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Abstract

In this paper we obtain the continuity of attractors for semilinear parabolic problems with

Neumann boundary conditions relatively to perturbations of the domain. We show that, if the

perturbations on the domain are such that the convergence of eigenvalues and eigenfunctions

of the Neumann Laplacian is granted then, we obtain the upper semicontinuity of the

attractors. If, moreover, every equilibrium of the unperturbed problem is hyperbolic we also

obtain the continuity of attractors. We also give necessary and sufficient conditions for the

spectral convergence of Neumann problems under perturbations of the domain.
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1. Introduction

In this paper we consider reaction–diffusion equations of the form

ut � Du ¼ f ðx; uÞ in Oe;

@u

@n
¼ 0 in @Oe;

8<: ð1:1Þ

where Oe; 0pepe0; are bounded Lipschitz domains in RN ; NX2: We analyze how
the asymptotic dynamics of the evolutionary problem (1.1) changes when we vary
the domain. In particular, we are interested in studying how the behavior of the
spectral properties of the linear operator �D under variations of the domain,
determines the behavior of the nonlinear dynamics of (1.1).

The nonlinearity f is assumed to be defined in RN � R-R; it is continuous in both

variables ðx; uÞ and for fixed xARN ; f ðx; �ÞAC2ðRÞ: Moreover, f satisfies the
dissipativeness assumption

lim sup
jsj-N

f ðx; sÞ
s

o0 uniformly in xARN : ð1:2Þ

It has been shown (see [6]) that problem (1.1) is well-posed in W 1;qðOeÞ; q4N;
without any restriction on the growth of f : Moreover, under assumption (1.2)
problem (1.1) has a global attractor Ae; which is essentially independent of q and
that the attractors Ae are bounded in LNðOeÞ; uniformly in e: This enables us to cut
the nonlinearity f in such a way that it becomes bounded with bounded derivatives
up to second order without changing the attractors. After these considerations, we

may assume, without loss of generality, f ðx; �Þ : R-R is a C2ðRÞ function satisfying
(1.2) and

@f

@u
ðx; uÞ

���� ����pcf ;
@2f

@u2
ðx; uÞ

���� ����pc̃f 8ðx; uÞARN � R ð1:3Þ

for some cf ; c̃f positive constants. The fact that now the nonlinearity is globally

Lipschitz allows us to study the problem in the space H1ðOeÞ: The attractors will lie
in more regular spaces, like W 1;qðOeÞ for any 1oqoN; but their continuity

properties will be analyzed in the topology of the spaces H1:
We will regard Oe as a perturbation of the fixed domain O0 and we will assume the

following condition:

For each 0pepe0; Oe is bounded and Lipschitz and

for all KCCO0; there exists eðKÞ; such that KCOe; 0oepeðKÞ

� �
: ð1:4Þ

Notice that we do not require a priori that jOe\O0j-0 as e-0:
One of the main difficulties when treating domain perturbation problems is that

the solutions live in different spaces (say ueAH1ðOeÞ and u0AH1ðO0Þ) and therefore
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statements of the type ue � u0 should be stated clearly. In this paper we will consider,
for each 0oepe0; the space

H1
e ¼ H1ðOe-O0Þ"H1ðOe\ %O0Þ"H1ðO0\ %OeÞ ð1:5Þ

that is H1
e ¼ ffAL2ðO0,OeÞ; such that fjO0-Oe

AH1ðO0-OeÞ; fjO0\
%Oe
AH1ðO0\ %OeÞ;

fjOe\ %O0
AH1ðOe\ %O0Þg with the norm jjujj2H1

e
¼jjujj2H1ðOe-O0Þþjjujj2H1ðOe\ %O0Þþjjujj2H1ðO0\

%O0Þ:

Notice that extending by zero outside O0 we have H1ðO0Þ+H1
e ; with embedding

constant 1 and extending by zero outside Oe we have H1ðOeÞ+H1
e ; with embedding

constant also 1. Hence, if ueAH1ðOeÞ; u0AH1ðO0Þ we can write jjue � u0jjH1
e
:

Moreover with certain abuse of notation we will say that ue-u0 in H1
e if

jjue � u0jjH1
e
-0 as e-0:

Also, with an extension by zero outside Oe or O0; L2ðOeÞ+L2ðRNÞ and

L2ðO0Þ+L2ðRNÞ: Hence, for functions VeAL2ðOeÞ; V0AL2ðO0Þ; statements of the

type Ve-V0 in L2ðRNÞ or w � L2ðRNÞ make perfect sense. Moreover, if we have an

operator T acting on L2ðOeÞ we may also regard this operator as acting on L2ðO0Þ by
just viewing any element u0AL2ðO0Þ as an element of L2ðOeÞ by extending first u0

outside O0 by zero and then making the restriction to Oe: Similarly we can do with

operators defined in L2ðO0Þ:
In this paper, we give conditions on the behavior of Oe as e-0 and on the

unperturbed problem, (1.1) with e ¼ 0; that guarantee the continuity (upper and

lower semicontinuity) of the attractors Ae in H1
e as e-0: More precisely, we show

the following two results:

(i) The upper semicontinuity of the attractors Ae in H1
e ; which is obtained just

requiring the spectral convergence in H1
e of the Neumann Laplacian as e-0; that is,

requiring that the eigenvalues and eigenfunctions of the Laplace operator with

homogeneous Neumann boundary conditions behave continuously in H1
e as e-0:

(ii) The lower semicontinuity of the attractors Ae in H1
e : Once upper semicontinuity

is attained, lower semicontinuity in H1
e is obtained by requiring that every

equilibrium of the unperturbed problem is hyperbolic.

By upper semicontinuity of the attractors in H1
e we mean that

sup
ueAAe

inf
u0AA0

jjue � u0jjH1
e
-0 as e-0:

By lower semicontinuity of the attractors in H1
e we mean that

sup
u0AA0

inf
ueAAe

jjue � u0jjH1
e
-0 as e-0:

It is important to mention that we do not require any geometrical condition
whatsoever on the perturbation Oe; apart from the general assumption (1.4). The
condition we require on the perturbation is that the eigenvalues and eigenfunctions
of the Laplace operator behave continuously as e-0: In particular, once the Laplace
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operator behaves continuously, in the sense of the spectra described above, the
attractors of (1.1) will behave upper semicontinuously. If moreover all the equilibria
of the limiting problem are hyperbolic then the attractors will behave continuously.
In this respect, we can say that the behavior of the nonlinear dynamics of (1.1) is
dictated by the behavior of the linear operator D:

There are several references in the literature that study linear and nonlinear,
elliptic and parabolic problems under Neumann boundary conditions when the
domain undergoes certain perturbations.

One of the important points to consider is that, in general, Neumann problems are
much more difficult to treat than Dirichlet ones. This point was already brought to
light in the pioneer work of [12]. Actually, they provide a first and important
example of a domain perturbation where the Neumann spectra does not behave
continuously while the same perturbation does not produce any irregular behavior
for the Dirichlet eigenvalues. This example was further developed in [8]. Actually, we
could say that the main difference between Dirichlet and Neumann problems resides
in the fact that for Dirichlet problems the underlying space is H1

0 ðOÞ; which admits a
extension operator to H1ðRNÞ of norm one, independent of the domain O; while for
Neumann problems, the underlying space is H1ðOÞ; which does not have this
property and the norm of the extension operators depends drastically on the
smoothness and geometry of O: This fact makes Neumann problems much more
difficult to treat.

For general exterior perturbations of the domain and the characterization of the
behavior of the spectra we refer to [2,3,25]. Also in [10] the case of Hölder
perturbations of a domain is studied. In [15] they study perturbations of the domain
under Robin boundary conditions and in [11] they consider fairly general elliptic
operators with mixed boundary conditions, Robin and Dirichlet, although when
dealing with results on perturbations of the boundary they perturb only the part of
the boundary where the Dirichlet condition is imposed.

In many references some particular perturbation of the domain is considered. One
of the most extensively studied examples is the so called dumbbell domain, which
consists of two fixed domains joined by a thin channel. There are several results on
the spectral behavior of the Laplace operators under this perturbation [2–4,9,22].
Also the nonlinear elliptic problem has been studied in [19,29] and the nonlinear
parabolic problem in [23,24]. In [30] a functional framework to treat nonlinear
elliptic problems when the domain is perturbed is developed. In this work, the family
of domains is assumed to be nested, all of them contain the limiting domain and the
sequence converges in measure to the limiting domain.

Another important examples of irregular perturbations of the domain are thin
domains, where, roughly speaking, a domain in RN is flattened in certain directions
and converges to a lower dimensional set, see [18] for a pioneer work in this area and
[28] for a monograph on this kind of perturbation. See also the work [27] for other
type of thin domains.

Also, for interesting results on how the shape of the domain influences the
structure and the number of solutions of nonlinear elliptic equations, we refer to
[13,14].
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In [1] the authors study the nonlinear dynamics of a reaction diffusion equation
with Dirichlet boundary condition when the domain is perturbed, obtaining the
continuity of the attractors. Also, in [26], the authors consider the case of smooth
perturbations of the domain, that is, a family of domains Oe which are
dipheomorphic to a fixed one O0 and the dipheomorphisms converge to the identity

in C2: With this dipheomorphisms and using the techniques developed in [21], the
authors are able to prove the continuity of the attractors with Dirichlet boundary
conditions in strong norms.

