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In a nutshell

The “how much” war:

Marketing departments have to decide how much to invest in

advertising to maximize sales. Also, they have to set a price. Both variables are
relevant key drivers on sales.

A duopolistic differential game:

Usually, companies are in a competitive world (generally oligopolistic

or duopolistic). We need a theoretical framework in order to incorporate it to
study the optimal decision

A numerical method:

Differential games are hard to solve analytically, so we have to rely on
numerical solutions as we will present here.
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Motivation

Jorge Herrera de la Cruz
Coordinators: Benjamin Ivorra, Angel M. Ramos
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In this presentation...

We will show a theoretical method in a differential game form to
answer these key questions

We will estimate parameter values for this theoretical model

We will develope a numerical method inspired in
dynamic programming methods to solve the game

We will show the results of the game, and we will compare it versus
the real data.
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. We present two novel ideas

i We use LOTKA VOLTERRA models of species competition in a
Differential Marketing Game.

The literature uses Lanchaster-war models as benchmark

] We present an algorithm to solve closed-loop equilibrium adapted
from dynamic programming literature.

The literature in differential games usually obtains analytic closed-
loop equilibrium from simple models or obtains open-loop
equilibrium
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Theoretical Model (I): a differential game

The functional is a dynamic discounted benefit

There are i=1,2 function:
players Discounting factor r, Price p, sales x and C(u) is a cost
function.
_— —-1r;t
maxJ; = | e™" [pi(®)x;(t) — C;(u;(1))] dt
L
0

Each player seeks to maximize this functional

with respect to control variables (u)

St :
xi = f(xi, xj, u;, uj)
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maxJ; =
u; el

The players coexist in a dynamical system that
reflects the relationship among :
-State variables: sales [x]
S t . -Controls: advertising and price [u]

x; = f(xi, xj,u;, u;)
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Solving the model

This model is a differential game. We can derive two equilibrium (solutions):

Optimal Controls are a function of time
OpPEN=100p st
Optimal Controls are a function of time and
- state variables
¢ Ose | oop Ui*=Ui(t,x;(t))

Open-loop are well documented in the literature, because they involve

to solve boundary differential equations.

Closed-loop are more difficult, but more realist. They involve to solve two coupled
PD equation called Hamilton-Jacobi-Bellman:

r;V; = max|p; (O)x; () — C;(w; (©)) + Ve Vif (i, x5, up, ) |

u;elu
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Properties of equilibrivm

|0pen-loop | Closed-loop

SUBGAME PERFECTNESS

TIME CONSISTENT

NASH EQUILIBRIUM
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Parameter

estimation
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What to estimate?

2}35‘]:‘ = f e " p;(t)x;(t) — C;(u;(t))] dt
St : xi — f(xi; xj! u;, uj)

We have to estimate parameters for Cost function and the market
dynamic system
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A little bit of notation:

Sales of player i

Market Share

TV advertising (GRP is the standard unit)

Price of good or service

Market size of player i

We will also use several parameters to connect these variables into
equations
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Our data set:

We will use a data set of a well-known company in Spain. This
company competes with a withe label, so:

Our company needs to The competitor needs to
maximize: maximize:

p;

il
/
A Ay

== GRPs ====sales (in 1000 kgs) == price (in €) —sales (in 1000 kgs) ~ =—price (in €)
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Market Dynamic System

Xi = f(xirxj;ui; u;)
A —=_|

‘ M = pl'\/vl(l - M) — P2V M
LANCHESTER
Model of COMBAT  Emimiiiet bt bbbl bbbl Lt bl bbbl

Xi = pivi\[(Nl + N — x; — xj) D;(py)

' LOTKA-VOLTERRA
Species
competition
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| Discrete time LOTKA VOLTERRA

models WITH EXOGENOUS INPUTS

— x;(t+1) — x;(t)
x;(t)

LV-

xi(t+1) =a (1 - alxi(t)) — Bijxj(t) + pivi(t + 1) — p;v*;(t + 1)

—wip (t+1) +wyp? (t+ 1) + g(t+1)
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OLS estimations

