Available online at www.sciencedirect.com

SCIENCE@DIREOT° J.Ournal o.f
Differential
- Equations
ELSEVIER J. Differential Equations 199 (2004) 143-178 —_—

http://www.elsevier.com/locate/jde

Spectral convergence and nonlinear dynamics of
reaction—diffusion equations under perturbations
of the domain

Jose M. Arrieta®*! and Alexandre N. Carvalho®?

& Departamento de Matemdtica Aplicada, Facultad de Matemdticas, Universidad Complutense de Madrid,
28040 Madrid, Spain
® Departamento de Matemdtica, Instituto de Ciéncias Matemdticas e de Computagdo, Universidade de Sdo
Paulo-Campus de Sdo Carlos, Caixa Postal 668, 13560-970 Sdo Carlos SP, Brazil

Received May 13, 2003

Abstract

In this paper we obtain the continuity of attractors for semilinear parabolic problems with
Neumann boundary conditions relatively to perturbations of the domain. We show that, if the
perturbations on the domain are such that the convergence of eigenvalues and eigenfunctions
of the Neumann Laplacian is granted then, we obtain the upper semicontinuity of the
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obtain the continuity of attractors. We also give necessary and sufficient conditions for the
spectral convergence of Neumann problems under perturbations of the domain.
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1. Introduction

In this paper we consider reaction—diffusion equations of the form

u,— Au=f(x,u) in Q,,

1.1
M_ in 09,, (L.1)
on

where Q,, 0<&<¢, are bounded Lipschitz domains in RY, N>2. We analyze how
the asymptotic dynamics of the evolutionary problem (1.1) changes when we vary
the domain. In particular, we are interested in studying how the behavior of the
spectral properties of the linear operator —A under variations of the domain,
determines the behavior of the nonlinear dynamics of (1.1).

The nonlinearity 1 is assumed to be defined in R¥ x R— R, it is continuous in both
variables (x,u) and for fixed xeRY, f(x,-)e C*(R). Moreover, [ satisfies the
dissipativeness assumption

lim sup M

<0 uniformly in xeR". (1.2)
sl S

It has been shown (see [6]) that problem (1.1) is well-posed in W'4(Q,), ¢>N,
without any restriction on the growth of f. Moreover, under assumption (1.2)
problem (1.1) has a global attractor .«Z,, which is essentially independent of ¢ and
that the attractors <7, are bounded in L™ (Q,), uniformly in ¢. This enables us to cut
the nonlinearity f in such a way that it becomes bounded with bounded derivatives
up to second order without changing the attractors. After these considerations, we
may assume, without loss of generality, f(x,-) : R—Ris a C*>(R) function satisfying
(1.2) and

2

7 (x’ u)

’8f <¢ Y(x,u)eRY xR (1.3)

%(X, Ll) <

for some ¢/, ¢ positive constants. The fact that now the nonlinearity is globally
Lipschitz allows us to study the problem in the space H'(€,). The attractors will lie
in more regular spaces, like W'4(Q,) for any 1<g<oo, but their continuity
properties will be analyzed in the topology of the spaces H'.

We will regard €, as a perturbation of the fixed domain Q, and we will assume the
following condition:

{For each 0<e<gy, €, is bounded and Lipschitz and (14)

for all K< <=, there exists ¢(K), such that K<Q,, 0<e<e(K) }

Notice that we do not require a priori that |2,\Qy| -0 as ¢—0.
One of the main difficulties when treating domain perturbation problems is that
the solutions live in different spaces (say u,e H'(Q,) and upe H'(2)) and therefore
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statements of the type u, — u( should be stated clearly. In this paper we will consider,
for each 0 <e< ey, the space

H'= H' (2,0 Q) ®H"(Q,\Q0) ® H'(2,\Q;) (1.5)

&

that is H, = {$peL*(Qu;), such that ¢ig o € H'(QNQ.), b, €H' (2\2:),
P10,0, € H'(Q,\Q)} with the norm ||“H§1,} = ||”||?11(an90)+||“|\i]l(g,,\sioo)+||“||i11(90\(zn)-
Notice that extending by zero outside Q) we have H'!(Qy)< H], with embedding
constant 1 and extending by zero outside Q, we have H'(Q,) & H, 81, with embedding
constant also 1. Hence, if u,e H'(Q,), upe H'(Qy) we can write ||u, — o[ -
Moreover with certain abuse of notation we will say that u,—uy in HJ if
|[1tz — uol[ ;1 — 0 as e—0.

Also, with an extension by zero outside Q, or Qy, L*(2,)<L*(R"Y) and
L*(Qo) < L*(RY). Hence, for functions V,eL*(2,), VoeL?*(2), statements of the
type V,— Vy in L>(R") or w — L?>(R") make perfect sense. Moreover, if we have an
operator T acting on L*(8,) we may also regard this operator as acting on L?(Q) by
just viewing any element uge L?(Q,) as an element of L*(®,) by extending first u
outside ) by zero and then making the restriction to .. Similarly we can do with
operators defined in L2(y).

In this paper, we give conditions on the behavior of Q. as ¢—0 and on the
unperturbed problem, (1.1) with ¢ = 0, that guarantee the continuity (upper and
lower semicontinuity) of the attractors ./, in H! as ¢—0. More precisely, we show
the following two results:

(i) The upper semicontinuity of the attractors </, in H!, which is obtained just
requiring the spectral convergence in H! of the Neumann Laplacian as ¢ —0; that is,
requiring that the eigenvalues and eigenfunctions of the Laplace operator with
homogeneous Neumann boundary conditions behave continuously in H! as ¢—0.

(i) The lower semicontinuity of the attractors </, in H}. Once upper semicontinuity
is attained, lower semicontinuity in H! is obtained by requiring that every
equilibrium of the unperturbed problem is hyperbolic.

By upper semicontinuity of the attractors in H! we mean that

sup inf |ju; —upl|;n >0 as e—0.
u, €., uo €/ ¢

By lower semicontinuity of the attractors in H! we mean that

sup inf ||u; — upl|y >0 as e—0.
Moeﬂo MnEV(’/,; ¢

It is important to mention that we do not require any geometrical condition
whatsoever on the perturbation €,, apart from the general assumption (1.4). The
condition we require on the perturbation is that the eigenvalues and eigenfunctions
of the Laplace operator behave continuously as ¢ — 0. In particular, once the Laplace
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operator behaves continuously, in the sense of the spectra described above, the
attractors of (1.1) will behave upper semicontinuously. If moreover all the equilibria
of the limiting problem are hyperbolic then the attractors will behave continuously.
In this respect, we can say that the behavior of the nonlinear dynamics of (1.1) is
dictated by the behavior of the linear operator 4.

There are several references in the literature that study linear and nonlinear,
elliptic and parabolic problems under Neumann boundary conditions when the
domain undergoes certain perturbations.

One of the important points to consider is that, in general, Neumann problems are
much more difficult to treat than Dirichlet ones. This point was already brought to
light in the pioneer work of [12]. Actually, they provide a first and important
example of a domain perturbation where the Neumann spectra does not behave
continuously while the same perturbation does not produce any irregular behavior
for the Dirichlet eigenvalues. This example was further developed in [8]. Actually, we
could say that the main difference between Dirichlet and Neumann problems resides
in the fact that for Dirichlet problems the underlying space is H}(€2), which admits a
extension operator to H'(RY) of norm one, independent of the domain Q, while for
Neumann problems, the underlying space is H'(Q), which does not have this
property and the norm of the extension operators depends drastically on the
smoothness and geometry of Q. This fact makes Neumann problems much more
difficult to treat.

For general exterior perturbations of the domain and the characterization of the
behavior of the spectra we refer to [2,3,25]. Also in [10] the case of Hélder
perturbations of a domain is studied. In [15] they study perturbations of the domain
under Robin boundary conditions and in [11] they consider fairly general elliptic
operators with mixed boundary conditions, Robin and Dirichlet, although when
dealing with results on perturbations of the boundary they perturb only the part of
the boundary where the Dirichlet condition is imposed.

In many references some particular perturbation of the domain is considered. One
of the most extensively studied examples is the so called dumbbell domain, which
consists of two fixed domains joined by a thin channel. There are several results on
the spectral behavior of the Laplace operators under this perturbation [2-4,9,22].
Also the nonlinear elliptic problem has been studied in [19,29] and the nonlinear
parabolic problem in [23,24]. In [30] a functional framework to treat nonlinear
elliptic problems when the domain is perturbed is developed. In this work, the family
of domains is assumed to be nested, all of them contain the limiting domain and the
sequence converges in measure to the limiting domain.

Another important examples of irregular perturbations of the domain are thin
domains, where, roughly speaking, a domain in R” is flattened in certain directions
and converges to a lower dimensional set, see [18] for a pioneer work in this area and
[28] for a monograph on this kind of perturbation. See also the work [27] for other
type of thin domains.