Most of the references above, specially those dealing with Neumann problems,
either treat nice perturbations of the domain or, when the perturbation is not
regular, the perturbed domains are geometrically defined in a concrete way (thin
domains, dumbbell domains, etc.). In this respect our work is different. We do not
impose any geometrical description on the perturbation but bring into light that in
order to analyze the behavior of nonlinear dynamics it is just needed to understand
correctly the spectral behavior of the linear operators.

Our analysis is based in an extensive and thorough study of the behavior of the
linear part. Actually, in Section 2 we give necessary and sufficient conditions to
obtain the spectral convergence of the linear operators under the class of domain
perturbation satisfying (1.4), see Proposition 2.3 below. Next, we will see that by just
requiring the spectral convergence of the linear operators, we obtain the convergence
of the resolvent operators (Proposition 2.6) and a type of Trotter-Kato
Approximation Theorem for linear semigroups (Proposition 2.7).

In Section 3 we prove, by using the variation of constants formula and the results
on the linear semigroups of Section 2, that the family of nonlinear semigroups
fTeðtÞ; tX0g associated to (1.1) is continuous in e at e ¼ 0; uniformly in compact

intervals of ð0;NÞ: That is, if ue
0AH1ðOeÞ; 0pepe0 with jjue � u0jjH1

e
-0 as e-0;

then for any 0oroRoN

sup
rptpR

jjTeðtÞðueÞ � T0ðtÞu0jjH1
e
-0 as e-0:

With this it is not difficult to show that the family of attractors Ae and the set of
equilibria Ee are upper semicontinuous at e ¼ 0:

In Section 4 we study the lower semicontinuity of the attractors. As a matter of
fact we proceed as follows. Consider the problem

ðPÞe
�Du ¼ f ðx; uÞ in Oe;

@u

@n
¼ 0 in @Oe

8<:
for 0pepe0: Assume that ðPÞ0 has exactly m distinct solutions, u0

1;y; u0
m and that

they are all hyperbolic, that is, zero is not an eigenvalue for the problems Dþ
@uf ð�; uið�ÞÞI for i ¼ 1;y;m: In Section 4.1, we prove that, for small e; Pe has

exactly m distinct solutions ue
1;y; ue

m and ue
j-u0

j in H1
e as e-0; 1pjpm: This is

done through a fixed point argument. Also, using the results of Section 2 on the
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convergence of the linear semigroups, we prove in Section 4.2 that the local unstable

manifolds of the equilibrium points ue
k are continuous in H1

e as e-0:

It follows from the continuity of the local unstable manifolds that the attractors
are lower semicontinuous at e ¼ 0: This can be proved in the following way. Since
the system generated by (1.1) is gradient, then if u0AA0 we have that u0 belongs to

the unstable manifold of u0
k for some 1pkpn: In particular, there will exist w0 in the

local unstable manifold of u0
k such that u0 ¼ T0ðtÞw0 for some t40: By the

continuity of the local unstable manifolds, we can get we in the local unstable
manifold of ue

k such that jjwe � w0jjH1
e
-0 as e-0: Now, since the family of

semigroups is continuous in H1
e we have that Ae{Teðt;weÞ-T0ðt;w0Þ ¼ u0 in H1

e as

e-N: This shows the lower semicontinuity of attractors. See Theorem 4.6 for more
details.

Finally in Section 5 we give two examples of perturbation of the domain where the

conditions of this paper apply. The first one is a C0 perturbation of a fixed domain
O0; including the case where the boundary presents a high oscillatory behavior. The
second one is a nonstandard dumbbell-type perturbation.

2. Linear theory

In this section we analyze the behavior of the linear parts of the operators and
prove several results that will be used throughout the paper.

2.1. Spectral convergence characterization

It is very clear that the spectral behavior of the linear operators is extremely
important when analyzing the continuity properties of nonlinear dynamics. We
include in this section several results on the spectral behavior of operators of the type
�Dþ V ; where V is a potential, with Neumann boundary conditions when the
domain is perturbed. We are interested in obtaining necessary and sufficient
conditions that guarantee that the eigenvalues and eigenfunctions behave
continuously when the domain undergoes a perturbation satisfying (1.4).

The potentials may depend also on e: We specify their behavior as e-0 in the
following definition.

Definition 2.1. A family fVe : 0pepe0g of potentials is said admissible if

VeALNðOeÞ; sup0pepe0 jjVejjLNðOeÞpCoN and Ve-V0 weakly in L2ðRNÞ:

To fix the notations we consider the eigenvalue problems

�Du þ Veu ¼ lu; Oe;

@u

@n
¼ 0; @Oe;

8<:
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where fVe : 0pepe0g is admissible. We denote by fleng
N

n¼1; for eA½0; e0�; the set of

eigenvalues, ordered and counting multiplicity, of the operator �Dþ Ve with

Neumann boundary conditions in Oe and by ffe
ng

N

n¼1 a corresponding complete

family of orthonormalized eigenfunctions.
We will say that the spectra behaves continuously at e ¼ 0; if for fixed nAN we

have that len-l0n as e-0 and the spectral projections converge in H1
e ; that is, if

aefl0ng
N

n¼0; and l0noaol0nþ1; then if we define the projections Pe
a : L2ðRNÞ-

H1ðOeÞ; Pe
aðcÞ ¼

Pn
i¼1ðf

e
i ;cÞL2ðOeÞf

e
i then

supfjjPe
aðcÞ � P0

aðcÞjjH1
e
; cAL2ðRNÞ; jjcjjL2ðRN Þ ¼ 1g-0 as e-0:

The convergence of the spectral projections is equivalent to the following: for each
sequence ek-0 there exists a subsequence, that we denote again by ek and a complete

system of orthonormal eigenfunctions of the limiting problem ff0
ng

N

n¼1 such that

jjfek

n � f0
njjH1

ek
-0 as k-N:

Notice that condition (1.4) implies that there exists a nonincreasing sequence re
with re-0 as e-0 such that if we define

Ke ¼ fxAO0 : distðx; @O0Þ4reg ð2:1Þ

then KeCOe for all 0oepe0: The family of open sets fKeg0oepe0 can be regarded, as

e-0; as a smooth interior perturbation of the domain O0: In particular, since the
domain O0 is Lipschitz, the family Ke is uniformly Lipschitz in e: This implies the

existence of extension operators Ee : H1ðKeÞ-H1ðRNÞ; which are also extension

operators from L2ðKeÞ-L2ðRNÞ; and the norms jjEejjLðH1ðKeÞ;H1ðRN ÞÞ and

jjEejjLðL2ðKeÞ;L2ðRN ÞÞ are uniformly bounded in e for 0oepe0:

Remark 2.2. Notice that we do not exclude the possibility that re ¼ 0 and therefore
Ke ¼ O0: This will be the case when Oe is an exterior perturbation of the domain, that
is, O0COe:

In order to characterize when the spectra behaves continuously we define

te ¼ inf
fAH1ðOeÞ
f¼0; in Ke

R
Oe
jrfj2R

Oe
jfj2

: ð2:2Þ

Observe that, in case Oe\ %Ke is smooth, te is the first eigenvalue of the following
problem:

�Du ¼ tu; Oe\ %Ke;

u ¼ 0; @Ke;

@u

@n
¼ 0; @Oe:

8>><>>:
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We have the following useful characterization

Proposition 2.3. Assume the family of domains fOeg0pepe0 satisfies (1.4). Then, the

following four statements are equivalent:
(i) The spectra of �Dþ Ve behave continuously as e-0 for any admissible family of

potentials fVe; 0pepe0g:
(ii) te-N as e-0:
(iii) For any family of functions ce with jjcejjH1ðOeÞpC then jjcejjL2ðOe\ %KeÞ-0 as e-0:

(iv) For any family of functions ce with jjcejjH1ðOeÞpC; there exists a sequence cek

and a function c0AH1ðO0Þ such that cek
-c0; in L2ðRNÞ and for any wAH1ðRNÞ we

have that Z
Oek

rcek
rw-

Z
O0

rc0rw:

Moreover, if any of the four statements above is true then the following also holds

(v) jOe\Kej-0 as e-0:

Remark 2.4. A somehow similar, although weaker, statement of this lemma can be
found in the works [2,3].

Notice that statements (ii)–(iv) are independent of the potential Ve: Hence (i) is
equivalent to the fact that the spectra of �D behaves continuously as e-0:

We show that ðiÞ ) ðiiÞ ) ðvÞ; ðiiÞ þ ðvÞ ) ðiiiÞ ) ðiiÞ; ðiiiÞ þ ðvÞ ) ðivÞ ) ðiiiÞ
and ðivÞ þ ðvÞ ) ðiÞ:

Proof. That (iii) implies (ii) is easy since if there exists a sequence ek-0 with tek

bounded, then, by the definition of te; we obtain a sequence of functions with

L2ðOek
\Kek

Þ norm equal one and the H1ðOek
Þ norm bounded.

