An Hybrid Optimization Method For Credit Portfolio Optimization Under Constraints

Ivorra Benjamin & Angel Manuel Ramos
M.O.M.A.T. - Universidad Complutense Madrid

Mohammadi Bijan
I.3.M. - Université Montpellier II

Quibel Guillaume, Tehraoui Rim & Delcourt Sebastien
Asset Management Team - BNP-Paribas
Outlines

- **Problem definition:**
 - Financial product description
 - Product modeling + evaluation
 - Example of optimization problem

- **Optimization algorithm:**
 - Semi-deterministic algorithm
 - Genetic algorithm
 - Hybdridation

- **Problems resolution:**
 - Results
 - Financial analysis
Part I: Problems Definition
Historical context

Object: Credit derivative products:
- Development of those products (In 2004: 2300 M)

Main problems:
1-Risk management:
 - What is the risk? Risk of a trading partner (here company) not fulfilling his obligations (here repay its credit) on the due date \rightarrow Loss.
 - Example: Bankruptcy (Enron/Worldcom in 2001/2002).
 - Works: Loss evaluation method (Merton 1974...), Risk measure (Rockafellar, Artzner 1998...)

2-Income/Profitability improvement
Considered derivative credit product

Collateralized Debt Obligations (CDO)

-Objective: buy security on facilities (credits).

N.B: For each facility we can only buy security on a part of it’s nominal (amount of money).
Considered derivative credit product

CDO^2 / Master CDO

-Objective: Resilient to low losses.
-Main default: When Losses: Fast and highly severe.
We consider a portfolio $PORT$ compound by I facilities. For each facility i, market gives:
- A nominal (N_i).
- A maturity (T_i) date.
- A spread (Sp_i) (rate of interest).
- A loss given default (LGD_i).
- Sector / Geographical Zone / Stability Coefficients.

We can directly compute:

Income: $IC = \sum_{i=1}^{I} Sp_i \times N_i$
In order to compute more complex indicator. We consider:

L the CLO\(^2\)’s amount of losses: Random variable.

→ We need to determine is Loss density function β_L:

We use here a Default Time’s Model
Default times model

Input: Facilities’ Data

For \(i=1:M \)

- Generate a default time vector (using normally distributed random variables)
- Compute Loss amount of the scenario \(i \).
- Complete the discrete CLO\(^2\)’s Loss density function \(\beta_L \)

EndFor

Output: \(\beta_L \)
Density function β_L
Risk measures

- **VaR**: The smallest nominal loss of the α % worst of losses:
 \[VaR_\alpha(L) = \inf \{ L' \mid \int_0^{L'} \beta_L(x) dx > (1 - \alpha) \} \]

- **C-VaR (Expected Shortfall)**: The average of the worst α % of losses:
 \[CVaR_\alpha(L) = \frac{1}{\alpha} \int_0^\alpha VaR_p(L) dp \]

CVaR is often preferred: In some case it’s coherent and convex risk measure.
Optimize **Facilities’ nominal** of a BNP-Paribas´ portfolio in order to:

- Reduce risk measure keeping the income higher than the initial value (0.1 -VaR).
Part II: Hybrid optimization method
Recursive Semi-Deterministic methods

\[
\min_{x \in \Omega_{ad}} J(x)
\]

Where:
- \(x\) is the optimization parameter
- \(\Omega_{ad} \in \mathbb{R}^N\) is the admissible space

Assumptions:
- \(J \in C^2(\Omega_{ad}, \mathbb{R})\)
- \(J\) coercive
- \(J_m\) denotes: the minimum of \(J\) or a low value
Recursive Semi-Deterministic methods

Many minimization algorithms can be seen as discretizations of dynamical systems with initial conditions.

Solve numerically the optimization problem with one of those algorithms (core optimization method) ⇔ Solve:

\[
\begin{aligned}
&\min_{t \in [0, Z]} \left(|J(x(t)) - J_m| \right) < \epsilon \\
\end{aligned}
\]

where \(Z \in \mathbb{R} \) and \(\epsilon \) are given.

This BVP is over-determined.

Idea: Remove over-determination: One of the initial condition is considered as a variable \(v \)

Then apply BVP techniques: Example: SHOOTING METHOD.
Hybrid Genetic Algorithm

General overview:

We want to minimize: \(J(x) = x_1^2 + x_2^2 \)

\[
\begin{align*}
(0.8,0.3) \\
(1.0,0.5) \\
(4.0,0.6) \\
(2.0) \\
(5.5) \\
(0.7,3) \\
(0.8,0.3)
\end{align*}
\]

Initial Population

\[
\begin{align*}
(1,0.5) \\
(0.7,3) \\
(2.0)
\end{align*}
\]

Selection

\[
\begin{align*}
(1,3) \\
(2,0.5) \\
(0.7,0)
\end{align*}
\]

Cross-Over

\[
\begin{align*}
(0.8,0.3) \\
(4,0.6) \\
(1,3) \\
(2,0.5) \\
(0.7,0) \\
(2.3)
\end{align*}
\]