Also, for interesting results on how the shape of the domain influences the
structure and the number of solutions of nonlinear elliptic equations, we refer to
[13,14].
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In [1] the authors study the nonlinear dynamics of a reaction diffusion equation
with Dirichlet boundary condition when the domain is perturbed, obtaining the
continuity of the attractors. Also, in [26], the authors consider the case of smooth
perturbations of the domain, that is, a family of domains Q. which are
dipheomorphic to a fixed one €, and the dipheomorphisms converge to the identity
in C?. With this dipheomorphisms and using the techniques developed in [21], the
authors are able to prove the continuity of the attractors with Dirichlet boundary
conditions in strong norms.

Most of the references above, specially those dealing with Neumann problems,
either treat nice perturbations of the domain or, when the perturbation is not
regular, the perturbed domains are geometrically defined in a concrete way (thin
domains, dumbbell domains, etc.). In this respect our work is different. We do not
impose any geometrical description on the perturbation but bring into light that in
order to analyze the behavior of nonlinear dynamics it is just needed to understand
correctly the spectral behavior of the linear operators.

Our analysis is based in an extensive and thorough study of the behavior of the
linear part. Actually, in Section 2 we give necessary and sufficient conditions to
obtain the spectral convergence of the linear operators under the class of domain
perturbation satisfying (1.4), see Proposition 2.3 below. Next, we will see that by just
requiring the spectral convergence of the linear operators, we obtain the convergence
of the resolvent operators (Proposition 2.6) and a type of Trotter-Kato
Approximation Theorem for linear semigroups (Proposition 2.7).

In Section 3 we prove, by using the variation of constants formula and the results
on the linear semigroups of Section 2, that the family of nonlinear semigroups
{T.(¢), t=0} associated to (1.1) is continuous in ¢ at ¢ = 0, uniformly in compact
intervals of (0, c0). That is, if uje H' (), 0<e<e with |[u — u°||;;1 >0 as e—0,
then for any 0<r<R< o0

sup ||T.(¢) () — To(l)u°||HJ -0 ase—0.

r<t<R

With this it is not difficult to show that the family of attractors .«Z; and the set of
equilibria &, are upper semicontinuous at ¢ = 0.

In Section 4 we study the lower semicontinuity of the attractors. As a matter of
fact we proceed as follows. Consider the problem

—Au=f(x,u) in Q,,

P
(). Ou_ 0 in 0Q,
on
for 0<e<g. Assume that (P), has exactly m distinct solutions, ), ..., Y, and that

they are all hyperbolic, that is, zero is not an eigenvalue for the problems 4 +
Ouf (- ui(|))I for i=1,...,m. In Section 4.1, we prove that, for small ¢, P, has
exactly m distinct solutions 5, ..., u%, and uf—»u;) in H! as ¢e>0, 1<j<m. This is

sy Uy

done through a fixed point argument. Alsd, usi'ng the results of Section 2 on the
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convergence of the linear semigroups, we prove in Section 4.2 that the local unstable
manifolds of the equilibrium points u; are continuous in H! as ¢—0.

It follows from the continuity of the local unstable manifolds that the attractors
are lower semicontinuous at ¢ = 0. This can be proved in the following way. Since
the system generated by (1.1) is gradient, then if u € .o/, we have that u, belongs to
the unstable manifold of ug for some 1<k<n. In particular, there will exist wy in the
local unstable manifold of u2 such that uy = To(t)wy for some 7>0. By the
continuity of the local unstable manifolds, we can get w, in the local unstable
manifold of u such that [Jw, —wol[;;; >0 as é—0. Now, since the family of

semigroups is continuous in H! we have that .7, > T, (t, w,) = To(t, wo) = 1 in Hg1 as
e¢— 00. This shows the lower semicontinuity of attractors. See Theorem 4.6 for more
details.

Finally in Section 5 we give two examples of perturbation of the domain where the
conditions of this paper apply. The first one is a C° perturbation of a fixed domain
€y, including the case where the boundary presents a high oscillatory behavior. The
second one is a nonstandard dumbbell-type perturbation.

2. Linear theory

In this section we analyze the behavior of the linear parts of the operators and
prove several results that will be used throughout the paper.

2.1. Spectral convergence characterization

It is very clear that the spectral behavior of the linear operators is extremely
important when analyzing the continuity properties of nonlinear dynamics. We
include in this section several results on the spectral behavior of operators of the type
—A 4V, where V' is a potential, with Neumann boundary conditions when the
domain is perturbed. We are interested in obtaining necessary and sufficient
conditions that guarantee that the eigenvalues and eigenfunctions behave
continuously when the domain undergoes a perturbation satisfying (1.4).

The potentials may depend also on &. We specify their behavior as ¢—>0 in the
following definition.

Definition 2.1. A family {V,:0<e<eg} of potentials is said admissible if
Vee L™ (Q.), sUPoc,<s |[Vellps () <C< oo and V,— Vy weakly in L*(RY).

To fix the notations we consider the eigenvalue problems

—Au+ Vou=u, Q.
Oou
—=0 1919

an b &y
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where {V, : 0<e<egp} is admissible. We denote by {1:},~,, for £€0,¢], the set of
eigenvalues, ordered and counting multiplicity, of the operator —A4 + V, with
Neumann boundary conditions in €, and by {¢/}~, a corresponding complete
family of orthonormalized eigenfunctions.

We will say that the spectra behaves continuously at ¢ = 0, if for fixed ne N we
have that )j—»ﬂvg as ¢—0 and the spectral projections converge in H!, that is, if
a¢ {20},2,, and A)<a<7y,,, then if we define the projections P :L*(RY)—

HY(Q,), Po() = 320 (07,¥) 2(q,)#7 then
sup{|| P, (W) — Po(h)ll g, e L2 (RY), Wl vy = 1} -0 as e—0.

The convergence of the spectral projections is equivalent to the following: for each
sequence ¢, — 0 there exists a subsequence, that we denote again by ¢, and a complete
system of orthonormal eigenfunctions of the limiting problem {¢>2};°:‘l such that
165 — 511y —0 as k- 0.

Notice that condition (1.4) implies that there exists a nonincreasing sequence p,
with p,—0 as ¢ -0 such that if we define

K, = {xeQ : dist(x,09)>p,} (2.1)

then K, = Q, for all 0 <&< . The family of open sets {K;}_,, can be regarded, as
¢—0, as a smooth interior perturbation of the domain Q. In particular, since the
domain € is Lipschitz, the family K, is uniformly Lipschitz in ¢. This implies the
existence of extension operators E, : H'(K,)— H'(R"), which are also extension
operators from L*(K,)—>L*(R"), and the norms ||E.|| g k) m@yy and
|Ee|l #(12(k,),12w)) are uniformly bounded in & for 0<e<z.

Remark 2.2. Notice that we do not exclude the possibility that p, = 0 and therefore
K, = Q. This will be the case when £, is an exterior perturbation of the domain, that
is, Qp=Q,.

In order to characterize when the spectra behaves continuously we define

v 2
©,= inf M (2.2)
HY(Q,
d)(p:EO, 11(1 [zs f_QL |¢|

Observe that, in case Q,\K, is smooth, 1, is the first eigenvalue of the following
problem:

—Au=1tu, Q\K,
u=020, 0K,
0

u
—= Q,.
5, =0 0
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We have the following useful characterization

Proposition 2.3. Assume the family of domains {Q.},<,<,, satisfies (1.4). Then, the
following four statements are equivalent:

(1) The spectra of —A + V, behave continuously as ¢ — 0 for any admissible family of
potentials {V,, 0<e<e}.

(ii) 7, — oo as e—0.

(iii) For any family of functions y, with ||, || ;o) < C then |[,[ 12

(iv) For any family of functions \, with ||y, ||H1 ySC there exists a sequence \,,
and a function yye H'(Qo) such that ¥, —,, in Lz(RN) and for any ye H'(RY) we
have that

o.k) 0 ase—0.

/ VY, Vi / R
Q Qo

Moreover, if any of the four statements above is true then the following also holds
(V) |Q2:\K:| =0 as e—0.

Remark 2.4. A somehow similar, although weaker, statement of this lemma can be
found in the works [2,3].

Notice that statements (ii)—(iv) are independent of the potential V. Hence (i) is
equivalent to the fact that the spectra of —A behaves continuously as ¢— 0.

We show that (i) = (ii) = (v), (i) + (v) = (iil) = (ii), (iii) + (v) = (iv) = (iii)
and (iv) + (v) = (i).

Proof. That (iii) implies (ii) is easy since if there exists a sequence & —0 with t,,
bounded, then, by the definition of 7., we obtain a sequence of functions with
L*(Q,\K,,) norm equal one and the H'(®,,) norm bounded.

