

Diseño de un modelo económico y de planes de control para una epidemia de peste porcina clásica

Eduardo Fernández Carrión Tutores: Benjamín Ivorra Ángel Manuel Ramos Introducción

Modelo económico

Medidas de control

Resultados

Conclusiones

La Peste Porcina Clásica

- La Peste Porcina Clásica (PPC) es una enfermedad que afecta exclusivamente a cerdos.
- Es altamente contagiosa y provoca, generalmente, la muerte del animal.
- El impacto económico y sanitario que provoca en la industria porcina es muy grande.
- Forma parte de la Lista de enfermedades graves de la OIE.
- ► La enfermedad se encuentra actualmente arraigada de forma endémica en muchos países del mundo y Europa.

			Duración	Animales	Pérdidas
País	Año	Brotes	(meses)	sacrificados	(mill€)
Holanda	1997	14	429	7 mill	2.313,4
España	1997	99	16	609.147	60
España	2001	48	11	378.407	48

Tabla 1. Costes históricos de epidemias en Europa.

Medidas de control

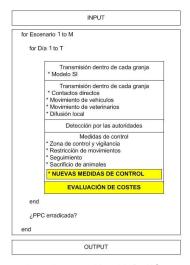
Al formar parte de la lista A de enfermedades de declaración obligatoria, es obligatorio seguir las directrices que marca la OIE y el MARM.

- Sacrificio inmediato de todos los cerdos.
- Restricciones de movimientos.
- Desinfección.
- Seguimiento, rastreo.
- Zonas de vigilancia.

El modelo Be-FAST I

El modelo Be-FAST (*Between-Farm-Animal Spatial Transmission*) ha sido desarrollado por el Grupo MOMAT para evaluar la propagación espacial de la PPC

- tanto dentro de una granja (within-farm), mediante el uso de un submodelo de tipo SI (Suceptible-Infected);
- como entre varias granjas de la misma región (between-farm), mediante el uso de un submodelo de tipo Individual-Based.


A modo de resumen podemos decir que,

- Los algoritmos de propagación son modelos estocásticos.
- Ha sido implementado en MatLab.
- Realiza simulaciones mediante métodos de Monte Carlo.
- ▶ Tiene una base de datos de Segovia 2008.

índice Introducción Modelo económico Medidas de control Resultados Conclusiones

El modelo Be-FAST II

El modelo Be-FAST III

Video 1. Simulación Be-FAST.

Introducción

- Costes indirectos: Devaluación del precio del animal en el mercado porcino.
- Costes directos.
 - ▶ Costes a pagar (C_p) : Para controlar y erradicar la epidemia.
 - **Costes transferidos** (C_t): Compensar las pérdidas de terceros.
 - ▶ Costes calculados (*C_c*): Pérdidas producidas en las empresas del sector porcino.

Costes indirectos I

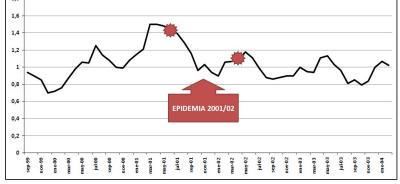


Fig 2. Evolución del precio del cerdo (€/kg) desde Septiembre 1999 hasta Enero 2004, periodo en el que se incluye la epidemia 2001/02 en España (www.mercolleida.com).

Costes indirectos II

- Aislamos el patrón anual existente:
 - La demanda de cerdo aumenta en los meses de invierno y primavera.
 - ▶ En los meses de verano y otoño alcanza sus niveles más bajos.
- Aun así, se observa una caída del valor más pronunciada durante el año de la epidemia que en años anteriores y posteriores.
- Creamos un índice económico (benchmark) que compara los resultados históricos con los de la epidemia.

Costes indirectos III

La evolución de los precios viene dada por:

- ► Epi_t (€/kg): Evolución histórica del precio del kg de cerdo durante la epidemia.
- Ind_t (€/kg): Evolución ponderada del precio del kg de cerdo durante dos años antes y dos después de la epidemia.