LV1 model
Equation1 Equation 2

LV2 model

VAR MODEL

quation1 Equation 2§ Equation1 Equation 2

xy(e+ 1) -z () | Xzlt*1) — (0 G+ D —w) | x(ee1) - B DB ®  wgle+ 1) - xai)
Dependent Variable *l) = i xalt)
X 0.695 1.285
std deviation 0.201 0.557
Zpg
std deviation
ey 0.690 -0.200 -0.042
std deviation 0.146 0.096 0.267
&3 1.540
std deviation 0.348
oy
o -0.022
std deviation 0.003
2 -0.083
std deviation 0.017
I3 -0.032 -0.016 -0.115
std deviation 0.008 0.037 0.102
B2 -0.029
std deviation 0.009
P 0.0004 0.0002 -0.0003
std deviation 0.0001 0.0001 0.0002
P11
std deviation
g -0.023 -0.032 -0.061
std deviation 0.010 0.013 0.037
g -0.047 -0.014 -0.037
std deviation 0.014 0.006 0.016
Ghyy
std deviation
gy
std deviation
R-squared 0.775034 0.538344 0.79 0.72 0.48
Dwatson 1.899407 1.833568 1.9 1.9 1.83
AIC -423.0484  -73.21995 -435.76
SC -252.6166 61.49 -262.289
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Cost Function
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« Theoretical models usually purpose a quadratic function to derive
maximum policies.

« Data shows a high probability of being a logarithmic process.
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Numerical Method
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Dynamic Programming (I)

« From continuous to discrete, using h>0:

00)

maxJ; = f e Tilf.(x(t),u(t), a) dt

u;el
o

max J; = hz BLf,(x, (D), u(t); a)
t=0

x; = gi(x;, xj, u;, uj)
xi(t + 1) = x;() + hg; (x,(D, u(t); @)
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Dynamic Programming (II)

« Discrete Hamilton-Jacobi-Bellman (we simplify notation)

Vin(x, @) = max{h x f; (x(£),u(t), @) + B X V;n(x(t) + hg;(x(8), u(t); )}

The algorithm

Let G a 2D grid with x1 and x2, define dx1,dx2 and h
Initialize control vectors to 0, u(t)=0

Start with a guess estimate for V;, and calculate its gradient (gradVi)
« Actualize x1 and x2 accordingto x(t) + hg;(x(t), u(t); a)

VALUE ITERATION (subrutine). Taking u(t) fixed, iterate in HJB till
convergence. Use interpolation

« POLICY ITERATION (subrutine). Taking V;, fixed, explicitly obtain a
new u(t) iterating in HIB till convergence.

« Alternate VALUE and POLICY till tolerance criteria is achieved.




Dynamic Programming (III)

 Discrete Hamilton-Jacobi-Bellman (we simplify notation)
» To solve it we will iterate in time and in space.

in(x(®) + hg;(x(0), u(t); @)}

Vin(x) = mfx{h X f; (x(t),u(t), a) + B x

« To solve this fixed point [V is in both
we iterate supported by contracting

ms]
pping theorem

« We use linear interpolation to obtain the values of V
out of discrete grid of x

This maximum is explicitly calculated (so we need the
Gradient of V;p, )
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Dynamic Programming (II)

« We have run numerical experiments to validate our algorithm:

« We have solved a 1D model with explicit solution [Brock-
Mirman]
« We have also solved a 2D benchmark model in the literature,

without explicit solution, but reaching similar results as those
published.
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" The ‘how much’ war.

Numerical Solution
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Our solution
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| Competitor
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We could have won a 7% more

euros
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Conclusions and

Further Research
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'Conclusions and Further Research

We have shown a differential game algorithm in a closed-loop
equilibrium to solve a duopolistic problem with real world data:
1. Obtaining optimal advertising
2. Obtaining optimal price

In our experiment, we show that we could have won a 7% more
than with the adopted strategy.

In future works, we propose:
' 1. Research on Stackelberg equilibrium (leader-follower)

2. Research on Stochastic Games taking into account estimated
values of error sizes with statistical methods

3. Incorporate richer lag schemes in dynamical system

as statistical tests suggest.
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