That (i) implies (v) is also easy. Notice that by the definition of K, |Q0\K;,|—0
as &, —0 and therefore we just need to show that |Q,\Qy| -0 as & — 0. If this were
not true then we will have a positive #>0 and a sequence & —0 such that
|2,,\Q|=n. Let p=p(n) be a small number such that [{xeRM\Q,
dist(x, Q) <p}|<n/2. This implies that |[{xeQ,, dist(x,Qy)=p}|=n/2. Let us
construct a smooth function y(x) with y(x) =0 in Q, y(x) =1, xe R"\Qy with
dist(x, Q) >p. Then obviously ye H'(Q,) with ||Vy\|Lz(an><C and ||y|\Lz(Q{:k)>

1
(7/2)2. This implies that 7., is bounded.

That (i) implies (iii) is proved as follows. If it is not true then there will exist a
sequence of functions ¢, with [[¢, ||z, )<Cr and s |20, k)= C2>0, for

some constants C; and C, independent of er. If we consider the functions v, =
E,;k(¢1;k|,<ﬂk) then ¢, € H'(R") with [, |11 vy < C independent of &. Moreover, by
Holder’s inequality and Sobolev embeddings, we have

1
||‘//sk||L2(Q,,k\K,;k)<stk| ek <C||W8A,|‘H‘(RA’)|QSk\KSk|N7 (N>3)7

LVV-2)(Q, \K,,) |Q



J.M. Arrieta, A.N. Carvalho | J. Differential Equations 199 (2004) 143178 151

11
2w, (N=1,2),

11
||‘/jsk||L2(Q,;k\K,;/c) < ||¢8k||L2ﬂ(Q;,k\K,;k)|ng\K8k 12 P <Ol | () 1926, \ Koy

where p can be choosen arbitrarily large in the last inequality. These two last
inequalities imply that there exists a >0, such that

Hlpsk

We consider now y, = ¢,
||Xsk||H1(an)<C' Moreover, ||Xsk||L2(Qek\K;k)>||¢ek||L2(QEk\K,;k) -
as long as ¢g; is small enough. This contradicts (ii).

That (iii) implies (iv) is proved as follows. If W, is a sequence with
10 Hl(gwgC , then we can extract a subsequence of V¥, , that we denote again
by i, and we obtain a function Y€ H'(Q) such that y,, >, w-H'(K), s-L*(K),
for any K = = Q. Let us prove that we actually have y, =, in L*(R"). Notice first
that with a similar argument as we have done in the proof that (ii) implies (iii) we
have that there exists a p > 0 such that ||‘//5k||L2(Kuk\Ka‘) < CIK,\K;|”, for 0< g, <8, with

o, k) SCI2NK, " >0 as g —0.

—,. By construction y, =0 in K, and
W, | |L2(Qek\Ké,k) =>(C,/2

a constant C independent of k and 6. Let >0 a small number. Choose ¢ small
enough so that ||¢I;k||L2(K8k\KJ) <3, for any & <& and |||l 12k, <3- Then,

9

2 2 2
Hlﬁsk - lﬁOHLZ(RN) = ||‘psk - ‘//0||L2(Ka-) + ||‘ﬁsk - WOHLZ(RN\K,,)-
But

Vs, — Yoll 2 wvixy) < ||W{:k||L2(st\ng) + ||lﬁ;;k||L2(1<8k\K5> + ol 200 x,)

n
< E + H"lek”Lz(Q;;k\Kuk).

Choosing & >0 small enough so that |, [|2q, \x, )<§ and |[¥,, — lﬁoHiz(Ké) <4 we
have that

s, — Yol 2@y <n-

This shows the convergence in L?(RY).
Now if ye H'(R") and if >0 is a small number, choose 6 >0 small enough such
that ||y (2, 000)\Ky) ST Then, for 0<ég, <0, we have

‘ / v, V- / VoV
2, o3

<\/ (wsk—wo>w\+ [+ [ vl
K Q \Ks

Q0\K;

<

/ (Vy,, — Vl//o)Vx‘ +2Cn—2Cn  as g —0.
K

Since >0 is arbitrary, (iv) holds.
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That (iv) implies (iii) is proved as follows. If y, is a family of functions with
1ol 1, < C then, there is a sequence ¥, and a function Yoe H'(Q) such that
W, — l//o||L2([RzN) -0 as ¢g—0. Hence ||¢sk||L2(Qek\1§k) <|l¥,, — lP()|\L2(Q%\12Kk) +
||¢0||L2(Qo\1?,-,,() —0 as g —0.

Let us prove now that (i) implies (ii). If this is not the case then we will have again

a sequence g, approaching zero and a positive number a with 1., <a, for all k. From
the definition of 7, we can get functions ¢, with ¢, =0in Q,, ||, || 2(,) = 1 and

2
V¢, 2, ) S a
Observe that

2 2 ~
/ |v¢sk‘ +/ V3k|¢)8k| <a—i_||VEk||LV~(s’2,.,k)<0l7

» Q,

for some constant 4 independent of g,. Choose neN with the property that

a<Jn<2).,, denote by ¢, ..., % the first n eigenfunctions and consider the linear
subspace [¢f, ..., ¢}, ¢, ] cH'(Q,,). By the spectral convergence we can get a

subsequence, that we denote by & again and eigenfunctions of the limiting problem
9. ...,¢" such that ||p* — ¢?||;;; —0 as g —0. This implies that ||¢>§-’"||L2(Qﬂk\Kk) -0
é‘,k e \rep

as ¢ —0. From here we get that
/ i, =0, as g —0, fori=1,..,n,
Q,
Kk

which means that [¢{, ..., ¢;%, ¢, ] is almost an orthonormal system in L*(€,,). By
the min—max characterization of the eigenvalues, we have that

Jo, V61 + fo, Vall

A%< max

+17= o B 2

T el b ] Jo, 141
But if ¢pe[pf, ..., ¢k, $, | we can write ¢ = D7 ;7 + P¢p,, . Using that ¢ is an
eigenfunction corresponding to the eigenvalue A* and that the family
{oF, ..., %, ¢., } 1s almost orthonormal, by direct calculation of the above quotient

we get that

/lgk <Z?:1(x%l?‘ + dﬁz + 0(1)
ST 2 ato(l)

<12 +o(1).

This contradicts the continuity of the eigenvalues given by (i).

The proof that (iv) implies (i) is as follows. Fix n with the property that 22 <)v2 l
and consider the family of eigenfunctions {(f)?, e (;’)2}. If we denote by E a extension
operator from H'(Qy) to H'(RY), and by 7, the restriction operator to Q,, we
construct the functions & = .7 ,,.Ed)?, i=1,...,n Since (iv) implies (v) we easily see
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that [|¢}[|z1(0,10,) 20 as -0 for i=1,...,n. By the min-max characterization of
eigenvalues, we easily obtain that 2 <Y + o(1) as £—0.

We can choose a sequence ¢, —0 and numbers ;cl-g/l?, i=1,...,n, such that
Ak >, fori =1, ...,n. Since ¢, for i =1, ...,n is a bounded sequence in H'(Q,,),
then by (iv) we can extract another subsequence, that we still denote by ¢, and get
functions &Ve H'(Qy), i =1, ...,n, such that ¢%* —¢&" in L2(RY) and

I
for any ye H'(R").
In particular fQo é?qu = 0, and passing to the weak limit in the equation, we get

/Vé?Ver/ Voé?xzxi/ v i=1,...,n
2 Qo Q

This implies that necessarily x; and é? are eigenvalues and eigenfunctions of the

v¢§kvxﬁ/ VAV, i=1,...,n
Qo

0%

limiting problem. Since we already know that «; <)L? we necessarily have that x; = }v?

fori=1,...,nand {i?, . 52} is a system of orthonormal eigenfunctions associated
0 20
to Ay, ...y 4,
In order to prove the convergence in Hglk we notice that qﬁ?, i=1,...,n, satisfy

[owerp =z [ 1err- [ ovaerion [j@r- [ wigr= [ ver
Q Q, 0, Q Q Q

ok

where we have used that ¢ — ¢? in L2(R"), the weak convergence of V;, to ¥, and
the uniform bound of ||V, || (o, )- Hence,

[ v —vap= [ verps [ var-2 [ vepve.
RN Q‘;k Qo Qt:k

But,

/ |v¢>§k|2_>/ IVEP  as g0
€ Qo

“k

and if we define &€ H'(R") an extension of & we get that

/ V§*vE = / Vo vE + / Vo (VE - vE) - / IVE? as g —0
Q, Q,, Q Q
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because

<Vl e, ) IVE = VE

L2(Q) —0 as g —0.