That (ii) implies (v) is also easy. Notice that by the definition of Kek
; jO0\Kek

j-0

as ek-0 and therefore we just need to show that jOek
\O0j-0 as ek-0: If this were

not true then we will have a positive Z40 and a sequence ek-0 such that

jOek
\O0jXZ: Let r ¼ rðZÞ be a small number such that jfxARN

\O0;
distðx;O0ÞprgjpZ=2: This implies that jfxAOek

; distðx;O0ÞXrgjXZ=2: Let us

construct a smooth function gðxÞ with gðxÞ ¼ 0 in O0; gðxÞ ¼ 1; xARN
\O0 with

distðx;O0ÞXr: Then obviously gAH1ðOek
Þ with jjrgjjL2ðOek Þ

pC and jjgjjL2ðOek Þ
X

ðZ=2Þ
1
2: This implies that tek

is bounded.

That (ii) implies (iii) is proved as follows. If it is not true then there will exist a
sequence of functions fek

with jjfek
jjH1ðOek Þ

pC1 and jjfek
jjL2ðOek \Kek Þ

XC240; for

some constants C1 and C2 independent of ek: If we consider the functions cek
¼

Eek
ðfek

jKek
Þ then cek

AH1ðRNÞ with jjcek
jjH1ðRN ÞpC independent of ek: Moreover, by

Hölder’s inequality and Sobolev embeddings, we have

jjcek
jjL2ðOek \Kek Þ

pjjcek
jjL2N=ðN�2ÞðOek \Kek Þ

jOek
\Kek

j
1
NpCjjcek

jjH1ðRN ÞjOek
\Kek

j
1
N ; ðNX3Þ;
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jjcek
jjL2ðOek \Kek Þ

pjjcek
jjL2pðOek \Kek Þ

jOek
\Kek

j
1
2
�1

ppCjjcek
jjH1ðRN ÞjOek

\Kek
j
1
2
� 1
2p; ðN ¼ 1; 2Þ;

where p can be choosen arbitrarily large in the last inequality. These two last
inequalities imply that there exists a y40; such that

jjcek
jjL2ðOek \Kek Þ

pCjOek
\Kek

jy-0 as ek-0:

We consider now wek
¼ fek

� cek
: By construction wek

¼ 0 in Kek
and

jjwek
jjH1ðOek Þ

pC: Moreover, jjwek
jjL2ðOek \Kek Þ

Xjjfek
jjL2ðOek \Kek Þ

� jjcek
jjL2ðOek \Kek Þ

XC2=2

as long as ek is small enough. This contradicts (ii).
That (iii) implies (iv) is proved as follows. If cek

is a sequence with

jjcek
jjH1ðOek Þ

pC; then we can extract a subsequence of cek
; that we denote again

by cek
and we obtain a function c0AH1ðO0Þ such that cek

-c0; w-H1ðKÞ; s-L2ðKÞ;
for any KCCO0: Let us prove that we actually have cek

-c0 in L2ðRNÞ: Notice first

that with a similar argument as we have done in the proof that (ii) implies (iii) we

have that there exists a r40 such that jjcek
jjL2ðKek \KdÞpCjKek

\Kdjr; for 0oekod; with

a constant C independent of k and d: Let Z40 a small number. Choose d small

enough so that jjcek
jjL2ðKek \KdÞp

Z
4
; for any ekod and jjc0jjL2ðO0\KdÞp

Z
4
: Then,

jjcek
� c0jj

2
L2ðRN Þ ¼ jjcek

� c0jj
2
L2ðKdÞ þ jjcek

� c0jj
2
L2ðRN

\KdÞ:

But

jjcek
� c0jjL2ðRN

\KdÞp jjcek
jjL2ðOek \Kek Þ

þ jjcek
jjL2ðKek \KdÞ þ jjc0jjL2ðO0\KdÞ

p
Z
2
þ jjcek

jjL2ðOek \Kek Þ
:

Choosing ek40 small enough so that jjcek
jjL2ðOek \Kek Þ

pZ
4
and jjcek

� c0jj
2
L2ðKdÞp

Z
4
; we

have that

jjcek
� c0jjL2ðRN ÞpZ:

This shows the convergence in L2ðRNÞ:
Now if wAH1ðRNÞ and if Z40 is a small number, choose d40 small enough such

that jjwjjH1ððOek,O0Þ\ %KdÞpZ: Then, for 0oekod; we haveZ
Oek

rcek
rw�

Z
O0

rc0rw

�����
�����

p
Z

Kd

ðrcek
�rc0Þrw

���� ����þ Z
Oek \Kd

jrcek
jjrwj þ

Z
O0\Kd

jrc0jjrwj

p
Z

Kd

ðrcek
�rc0Þrw

���� ����þ 2CZ-2CZ as ek-0:

Since Z40 is arbitrary, (iv) holds.
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That (iv) implies (iii) is proved as follows. If ce is a family of functions with

jjcejjH1ðOeÞpC then, there is a sequence cek
and a function c0AH1ðO0Þ such that

jjcek
� c0jjL2ðRN Þ-0 as ek-0: Hence jjcek

jjL2ðOek \
%Kek Þ

pjjcek
� c0jjL2ðOek \

%Kek Þ
þ

jjc0jjL2ðO0\ %Kek Þ
-0 as ek-0:

Let us prove now that (i) implies (ii). If this is not the case then we will have again
a sequence ek approaching zero and a positive number a with tek

oa; for all k: From
the definition of tek

we can get functions fek
with fek

¼ 0 in Oek
; jjfek

jjL2ðOek Þ
¼ 1 and

jjrfek
jj2L2ðOek Þ

pa:

Observe that Z
Oek

jrfek
j2 þ

Z
Oek

Vek
jfek

j2pa þ jjVek
jjLNðOek Þ

pã;

for some constant ã independent of ek: Choose nAN with the property that

ãol0nol0nþ1; denote by fek

1 ;y;fek

n the first n eigenfunctions and consider the linear

subspace ½fek

1 ;y;fek

n ;fek
�CH1ðOek

Þ: By the spectral convergence we can get a

subsequence, that we denote by ek again and eigenfunctions of the limiting problem

f0
1;y;f0

n such that jjfek

i � f0
i jjH1

ek
-0 as ek-0: This implies that jjfek

i jjL2ðOek \Kek Þ
-0

as ek-0: From here we get thatZ
Oek

fek

i fek
-0; as ek-0; for i ¼ 1;y; n;

which means that ½fek

1 ;y;fek

n ;fek
� is almost an orthonormal system in L2ðOek

Þ: By
the min–max characterization of the eigenvalues, we have that

lek

nþ1p max
fA½fek

1
;y;f

ek
n ;fek

�

R
Oek

jrfj2 þ
R
Oek

Vek
jfj2R

Oek
jfj2

:

But if fA½fek

1 ;y;fek

n ;fek
� we can write f ¼

Pn
i¼1aif

ek

i þ bfek
: Using that fek

i is an

eigenfunction corresponding to the eigenvalue lek

i and that the family

ffek

1 ;y;fek

n ;fek
g is almost orthonormal, by direct calculation of the above quotient

we get that

lek

nþ1p
Pn

i¼1a
2
i l

ek

i þ ãb2 þ oð1ÞPn
i¼1 a

2
i þ ã þ oð1Þ pl0n þ oð1Þ:

This contradicts the continuity of the eigenvalues given by (i).

The proof that (iv) implies (i) is as follows. Fix n with the property that l0nol0nþ1

and consider the family of eigenfunctions ff0
1;y;f0

ng: If we denote by E a extension

operator from H1ðO0Þ to H1ðRNÞ; and by Te the restriction operator to Oe; we

construct the functions xei ¼ TeEf0
i ; i ¼ 1;y; n: Since (iv) implies (v) we easily see
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that jjxei jjH1ðOe\O0Þ-0 as e-0 for i ¼ 1;y; n: By the min–max characterization of

eigenvalues, we easily obtain that leipl0i þ oð1Þ as e-0:

We can choose a sequence ek-0 and numbers kipl0i ; i ¼ 1;y; n; such that

lek

i -ki; for i ¼ 1;y; n: Since fek

i ; for i ¼ 1;y; n is a bounded sequence in H1ðOek
Þ;

then by (iv) we can extract another subsequence, that we still denote by fek

i ; and get

functions x0i AH1ðO0Þ; i ¼ 1;y; n; such that fek

i -x0i in L2ðRNÞ andZ
Oek

rfek

i rw-
Z
O0

rx0i rw; i ¼ 1;y; n

for any wAH1ðRNÞ:
In particular

R
O0

x0i x
0
j ¼ dij and passing to the weak limit in the equation, we get

Z
O0

rx0i rwþ
Z
O0

V0x
0
i w ¼ ki

Z
O0

x0i w; i ¼ 1;y; n:

This implies that necessarily ki and x0i are eigenvalues and eigenfunctions of the

limiting problem. Since we already know that kipl0i we necessarily have that ki ¼ l0i
for i ¼ 1;y; n and fx01;y; x0ng is a system of orthonormal eigenfunctions associated

to l01;y; l0n:
In order to prove the convergence in H1

ek
we notice that f0

i ; i ¼ 1;y; n; satisfyZ
Oek

jrfek

i j
2 ¼ lek

i

Z
Oek

jfek

i j
2 �

Z
Oek

Vek
jfek

i j
2-l0i

Z
O0

jx0i j
2 �

Z
O0

V0jx0i j
2 ¼

Z
O0

jrx0i j
2;

where we have used that fek

i -x0i in L2ðRNÞ; the weak convergence of Vek
to V0 and

the uniform bound of jjVek
jjLNðOek Þ

: Hence,

Z
RN

jrfek

i �rx0i j
2 ¼

Z
Oek

jrfek

i j
2 þ

Z
O0

jrx0i j
2 � 2

Z
Oek

rfek

i rx0i :

But, Z
Oek

jrfek

i j
2-

Z
O0

jrx0i j
2 as ek-0

and if we define *x0i AH1ðRNÞ an extension of x0i we get thatZ
Oek

rfek

i rx0i ¼
Z
Oek

rfek

i r*x0i þ
Z
Oek

rfek

i ðrx0i �r*x0i Þ-
Z
O0

jrx0i j
2 as ek-0
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becauseZ
Oek

rfek

i ðrx0i �r*x0i Þ
�����

�����pjjrfek

i jjL2ðOek Þ
jjrx0i �r*x0i jjL2ðOek Þ

-0 as ek-0:

This implies that Z
RN

jrfek

i �rx0i j
2-0 as ek-0:

And the proposition is proved.