La evolución el precio del cerdo, en relación a la semana anterior, viene dada por:

- $ightharpoonup E_t = rac{Epi_t}{Epi_{t-1}}$: Durante una epidemia.
- $ightharpoonup I_t = rac{Ind_t}{Ind_{t-1}}$: Cuando no hay epidemia.

Finalmente, las diferencias con una epidemia se verán mediante los valores:

- epidemia_t = epidemia_{t-1} * E_t y,
- $indice_t = indice_{t-1} * I_t, \forall t > 0.$

donde, epidemia₀ = $indice_0 = v$ (\leq /kg de cerdo).

Costes indirectos IV

t	Epi _t	Indt	E _t	I _t	t	Epi _t	Ind_t	Et	I _t
1	1,45	1,18	-	-	23	0,98	0,91	0,99	1,01
2	1,40	1,18	0,97	1,00	24	0,96	0,91	0,98	1,00
3	1,37	1,18	0,98	1,01	25	0,94	0,91	0,98	0,99
4	1,39	1,17	1,01	0,99	26	0,95	0,92	1,01	1,01
5	1,39	1,14	1,00	0,97	27	0,95	0,92	1,00	1,00
6	1,35	1,09	0,97	0,95	28	0,93	0,93	0,98	1,02
7	1,31	1,09	0,97	1,00	29	0,90	0,94	0,97	1,02
8	1,29	1,07	0,98	0,98	30	0,93	0,98	1,03	1,03
9	1,29	1,06	1,00	0,99	31	0,95	1,02	1,02	1,05
10	1,26	1,05	0,98	0,99	32	1,00	1,07	1,05	1,05
11	1,21	1,02	0,96	0,97	33	1,06	1,11	1,06	1,04
12	1,21	1,01	1,00	0,99	34	1,08	1,14	1,02	1,03
13	1,16	0,97	0,96	0,96	35	1,08	1,16	1,00	1,01
14	1,12	0,94	0,97	0,97	36	1,11	1,15	1,03	0,99
15	1,08	0,91	0,96	0,97	37	1,07	1,13	0,96	0,98
16	1,01	0,88	0,94	0,97	38	1,06	1,10	0,99	0,98
17	0,96	0,86	0,95	0,98	39	1,07	1,11	1,01	1,00
18	0,94	0,86	0,98	1,00	40	1,09	1,11	1,02	1,00
19	0,96	0,88	1,02	1,02	41	1,09	1,12	1,00	1,01
20	1,02	0,90	1,06	1,03	42	1,07	1,12	0,98	1,00
21	1,03	0,91	1,01	1,01	43	1,07	1,13	1,00	1,01
22	0,99	0,90	0,96	0,99	44	1,07	1,15	1,00	1,01

Tabla 2. Valores que toman la epidemia y el índice.

Costes indirectos V

Punto de partida epidemia₀ = $indice_0 = v = 1,45$ y t = 44 semanas.

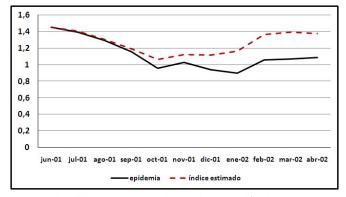


Fig 3. Valores estimados aislando tomando v = 1,45 \in /kg de cerdo

Costes indirectos VI

- Fase de incertidumbre (t = 1 15): Las diferencias entre los valores de epidemia_t e índice_t tiene volatilidad 0,007328.
- Fase de aceptación (t = 16 29): La volatilidad aumenta hasta cinco veces más: 0,037223.
- Fase de recuperación (t = 17 44): La volatilidad alcanza los niveles de la primera fase, 0,006994.

Costes a pagar

Son los costes pagados directamente por las Autoridades para controlar y erradicar la epidemia.

- Gastos de laboratorio.
- Gastos de establecimiento de una zona de control o de vigilancia.
- Gastos de limpieza y desinfección de las granjas puestas en cuarentena.