/Q Vo (VE - V)

This implies that
/ Vg —VEP 50 as g —0.
RV

And the proposition is proved.

2.2. Convergence of the resolvent operators
We analyse in this section the behavior of the resolvent operators.

Definition 2.5. We say that a family {Q, : 0<e<¢g} is admissible if it satisfies (1.4)
and one of conditions (i)—(iv) of Proposition 2.3.

We have the following result.

Proposition 2.6. Assume that the family of potentials {V,,0<e<¢&y} and the family of
domains {Q, : 0<e<ey} are admissible. Assume also that 0¢ a(—A + Vy). Then, for ¢
small enough 0¢ a(—A + V) and there exists a constant C independent of ¢ such that

-1
=4+ Vo) gollia) < Cllgell2ays -6 L2 (2). (2.3)
Moreover, if g, — go weakly in L*(RY), then

(=4 + V)" g0 — (=4 + Vo) ' golln >0 as 0. (2.4)

Proof. Let us show first (2.3). By the continuity of the spectra given by Proposition
2.3 we have that for ¢ small enough 0¢a(—4 + V,). In particular, for g.e L*(Q,)
given we have a unique solution w,e H'(Q,) of

—Aw + Vew, = g, Qg

2.5
M . 9Q,. (23)
on

We show first that if [|g.||;2q,)<C, with C independent of &, then [[w.[|;2(q,

is bounded. Suppose not, then there is a subsequence, which we again denote

by {w.}, such that |[w,|[;2q,) — . Consider W, = m, so that ||| 20, = 1.
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Then
AV, + Vb, = W Q.
i ) (2.6)
W,
-0 0Q,.
6"1 b B

Multiplying this equation by W, and integrating by parts we obtain that

We|™ + e We| = T We
Vi 2 V.hi 2 ge ~
Q Q Q ||W8HL2(Q£)

from where it follows that

/ IVin* < C,
Q,

with C independent of &. Applying Proposition 2.3(iv) we can extract a sequence,
denoted still by 1, so that W, - in L*>(R") and for any ye H'(R") we have

/ Vi Vi— | ViigVy.
Q Qo
Notice in particular that |[Wol[2q,) = 1.

Let e H'(Q) and consider e H' (RY) an extension of ¢ to RY. If we multiply the
equation (2.6) by e H! (Q,) and integrating by parts we have that

/V14~71V§+/ VfwéE:/ Lf
Q Q Q, ||WS||L2(QI.,)

Taking the limit, we get that

Vo V¢ +/ Vowoé = 0,

Q Qo

where we have used that [|V,|[;.q,<C, Vim Vo, w-L*(RY) and W, -, in
L*(RY). Thus

=Ny + Vo =0, Q,
b 2.7
% =0, 8907 ( )
on
and since 0¢ o(—4 + Vo), we get W = 0. This contradicts the fact that || (g, =1-

Hence, we obtain that ||w;|

12(0,) is uniformly bounded in &.
To show that [[Vw||;2(,) is uniformly bounded in ¢ we note that V; are uniformly

&

bounded in L*(Q,) and that

/ |Vw8|2:—/ V8|w8|2+/ JeWe.
Q. Q, Q,
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To show (2.4), notice that by the weak convergence of g, we have that g, is
uniformly bounded in L?(R"). Applying (2.3) we obtain that ||(—4 + Vg)_lgg||H](Q”)
is uniformly bounded in . Using (iv) in Proposition 2.3 and taking the limit in the
equation we obtain that if u, = (—4 + Vg)flgg and uy = (—4 + Vo)flgo, then u, — u
in L2(RY) and Vu, - Vuy w-L*(R"). Now with a similar argument as in the proof
that (iv) implies (i) in Proposition 2.3 we obtain that u,—uo in H]. This concludes
the proof of the lemma. [

2.3. Convergence of the linear semigroups

With the continuity of the spectra of the operators —4 + V, we can obtain
estimates on the behavior of the linear semigroups that will be very useful for the
analysis of the nonlinear dynamics.

We consider the operators 4, = 4 — V,, as unbounded operators in LZ(QS), for
0<e<e. They generate analytic semigroups e+’ in L*(Q,), H'(Q,) and in general in
the scale of fractional powers of the operator.

Notice that the semigroup e’ acts on functions defined in Q,. We will need to
estimate expressions of the type e?-'u, where, for instance ug eLz(Qo). As we said in
the introduction, by this we mean that we extend the function uy by zero outside Q
and restrict to €. In this way we can also regard uye L*(2,) and evaluate e?*u.
Similarly we can give a meaning to e0y,.

We have the following result

Proposition 2.7. Assume that the family of domains {Q, : 0<e<eo} and the family of
potentials {V,:0<e<e} are admissible. Let a>0 be such that Jo<a<7y,, and
consider the spectral projection over the linear space generated by the first n
eigenfunctions P’ defined in Section 2.1. Denote also by b a number such that b<;u(1).
Then, there exists a number 1<y <1 and a function 0(¢) with 0(¢) >0 as e~ 0 such that

||, — eA"’uE||HL! <M@(s)t’”"e’bﬂ|uz;||L2(QC), u, e L*(Q;), >0,

e (I = Po)uy — e (I = Pg)us|| gy < MO(e)r ™ ™|

) WeLX(Q), 1>0.

Proof. Let us prove the second inequality. So let us consider # and a given, satisfying
the hypothesis of the proposition. Notice that we can choose a constant M
independent of ¢ such that

1
e (T = P5)uel |1,y < M2 |t 12q,)» u, e L*(Q,), t>0, ¢€0,e).

Now, we separate the estimate for ¢ small and ¢ large. Choose ye(%, 1) fixed.
Let 6>0 be a small parameter and let us consider two different cases according
to te(0,9] or 1>9.
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(i) If £€(0, 9] we easily check that
L
le! (1 — PY)u, — (I — Pg)uy|| g < 2M12e ||| g

1
<2ME 27 ug]| 12 g -

157

(2.8)

(i1) If £> 6 we proceed as follows. Notice first that we can always choose a positive
number / = /() such that if z>/ then ze >*'< 5t 7e~ for all =6. Since we have

0

l}iﬂ)»}yg and igliw—oo, there exists N = N(J)>n such that 2, >/(5), ¢€[0,¢).

Without loss of generality we can assume that we have A?v@ </1?\,<5> +1- Hence, from

the spectral decomposition of the linear semigroups, we obtain

e (I = P&Yu, — ™' (I = P§)us|

N(0) N N 50 0N 10
<|| 2 e b~ Y e e ¢
Pt k=n+1 H}
o0 B 0
(DR IS D SR AT
N(0)+1 H'(2,) N+ H (&)
= Il + 12 + 13'

Analyzing I, I3 and I}, respectively, we get

[M]s

EES Ae ™ (u, ) <O |t 20
N(9)+1
e} 0 5
L Y e (g, 6P <ot e |20,
N()+1
NG) No)
Il = Z e—A,\,t(umql)i)qu_ Z eizkt(us;(bz)ﬁbg
k=n+1 k=n+1 H!
N(J) . o N(3) o o L0
<[> (@ e ) gk || | D e (s, $)E — (s, $) 1)
k=n+1 H} k=n+1
N((s) N l 18 ;0
< 3 (GRE+ Dl — el
k=n+1
k(d) Nit+1
+ Y e T (e D) — (e, 67
i=r k=n;+1 Hel

(2.9)

H]
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Moreover, from the convergence of the eigenvalues and of the spectral projections,
we can find &;(0) €(0, &) so that

N(9) 1 . 5
ST+ Dl — e M|<srTe e (0,61(5)),

n=1

k(o) Ny
ST ST (e 65— (s, $2)00)
i=r k=n;+1

H'(Qo)

50 o
<e 0lus]| 20, S COr e ||ul| 2q,)  2€(0,21(5)).

From the estimates for I;, I, and I3 we obtain

(1 = Pu, — e (1 — PY)ug|

<SCore |2 15, ee(0,61(5)). (2.10)

Finally, since 0 is an arbitrary small number, inequalities (2.8) and (2.10) prove the
result.

The proof of the first inequality of the proposition is very similar to the one
provided for the second inequality. The role of a is played now by b and P =0,
P =0.

This concludes the proof of the proposition. [

3. Upper semicontinuity of attractors and of the set of equilibria

In the previous section we have studied in detail the behavior of the linear parts of
the operators under the perturbation we are considering and have proved a result on
the continuity of the linear semigroups, Proposition 2.7. We will see in this section
that the attractors and the stationary states, solutions of the nonlinear elliptic
problem, are upper semicontinuous with respect to this perturbations.

