

Evaluation of the risk of the spread and the economic impact of Classical Swine Fever and Foot-and-Mouth Disease by using the epidemiological model Be-FAST.

Benjamin Ivorra¹, Beatriz Martinez-Lopez², Eduardo Fernandez Carrion¹, Angel Ramos¹ and Jose Manuel Sanchez-Vizcaino²

¹MOMAT & IMI - ²VISAVET - Universidad Complutense de Madrid

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 1 / 26

Partnership

Partnership

Bibliography

Outlines

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

CSF in Segovia (Spain):

CSF in Bulgaria:

• FMD in Peru:

Bibliography

Partnership

Bibliography

Outlines

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

- A novel spatial and stochastic model to evaluate the within and between farm transmission of classical swine fever virus: I. General concepts and description of the model. Veterinary Microbiology. 147: 300-309. Elsevier. 2011.
- **2.** A novel spatial and stochastic model to evaluate the within and between farm transmission of classical swine fever virus: II Validation of the model. **Veterinary Microbiology**. 155: 21-32. Elsevier. 2012.
- **3.** Evaluation of the risk of classical swine fever (CSF) spreadfrom backyard pigs to other domestic pigs by using the spatial stochastic disease spread model Be-FAST: The example of Bulgaria. **Veterinary Microbiology**. 165: 79-85. Elsevier. 2013.
- Mathematical formulation and validation of the Be-FAST model for CSF Virus spread between and within farms.
 Annals of Operations Research. Online First. 2013

Outlines

Partnership Bibliography

Outlines

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

• Problem definition

- -Diseases description
- -Control measures
- -Economical impact
- -Mathematical modeling interest
- Be-FAST model
 - -Hybrid SI / Individual Based model -Inputs / Outputs
- Considered applications
 - -CSF in Segovia
 - -CSF in Bulgaria
 - -FMD in Peru
- Conclusions and perspectives

Part I: Problem definition

CSF description FMD description

Situation

Transmission

Control measures

Economical Impact

Interest

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

Part I: Problem definition

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 5 / 26

Part I: Problem definition

CSF description

FMD description

Situation

Transmission

Control measures

Economical Impact

Interest

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

Classical Swine Fever description

Classical Swine Fever (CSF) is a non-zoonotic highly contagious viral disease of domestic and wild pigs caused by a *Flaviviridae Pestivirus*.

Infected animals present various symptoms (fever, lesions, hemorrhages...) provoking a disease mortality of $\approx 30\%$ up to 100% (depending of the strain).

Part I: Problem definition

CSF description

FMD description

Situation

Transmission

Control measures

Economical Impact

Interest

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

Foot-and-Mouth Disease description

Foot-and-Mouth Disease (FMD) is a highly contagious viral disease of cloven-hoofed animals (bovine, sheep, swine, camelid etc.) caused by a *Picornaviridae virus* which can rarely contaminate humans.

Infected animals present various symptoms (blisters, severe weight loss, myocarditis ...) provoking a disease mortality of $\approx 20\%$ -50% for adults and 25%-90% for juveniles

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 7 / 26

Global Situation

Partnership Bibliography Outlines

Part I: Problem definition

 $\mathsf{CSF}\ \mathsf{description}$

FMD description

Situation

Transmission

Control measures

Economical Impact

Interest

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

Routes of transmission

Partnership Bibliography Outlines

Part I: Problem definition

 $\mathsf{CSF}\ \mathsf{description}$

FMD description

Situation

Transmission

Control measures Economical Impact Interest

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

The main known routes for farm to farm transmission of the considered livestock diseases are (proportion depending of the disease):

- Airborne spread.
 - Movement of infected domestic animals.
 - Movement of people: yatrogenic, farmers, etc.
 - Contaminated fomites: vehicles, semen, material, etc.
 - Infected food: meat, milk, cereals, etc.
- Infected wild animals : boar, deer, etc..
- Parasites: ticks, etc.

XXVI EURO - INFORMS

Control measures

Partnership Bibliography Outlines

Part I: Problem definition

CSF description

FMD description

Situation

Transmission

Control measures

Economical Impact Interest

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

Depending on the Country legislation, the measures to control and eradicate CSF or FMD epidemics are based on:

Culling.

Zoning.

Movement restrictions.

Increase of active surveillance: diagnostic tests, media campaigns, etc.

Tracing.

Vaccination.

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 10 / 26

Economical impact of outbreaks

Economical costs due to FMD/CSF epidemics are classified as:

Partnership Bibliography Outlines

Part I: Problem definition

 $\mathsf{CSF}\ \mathsf{description}$

FMD description

Situation

Transmission

Control measures

Economical Impact

Interest

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

Indirect: paid by agriculture companies due to meat price devaluation.

Transferable: paid by authorities due to control measures.

- Payable: paid by authorities to compensate third-parties (farms, insurance companies, etc.).
- Computable: paid by third-parties until of the regularization of the situation (e.g., quarantine, culling, etc.).

Example: CSF, 2001, Spain (4rd Pig Producer, 4.500 M€/yr), duration of 1 year, 49 outbreaks, estimated total cost 48 M€.