2.2. Convergence of the resolvent operators

We analyse in this section the behavior of the resolvent operators.

Definition 2.5. We say that a family fOe : 0pepe0g is admissible if it satisfies (1.4)
and one of conditions (i)–(iv) of Proposition 2.3.

We have the following result.

Proposition 2.6. Assume that the family of potentials fVe; 0pepe0g and the family of

domains fOe : 0pepe0g are admissible. Assume also that 0esð�Dþ V0Þ: Then, for e
small enough 0esð�Dþ VeÞ and there exists a constant C independent of e such that

jjð�Dþ VeÞ�1
gejjH1ðOeÞpCjjgejjL2ðOeÞ; geAL2ðOeÞ: ð2:3Þ

Moreover, if ge-g0 weakly in L2ðRNÞ; then

jjð�Dþ VeÞ�1
ge � ð�Dþ V0Þ�1

g0jjH1
e
-0 as e-0: ð2:4Þ

Proof. Let us show first (2.3). By the continuity of the spectra given by Proposition

2.3 we have that for e small enough 0esð�Dþ VeÞ: In particular, for geAL2ðOeÞ
given we have a unique solution weAH1ðOeÞ of

�Dwe þ Vewe ¼ ge; Oe;

@we

@n
¼ 0; @Oe:

8<: ð2:5Þ

We show first that if jjgejjL2ðOeÞpC; with C independent of e; then jjwejjL2ðOeÞ
is bounded. Suppose not, then there is a subsequence, which we again denote
by fweg; such that jjwejjL2ðOeÞ-N: Consider w̃e ¼ we

jjwejjL2ðOeÞ
; so that jjw̃ejjL2ðOeÞ ¼ 1:
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Then

�Dw̃e þ Vew̃e ¼
ge

jjwejjL2ðOeÞ
; Oe;

@w̃e

@n
¼ 0; @Oe:

8>><>>: ð2:6Þ

Multiplying this equation by w̃e and integrating by parts we obtain thatZ
Oe

jrw̃ej2 þ
Z
Oe

Vejw̃ej2 ¼
Z
Oe

g̃e

jjwejjL2ðOeÞ
w̃e

from where it follows that Z
Oe

jrw̃ej2pC;

with C independent of e: Applying Proposition 2.3(iv) we can extract a sequence,

denoted still by w̃e; so that w̃e-w̃0 in L2ðRNÞ and for any wAH1ðRNÞ we haveZ
Oe

rw̃erw-
Z
O0

rw̃0rw:

Notice in particular that jjw̃0jjL2ðO0Þ ¼ 1:

Let xAH1ðO0Þ and consider *xAH1ðRNÞ an extension of x to RN : If we multiply the

equation (2.6) by *xAH1ðOeÞ and integrating by parts we have thatZ
Oe

rw̃er*xþ
Z
Oe

Vew̃e
*x ¼

Z
Oe

ge

jjwejjL2ðOeÞ
*x:

Taking the limit, we get thatZ
O0

rw̃0rxþ
Z
O0

V0w̃0x ¼ 0;

where we have used that jjVejjLNðOeÞpC; Ve-V0; w-L2ðRNÞ and w̃e-w̃0 in

L2ðRNÞ: Thus

�Dw̃0 þ V0w̃0 ¼ 0; O0;

@w̃0

@n
¼ 0; @O0;

8<: ð2:7Þ

and since 0esð�Dþ V0Þ; we get w̃0 ¼ 0: This contradicts the fact that jjw̃0jjL2ðO0Þ ¼1:

Hence, we obtain that jjwejjL2ðOeÞ is uniformly bounded in e:
To show that jjrwejjL2ðOeÞ is uniformly bounded in e we note that Ve are uniformly

bounded in LNðOeÞ and thatZ
Oe

jrwej2 ¼ �
Z
Oe

Vejwej2 þ
Z
Oe

gewe:
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To show (2.4), notice that by the weak convergence of ge; we have that ge is

uniformly bounded in L2ðRNÞ: Applying (2.3) we obtain that jjð�Dþ VeÞ�1
gejjH1ðOeÞ

is uniformly bounded in e: Using (iv) in Proposition 2.3 and taking the limit in the

equation we obtain that if ue ¼ ð�Dþ VeÞ�1
ge and u0 ¼ ð�Dþ V0Þ�1

g0; then ue-u0

in L2ðRNÞ and rue-ru0 w-L2ðRNÞ: Now with a similar argument as in the proof

that (iv) implies (i) in Proposition 2.3 we obtain that ue-u0 in H1
e : This concludes

the proof of the lemma. &

2.3. Convergence of the linear semigroups

With the continuity of the spectra of the operators �Dþ Ve we can obtain
estimates on the behavior of the linear semigroups that will be very useful for the
analysis of the nonlinear dynamics.

We consider the operators Ae ¼ D� Ve as unbounded operators in L2ðOeÞ; for
0pepe0: They generate analytic semigroups eAet in L2ðOeÞ; H1ðOeÞ and in general in
the scale of fractional powers of the operator.

Notice that the semigroup eAet acts on functions defined in Oe: We will need to

estimate expressions of the type eAetu0 where, for instance u0AL2ðO0Þ: As we said in
the introduction, by this we mean that we extend the function u0 by zero outside O0

and restrict to Oe: In this way we can also regard u0AL2ðOeÞ and evaluate eAetu0:

Similarly we can give a meaning to eA0tue:
We have the following result

Proposition 2.7. Assume that the family of domains fOe : 0pepe0g and the family of

potentials fVe : 0pepe0g are admissible. Let a40 be such that l0noaol0nþ1 and

consider the spectral projection over the linear space generated by the first n

eigenfunctions Pe
a defined in Section 2.1. Denote also by b a number such that bol01:

Then, there exists a number 1
2
ogo1 and a function yðeÞ with yðeÞ-0 as e-0 such that

jjeAetue � eA0tuejjH1
e
pMyðeÞt�ge�btjjuejjL2ðOeÞ; ueAL2ðOeÞ; t40;

jjeAetðI � Pe
aÞue � eA0tðI � P0

aÞuejjH1
e
pMyðeÞt�ge�atjjuejjL2ðOeÞ; ueAL2ðOeÞ; t40:

Proof. Let us prove the second inequality. So let us consider n and a given, satisfying
the hypothesis of the proposition. Notice that we can choose a constant M

independent of e such that

jjeAetðI � Pe
aÞuejjH1ðOeÞpMt�

1
2e�atjjuejjL2ðOeÞ; ueAL2ðOeÞ; t40; eA½0; e0Þ:

Now, we separate the estimate for t small and t large. Choose gAð1
2
; 1Þ fixed.

Let d40 be a small parameter and let us consider two different cases according
to tAð0; d� or t4d:
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(i) If tAð0; d� we easily check that

jjeAetðI � Pa
e Þue � eA0tðI � Pa

0ÞuejjH1
e
p 2Mt�

1
2e�atjjuejjL2ðOeÞ

p 2Mdg�
1
2t�ge�atjjuejjL2ðOeÞ: ð2:8Þ

(ii) If t4d we proceed as follows. Notice first that we can always choose a positive

number l ¼ lðdÞ such that if zXl then ze�2ztpdt�ge�at for all tXd: Since we have

lek �!e-0
l0k and l0k ��!k-NþN; there exists N ¼ NðdÞ4n such that lekXlðdÞ; eA½0; e0Þ:

Without loss of generality we can assume that we have l0NðdÞol0NðdÞþ1: Hence, from

the spectral decomposition of the linear semigroups, we obtain

jjeAetðI � Pa
e Þue � eA0tðI � Pa

0ÞuejjH1
e

p
XNðdÞ

k¼nþ1

e�lektðue;f
e
kÞf

e
k �

XNðdÞ

k¼nþ1

e�l0ktðue;f
0
kÞf

0
k

�����
�����

�����
�����
H1

e

þ
XN

NðdÞþ1

e�lektðue;f
e
kÞf

e
k

������
������

������
������
H1ðOeÞ

þ
XN

NðdÞþ1

e�l0ktðue;f
0
kÞf

0
k

������
������

������
������
H1ðO0Þ

¼ I1 þ I2 þ I3: ð2:9Þ

Analyzing I2; I3 and I1; respectively, we get

I2p
XN

NðdÞþ1

leke�2lektjðue;f
e
nÞj

2pdt�ge�atjjuejjL2ðOeÞ;

I3p
XN

NðdÞþ1

l0ke�2l0ktjðu0;f
0
nÞj

2pdt�ge�atjjuejjL2ðOeÞ;