To this end we will relate the continuity of the linear semigroups with the
continuity of the nonlinear semigroups for dissipative parabolic equations by using
the variation of constants formula. This in turn will imply the upper semicontinuity
of the attractors and the stationary states. See also [5,7,27] for other examples that
use a similar technique.

We will show the following result

Proposition 3.1. Assume that the family of domains {Q.:0<e<ey} is admissible.
Then, there exist 0<y<1, a function c(g) with ¢(¢)—>0 as ¢—0 and a constant M
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such that
||T8(l7u8) - TVO(Z‘auS)HHgl <Al(’)(‘q)lﬁya ZE(()?T]’ ||u8||L2(Qc)<Ra 86(0780)7 (31)

where M = M (7, R).
Moreover the attractors are upper semicontinuous at ¢ =0 in HL.l, in the sense that

sup { inf {|u3—uol|H1}] S0 as e—0. (32)
u; €./, ug 4o &

Also, if we denote by &, e€(0,¢] the set of stationary states of (1.1), then

sup [ in(f@ {I|us — u0||H1}} -0 ase—0. (3.3)
60 &

ue 8y [U0€

Remark 3.2. For this section and for the rest of the paper we will denote by F and F’
the Nemitsky operators of £, % respectively. That is,

F)() = £ (e u(x), Fu)(x) = 2 (x,u(x)).

Proof. Notice that the nonlinear semigroups 7,(¢) are given by the variation of
constants formula:

t
T,(t,u,) = e*'u, +/ A F(T,(s,u,)) ds,  e€0,¢). (3.4)
0

Hence, calculating T,(#,u.) — To(t,u,) and with some elementary computations we
obtain

T (1, us) — To(t, ”s)HHg < HE’AJ”S - ert”e”h(}
t
* / et F(T,(s,u;)) — e F(T,(s, ue) || gy dls
0 &

+ / [l (F (T (s, 1)) = F(To(s,us))| gy ds,  ¢€[0, ).
0

Applying now Proposition 2.7 we get

||T'1:(t7 ue:) - TO(ty us)HH"} < MB('S)tiyeibt'|uli||L2(Q€)

t
- MOG) / (£ = )7 F(T (5, 0) |2

0
t

+ M/ (1 — )" 2P C|| Ty (2, u,) — To(t, us)|| -

O &
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But since [u;|[;2(q,) <R and f is a bounded function, the first two terms in the last
inequality can be bounded by MO(e)t™?, with M = M(t,R). Applying now
Gronwall’s lemma, see [20], we obtain statement (3.1).

Now, the upper semicontinuity of the attractors in H,, statement (3.2) follows
directly from (3.1) and the fact that ./ attracts {Jy_,, /. in the topology of
H'(Qp), see for instance [16].

To show the upper semicontinuity in H! of the stationary states we will prove that
for any sequence of ¢ —0 and for any u, €&, we can extract a subsequence, that we
still denote by ¢, and obtain a ug €&y such that |[u; — ug||;;1 =0 as e—0. From the
upper semicontinuity of the attractors given by (3.2), we obtain the existence of a
ug € .o/ such that ||u; — ug|[;n =0 as e—>0. To show that uye &y we first observe that
for any t>0, ||lu, — To(¢, u0)1|’|H13 = |[ug — To(1, uo)|| 1 (q,)- Moreover, for a fixed >0
and for any 7€ (0, 1) we have that,

[tz = To (2, u0)|| gy = ||Te(t,us) — To(t,u0)|| 1 >0 as e—0,

where we have used that u, is a stationary state and (3.1). In particular, we have that
for each >0, uy = Ty(t,up), which implies that uy is a stationary state. This
concludes the proof of the Proposition.

4. Continuity of equilibria, unstable manifolds and attractors

In order to obtain lower semicontinuity of attractors in H! we must ensure that
the set of equilibria &, behaves lower-semicontinuously. In this section we prove
that, for the sort of domain perturbations considered here and assuming that the
equilibria of the limiting problem are all hyperbolic, &, is a finite set with constant
cardinality; that is, & = {u5, ...,u%}, 0<e<g. This set behaves continuously with

ot
respect to ¢ in H!, that is,

e 0 e—0
max {[uf — [l } —0.

We also prove, in this section, that the local unstable manifolds of equilibrium
solutions are continuous as ¢—0. For that we use the convergence of equilibria to
obtain the continuity of the spectrum of the linearization around such equilibria and
consequently the continuity of the local unstable manifolds.

4.1. Continuity of the set of equilibria

Consider the following family of elliptic problems:
Au+f(x,u) =0 in Q,,
P),
®), ou_
On

for each 0<e<gy (g0>0). We can show the following

in 0Q,
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Proposition 4.1. Assume that the family of domains {Q.:0<e<ey} is admissible.
Assume also that problem (P), has a solution u° and that zero is not in the spectrum of
the operator A+ (- u® ()1 : H2(Qo) = L*(Q0) — L*(Q). Consider the extension
operator E : H'(Qy)— H'(RY) and let u** = E(uo)‘m eH'(Q,). Then, there exists
€ >0 and 6>0 so that problem (P), has exactly one solution, u*, in {wy,||w; —
uP|| (0, <O} for 0<e<ey. Furthermore,

| — u°)|;i =0 as e—0.

Proof. Define the operators
6,: H'(Q,) - H'(Q,),
O.(z;) = (=4 + F' ()" (F(z,) + F'(u*%)z,) (4.1)

(see Remark 3.2 for the meaning of F and F’). The operators @, are well defined by
applying Proposition 2.6, since F'(u%*)— F'(u°) in L*(RY) and 0¢a(4 + F'(u°)I).
Notice also that v, is a fixed point of @, if and only if v, is a solution of (P),.

We will show that there exists 6>0 and g >0, such that the operator ©,, for
0<e<g, is a strict contraction from Bs(u**) = {v,e H'(Q.) : |[v; — u"*|| p o) <O}
into itself.

To prove this, let us start by showing that @, : Bs(u’¢)— H'(Q,) is a strict
contraction, that is, there exists a p<l1 such that [|@.0, — @.we|y1(o,) <pllv: —
Well (g, for any v;, w.e Bs(u’*). We have,

1©:(v:) — @‘S(WS)HH‘(Q;,)
<|I(=4+ F’(”O’g)])_l ||$(L3(Q,,),H‘(Qu))||F(Uﬁ) — F(w;) — F'(u*") (v, — Ws)||L2(Q,,)

SCIIF(ve) = F(ws) = F' (") (0 = we)ll 2(q,)- (4.2)

3 &

Where we have used Lemma 2.6 to obtain that ||(—4-+F (u®)I)""| | e20),m10) < C
for some constant C independent of &. Next we study ||F(v,) — F(w,) — F'(u*%)
(va = we)|[12(q,)- We prove

Lemma 4.2. There exists a constant C such that for all z,e H'(Q,), all >0 and all
Uay We With (|0, — 25| g,y <0, [10s — Zal g q,) <0, we have

1
(@) = FO) = F G0~y <C (1 + 0 Yo = wll
&

where T, is given by (2.2).
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If we assume the lemma proved, then we have
1
19.(6) = €.l < 3+ 8 o = wely o
&

Now, given p <1 choose ¢ small enough such that C%S% and ¢ small enough so
that Co*Y <2. This shows @, is a strict contraction from Bs(u’*) into H'(Q,).

In order to prove that @, maps B;(u*¢) into itself we show first that ||@u’¢ —
|| g1,y =0 as e—0, for all k =1, ..., m. Notice that

10" — 1| |1 g,y < [1@tt™ = || g + | — 1]
0,¢ 0 0,¢
=@ =1 || g + [ 1 000)

But |||
as ¢—0. If we denote by v, = @.u"*, then v,e H'(Q,) is the solution of

(@) — 0 as e—0. Hence we just need to show that ||@,u"* — u°|| ;1 —0

— v, + P/, = F) + P, Q,

ZE_0 09,

and «° is the solution of
—A® + F' (")’ = F(u) + F' (u")u®, Qo,
ou’

b Q.
on 07 0 0

But by the resolvent convergence estimates (2.4) we get that ||v, — 1°|| ;1 =0 as e —0.

To show that ©®, maps Bs;(u"?) into itself we just observe that if v, e Bs(u®*)
|0:0; — “0‘8”111(95) < ||@:v; — @f:uo’EHH‘(QE) +|0 — ”O"EHHI(QS)
< po+ 110" — || 11 g

Choosing ¢ small enough again we can guarantee that ||@u* — uO"’||H1(Qx) <(1—=p)o
and therefore ||©v; — u°’5||H1(QE) < 0. This concludes the proof of the Proposition.

