Shape optimization on FEMLAB 3.1 platform

Ivorra Benjamin, Isebe Damien & Mohammadi Bijan
Montpellier 2 University
Juan Santiago & David Hertzog
Stanford University
Outlines

- Shape Optimization of Fast Microfluidic Protein Folding Device
 - Problem Modelling
 - Global optimization method
 - Numerical methods comparison
 - Experimental implementation
Outlines

- Shape Optimization of Fast Microfluidic Protein Folding Device
 - Problem Modelling
 - Global optimization method
 - Numerical methods comparison
 - Experimental implementation

- Shape Optimization of coastal structures
 - Problem Modelling
 - Numerical results

Conclusion and perspectives
PART II: Shape Optimization of Fast Microfluidic Protein Folding Device

PART II: Shape Optimization of Fast Microfluidic Protein Folding Device
Modelling

PART II: Shape Optimization of Fast Microfluidic Protein Folding Device

Modelling
- Global Optimization method
- Simplified Gradient
- Shape optimization results
- Experimental implementation

PART III: Shape Optimization of coastal structures minimizing water waves impact

Conclusion and perspectives
Modelling
Modelling

PART II: Shape Optimization of Fast Microfluidic Protein Folding Device

- Global Optimization method
- Simplified Gradient
- Shape optimization results
- Experimental implementation

PART III: Shape Optimization of coastal structures minimizing water waves impact

Conclusion and perspectives
Modelling

Steady equations:

Navier–Stokes

Convective–Diffusion
Global Optimization method

Idea: Improve any optimization method (Here steepest descent method (SD2A) and genetic algorithm (HSGA)) by searching adequate initial conditions.

Simplified Gradient

Coarse meshes: 20 secs / Fine meshes: 2 mins
Computational difference: Difference of 50% !!! △ !!!
Gradient difference: 10%
Shape optimization results

- GA: Evaluations: 5400 / Time: 7 days
- HSGA: Evaluations: 2500 / Time: 3 days
- SD2A: Evaluations: 3400 (90% coarse mesh) / Time: 18 hours
Shape optimization results

- GA: Evaluations: 5400 / Time: 7 days
- HSGA: Evaluations: 2500 / Time: 3 days
- SD2A: Evaluations: 3400 (90% coarse mesh) / Time: 18 hours

Both cases: mixing time $8 \mu s \rightarrow 1.15 \mu s$

Initial mixer

Optimized mixer
Experimental implementation

'Exp' optimized mixer \quad 'Num' optimized mixer

Average gain of $\sim 4\mu s$
PART III: Shape Optimization of coastal structures minimizing water waves impact
Coastal structure modelling
Coastal structure modelling

- on Γ_0: Reflection condition
- on Γ_1: Radiation condition
- on $\Gamma_{2,a}$ and $\Gamma_{2,b}$: Periodic Boundary Condition
Coastal structure modelling

- on Γ_0: Reflection condition
- on Γ_1: Radiation condition
- on $\Gamma_{2,a}$ and $\Gamma_{2,b}$: Periodic Boundary Condition
- incident monochromatic linear small-amplitude water wave:
 \[\xi^i(x) = ae^{i(k \cdot x)} \]
- reflected water wave: solution of $\Delta \xi^r + k^2 \xi^r = 0$ in Ω
Objective: To find the best shape for structure which permit to reduce uniformly the free surface elevation along the coastline (for unidirectional and multidirectional incident water wave).
• **Objective**: To find the best shape for structure which permit to reduce uniformly the free surface elevation along the coastline (for unidirectional and multidirectional incident water wave).

![Parameterization Diagram](image-url)

Figure 1: The parameterization ($n_i = 2$ and $n_{i+1} = 1$).
Results: with feasibility constraints
Results: with feasibility constraints
Results: free optimization

Coastline between two successive structures
Results: free optimization

Coastline between two successive structures

Coastline between two successive structures
Conclusion and perspectives
Other Industrial applications

- Temperature and pollution control in a bunsen flame/ Engine
Other Industrial applications

- Temperature and pollution control in a bunsen flame/ Engine
- Optical filters design
Other Industrial applications

- Temperature and pollution control in a bunsen flame/ Engine
- Optical filters design
- Tomography reconstruction
Other Industrial applications

- Temperature and pollution control in a bunsen flame/ Engine
- Optical filters design
- Tomography reconstruction
- Shape optimization of under aerodynamic and acoustic constraints for internal and external flows
Other Industrial applications

- Temperature and pollution control in a bunsen flame/Engine
- Optical filters design
- Tomography reconstruction
- Shape optimization of under aerodynamic and acoustic constraints for internal and external flows
Other Industrial applications

- Temperature and pollution control in a bunsen flame/ Engine
- Optical filters design
- Tomography reconstruction
- Shape optimization of under aerodynamic and acoustic constraints for internal and external flows
- Optimization of drift spraying
Conclusions and perspectives

- SD is applicable and improve various optimization methods (GA, Steepest descent ...)

15/11/2005

FEMLAB 2005 - p. 16/16
Conclusions and perspectives

- SD is applicable and improve various optimization methods (GA, Steepest descent ...)
- SD has been efficient on various industrial problems
Conclusions and perspectives

- SD is applicable and improve various optimization methods (GA, Steepest descent ...)
- SD has been efficient on various industrial problems
- Perspectives: new method of gradient simplification, other industrial projects (FINANCIAL)...
Conclusions and perspectives

- SD is applicable and improve various optimization methods (GA, Steepest descent ...)
- SD has been efficient on various industrial problems
- Perspectives: new method of gradient simplification, other industrial projects (FINANCIAL)...

Partners: Damien Isèbe, Jean-marc Brun, Jean-Paul Dufour, Patrick Redont (Montpellier), Laurent Dumas (Paris 6) Olivier Durand (Alcatel), Yves Moreau (CEM2) Juan Santiago, David Hertzog, Heinz Pitsch (Stanford) Larvi Debiane (INRIA), Alexandre Ern (ENPC), Thierry Poinsot (Cerfacs), Bouchette Frederic (ISTEEM), Ramos-Del Olmo Angel Manuel (Madrid)

!!! Thank You !!!