Costes transferidos

Son los costes pagados por las Autoridades con el en de compensar las pérdidas de terceros.

Indemnización por cerdos sacrificados.

Costes calculados

Son las pérdidas producidas en las empresas del sector porcino hasta la normalización tras la erradicación de la epidemia.

- Eliminación de purines y alimentos contaminados.
- Pérdidas ocasionadas por el bloqueo de granjas y no producción hasta su normalización.
- Pérdidas para las empresas de transporte de ganado.
- Pérdidas para las empresas de transporte de purines y alimentos de ganado.
- Pérdidas ocasionadas al gremio de veterinarios (Asociación de Defensa Sanitaria, ADS).

Parámetros

- Algunos parámetros se basan en datos reales directamente de la fuente: Coste de transporte de mercancias o de los gastos de laboratorio.
- Otros son estimaciones: Coste del cerdo por unidad, consumo de alimentos por cerdo o comercio de cerdos diario.

Medidas de control del modelo Be-FAST

En el modelo Be-FAST están establecidas las siguientes medidas de control:

- Zona de control
- Zona de vigilancia
- Restricción de movimientos
- Sacrificio de animales
- Seguimiento

Detección Preventiva de Granjas Infectadas

- Granjas con mayor predisposición de ser contagiadas.
- ► Test de seguimiento.
- Creación de una red según los parámetros:
 - ▶ $N_{prev} \in \mathbb{N}$: Número de granjas con mayor predisposición a ser contagiadas que van a ser puestas en seguimiento.
 - ▶ $D_{prev} \in \mathbb{N}$: Frecuencia, en días, de realización del test de seguimiento.
 - $F_{prev} \in \mathbb{N}$: Impacto sanitario de la epidemia.

Resultados del modelo económico I

Caso	F_{prev}	Pérdidas totales	Pérdidas directas totales	(%)	Pérdidas indirectas totales	(%)
1	1	913.386	553.111	60,56 %	360.274	39,44 %
2	5	3.187.216	2.342.142	73,49 %	845.074	26,51 %
3	10	5.186.398	4.432.009	83,72 %	861.642	16,28 %
4	15	7.417.425	6.539.213	88,16 %	878.211	11,84 %
5	20	9.343.164	8.354.786	89,42 %	988.377	10,58 %
6	25	11.107.331	10.101.625	90,95 %	1.005.705	9,05 %
7	50	20.007.452	18.809.734	94,01 %	1.197.717	5,99 %
8	75	28.028.997	27.069.293	95,45 %	1.291.794	4,55 %
9	100	36.555.811	35.169.940	96,21 %	1.385.870	3,79 %
Du	racion					

Caso	epidemia (días)	No. granjas infectadas	C_p	C_t	C_c	Devaluación
1	54,51	2,42	64.203	426.457	62.450	360.274
2	76,90	10,49	221.139	1.849.679	271.323	845.074
3	82,84	19,58	381.969	3.529.617	520.422	861.642
4	87,67	28,72	535.584	5.233.254	770.374	878.211
5	89,40	36,67	657.711	6.712.090	984.984	988.377
6	90,32	44,59	769.281	8.135.648	1.196.696	1.005.705
7	91,51	82,34	1.191.295	15.364.674	2.253.764	1.197.717
8	90,75	119,18	1.430.026	22.367.210	3.272.056	1.291.794
9	94.69	156.56	1.563.774	29.324.610	4.281.555	1.385.870

Tabla 3. Desglose de costes (€) para los casos 1-9.

Resultados del modelo económico II

Devaluación =
$$-906471, 171 + 22374, 334 * Duración$$
 (1)

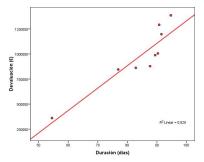


Figura 4. Regresión lineal de la Devaluación (€) respecto la Duración (días) de la epidemia.