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 11 / 26

Partnership Bibliography

Part I: Problem

CSF description FMD description

Outlines

definition

Situation

Interest

model

applications

perspectives

Transmission

Control measures Economical Impact

Part II: Be-FAST

Part III: Considered

Conclusions and

Mathematical modeling interest

Main objectives:

Develop a model, called Be-FAST (Between Farm Animal Spread Transmission), which can be adapted to each specific case (disease, region, ...) in order to:

- Analyze the patterns of the spread between farms.
- Characterize the risk areas for disease introduction/spread.
- Estimate the economic losses generated by the epidemics (useful for insurance companies and authorities).
- Evaluate the efficiency of control measures (existing or future).
- Optimize the control policy.

Part I: Problem definition

Part II: Be-FAST model

Structure

Inputs

Outputs

Part III: Considered applications

Conclusions and perspectives

Part II: Be-FAST model

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 13 / 26

Structure

Inputs

Real Data:

Farm data: For each farm i we know:

- (X_i, Y_i) : geographical location.
- $N_i(0)$: number of pigs.
- T_i: type of production.
- $\blacksquare INT_i: Integration group.$
 - SDA_i: Sanitary Defense Association group.

Shipment data: For each animal shipment:

- Farm of origin and destination.
- Date of shipment.
- Number of animals shipped.

Costs data: historical data and actual prices.

Partnership Bibliography Outlines

Part I: Problem definition

Part II: Be-FAST model

Structure

Inputs

Outputs

Part III: Considered applications

Conclusions and perspectives

Outputs

Partnership Bibliography Outlines

Part I: Problem definition

Part II: Be-FAST

model

Structure

Inputs

Outputs

Part III: Considered applications

Conclusions and perspectives

We consider the following outputs:

- We compute statistical values (mean, min, max, 95%Pl, etc.) of representative values:
 - the epidemic duration and the number of infected farms,
 - the percentages of infection due to each disease route,
 - the percentages of detection due to each control measure,
 - the different type of costs,
 - some risk values: the risk of disease introduction RI(i) of each farm i (i.e., the number of times that farm i becomes contaminated).
- We build the geographical distribution of *RI* by considering Inverse Distance Weighted (for interpolation) and Jenks Natural Breaks (for classification) methods.

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Segovia

Bulgaria

Peru

Conclusions and perspectives

Part III: Considered applications

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 17 / 26

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Segovia

Bulgaria Peru

Conclusions and perspectives

CSF in Segovia: Case description

We consider the Spanish region of Segovia (important areas of pig production).

Data of the region: surface of 6796 km², 1400 pig farms,
1.400.000 pigs.
Data from Real Epidemic: 1997-98. 58 infected farms. epidemic duration of 60 days, cost of 36 M€.
Experiments: Model validation. Comparison with InterSpread.

CSF in Segovia: Some results

		Model	Comp. Time (s)	% cause of infection			
Partnership				LOC	INT	SDA	TRA
Bibliography Outlines	-	Be-FAST	9400	54	26	14	6
Part I: Problem definition		IS	11000	51	13	10	26
Part II: Be-FAST		REAL	_	52	24	20	4
model Part III: Considered applications Segovia Bulgaria Peru Conclusions and perspectives			BeFAST		e e e e e e e e e e e e e e e e e e e		
	Es	stimated Sim	ulated Cost: 35 M€((vs. 36	M€).		

CSF in Bulgaria: Case description

We consider Bulgaria:

Partnership Bibliography Outlines

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Segovia

Bulgaria

Peru

Conclusions and perspectives

Data of the region: surface of 110.994 km², 64.000 pig farms, 600.000 pigs. Experiments: Study the Risk of CSF spread due to Backyard farms (assumed elevated).

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 20 / 26

CSF in Bulgaria: Some Results

Partnership Bibliography

Outlines

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Segovia

Bulgaria

Peru

Conclusions and perspectives

Farm Type	Industrial	Family type	Backyard	East Balkan
% of inf.	56.1	20.3	13.2	10.4
Median RI	7.5	1	1	1

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 21 / 26

FMD in Peru: Case description

We consider **Peru**:

Data of the region: surface of 1.285.216 km², 2.000.000 farms, 15.240.348 animals. Real epidemic data (OEI).
 Experiments: Study the Risk of FMD spread. Evaluate the impact of movement restriction in the worst scenarios.

FMD in Peru: Some Results

Partnership Bibliography Outlines

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Segovia

Bulgaria

Peru

Conclusions and perspectives

Culled farms	770		
Culled animals	9.500		
Restricted farms	500.000		
Restricted animals	3.000.000		
Epidemic length	260		

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 23 / 26

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

Conclusions and perspectives

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases - 24 / 26

Partnership Bibliography

Part I: Problem

Part II: Be-FAST

Part III: Considered

Conclusions and perspectives

Outlines

definition

applications

model

Conclusions and perspectives

Conclusions:

We have introduced and described a new model for the study of the spread of some livestock diseases:

- Novel characteristics respecting to other models: Hybrid model, use of real database ⇒ interest for risk maps.
 - The results are consistent with real observations.
 - Include the economical aspect.

Next steps:

- Applications to risk management: Optimization of control measures.
- Extension to other diseases (African Swine Fever in Bulgaria/Sardinia).

Thank you

Partnership Bibliography Outlines

Part I: Problem definition

Part II: Be-FAST model

Part III: Considered applications

Conclusions and perspectives

!!! Thank you for your attention!!!

XXVI EURO - INFORMS

Session TA-73: Modeling livestock diseases – 26 / 26