I1 ¼
XNðdÞ

k¼nþ1

e�lektðue;f
e
kÞfe

k �
XNðdÞ

k¼nþ1

e�l0ktðue;f
0
kÞf0

k

�����
�����

�����
�����
H1

e

p
XNðdÞ

k¼nþ1

ðe�lekt � e�l0ktÞðue;f
e
kÞfe

k

�����
�����

�����
�����
H1

e

þ
XNðdÞ

k¼nþ1

e�l0ktððue;f
e
kÞfe

k � ðue;f
0
kÞf0

kÞ
�����

�����
�����

�����
H1

e

p
XNðdÞ

k¼nþ1

ððlekÞ
1
2 þ 1Þje�lekt � e�l0ktj jjuejjL2ðOeÞ

þ
XkðdÞ
i¼r

e�mi t
Xniþ1

k¼niþ1

ððue;f
e
kÞf

e
k � ðue;f

0
kÞf

0
kÞ

�����
�����

�����
�����
H1

e

:
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Moreover, from the convergence of the eigenvalues and of the spectral projections,
we can find e1ðdÞAð0; e0Þ so that

XNðdÞ

n¼1

ððlekÞ
1
2 þ 1Þje�lent � e�l0ntjpdt�ge�at; eAð0; e1ðdÞÞ;

XkðdÞ
i¼r

e�mi t
Xniþ1

k¼niþ1

ððue;f
e
kÞf

e
k � ðue;f

0
kÞf

0
kÞ

�����
�����

�����
�����
H1ðO0Þ

pe�l0ntdjjuejjL2ðOeÞpCdt�ge�atjjuejjL2ðOeÞ eAð0; e1ðdÞÞ:

From the estimates for I1; I2 and I3 we obtain

jjeAetðI � Pe
aÞue � eA0tðI � P0

aÞuejjH1
e

pCdt�ge�atjjuejjL2ðOeÞ; t4d; eAð0; e1ðdÞÞ: ð2:10Þ

Finally, since d is an arbitrary small number, inequalities (2.8) and (2.10) prove the
result.

The proof of the first inequality of the proposition is very similar to the one
provided for the second inequality. The role of a is played now by b and Pe

a ¼ 0;

P0
a ¼ 0:
This concludes the proof of the proposition. &

3. Upper semicontinuity of attractors and of the set of equilibria

In the previous section we have studied in detail the behavior of the linear parts of
the operators under the perturbation we are considering and have proved a result on
the continuity of the linear semigroups, Proposition 2.7. We will see in this section
that the attractors and the stationary states, solutions of the nonlinear elliptic
problem, are upper semicontinuous with respect to this perturbations.

To this end we will relate the continuity of the linear semigroups with the
continuity of the nonlinear semigroups for dissipative parabolic equations by using
the variation of constants formula. This in turn will imply the upper semicontinuity
of the attractors and the stationary states. See also [5,7,27] for other examples that
use a similar technique.

We will show the following result

Proposition 3.1. Assume that the family of domains fOe : 0pepe0g is admissible.

Then, there exist 0pgo1; a function cðeÞ with cðeÞ-0 as e-0 and a constant M
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such that

jjTeðt; ueÞ � T0ðt; ueÞjjH1
e
pMcðeÞt�g; tAð0; t�; jjuejjL2ðOeÞpR; eAð0; e0Þ; ð3:1Þ

where M ¼ Mðt;RÞ:
Moreover the attractors are upper semicontinuous at e ¼ 0 in H1

e ; in the sense that

sup
ueAAe

inf
u0AA0

fjjue � u0jjH1
e
g


 �
-0 as e-0: ð3:2Þ

Also, if we denote by Ee; eA½0; e0� the set of stationary states of (1.1), then

sup
ueAEe

inf
u0AE0

fjjue � u0jjH1
e
g


 �
-0 as e-0: ð3:3Þ

Remark 3.2. For this section and for the rest of the paper we will denote by F and F 0

the Nemitsky operators of f ; @f
@u
; respectively. That is,

FðuÞðxÞ ¼ f ðx; uðxÞÞ; F 0ðuÞðxÞ ¼ @f

@u
ðx; uðxÞÞ:

Proof. Notice that the nonlinear semigroups TeðtÞ are given by the variation of
constants formula:

Teðt; ueÞ ¼ eAetue þ
Z t

0

eAeðt�sÞFðTeðs; ueÞÞ ds; eA½0; e0Þ: ð3:4Þ

Hence, calculating Teðt; ueÞ � T0ðt; ueÞ and with some elementary computations we
obtain

jjTeðt; ueÞ � T0ðt; ueÞjjH1
e
p jjeAetue � eA0tuejjH1

e

þ
Z t

0

jjeAetFðTeðs; ueÞÞ � eA0tFðTeðs; ueÞÞjjH1
e

ds

þ
Z t

0

jjeA0tðFðTeðs; ueÞÞ � FðT0ðs; ueÞÞÞjjH1
e

ds; eA½0; e0Þ:

Applying now Proposition 2.7 we get

jjTeðt; ueÞ � T0ðt; ueÞjjH1
e
pMyðeÞt�ge�btjjuejjL2ðOeÞ

þ MyðeÞ
Z t

0

ðt � sÞ�g
e�bðt�sÞjjFðTeðs; ueÞÞjjL2ðOeÞ

þ M

Z t

0

ðt � sÞ�1=2
e�bðt�sÞCjjTeðt; ueÞ � T0ðt; ueÞjjH1

e
:
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But since jjuejjL2ðOeÞpR and f is a bounded function, the first two terms in the last

inequality can be bounded by MyðeÞt�g; with M ¼ Mðt;RÞ: Applying now
Gronwall’s lemma, see [20], we obtain statement (3.1).

Now, the upper semicontinuity of the attractors in H1
e ; statement (3.2) follows

directly from (3.1) and the fact that A0 attracts
S

0oepe0 Ae in the topology of

H1ðO0Þ; see for instance [16].

To show the upper semicontinuity in H1
e of the stationary states we will prove that

for any sequence of e-0 and for any ueAEe we can extract a subsequence, that we
still denote by e; and obtain a u0AE0 such that jjue � u0jjH1

e
-0 as e-0: From the

upper semicontinuity of the attractors given by (3.2), we obtain the existence of a
u0AA0 such that jjue � u0jjH1

e
-0 as e-0: To show that u0AE0 we first observe that

for any t40; jjue � T0ðt; u0ÞjjH1
e
-jju0 � T0ðt; u0ÞjjH1ðO0Þ: Moreover, for a fixed t40

and for any tAð0; tÞ we have that,

jjue � T0ðt; u0ÞjjH1
e
¼ jjTeðt; ueÞ � T0ðt; u0ÞjjH1

e
-0 as e-0;

where we have used that ue is a stationary state and (3.1). In particular, we have that
for each t40; u0 ¼ T0ðt; u0Þ; which implies that u0 is a stationary state. This
concludes the proof of the Proposition.

4. Continuity of equilibria, unstable manifolds and attractors

In order to obtain lower semicontinuity of attractors in H1
e we must ensure that

the set of equilibria Ee behaves lower-semicontinuously. In this section we prove
that, for the sort of domain perturbations considered here and assuming that the
equilibria of the limiting problem are all hyperbolic, Ee is a finite set with constant
cardinality; that is, Ee ¼ fue

1;y; ue
ng; 0pepe0: This set behaves continuously with

respect to e in H1
e ; that is,

max
1pkpn

fjjue
k � u0

kjjH1
e
g �!e-0

0:

We also prove, in this section, that the local unstable manifolds of equilibrium
solutions are continuous as e-0: For that we use the convergence of equilibria to
obtain the continuity of the spectrum of the linearization around such equilibria and
consequently the continuity of the local unstable manifolds.

4.1. Continuity of the set of equilibria

Consider the following family of elliptic problems:

ðPÞe
Du þ f ðx; uÞ ¼ 0 in Oe;

@u

@n
¼ 0 in @Oe

8<:
for each 0pepe0 ðe040Þ: We can show the following
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Proposition 4.1. Assume that the family of domains fOe : 0pepe0g is admissible.

Assume also that problem ðPÞ0 has a solution u0 and that zero is not in the spectrum of

the operator Dþ @f
@u
ð�; u0ð�ÞÞI : H2

n ðO0ÞCL2ðO0Þ-L2ðO0Þ: Consider the extension

operator E : H1ðO0Þ-H1ðRNÞ and let u0;e ¼ Eðu0ÞjOeAH1ðOeÞ: Then, there exists

e040 and d40 so that problem ðPÞe has exactly one solution, ue; in fwe; jjwe �
u0;ejjH1ðOeÞpdg for 0oepe0: Furthermore,

jjue � u0jjH1
e
-0 as e-0:

Proof. Define the operators

Ye : H1ðOeÞ-H1ðOeÞ;

YeðzeÞ ¼ ð�Dþ F 0ðu0;eÞIÞ�1ðFðzeÞ þ F 0ðu0;eÞzeÞ ð4:1Þ

(see Remark 3.2 for the meaning of F and F 0). The operators Ye are well defined by

applying Proposition 2.6, since F 0ðu0;eÞ-F 0ðu0Þ in L2ðRNÞ and 0esðDþ F 0ðu0ÞIÞ:
Notice also that ve is a fixed point of Ye if and only if ve is a solution of ðPÞe:

We will show that there exists d40 and e040; such that the operator Ye; for

0oeoe0; is a strict contraction from Bdðu0;eÞ ¼ fveAH1ðOeÞ : jjve � u0;ejjH1ðOeÞpdg
into itself.