Proof of Lemma 4.2. Note that
|F(0:(x)) = F(we(x)) = F'(2:()) (0 (x) = we(x)[ < Oy, 5 (x) e (x) = wel,
where

Vo5 () = min{1, [ve(x) = z,(x)] + |we(x) = z:(x)[}-



J.M. Arrieta, A.N. Carvalho | J. Differential Equations 199 (2004) 143178 163

It follows, from the definition of y,s, that ||y, s/l -0, <1, 0<e<é&. Moreover
||y£,5\|LZQ)\||v}—zf||Lz +||we — z¥||L2 <25 for all v, w,eBsu’). Using
Holder’s inequality, we get

1700l 10 < (20)77 <2(8)*7,  2<p< o0, for all v, w, € Bs(u’).

Now if ¢, = v, — w, we denote by @, = Ez:(ﬁ”z;‘,( )‘Q . Then

HCDII - qDII‘ |L2(Q£) = ||(P1 b, ||L7(QF\K ||V(/); V(pél‘ |L2(QE\K,;)
1
< C—lledllmia) + 11l @y)) < (H¢LHH1 ) Tl )
&
2
c— @l (0,)

where we have used that E,: H'(K,)— H'(R") is bounded and 7, is the first
eigenvalue of —4 in Q,\K, with Dirichlet boundary condition in 0K, and Neumann
boundary condition in 9Q,. Now

7e6@ell 1200 < 766 (@s — @ll2(0,) + |[7e6Pell 120,

< |Weslle@ll0e = Pell 20,y + el ov @) [1@ell v @y
<<c3+cymyn
< T Pella ()

This proves the lemma. [
As an immediate consequence of this proposition, we have

Corollary 4.3. Assume the conditions of Proposition 4.1 hold. Assume moreover that
problem (P), has exactly m solutions W0, ... ul and that all of them are hyperbolic in
the sense that 0 is not in the spectrum of A+ F'(u))I : H}(Q) = L*(Q) » L*(Qo) for
k=1,...,m. Then there exists a small ¢y>0 such that for all 0<e<egy problem (P),
has exactly m solutions ui, ..., u’,. Moreover, we have

|[uty, —u2|\HS1 -0 as e—0.

Proof. By Proposition 3.1 we have that for any solution #° of (P), for & small enough
lies in a neighborhood of the set of equilibria (P),. But by Proposition 4.1, in a
neighborhood of ) there is only one solution of (P), which converges to u{ in H,.
This proves the result.
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4.2. Continuity of the unstable manifolds

In this section we show that the local unstable manifolds of u*, for k=1, ....m
fixed, are continuous in H! as ¢—0. The existence of this manifold follows from
standard invariant manifold theory, see [20], although its proof is adapted to
encompass the possibility that the space changes according to a parameter and to
keep track of the dependence of the invariant manifold upon the parameter. After
this, we show that the unstable manifolds are close for small ¢. For this we will use
the convergence results on the linear part obtained in Section 2.

We have the following

Proposition 4.4. Assume that the family of domains {Q.:0<e<ey} is admissible.
Assume also that u° is a solution of problem (P), and that zero is not in the spectrum of
the operator A + % (-,u® ()1 : H2(Qo) = L*(Q0) — L*(Q9). By Proposition 4.1, (P), has
a unique solution, u*, near uy. Then, there exist 6, ey>0 such that u* has a local
unstable manifold W} (u°) c H'Y(Q,) for 0<e<e and if we denote by

Wi(u®) = {we W .(u),||w— HSHHI(Qz) <0}, 0<e<e,

then W (u®) converges in H} to W¥(u°) as e—0, that is

sup inf ||w; — wol[;n +  sup inf [|w, —wol|;jp =0 as e—0.
wo € W (ue) Wo € Wi () T wge W) wee W) ’

Proof. Notice that by Proposition 4.1, we have that |[u® — ||, >0 as ¢é—0. This

implies by Proposition 2.3 that the spectra of —4 + F'(u;) behave continuously as
¢—0, see Remark 3.2 for the meaning of F and F'.
Rewriting (1.1) for w = u — ® to deal with the neighborhood of u° we arrive at

wy = Aw + F'(u¥)w + F(w 4+ uf) — F(uf) — F'(u)w, in Q,,
0 ) 43
av_ 0, in 09Q,. (43)
on
Denote as usual by {4:}.7, the eigenvalues of (4 + F'(u?)I) and by {$;}72, a
corresponding orthonormal system of eigenfunctions. If )L?, ...,/12 are positive and
201,20 5, ... are negative, let >0 and g >0 such that 2> >1.>$>0> —
B= =2 s..., 0<e<ég. Denote by W, = [§],...,¢%] and W' = {yeH' (Q,):
Jo W =0, Ydpe W}. As we have done previously, denote by P*: H'(Q,) - H'(€2,)
the orthogonal projections on W,

P’dx:i(/%wf)#

and Q=1 — P-.
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If Yy e W, then o =30, (f,, ¥¢7)¢; and

n ‘ \ 2 %
W1, = (Zl (1 +i§-')(/gx n//qu-') )

and since 1:—2Y, 1<i<co, we have that W, is isomorphic to R" through the

isomorphism
E: & & n
W,galﬁ—>(/ Vi, ,/ zﬁdbn)e[R? .
Ql’, Ql?

T, is bounded with bounded inverse T;l and the norms of T}, and T;l are uniformly
bounded 0<e<gy.

Now we decompose Eq. (4.3) in the following way. If w is a solution to (4.3) we
write

n
w= E v + z,

i=1

where v; = [, we;. Hence
v = A + /Q [F(w+u®) — F(u®) — F'(u’)w] o5

and
z, = Az + F’(us)z + F(W + us) . F(us) B F’(u‘g)w
= S lFor ) = Fu) = F (w6

0z

%—0.

We write v = (vy, ...,v,) " and H,(v,z) = (H(v,2), ..., H,(v,z)) " where
o) = | F(Z vi¢f+z+uﬂ> — F(u) —F'<u8><2 vt +z>

i=1 i=1
and

Gy(v,2) = F(Z vl 2+ ) — F(u') = F'(if) (Z vt + ) =3 H(v,2)4"
i=1

i=1 i=1

¢,

Hence, we have that, H.(0,0) = 0,G,(0,0) = 0. From Lemma 4.2 we obtain that
given p >0 there exist £ >0 and 6> 0 such that if |[v|[g: + [[z]] ;1(g,) <J and 0<e<eo
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we have

|| H. (0, 2)[[er <p,

|G (v, 2)l| 20, <P
||H.(v, 2) — H.(0,2)|

pr <p(||0 =l + ||z = 2l 11 (a))
1Ge(v,2) = Ge(0, )] 12 () <p(ll0 = Algr + [I2 = 2| 110 - (4.4)

The fact that we can choose p and ¢ uniformly for 0 <e< ¢ satisfying the inequalities
above is the key point to obtain that the local unstable manifolds are defined in a
small neighborhood of the equilibrium point #; uniformly for 0<e<<gp.

We can extend H,, G, outside Bs;(u°) in such a way that bounds (4.4) hold for all
veRY, ze H'(Q,).

Denote by 4, = (4 + F’(u")l)‘wﬂ B, =diag(4], ..., 4;). Then, Eq. (4.3) can be

B

rewritten in the following form:
v = Byv+ H,(v,2),
z= A,z + Gy(v,z2), (4.5)

veR", ze W2, where H,, G, satisfy (4.4) for all veR", ze W2 .
Also, for some positive M, 5, independent of ¢, 0<e<g

el 1 (@) < Me ||zl g,y 120,

ezl 1 g,y < Mt~ 2ol

) 120,
[€%t] o < Me¥|[t] g, 1<0.

Now we will show that for a suitably small p >0, there is an unstable manifold
for uf

§ = {(0,2) 12 = 0 (v), veR,

where 67 : R"—> W is bounded and Lipschitz continuous. Furthermore,

e—0

sup ||o; (v) — a5 (v)[| 5y — 0.
veR"

In order to show this, we will first prove the existence of the invariant manifold.
For D>0, 4>0, 0<0<1, given, if p>0 is such that

1
pMB2r($)<D

)

pM>(1 + A)p3<4,
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B pM(1+2)20
1 1 1+ 4
Ml =) |—4+——-"——-| <0<
i (3) | r i
Let o, : R"— W2 satisfying
ozl = sup lloe()llmo,) <D, lo:(v) = 0:(0)|[ 10, <Al — 0l[ge.  (4.6)
ve
Let v,(¢) = ¥(¢,7,n,0;) be the solution of
dv,
o B.v, + H,(v;,0.(v,)), for 1<z, v.(1) =1, (4.7)
and define
®(0,)(n) = / Gy (v,(s), 04 (vs(s))) ds (4.8)
Note that
T 1 1 1
e A T CY NI

From the choice of p we have that, |[®(a:)()||z1(q,) < D. Next, suppose that o, and &,
are functions satisfying (4.6), n,7€R" and denote v.(z) =y(¢,7,n,0,), 0:(f) =
V(t,1,7,6,). Then,

0t) = (1) = PO — ) + / BN H, (14, 04(02)) — Hol00,6,(50)] ds.