Resultados del modelo económico III

Relación de costes directos.

				Duración de	(Brotes) No. granjas
Caso	C_p	C_t	Cc	la epidemia	infectadas
1	11,61 %	77,10 %	11,29 %	54,51	2,42
2	9,44 %	78,97 %	11,58 %	76,90	10,49
3	8,62 %	79,64 %	11,74 %	82,84	19,58
4	8,19 %	80,03 %	11,78 %	87,67	28,72
5	7,87 %	80,34 %	11,79 %	89,40	36,67
6	7,62 %	80,54 %	11,85 %	90,32	44,59
7	6,33 %	81,68 %	11,98 %	91,51	82,34
8	5,28 %	82,63 %	12,09 %	90,75	119,18
9	4,45 %	83,38 %	12,17 %	94,69	156,56

Tabla 4. Relación de costes directos.

 $C_p = -523018,802 + 9707,041 * Duración + 8307,842 * Brotes$

$$C_t = 305628,806 - 5943,735 * Duración + 189194,770 * Brotes$$

 $C_c = -29666,365 - 609,475 * Duración + 27587,601 * Brotes$ (2)

Resultados del modelo económico IV

Resultados históricos de epidemias en España.

	Duración		Coste	Coste
Año	(días)	Brotes	simulado	real
1997	480	99	33,44 mill€	60 mill€
2001	330	49	18,36 mill€	48 mill€

Tabla 5. Resultados históricos en España comparados con los resultados de las fórmulas 1 y 2.

- ▶ El motivo principal de estas diferencias es que la base de datos que hemos utilizado en las simulaciones son las del sector porcino en Segovia en 2008.
- Hay que tener en cuenta que en 2006 el número de granjas en esta misma provincia se redujo a más de la mitad a causa de una crisis en el sector.
- Si tenemos esto en cuenta, es normal que los resultados que hemos estimado sean aproximadamente la mitad de los reales.

Resultados de la Detección Preventiva de Granjas Infectadas

		Duración de		Pérdidas	Porcentaje			
	Medida				la epidemia	No. granjas	directas	de granjas
Caso	activada	F _{prev}	D_{prev}	N_{prev}	(días)	infectadas	totales	detectadas
1	no	1	-	-	54,51	2,42	553.111	0,00
2	si	1	7	25	53,72	2,29	764.777	0,04
3	si	1	7	100	49,16	1,99	1.258.874	0,16
4	si	1	15	25	52,74	2,27	631.612	0,05
5	si	1	15	100	51,79	2,15	859.092	0,15
6	no	50	-	-	91,51	82,34	18.809.734	0,00
7	si	50	7	25	86,95	79,54	18.700.693	1,75
8	si	50	7	100	82,65	75,39	18.780.358	5,65
9	si	50	15	25	87,69	80,45	18.453.590	1,66
10	si	50	15	100	84,87	77,76	18.593.198	5,47
11	no	100	-	-	94,69	156,56	35.169.940	0,00
12	si	100	7	25	90,49	149,65	34.332.103	3,16
13	si	100	7	100	83,26	142,12	33.553.902	10,57
14	si	100	15	25	89,26	150,72	34.324.591	2,98
15	si	100	15	100	85,10	146,40	33.877.706	9,32

Tabla 6. Relación entre costes directos y la nueva medida de control.

Conclusiones

- Las medidas de control son necesarias.
- Existen medidas de control alternativas que aún pueden minimizar resultados sanitarios y económicos.
 - Detección preventiva de granjas infectadas.
 - Sacrificio preventivo en zonas de control.
 - Vacunación preventiva.
 - Estudio alimenticio.
- Extrapolabilidad del modelo económico.
 - A otras zonas geográficas.
 - A otras enfermedades (Lista A de la OIE).
- Mejoras posibles al presente trabajo:
 - Estudio de la oferta y la demanda de productos derivados del cerdo que afectan a los costes indirectos.
 - Creación de una base de datos más fina para los valores de los parámetros.

