu}$$

Evolution depending on R₀

Numerical simulations

Classical swine fever (CSF)

What it is:

Highly **contagious viral** disease caused by *Flaviviridae Pestivirus*

Affects domestic and wild pigs

Consequences:

Symptoms: fever, hemorrhages, ...

High disease mortality

Severe economical consequences

CSF world distribution

Reports of Classical Swine Fever since 1990

Our scenario

Our data on farms (provided by province of Segovia)

Farm distribution

SEICR farm model

One SEICR model for each farm

CSF spread within a farm

Hybrid model algorithm

Differential equations model with discrete time

Movement of pigs

Way of **transmission**:

When infected pigs are **translated**, epidemic spreads to destination farm

Our data on pig movements (provided by the province of Segovia)

Movements between Segovia's farms in 2008

Origen and destination farms

Quantity of moved

Date of movement

We run a one-year simulation repeating these movements

Movement of pigs

. I I I I I I

Sanitary and Integration groups

Ways of transmission:

Contact with infected trucks or infected fomites (food, materials, ...)

Farms with same sanitary or integration group are susceptible to spread epidemic between each other

Daily rates of infection are 0.0068 for Integration and 0.0065 for Sanitary

Local spread

Local spread

Considering all risk factors

.

Control measures

Infected farm is **depopulated**: all animals are sacrificed

Quarantine during 90 days: Incoming and out-coming **movements are limited**

Detection of infection:

We consider than an infected farm is detected when there is, at least, one pig with clinical signs

$$C * N > 1$$

Control measures

• I I I I I I

Control measures

Conclusions

Conclusions

Work done:

Mathematical modeling and analysis of a CSF epidemic

Simulations with real data

Results:

Infection spreads quickly within and between farms

Local spread is the most relevant risk factor

Control measures are essentials

In a future: Try other control measures

Compute **R**₀ value for this hybrid model

Quantify economical consequences

