The 'how much' war. A numerical method to solve a duopolistic differential game in a closed-loop equilibrium

> Jorge Herrera de la Cruz Coordinators: Benjamín Ivorra, Ángel M. Ramos

MsC Thesis. Mathematical Engineering UCM, Facultad de Matemáticas. Madrid 27-09-2012

In a nutshell

The "how much" war:

Marketing departments have to decide how much to invest in advertising to maximize sales. Also, they have to set a price. Both variables are relevant key drivers on sales.

A duopolistic differential game:

Usually, companies are in a competitive world (generally oligopolistic or duopolistic). We need a theoretical framework in order to incorporate it to study the optimal decision

A numerical method:

Differential games are hard to solve analytically, so we have to rely on numerical solutions as we will present here.

Motivation I

Motivation II

Coordinators: Benjamín Ivorra, Ángel M. Ramos

Motivation III

We believe it is important to develop methods to optimize their expenses.

These methods should have to deal with this idea: "all competitors in the market are rational"

The question(s)

How much to spend in advertising per week in a fixed period of time...

What should be our weekly price...

... in a competitive environment?

In this presentation...

We will show a theoretical method in a differential game form to answer these key questions

We will estimate parameter values for this theoretical model

We will develope a numerical method inspired in dynamic programming methods to solve the game

We will show the results of the game, and we will compare it versus the real data.

We present two novel ideas

We use LOTKA VOLTERRA models of species competition in a Differential Marketing Game.

The literature uses Lanchaster-war models as benchmark

We present an algorithm to solve **closed-loop** equilibrium adapted from dynamic programming literature.

The literature in differential games usually obtains analytic closedloop equilibrium from simple models or obtains **open-loop** equilibrium

Theoretical Model

Theoretical Model (I): a differential game

$$\dot{x}_i = f(x_i, x_j, u_i, u_j)$$

Theoretical Model (II)

 $\dot{x}_i = f(x_i, x_i, u_i, u_i)$

Jorge Herrera de la Cruz Coordinators: Benjamín Ivorra, Ángel M. Ramos

11

Solving the model

This model is a **differential game.** We can derive two equilibrium (solutions):

Optimal Controls are a function of time **Ui*=Ui(t)**

Optimal Controls are a function of time and state variables Ui*=Ui(t,x_i(t))

Open-loop are well documented in the literature, because they involve to solve boundary differential equations.

Closed-loop are more difficult, but more realist. They involve to solve two coupled PD equation called **Hamilton-Jacobi-Bellman**:

$$r_{i}V_{i} = \max_{u_{i}\in U} \left[p_{i}(t)x_{i}(t) - C_{i}(u_{i}(t)) + \nabla_{x}V_{i}f(x_{i}, x_{j}, u_{i}, u_{j}) \right]$$

Properties of equilibrium

Parameter estimation

What to estimate?

$$\max_{u_i \in U} J_i = \int_{o}^{\infty} e^{-r_i t} [p_i(t) x_i(t) - C_i(u_i(t))] dt$$

St:
$$\dot{x}_i = f(x_i, x_j, u_i, u_j)$$

We have to estimate parameters for **Cost function** and the **market dynamic system**

A little bit of notation:

.6

Our data set:

We will use a data set of a well-known company in Spain. This company competes with a withe label, so:

Jorge Herrera de la Cruz <u>Coordinato</u>rs: Benjamín Ivorra, Ángel M. Ramos

$$\begin{aligned} \hat{x}_{i} &= f(x_{i}, x_{j}, u_{i}, u_{j}) \\ \dot{x}_{i} &= f(x_{i}, x_{j}, u_{i}, u_{j}) \\ \dot{M} &= \rho_{1} \sqrt{v_{1}} (1 - M) - \rho_{2} \sqrt{v_{2}} M \end{aligned}$$

$$\begin{aligned} \text{LANCHESTER}_{\text{Model of COMBAT}} \\ \dot{x}_{i} &= \rho_{i} v_{i} \sqrt{\left(N_{1} + N_{2} - x_{i} - x_{j}\right)} D_{i}(p_{i}) \end{aligned}$$

$$\begin{aligned} \text{LOTKA-VOLTERRA}_{\text{Species}}_{\text{competition}} \\ \dot{x}_{i} &= \left[\alpha_{1} \left(1 - \frac{\alpha_{1} x_{i}}{N_{i}}\right) - \beta_{ij} x_{j}\right] x_{i} \end{aligned}$$

18

Discrete time LOTKA VOLTERRA models WITH EXOGENOUS INPUTS

$$x_i(\widetilde{t+1}) = \frac{x_i(t+1) - x_i(t)}{x_i(t)}$$

LV-1

$$\widetilde{x_i(t+1)} = \alpha_i \left(1 - \frac{\alpha_i x_i(t)}{N_i}\right) - \beta_{ij} x_j(t) + \rho_i v_i(t+1) - w_1 p_1(t+1) + \varepsilon_i(t+1)$$

LV-2

$$x_i(\widetilde{t+1}) = \alpha_i \left(1 - \frac{\alpha_1 x_i(t)}{N_i}\right) - \beta_{ij} x_j(t) + \rho_i v_i(t+1) - \rho_{ii} v_i^2(t+1)$$