T

With some simple and standard computations we obtain
T
10a(2) = G0l |gr < M| = il o + pM (1 + A)/ I, = [ ds
t

+ oMo, — 6.l / H-9) g,
t

Let ¢(1) = e P9 ||o,(t) — 0,()||gr- Then,

SO <Ml — illr + oM / ) dsl|o, — Gl o) + Mp(1 + 4) / $(s) ds.
t t
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By Gronwall’s inequality

[|0:(2) — v:(2)]

el ()

s Ml -
T
—|—pM/ e/i(t—s) ds|||0's _ &6H|H1(.Qc) e—pM(l+A)(l—r)
t

< Ml = illlge + pMB |0z = Golll g Je "M

re) ds

1 . N
<pM | (1= 5)2e PO + D)o = Gl + [[]ow — &[] ds.

— 0

Using the estimates for ||v; — 7|

gt We obtain

(o)) ~ @Gl < paar (5) 573+ 5l =l

T
+ pM*(1 + A)B2||n — il o

Let

I(e) = pMT G) {B% * #(fﬂl)]

and
1
I,(e) = pM>(1 4+ 2)5 2.
It is easy to see that, given 0< 1, there exists a p, such that, for p<p,, I,(¢)<6 and
I,(¢)<4 and
[[P(0:)(n) = (&) (Dl 1110,y < Al = 1l + Olllo — &l (4.10)
Inequalities (4.9) and (4.10) imply that G is a contraction map from the class of
functions that satisfy (4.6) into itself. Therefore, it has a unique fixed point o =
@(0}) in this class.

It remains to prove that S = {(v,0}(v)) : veR"} is an invariant manifold for (4.5).
Let (vo,2z0)€S, zo = gi(vo). Denote by uvi(r) the solution of the following
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initial value problem

d
31; = B«Sv + Hs(va O'j(l))), U(O) = Uo-

This defines a curve (v}(¢), 0} (vi(?)))eS, teR. But the only solution of

2= Az + Go(v; (1), 0, (v: (1)),

which remains bounded as t— — o0 is

20 = [ G001 60) ds = o0

o0

Therefore, (v:(¢), 0} (v:(2))) is a solution of (4.5) through (vy, z9) and the invariance is
proved.

Next, we show that the fixed points ¢} depend continuously upon ¢ at ¢ = 0. This
is accomplished in the following manner. If 0<e<¢y is such that the unstable
manifold is given by the graph of ¢}, 0<e<¢, we want to show that

sup Iz (1) = oo()llzy = llloz = ooll| =0 as &=0.
ne

It follows from Proposition 2.7 that

T
AR OIES / 19 G (v, 0 (v3)) — &) Go (o, 0 (v0)) s
— o0
T
< MB(S)/ I (1 —5) |Gi(vs, 0 (1)

— 0

10, 45 + M

K 1
x / M (1 = 5) 2| G (v, 03 (1)) — Golvo, 75 (v0)) ] 2 d

o0

1 1 N N
<o(t) + o831 (3)llo; =il

T 1
e P (r — ) 72|, — vo|| g ds.

+pM(1+A)/

—0

Thus, it is enough to estimate ||v; — vy

gi- Note that

6, — vl 2 < / B0 — Bo=)|| || H (v, 07 (1)) | s
t
+ / €56 | H, (05, 67 (04)) — Ho(vo, 075(0))|ge ds
t

< pMpol1) + [l — oyl + pM(1 4 4) [ Mo~ g .
t
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Therefore
10 — vol[ge <pMB~[o(1) + |||} — a|[Je M+

which shows that

* * -0
sup |l (1) — o5(n)]| 5y — 0
neR” ’

This proves the result. [
As an immediate consequence of this proposition, we have

Corollary 4.5. Assume the conditions of Proposition 4.4 hold, that problem (P), has

exactly m solutions ul, ...,ud, and that all of them are hyperbolic. Then there exist

Iy m
&0, 0>0 small enough such that problem (P), has exactly m solutions and their local

unstable manifolds W (u}), k =1, ...,m behave continuously in H) as ¢—0.

4.3. Continuity of attractors
We are now in position to prove the central result of our work.

Theorem 4.6. Assume that the family of domains {Q,,0<e<eg} is admissible and that
every equilibrium of the unperturbed problem (P), is hyperbolic. Then the attractors </,

behave continuously in H' as ¢—0, that is

sup inf |[|lu, — uo|[;n + sup inf |[u, — ug||;;n >0 as e—0.
u €, Uy €. € upety UEAs e

Proof. Since we have already shown in Proposition 3.1 the upper semicontinuity of
attractors, we just need to show the lower semicontinuity. This will follow from the
continuity of the local unstable manifolds. To see this, we argue in the following way.
If uy € o7 then uy belongs to the unstable manifold of ug for some I <k<m. Let >0
be the one obtained in Proposition 4.4. If t is such that wy = To(—7,up) € WE(u),
from the continuity of the unstable manifolds there is a sequence w; € W (u}) which
converges to wy in H] as ¢—0. Now, since the family of semigroups is continuous in
H! we have that 7,3 T,(t,w,) > To(t,wo) = up in H} as ¢—0. Showing the lower
semicontinuity of attractors. This proves the theorem. [

Remark 4.7. Notice that, if moreover we assume the transversality of the stable and
unstable manifolds in .7, then for ¢ small enough the flow in the attractor .7, is C°-
conjugate with the flow in .27, in the sense that there exist homeomorphisms 7 :
</, — o/, such that for all u,e.o7,, we have T,(¢)(u.) = h; ' To(t)h.(u.), for all >0,
see [17].
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Remark 4.8. The dynamics of (1.1) have been compared in the space H!. This means
that, for instance, in the case of exterior perturbations of the domain the restriction
to Qy of equilibria, unstable manifolds and attractors of (1.1) in @, converges in
H'(Qp) to the equilibria, unstable manifolds and attractor of the same problem
in .Q().

We may explore now the possibility of obtaining convergence in stronger norms.
For this what we need is to have uniform bounds of the attractors in stronger norms.
In order to accomplish this we first note that we may easily obtain uniform L* (Q,)
bounds of u, in the attractors, that is, there exists a constant C independent of ¢
such that

Sup{”ul(t? qss)HL”“(Q,y d)é:E&/& ZER70<8<80}<C-

To obtain this we follow the steps given in Proposition 5.1 of [7].

Hence, we can view Eq. (1.1) for fixed ¢ as an elliptic equation —Au, + u, =
F(u,) + u; — u;, and notice that the right-hand side is uniformly bounded in L*(€,)
when u,(¢) is an orbit in the attractor .«/,. Therefore, the problem of obtaining
uniform bounds in stronger norms is reduced to obtaining uniform bounds for the
solution of the elliptic problem

—Au +u= g, Qm

4.11
@ — ()7 393 ( )
On

when ge L% (£,), |lg[.= (g, <C, with C independent of e.

Hence if, for instance, the family of domains @, is uniformly Hoélder then there
exists a >0 and a constant C such that if u is the solution of (4.11) then
|[ul] cx(0,) < C (see [10]). This allows to obtain convergence in C? for any 0<fi<a.

5. Examples

Let us consider in this section two examples where Proposition 2.3 applies and,
therefore, all the results of this paper apply. The first example is a C° perturbation of
the domain and the second one is a nonstandard dumbbell type domain.

5.1. A C° perturbation of the domain

Let Qo RY be a C%! domain and assume that for any point &€ dQ, up to a rigid
motion we have that

Qo {xeRY: |x; — &| <6}

= {x = (x,’xN) AN = éN +ﬁ)(x/)7 |X,’ - él‘<5vl: la aN_ 1}
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for certain Lipschitz function f; and where, as it is done customarily, we denote by
X' = (xy,...,xy_1) so that x = (X', xy).
In order to simplify the notation assume that £ = 0. Hence
Qo {xeRY : x| <6} = {x = (X, xn) : xy <fo(X), |xi|<6,i=1,...,N —1}.
Assume that

Q. {xeRY : |xi|<d} = {x = (¥, xn) : xy <fo(X), |xi|<d,i=1,...,N — 1},

where f; —fy uniformly in {x’ : |x}| <d}.
Notice also that by definition

0K, n{xeRY : |xi| <6} = {x = (, xn) : xny = g.(X), |xi| <S,i=1,...,N — 1}

for certain function g, with g, <fy, g.<f and g, —fo uniformly in {x’ : |x}| <J}.
If we denote by

Ri.s = (Q\K:) n{x;|xi| <0} = {x = (¥, xn) 1 |xi]| <8, g.(X) <xn <fe(x)},

Vil = / //

But for x’ fixed, applying Poincaré inequality in one dimension, we have

/fs(x/)
Ye (X/)

which implies that

we have

de dx’.