To prove this, let us start by showing that Ye : Bdðu0;eÞ-H1ðOeÞ is a strict
contraction, that is, there exists a ro1 such that jjYeve �YewejjH1ðOeÞprjjve �
wejjH1ðOeÞ for any ve; weABdðu0;eÞ: We have,

jjYeðveÞ �YeðweÞjjH1ðOeÞ

pjjð�Dþ F 0ðu0;eÞIÞ�1jjLðL2ðOeÞ;H1ðOeÞÞjjFðveÞ � FðweÞ � F 0ðu0;eÞðve � weÞjjL2ðOeÞ

pCjjFðveÞ � FðweÞ � F 0ðu0;eÞðve � weÞjjL2ðOeÞ: ð4:2Þ

Where we have used Lemma 2.6 to obtain that jjð�DþF 0ðu0;eÞIÞ�1jjLðL2ðOeÞ;H1ðOeÞpC

for some constant C independent of e: Next we study jjFðveÞ � FðweÞ � F 0ðu0;eÞ
ðve � weÞjjL2ðOeÞ: We prove

Lemma 4.2. There exists a constant C such that for all zeAH1ðOeÞ; all d40 and all

ve;we with jjve � zejjH1ðOeÞod; jjve � zejjH1ðOeÞod; we have

jjFðveÞ � FðweÞ � F 0ðzeÞðve � weÞjjL2ðOeÞpC
1

te
þ d2=N

� �
jjve � wejjH1ðOeÞ;

where te is given by (2.2).
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If we assume the lemma proved, then we have

jjYeðveÞ �YeðweÞjjH1ðOeÞpC
1

te
þ d2=N

� �
jjve � wejjH1ðOeÞ:

Now, given ro1 choose e small enough such that C 1
te
pr

2
and d small enough so

that Cd2=Nor
2
: This shows Ye is a strict contraction from Bdðu0;eÞ into H1ðOeÞ:

In order to prove that Ye maps Bdðu0;eÞ into itself we show first that jjYeu
0;e �

u0;ejjH1ðOeÞ-0 as e-0; for all k ¼ 1;y;m: Notice that

jjYeu
0;e � u0;ejjH1ðOeÞp jjYeu

0;e � u0jjH1
e
þ jju0;e � u0jjH1

e

¼ jjYeu
0;e � u0jjH1

e
þ jju0;ejjH1ðOe\O0Þ

But jju0;ejjH1ðOe\O0Þ-0 as e-0: Hence we just need to show that jjYeu
0;e � u0jjH1

e
-0

as e-0: If we denote by ve ¼ Yeu
0;e; then veAH1ðOeÞ is the solution of

�Dve þ F 0ðu0;eÞve ¼ Fðu0;eÞ þ F 0ðu0;eÞu0;e; Oe;

@ve

@n
¼ 0; @Oe

8<:
and u0 is the solution of

�Du0 þ F 0ðu0Þu0 ¼ Fðu0Þ þ F 0ðu0Þu0; O0;

@u0

@n
¼ 0; @O0:

8<:
But by the resolvent convergence estimates (2.4) we get that jjve � u0jjH1

e
-0 as e-0:

To show that Ye maps Bdðu0;eÞ into itself we just observe that if veABdðu0;eÞ

jjYeve � u0;ejjH1ðOeÞp jjYeve �Yeu
0;ejjH1ðOeÞ þ jjYeu

0;e � u0;ejjH1ðOeÞ

prdþ jjYeu
0;e � u0;ejjH1ðOeÞ:

Choosing e small enough again we can guarantee that jjYeu
0;e � u0;ejjH1ðOeÞoð1� rÞd

and therefore jjYeve � u0;ejjH1ðOeÞod: This concludes the proof of the Proposition.

Proof of Lemma 4.2. Note that

jFðveðxÞÞ � FðweðxÞÞ � F 0ðzeðxÞÞðveðxÞ � weðxÞÞjp %Cge;dðxÞjveðxÞ � wej;

where

ge;dðxÞ ¼ minf1; jveðxÞ � zeðxÞj þ jweðxÞ � zeðxÞjg:
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It follows, from the definition of ge;d; that jjge;djjLNðOeÞp1; 0pepe0: Moreover

jjge;djjL2ðOeÞpjjve � zejjL2ðOeÞ þ jjwe � zejjL2ðOeÞp2d; for all ve; weABdðu0;eÞ: Using

Hölder’s inequality, we get

jjge;djjLpðOeÞpð2dÞ2=pp2ðdÞ2=p; 2ppoN; for all ve;weABdðu0;eÞ:

Now if je ¼ ve � we we denote by *je ¼ EeðjejKe
ÞjOe : Then

jj *je � jejjL2ðOeÞ ¼ jj *je � jejjL2ðOe\KeÞp
1

te
jjr *je �rjejjL2ðOe\KeÞ

pC
1

te
ðjjjejjH1ðOeÞ þ jj *jejjH1ðRN ÞÞpC

1

te
ðjjjejjH1ðOeÞ þ jjjejjH1ðKeÞÞ

pC
2

te
jjjejjH1ðOeÞ;

where we have used that Ee : H1ðKeÞ-H1ðRNÞ is bounded and te is the first
eigenvalue of �D in Oe\Ke with Dirichlet boundary condition in @Ke and Neumann
boundary condition in @Oe: Now

jjge;djejjL2ðOeÞp jjge;dðje � *jeÞjjL2ðOeÞ þ jjge;d *jejjL2ðOeÞ

p jjge;djjLNðOeÞjjje � *jejjL2ðOeÞ þ jjge;djjLN ðOeÞjj *jejjL2N=ðN�2ÞðRN Þ

p C
2

te
þ Cd2=N

� �
jjjejjH1ðOeÞ:

This proves the lemma. &

As an immediate consequence of this proposition, we have

Corollary 4.3. Assume the conditions of Proposition 4.1 hold. Assume moreover that

problem ðPÞ0 has exactly m solutions u0
1;y; u0

m and that all of them are hyperbolic in

the sense that 0 is not in the spectrum of Dþ F 0ðu0
kÞI : H2

n ðO0ÞCL2ðO0Þ-L2ðO0Þ for

k ¼ 1;y;m: Then there exists a small e040 such that for all 0oeoe0 problem ðPÞe
has exactly m solutions ue

1;y; ue
m: Moreover, we have

jjue
k � u0

kjjH1
e
-0 as e-0:

Proof. By Proposition 3.1 we have that for any solution ue of ðPÞe for e small enough

lies in a neighborhood of the set of equilibria ðPÞ0: But by Proposition 4.1, in a

neighborhood of u0
k there is only one solution of ðPÞe which converges to u0

k in H1
e :

This proves the result.
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4.2. Continuity of the unstable manifolds

In this section we show that the local unstable manifolds of ue; for k ¼ 1;y;m

fixed, are continuous in H1
e as e-0: The existence of this manifold follows from

standard invariant manifold theory, see [20], although its proof is adapted to
encompass the possibility that the space changes according to a parameter and to
keep track of the dependence of the invariant manifold upon the parameter. After
this, we show that the unstable manifolds are close for small e: For this we will use
the convergence results on the linear part obtained in Section 2.

We have the following

Proposition 4.4. Assume that the family of domains fOe : 0pepe0g is admissible.

Assume also that u0 is a solution of problem ðPÞ0 and that zero is not in the spectrum of

the operator Dþ @f
@u
ð�; u0ð�ÞÞI : H2

n ðO0ÞCL2ðO0Þ-L2ðO0Þ: By Proposition 4.1, ðPÞe has

a unique solution, ue; near u0: Then, there exist d; e040 such that ue has a local

unstable manifold W u
locðueÞCH1ðOeÞ for 0pepe0 and if we denote by

W u
d ðueÞ ¼ fwAW u

locðueÞ; jjw � uejjH1ðOeÞodg; 0pepe0;

then W u
d ðueÞ converges in H1

e to W u
d ðu0Þ as e-0; that is

sup
weAW u

d ðueÞ
inf

w0AW u
d ðu0Þ

jjwe � w0jjH1
e
þ sup

w0AW u
d ðu0Þ

inf
weAW u

d ðueÞ
jjwe � w0jjH1

e
-0 as e-0:

Proof. Notice that by Proposition 4.1, we have that jjue � u0jjH1
e
-0 as e-0: This

implies by Proposition 2.3 that the spectra of �Dþ F 0ðueÞ behave continuously as
e-0; see Remark 3.2 for the meaning of F and F 0:

Rewriting (1.1) for w ¼ u � ue to deal with the neighborhood of ue we arrive at

wt ¼ Dw þ F 0ðueÞw þ Fðw þ ueÞ � FðueÞ � F 0ðueÞw; in Oe;

@w

@n
¼ 0; in @Oe:

8<: ð4:3Þ

Denote as usual by fleig
N

i¼1 the eigenvalues of ðDþ F 0ðueÞIÞ and by ffe
ig

N

i¼1 a

corresponding orthonormal system of eigenfunctions. If l01;y; l0n are positive and

l0nþ1; l
0
nþ2;y are negative, let b40 and e040 such that le1X?XlenXb404�

bXlenþ1Xlenþ2y; 0pepe0: Denote by We ¼ ½fe
1;y;fe

n� and W>
e ¼ fcAH1ðOeÞ :R

Oe
cf ¼ 0; 8fAWg: As we have done previously, denote by Pe : H1ðOeÞ-H1ðOeÞ

the orthogonal projections on We

Pec ¼
Xn

i¼1

Z
Oe

cfe
i

� �
fe

i

and Qe ¼ I � Pe:
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If cAWe then c ¼
Pn

i¼1ð
R
Oe
cfe

i Þf
e
i and

jjcjjH1ðOeÞ ¼
Xn

i¼1

ð1þ lei Þ
Z
Oe

cfe
i

� �2
 !1

2

and since lei-l0i ; 1pioN; we have that We is isomorphic to Rn through the

isomorphism

We{c!Te

Z
Oe

cfe
1;y;

Z
Oe

cfe
n

� �
ARn:

Te is bounded with bounded inverse T�1
e and the norms of Te and T�1

e are uniformly

bounded 0pepe0:
Now we decompose Eq. (4.3) in the following way. If w is a solution to (4.3) we

write

w ¼
Xn

i¼1

vif
e
i þ z;

where vi ¼
R
Oe

wfe
i : Hence

’vi ¼ lei vi þ
Z
Oe

½Fðw þ ueÞ � FðueÞ � F 0ðueÞw�fe
i

and

zt ¼ Dz þ F 0ðueÞz þ Fðw þ ueÞ � FðueÞ � F 0ðueÞw

�
Pn
i¼1

ð
R
Oe
½Fðw þ ueÞ � FðueÞ � F 0ðueÞw�fe

i Þf
e
i ;

@z

@n
¼ 0:

8>>>><>>>>:
We write v ¼ ðv1;y; vnÞ? and Heðv; zÞ ¼ ðH1ðv; zÞ;y;Hnðv; zÞÞ? where

He
j ðv; zÞ ¼

Z
Oe

F
Xn

i¼1

vif
e
i þ z þ ue

 !
� FðueÞ � F 0ðueÞ

Xn

i¼1

vif
e
i þ z

 !" #
fe

j ;

and

Geðv; zÞ ¼ F
Xn

i¼1

vif
e
i þ z þ ue

 !
� FðueÞ � F 0ðueÞ

Xn

i¼1

vif
e
i þ z

 !
�
Xn

i¼1

Hiðv; zÞfe
i :

Hence, we have that, Heð0; 0Þ ¼ 0;Geð0; 0Þ ¼ 0: From Lemma 4.2 we obtain that
given r40 there exist e040 and d40 such that if jjvjjRn þ jjzjjH1ðOeÞod and 0pepe0
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we have

jjHeðv; zÞjjRnor;

jjGeðv; zÞjjL2ðOeÞor;

jjHeðv; zÞ � Heðṽ; z̃ÞjjRnorðjjv � ṽjjRn þ jjz � z̃jjH1ðOeÞÞ;

jjGeðv; zÞ � Geðṽ; z̃ÞjjL2ðOeÞorðjjv � ṽjjRn þ jjz � z̃jjH1ðOeÞÞ: ð4:4Þ

The fact that we can choose r and d uniformly for 0pepe0 satisfying the inequalities
above is the key point to obtain that the local unstable manifolds are defined in a
small neighborhood of the equilibrium point ue uniformly for 0pepe0:

We can extend He; Ge outside BdðueÞ in such a way that bounds (4.4) hold for all

vARN ; zAH1ðOeÞ:
Denote by Ae ¼ ðDþ F 0ðueÞIÞj

W>
e

; Be ¼ diagðle1;y; lenÞ: Then, Eq. (4.3) can be

rewritten in the following form:

’v ¼ Bev þ Heðv; zÞ;

’z ¼ Aez þ Geðv; zÞ; ð4:5Þ

vARn; zAW>
e ; where He; Ge satisfy (4.4) for all vARn; zAW>

e :
Also, for some positive M; b; independent of e; 0pepe0

jjeAetzjjH1ðOeÞpMe�btjjzjjH1ðOeÞ; tX0;

jjeAetzjjH1ðOeÞpMt�
1
2e�btjjzjjL2ðOeÞ; tX0;

jjeBetvjjRnpMebtjjvjjRn ; tp0:

Now we will show that for a suitably small r40; there is an unstable manifold
for ue

Se ¼ fðv; zÞ : z ¼ s�e ðvÞ; vARng;

where s�e : R
n-W>

e is bounded and Lipschitz continuous. Furthermore,

sup
vARn

jjs�e ðvÞ � s�0ðvÞjjH1
e
�!e-0

0:

In order to show this, we will first prove the existence of the invariant manifold.
For D40; D40; 0oyo1; given, if r40 is such that

rMb�
1
2Gð1

2
ÞpD;

rM2ð1þ DÞb�
1
2pD;
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b� rMð1þ DÞXb
2
;

rMG
1

2

� �
1

b
1
2

þ 1þ D
b� rMð1þ DÞ

" #
pyo1:

Let se : Rn-W>
e satisfying

jjjsejjj :¼ sup
vARn

jjseðvÞjjH1ðOeÞpD; jjseðvÞ � seðṽÞjjH1ðOeÞpDjjv � ṽjjRn : ð4:6Þ

Let veðtÞ ¼ cðt; t; Z; seÞ be the solution of

dve

dt
¼ Beve þ Heðve; seðveÞÞ; for tot; veðtÞ ¼ Z; ð4:7Þ

and define

FðseÞðZÞ ¼
Z t

�N

eAeðt�sÞGeðveðsÞ; seðveðsÞÞÞ ds: ð4:8Þ

Note that

jjFðseÞð�ÞjjH1ðOeÞp
Z t

�N

rMðt� sÞ�
1
2e�bðt�sÞ ds ¼ rMb�

1
2G

1

2

� �
: ð4:9Þ

From the choice of r we have that, jjFðseÞð�ÞjjH1ðOeÞpD:Next, suppose that se and *se
are functions satisfying (4.6), Z; *ZARn and denote veðtÞ ¼ cðt; t; Z; seÞ; ṽeðtÞ ¼
cðt; t; *Z; *seÞ: Then,

veðtÞ � ṽeðtÞ ¼ eBeðt�tÞðZ� *ZÞ þ
Z t

t
eBeðt�sÞ½Heðve; seðveÞÞ � Heðṽe; *seðeveveÞÞ� ds:

With some simple and standard computations we obtain

jjveðtÞ � eveveðtÞjjRnpMebðt�tÞjjZ� *ZjjRn þ rMð1þ DÞ
Z t

t

ebðt�sÞjjve � ṽejjRn ds

þ rMjjjse � *sejjjH1ðOeÞ

Z t

t

ebðt�sÞ ds:

Let fðtÞ ¼ e�bðt�tÞjjveðtÞ � eveveðtÞjjRn : Then,

fðtÞpMjjZ� *ZjjRn þ rM

Z t

t

ebðt�sÞ dsjjjse � *sejjjH1ðOeÞ þ Mrð1þ DÞ
Z t

t

fðsÞ ds:
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By Gronwall’s inequality

jjveðtÞ � eveveðtÞjjRnp MjjZ� *ZjjRn eb ðt�tÞ


þ rM

Z t

t

ebðt�sÞ dsjjjse � *sejjjH1ðOeÞ

�
e�rMð1þDÞðt�tÞ

p ½MjjZ� *ZjjRn þ rMb�1jjjse � *sejjjH1ðOeÞ�e
�rMð1þDÞðt�tÞ :

Thus,

jjFðseÞðZÞ � Fð *seÞð*ZÞjjH1ðOeÞ

pM

Z t

�N

ðt� sÞ�
1
2e�bðt�sÞjjGeðve; seðveÞÞ � Geðṽe; *seðeveveÞÞjjL2ðOeÞ ds

prM

Z t

�N

ðt� sÞ�
1
2e�bðt�sÞðjjseðveÞ � *seðeveveÞjjH1ðOeÞ þ jjve � evevejjRnÞ ds

prM

Z t

�N

ðt� sÞ�
1
2e�bðt�sÞ½ð1þ DÞjjve � evevejjRn þ jjjse � *sejjj� ds:

Using the estimates for jjve � ṽejjRn we obtain

jjFðseÞðZÞ � Fð *seÞð*ZÞjjprMG
1

2

� �
b�

1
2 þ 1þ D

b� rMð1þ DÞ


 �
jjjse � *sejjj

þ rM2ð1þ DÞb�
1
2jjZ� *ZjjRn :

Let

IsðeÞ ¼ rMG
1

2

� �
b�

1
2 þ 1þ D

b� rMð1þ DÞ


 �

and

IZðeÞ ¼ rM2ð1þ DÞb�
1
2:

It is easy to see that, given yo1; there exists a r0 such that, for rpr0; IsðeÞpy and
IZðeÞpD and

jjFðseÞðZÞ � Fð *seÞð*ZÞjjH1ðOeÞpDjjZ� Z0jjRn þ yjjjse � *sejjj: ð4:10Þ

Inequalities (4.9) and (4.10) imply that G is a contraction map from the class of
functions that satisfy (4.6) into itself. Therefore, it has a unique fixed point s�n ¼
Fðs�nÞ in this class.