 $- w_1 p_1(t+1) + w_{ii} p_i^2(t+1) + \varepsilon_i(t+1)$

VARX

$$\widetilde{x_i(t+1)} = \alpha_{0i} + \alpha_i \widetilde{x_i(t)} - \beta_{ij} \widetilde{x_j(t)} + \rho_i v_i(t+1) - w_1 p_1(t+1) + \varepsilon_i(t+1)$$

OLS estimations

	LV1 model		LV2 model		VAR MODEL	
	Equation 1	Equation 2	iquation 1	Equation 2	Equation 1	Equation 2
Dependent Variable	$\frac{x_1(t+1) - x_1(t)}{x_1(t)}$	$\frac{x_2(t+1) - x_2(t)}{x_2(t)}$	$\frac{x_1(t+1) - x_1(t)}{x_1(t)}$	$\frac{x_2(t+1) - x_2(t)}{x_2(t)}$	$\frac{x_1(t+1) - x_1(t)}{x_1(t)}$	$\frac{x_2(t+1) - x_2(t)}{x_2(t)}$
α ₀₁					0.695	1.285
std deviation					0.201	0.557
<i>a</i> ₀₂						
std deviation						
α1	0.690		5.410		-0.200	-0.042
std deviation	0.146		2.070		0.096	0.267
α2		1.540		1.540		
std deviation		0.348		0.348		
$\frac{\alpha_1}{N}$	-0.022		-0.022			
std deviation	0.003		0.003			
$\frac{\alpha_2}{M}$		-0.083		-0.083		
std deviation		0.017		0.017		
β1	-0.032		-0.034		-0.016	-0.115
std deviation	0.008		0.007		0.037	0.102
β_2		-0.029		-0.029		
std deviation		0.009		0.009		
ρ_1	0.0004		0.000		0.0002	-0.0003
std deviation	0.0001		0.000		0.0001	0.0002
ρ ₁₁						
std deviation						
ω	-0.023		-0.800		-0.032	-0.061
std deviation	0.010		0.342		0.013	0.037
ω2		-0.047		-0.047	-0.014	-0.037
std deviation		0.014		0.014	0.006	0.016
ω11			0.032			
std deviation			0.014			
ω21				0.000		
std deviation				0.000		
R-squared	0.775034	0.538344	0.79	0.53834	0.72	0.48
Dwatson	1.899407	1.833568	1.9	1.83356	1.9	1.83
AIC	-423.0484	-73.21995	-435.76	-73.2199		
SC	-252.6166	61.49	-262.289	61.4		

Cost Function

- Theoretical models usually purpose a quadratic function to derive maximum policies.
- Data shows a high probability of being a logarithmic process.

Numerical Method

Dynamic Programming (I)

• From continuous to discrete, using h>0:

$$\max_{u_i \in U} J_i = \int_{0}^{\infty} e^{-r_i t} f_i(x(t), u(t), \alpha) dt$$
$$\max_{u_i \in U} J_i = h \sum_{t=0}^{\infty} \beta^t f_i(x_h(t), u(t); \alpha)$$

$$\dot{x}_i = g_i(x_i, x_j, u_i, u_j)$$

 $x_i(t+1) = x_i(t) + hg_i(x_h(t), u(t); \alpha)$

Dynamic Programming (II)

• Discrete Hamilton-Jacobi-Bellman (we simplify notation)

 $V_{i,h}(x,\alpha) = \max_{u} \{h \times f_i(x(t), u(t), \alpha) + \beta \times V_{i,h}(x(t) + hg_i(x(t), u(t); \alpha))\}$

The algorithm

- Let G a 2D grid with x1 and x2, define dx1,dx2 and h
 - Initialize control vectors to 0, u(t)=0
- Start with a guess estimate for V_{ih} and calculate its gradient (gradVi)
- Actualize x1 and x2 according to $x(t) + hg_i(x(t), u(t); \alpha)$

VALUE ITERATION (subrutine). Taking u(t) fixed, iterate in HJB till convergence. Use interpolation

- POLICY ITERATION (subrutine). Taking V_{ih} fixed, explicitly obtain a new u(t) iterating in HJB till convergence.
- Alternate **VALUE** and **POLICY** till tolerance criteria is achieved.

Dynamic Programming (III)

- Discrete Hamilton-Jacobi-Bellman (we simplify notation)
- To solve it we will iterate in time and in space.

Dynamic Programming (II)

- We have run numerical experiments to validate our algorithm:
 - We have solved a 1D model with explicit solution [Brock-Mirman]
 - We have also solved a 2D benchmark model in the literature, without explicit solution, but reaching similar results as those published.

The 'how much' war. Numerical Solution

Our solution

Competitor

We could have won a 7% more

Conclusions and Further Research

Conclusions and Further Research

We have shown a differential game algorithm in a closed-loop equilibrium to solve a duopolistic problem with real world data:

- 1. Obtaining optimal advertising
- 2. Obtaining optimal price

In our experiment, we show that we could have won a 7% more than with the adopted strategy.

In future works, we propose:

- 1. Research on Stackelberg equilibrium (leader-follower)
- 2. Research on Stochastic Games taking into account estimated values of error sizes with statistical methods
- 3. Incorporate richer lag schemes in dynamical system as statistical tests suggest.