8xn

2 72 o)

dxy > lu,|* dxy

4 £:(x) = g (¥ ot

2

4|1 = gillz-

and since f;, g, — fo uniformly in {x’ : |x}| <4} then there exists x, > oo as ¢—0, such
that

2 2
Ve |72(r, ) = [t |72, ,)

2 2
Vel [2r, ) 2 Kl el [ 22, ) -

Since this argument can be done for a finite covering of 0Q, we obtain that

||V”e||L (2,\K,) L2(2:\K;)

for certain constant C independent of ¢. This shows that (ii) holds.
Notice that the only requirement on f; is the uniform convergence to fj.
In particular, we may consider perturbations with a highly oscillating behavior.
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For instance

X

(¥ = fol¥) + sF(—l, XN*I),

&% ’ EoN-1

where F : RY"! 5 R is a smooth bounded function.
5.2. A nonstandard dumbbell-type perturbation

A typical dumbbell domain consists of a pair of disjoints domains Q; and Qg
which are joined by a thin channel R,. Usually, the shape of the channel is given by
(for instance in two dimensions)

R, ={(x,y) : x€(0,L),0<y<eg.(x)},

where g, — go uniformly in [0, L] and g, is some smooth strictly positive function.

The unperturbed domain is given by Qo = Q; U Qg. The dumbbell domain is given
by Q. = Q; UR, UQpg. It represents a prototype of nonconvex perturbation and it
has been extensively studied from many points of view. Notice that we have Qy =€,
and therefore the sets K in (2.1) can be taken K, = Q, (see also Remark 2.2). In
terms of the spectral behavior of the Laplace operator, the results in [2,3,22] say that
there is a net contribution of the spectra of the Laplace operator coming from the
thin channel. That is, the eigenvalues and eigenfunctions of the dumbbell domain
converge as ¢ —0 to the eigenvalues and eigenfunctions of the unperturbed domain
Qo = Q; UQr and to the eigenvalues and eigenfunctions of a problem coming from
the channel:

1
——(goutx), = pu, xe(0,L),
u(0) =0, u(l) =0.
Moreover, it is known that the eigenvalues of
—Au =1u, x€eR,,

ou _

on 0, 8RF\8(QLUQR)

converge to the eigenvalues of (5.1), see [2,3,18].

In particular, (ii) of Proposition 2.3 does not hold and we cannot apply the results
in this paper.

Here, we are going to construct a dumbbell domain Q,cRY, N>2, with a thin
channel R; such that property (ii) of Proposition 2.3 holds, that is, the first
eigenvalue of (5.2) diverges to infinity as the parameter ¢—0. For this dumbbell
domain we obtain the convergence of the spectra given by Proposition 2.3, that is,
the eigenvalues and eigenfunctions in £, converge to the eigenvalues and
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eigenfunctions of Qy, so that no contribution from the channel occurs. Hence, all the
results of this paper will apply to this example.
The channel R, will be constructed as follows:

R, = {(x,¥);xe(0,L), X' e RV |¥| <g,(x)},

where

<; —2XL>£, 0<x<L/2,
ge(x) = :

(%)E, L/2<x<L.

Hence, consider the eigenvalue problem (5.2) in R, and denote by 7, the first
eigenvalue. Since ¢,(L —x) = ¢g.(x), by symmetry we will have that the first
eigenfunction will satisfy the same symmetry condition and therefore if we define

R, =R,n{L/2<x<L},
the first eigenvalue of (5.2) coincides with the first eigenvalue of

—Au=1tu, xeR,,
u=0, OR,n{x=L}, (5.3)
g%:o, OR,~{L/2<x<L}.

Denote by x, the first eigenvalue of the problem

1 .
X(Nfl)/e(x(N_l)/kux)x = Ku, L/2<X<L»
u=0, x=1, (5.4)
ou
.= 0 =L)2.
0x ’ X /

Let us show that there exists a positive number « such that t,>ax,. To see this,
denote by 7,(x, x") the eigenfunction corresponding to the eigenvalue t, of problem

(5.3). Assume it is normalized so that ||y£||iz(ﬁg) =1 and hence, HVVsHiz(m = 1,.
Denote also by 7.(x) the averaged function in the x’ direction of y,, that is, if
Iy(x)={xXeR ! (x,x)eR,} then

1

—_— P.(x,x)dx', L/2<x<L.
ITe(3)] /1)

7s(x) =

Notice that |I",(x)| = (ﬁ)<N*1>/"|B(O, 1)|, where B(0, 1) is the (N — 1)-dimensional
unit ball.
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Then we obviously have

Jipx N0 dx

xR dy

But, changing variables in the integral above,

1 ! !
_— 7.(x, ge(x)x") dx
|B(0, 1)] Ja0,1) 76 65(x)x)

which implies that for L/2<x<L

)73(3() =

1
Fox) = (551 g Oer )+ 0L - D19
Hence,

s < C/B<o (e P L 97,05.9,09))

Since |g.(x)| =0 as ¢—0, uniformly in xe[L/2, L], we obtain

C

- 2 N2 / N2 /
Vex (X <C/ szx,ggxx dx ——7/ V))s X, X dx
| ( )| (0,1) | / ( ( ) )| ﬁvfl(x) r'(x)| ( )‘

which implies

L (N-1) 5 L N—1 )
/ A dvs € / (L)% / V7,(0) d’ dx
L2 ' L/2 Te(x)

N-1 )
=C(2L) = /~|Vy8| dx' dx.
R;

Moreover,

/2 L)2

which implies

fli,., Vy8|2 - C Te
o 10l Iz

But, by the definition of j, we have

K. <C

5

Ve

=112 2 ) =112
H%Hy(ﬁs) = ||V1;HL2(1§E) = Il = VSHLZ([{;) =1—|lp, =7 |L2(ﬁa)

175

LS| ) L N1 ) N-1 )
/ ) dx:/ (L) / 15,00) [ d! dx = (L) /\M dx' dx
L Iy(x) R;

(5.6)
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and applying, for fixed x, the second Poincaré inequality in I'(x), we have

-1
/ |V£(X, xl) _ya(x)|2<C|g8(x)|2/ ‘Vx/ya(xv x,)‘2<C4T/ |VX/V£(X,X/)|2 dx/a
F(x) Io(x) r

& (x>

where we have used that |g,(x)|<27'/%, xe(L/2,L). Integrating in x, we get

||V5 - ')71:| iz(ﬁn) < C471/8HV'VS||%2(1§1) - C471/8‘L'1;. (57)

But it is not difficult to see that rggg for ¢ small enough. To show this, just
consider the function y,(x,x’) = L — x as a test function in the Rayleigh quotient for
7,. This implies that

17, = 72l SC2M/2 50 as -0,

Hence, from this last statement, (5.5)-(5.7) we show that x,<Crt, for some
constant C independent of .

Let us see now that x,— co as ¢—0. Denote by ¢, the positive eigenfunction
associated to k.. Assume also that we normalize the eigenfunction so that
| #allpe(zsory =1 By the maximum principle applied to (5.4), we have

b, (x) <y.(x) where

1 o
i T ) = ke L/2<x<L,
x=0, x=1L, (5.8)
%:0 x=1L/2.

ox
By direct computation, the solution of the problem above is given by
K L? x\2 1 P
PR C E EIRS R 3
) = ) @) P 1)( L )

&

which satisfies
el (z2.0) = 1:(L/2) < Cexe,.
This implies that
V= 11Dll e o) < Wkell e (1)0,0) < Corce
o)
k,=>Cle— 0 as e—0.

Since 7, >ax,, we also obtain that t,— oo as ¢—0. Hence, Proposition 2.3(ii) holds
and all the results of this paper apply to this perturbation. [



J.M. Arrieta, A.N. Carvalho | J. Differential Equations 199 (2004) 143178 177

Remark 5.1. For this kind of dumbbell domain the formation of nonconstant stable
equilibrium solutions is a direct consequence of Proposition 3.1. If for instance we
consider the nonlinearity f(u) = u — u*, we have that for any domain the equilibria
u=1 and —1 are asymptotically stable. Hence if we consider uy an equilibria in
Qy=Q;uQgr given by uy=1 in Q; and uy =—1 in Qg, we know that this
equilibrium is asymptotically stable. By Proposition 3.1 there exists an equilibrium

u. e H' (Q,) which is near g in Hl;] and that the linearization around u, converges to

the linearization of the limit problem around uy. In particular u, is an asymptotically
stable equilibrium (with the same index as u) and u, is obviously nonconstant.
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