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The “how much” war: 
 Marketing departments have to decide how much to invest in 

advertising to maximize sales. Also, they have to set a price. Both variables are 
relevant key drivers on sales. 

A duopolistic differential game: 
 Usually, companies are in a competitive world (generally oligopolistic 

or duopolistic). We need a theoretical framework in order to incorporate it to 
study the optimal decision  

A numerical method: 
 Differential games are hard to solve analytically, so we have to rely on 

numerical solutions as we will present here. 
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  We will show a theoretical method in a differential game form to 
answer these key questions 
 
We will estimate parameter values for this theoretical model 
 
We will develope a numerical method inspired in  
dynamic programming methods to solve the game 

We will show the results of the game, and we will compare it versus 
the real data. 
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We use LOTKA VOLTERRA models of species competition in a 
Differential Marketing Game. 
 

We present an algorithm to solve closed-loop equilibrium adapted  
from dynamic programming literature. 
 

The literature uses Lanchaster-war models as benchmark  
 

The literature in differential games usually obtains analytic closed-
loop equilibrium from simple models or obtains open-loop 
equilibrium    
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  There are i=1,2 
players 

Each player seeks to maximize this functional 
with respect to control variables (u) 

The functional is a dynamic discounted benefit 
function: 

Discounting factor r, Price p, sales x and C(u) is a cost 
function. 
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The players coexist in a dynamical system that 
reflects the relationship among : 

-State variables: sales [x]   
-Controls: advertising and price [u] 
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  This model is a differential game. We can derive two equilibrium (solutions): 
 

Optimal Controls are a function of time 
Ui*=Ui(t) 
 

Optimal Controls are a function of time and 
state variables 
Ui*=Ui(t,xi(t)) 
 

Open-loop are well documented in the literature, because they involve  
to solve boundary differential equations. 
Closed-loop are more difficult, but more realist. They involve to solve two coupled 
PD equation called Hamilton-Jacobi-Bellman: 
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We have to estimate parameters for Cost function and the market 
dynamic system   
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Market Share 

TV advertising (GRP is the standard unit) 

Price of good or service 

Market size of player i 

Sales of player i 

We will also use several parameters to connect these variables into 
equations 
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  We will use a data set of a well-known company in Spain. This 
company competes with a withe label, so: 

Our company needs to 
maximize: 

 
 
 
 
 
 
 
 
 
 
 

The competitor needs to 
maximize: 
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Equation 1 Equation 2 Equation 1 Equation 2 Equation 1 Equation 2

Dependent Variable

0.695 1.285

std deviation 0.201 0.557

std deviation

0.690 5.410 -0.200 -0.042

std deviation 0.146 2.070 0.096 0.267

1.540 1.540

std deviation 0.348 0.348

-0.022 -0.022

std deviation 0.003 0.003

-0.083 -0.083

std deviation 0.017 0.017

-0.032 -0.034 -0.016 -0.115

std deviation 0.008 0.007 0.037 0.102

-0.029 -0.029

std deviation 0.009 0.009

0.0004 0.000 0.0002 -0.0003

std deviation 0.0001 0.000 0.0001 0.0002

std deviation

-0.023 -0.800 -0.032 -0.061

std deviation 0.010 0.342 0.013 0.037

-0.047 -0.047 -0.014 -0.037

std deviation 0.014 0.014 0.006 0.016

0.032

std deviation 0.014

0.000

std deviation 0.000

R-squared 0.775034 0.538344 0.79 0.538344 0.72 0.48

Dwatson 1.899407 1.833568 1.9 1.833568 1.9 1.83

AIC -423.0484 -73.21995 -435.76 -73.21995

SC -252.6166 61.49 -262.289 61.49

LV1  model LV2 model   VAR MODEL
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• Theoretical models usually purpose a quadratic function to derive 
maximum policies. 

 
• Data shows a high probability of being a logarithmic process. 
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• From continuous to discrete, using h>0: 



  
• Discrete Hamilton-Jacobi-Bellman  (we simplify notation) 

• Alternate VALUE and POLICY till tolerance criteria is achieved. 
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• Discrete Hamilton-Jacobi-Bellman (we simplify notation) 

• To solve it we will iterate in time and in space. 

• To solve this fixed point [V is in both terms] 
we iterate supported by contracting mapping theorem 

• We use linear interpolation to obtain the values of V 
out of discrete grid of x 
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• We have run numerical experiments to validate our algorithm: 
 
• We have solved a 1D model with explicit solution [Brock-

Mirman] 
• We have also solved a 2D benchmark model in the literature, 

without explicit solution, but reaching similar results as those 
published.  
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We have shown a differential game algorithm in a closed-loop  
equilibrium to solve a duopolistic problem with real world data: 

1. Obtaining optimal advertising 
2. Obtaining optimal price 

In our experiment, we show that we could have won a 7% more 
than with the adopted strategy. 

32 

In future works, we propose: 
1. Research on Stackelberg equilibrium (leader-follower) 
2. Research on Stochastic Games taking into account estimated 
values of error sizes with statistical methods 
3. Incorporate richer lag schemes in dynamical system 
as statistical tests suggest.   