Intermediate Population

\[
\begin{align*}
(0.8,0.5) \\
(4,0.6) \\
(1.6,3) \\
(2.2,0.5) \\
(0.7,0.1)
\end{align*}
\]

Final Population

Reproduction

We iterate the process
Hybrid Genetic Algorithm

Matrix representation: With Laurent Dumas (Paris VI)

i^{th} Population: $X^i = \{x^i_l \in \Omega_{ad}, l = 1, ..., N_p\}$

Selection: S^i, Crossover: C^i, Mutation: E^i

The new population can be written as:

$$X^{i+1} = C^i S^i X^i + E^i$$

Thus genetics algorithms can be associated to:

$$\dot{X}(t) = \Lambda_1 X(t) \Lambda_2 - X(t)$$

where:

- X of the form: $X = \{x_i/ i = 1, ..., N_p \ x_i \in \Omega_{ad}\}$
- $\Lambda_i : \Lambda_i(t, X(t), P)$
- P are a set of fixed parameters
Hybrid Genetic Algorithm

BVP formulation:

\[
\begin{align*}
\dot{X}(t) &= \Lambda_1 X(t) \Lambda_2 - X(t) \\
X(0) &= X^0 \\
\min_{t \in [0,Z]} (|\hat{J}(X(t)) - J_m|) &< \epsilon
\end{align*}
\]

where: \(\hat{J}(X) = \min_i (J(x_i) | x_i \in X) \)

Inconveniences of GA:
- Slow convergence
- Computational complexity
- Lack of precision

Idea: Solve BVP: \(X^0 \) Considered as a new variable (admissible)
Hybrid Genetic Algorithm

Example of algorithmic implementation:
Part III: Application to portfolio optimization
Considered Portfolio

Characteristics:

- CLO^2 structure
- Compound by 500 facilities dispatched into 40 Sub-CLOs’ tranches and 54 independant credits.
- Portfolio nominal: 2.0×10^9 Euros (E)
- Income: 2.1×10^7 E.
- VaR: 1.9×10^8 E.
Parameterization

Parameters: nominal of each ICDO’s tranches and SN included in the entire Asset Management’s universe (1500 facilities)

For versatility and respecting the BNP investment guideline, we consider constraints on facility:

- **Avoid too much concentration in one facility:** maximum nominal 1.e8 €.
- **Minimum facility investment:** if nominal <5e6 € → nominal set to 0.
- **Facility quality:** Depending on quality coefficients: The nominal can be raised, decreased or unmodified.

Thus the Parameter number: 65.
Cost function

Optimization problem is of the form:

\[
\min_{x \in \Omega} J(x)
\]

\[
l_{c1} \leq C_1(x) \leq u_{c1} \\
\vdots \\
\]

\[
l_{c_{ncons}} \leq C_{ncons}(x) \leq u_{c_{ncons}}
\]

We rewrite the cost function using wall functions:

\[
\tilde{J}(x) = J(x) + \vartheta \sum_{j=1}^{ncons} \left(\max(uc_j - C_j(x), 0) + \max(C_j(x) - lc_j, 0) \right)
\]
Computational time reduction

Sensitivity analysis is difficult:
- Time for one evaluation + high dimensional problem.
- Start from the boundary of the admissible space + pathogen gradient directions \rightarrow slow convergence.

\Rightarrow we use HSGA + computational reduction techniques:
- Default times are computed once
- When constraint is not satisfied: intend to use projection.

One optimization: 2000 functional evaluations \rightarrow 6H computation.
<table>
<thead>
<tr>
<th></th>
<th>Nominal</th>
<th>N. S-CLOs</th>
<th>N. Ind. Cr.</th>
<th>IC</th>
<th>VaR$_{0.1%}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>2.0e9</td>
<td>7.5e8</td>
<td>1.25e9</td>
<td>2.1e7</td>
<td>1.9e8</td>
</tr>
<tr>
<td>Sen.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3%</td>
<td>7%</td>
</tr>
<tr>
<td>Optimized</td>
<td>2.0e9</td>
<td>5.5e8</td>
<td>1.45e9</td>
<td>2.1e7</td>
<td>1.3e8</td>
</tr>
<tr>
<td>Evo.</td>
<td>0%</td>
<td>-26%</td>
<td>11%</td>
<td>0%</td>
<td>-31%</td>
</tr>
<tr>
<td>Sen.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1%</td>
<td>1%</td>
</tr>
</tbody>
</table>
Var min/ IC constraint

- Outlines
- Part I: Problems Definition
- Part II: Hybrid optimization method
- Part III: Application to portfolio optimization
 - Considered Portfolio
 - Parameterization
 - Cost function
 - Computational time reduction
 - Var min/ IC constraint

Conclusions and perspectives
Conclusions and perspectives
Conclusion and perspectives

- Results are in adequacy with financial intuition.
- Hybrid method + simplification techniques: New efficient and fast tool (To be compared with linear search methods.)
- Perspectives: Try with more complete models, extension to other kind of facilities (hedge)...
Conclusion and perspectives

Outlines

Part I: Problems Definition
Part II: Hybrid optimization method
Part III: Application to portfolio optimization

Conclusions and perspectives

!!! Thank You !!!