It remains to prove that S ¼ fðv; s�e ðvÞÞ : vARng is an invariant manifold for (4.5).

Let ðv0; z0ÞAS; z0 ¼ s�e ðv0Þ: Denote by v�e ðtÞ the solution of the following
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initial value problem

dv

dt
¼ Bev þ Heðv; s�e ðvÞÞ; vð0Þ ¼ v0:

This defines a curve ðv�e ðtÞ; s�e ðv�e ðtÞÞÞAS; tAR: But the only solution of

’z ¼ Aez þ Geðv�e ðtÞ; s�e ðv�e ðtÞÞÞ;

which remains bounded as t-�N is

z�ðtÞ ¼
Z t

�N

eAeðt�sÞGeðv�e ðsÞ; s�e ðv�e ðsÞÞÞ ds ¼ s�e ðv�e ðtÞÞ:

Therefore, ðv�e ðtÞ; s�e ðv�e ðtÞÞÞ is a solution of (4.5) through ðv0; z0Þ and the invariance is

proved.
Next, we show that the fixed points s�e depend continuously upon e at e ¼ 0: This

is accomplished in the following manner. If 0pepe0 is such that the unstable
manifold is given by the graph of s�e ; 0pepe0; we want to show that

sup
ZARn

jjs�e ðZÞ � s�0ðZÞjjH1
e
¼ jjjs�e � s�0jjj-0 as e-0:

It follows from Proposition 2.7 that

jjs�e ðZÞ � s�0ðZÞjjH1
e
p
Z t

�N

jjeAeðt�sÞGeðve; s�e ðveÞÞ � eA0ðt�sÞG0ðv0; s�0ðv0ÞÞjjH1
e

ds

pMyðeÞ
Z t

�N

ebðt�sÞðt� sÞ�gjjGeðve; s�e ðveÞÞjjL2ðOeÞ ds þ M

�
Z t

�N

ebðt�sÞðt� sÞ�
1
2jjGeðve; s�e ðveÞÞ � G0ðv0; s�0ðv0ÞÞjjL2ðRN Þ ds

p oð1Þ þ rMb�
1
2G

1

2

� �
jjjs�e � s�0jjj

þ rMð1þ DÞ
Z t

�N

e�bðt�sÞðt� sÞ�
1
2jjve � v0jjRn ds:

Thus, it is enough to estimate jjve � v0jjRn : Note that

jjve � v0jjRnp
Z t

t

jjeBeðt�sÞ � eB0ðt�sÞjj jjHeðve; s�e ðveÞÞjjRn ds

þ
Z t

t

jjeB0ðt�sÞjj jjHeðve; s�e ðveÞÞ � H0ðv0; s�0ðv0ÞÞjjRn ds

prMb�1½oð1Þ þ jjjs�e � s�0jjj� þ rMð1þ DÞ
Z t

t

ebðt�sÞjjve � v0jjRn ds:
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Therefore

jjve � v0jjRnprMb�1½oð1Þ þ jjjs�e � s�0jjj�e�rMð1þDÞðt�tÞ

which shows that

sup
ZARn

jjs�e ðZÞ � s�0ðZÞjjH1
e
�!e-0

0:

This proves the result. &

As an immediate consequence of this proposition, we have

Corollary 4.5. Assume the conditions of Proposition 4.4 hold, that problem ðPÞ0 has

exactly m solutions u0
1;y; u0

m and that all of them are hyperbolic. Then there exist

e0; d40 small enough such that problem ðPÞe has exactly m solutions and their local

unstable manifolds W u
d ðue

kÞ; k ¼ 1;y;m behave continuously in H1
e as e-0:

4.3. Continuity of attractors

We are now in position to prove the central result of our work.

Theorem 4.6. Assume that the family of domains fOe; 0pepe0g is admissible and that

every equilibrium of the unperturbed problem ðPÞ0 is hyperbolic. Then the attractors Ae

behave continuously in H1
e as e-0; that is

sup
ueAAe

inf
u0AA0

jjue � u0jjH1
e
þ sup

u0AA0

inf
ueAAe

jjue � u0jjH1
e
-0 as e-0:

Proof. Since we have already shown in Proposition 3.1 the upper semicontinuity of
attractors, we just need to show the lower semicontinuity. This will follow from the
continuity of the local unstable manifolds. To see this, we argue in the following way.

If u0AA0 then u0 belongs to the unstable manifold of u0
k for some 1pkpm: Let d40

be the one obtained in Proposition 4.4. If t is such that w0 ¼ T0ð�t; u0ÞAW u
d ðu0

kÞ;
from the continuity of the unstable manifolds there is a sequence weAW u

d ðue
kÞ which

converges to w0 in H1
e as e-0: Now, since the family of semigroups is continuous in

H1
e we have that Ae{Teðt;weÞ-T0ðt;w0Þ ¼ u0 in H1

e as e-0: Showing the lower

semicontinuity of attractors. This proves the theorem. &

Remark 4.7. Notice that, if moreover we assume the transversality of the stable and

unstable manifolds in A0 then for e small enough the flow in the attractor Ae is C0-
conjugate with the flow in A0; in the sense that there exist homeomorphisms he :

Ae-A0 such that for all ueAAe; we have TeðtÞðueÞ ¼ h�1
e T0ðtÞheðueÞ; for all tX0;

see [17].
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Remark 4.8. The dynamics of (1.1) have been compared in the space H1
e : This means

that, for instance, in the case of exterior perturbations of the domain the restriction
to O0 of equilibria, unstable manifolds and attractors of (1.1) in Oe converges in

H1ðO0Þ to the equilibria, unstable manifolds and attractor of the same problem
in O0:

We may explore now the possibility of obtaining convergence in stronger norms.
For this what we need is to have uniform bounds of the attractors in stronger norms.
In order to accomplish this we first note that we may easily obtain uniform LNðOeÞ
bounds of ut in the attractors, that is, there exists a constant C independent of e
such that

supfjjutðt;feÞjjLNðOeÞ;feAAe; tAR; 0pepe0gpC:

To obtain this we follow the steps given in Proposition 5.1 of [7].
Hence, we can view Eq. (1.1) for fixed t as an elliptic equation �Due þ ue ¼

FðueÞ þ ue � ue;t and notice that the right-hand side is uniformly bounded in LNðOeÞ
when ueðtÞ is an orbit in the attractor Ae: Therefore, the problem of obtaining
uniform bounds in stronger norms is reduced to obtaining uniform bounds for the
solution of the elliptic problem

�Du þ u ¼ g; Oe;

@u

@n
¼ 0; @Oe

8<: ð4:11Þ

when gALNðOeÞ; jjgjjLNðOeÞpC; with C independent of e:
Hence if, for instance, the family of domains Oe is uniformly Hölder then there

exists a a40 and a constant C such that if u is the solution of (4.11) then

jjujjCaðOeÞpC (see [10]). This allows to obtain convergence in Cb for any 0oboa:

5. Examples

Let us consider in this section two examples where Proposition 2.3 applies and,

therefore, all the results of this paper apply. The first example is a C0 perturbation of
the domain and the second one is a nonstandard dumbbell type domain.

5.1. A C0 perturbation of the domain

Let O0CRN be a C0;1 domain and assume that for any point xA@O0; up to a rigid
motion we have that

O0-fxARN : jxi � xijodg

¼ fx ¼ ðx0; xNÞ : xN ¼ xN þ f0ðx0Þ; jxi � xijod; i ¼ 1;y;N � 1g
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for certain Lipschitz function f0 and where, as it is done customarily, we denote by
x0 ¼ ðx1;y; xN�1Þ so that x ¼ ðx0; xNÞ:

In order to simplify the notation assume that x ¼ 0: Hence

O0-fxARN : jxijodg ¼ fx ¼ ðx0; xNÞ : xNof0ðx0Þ; jxijod; i ¼ 1;y;N � 1g:

Assume that

Oe-fxARN : jxijodg ¼ fx ¼ ðx0; xNÞ : xNofeðx0Þ; jxijod; i ¼ 1;y;N � 1g;

where fe-f0 uniformly in fx0 : jx0
ijodg:

Notice also that by definition

@Ke-fxARN : jxijodg ¼ fx ¼ ðx0; xNÞ : xN ¼ geðx0Þ; jxijod; i ¼ 1;y;N � 1g

for certain function ge with geof0; geofe and ge-f0 uniformly in fx0 : jx0
ijodg:

If we denote by

Re;d ¼ ðOe\KeÞ-fx; jxijodg ¼ fx ¼ ðx0; xNÞ : jxijod; geðx0ÞoxNofeðx0Þg;

we have

jjruejj2L2ðRe;dÞ ¼
Z d

�d
y

Z d

�d

Z feðx0Þ

geðx0Þ

@u

@xn

���� ����2 dxN dx0:

But for x0 fixed, applying Poincaré inequality in one dimension, we haveZ feðx0Þ

geðx0Þ

@ðue3w�1Þ
@xn

���� ����2dxNX
p2

4j feðx0Þ � geðx0Þj2
Z feðx0Þ

geðx0Þ
juej2 dxN

which implies that

jjruejj2L2ðRe;dÞX
p2

4jj fe � gejj2LN

jjuejj2L2ðRe;dÞ

and since fe; ge-f0 uniformly in fx0 : jx0
ijodg then there exists ke-N as e-0; such

that

jjruejj2L2ðRe;dÞXkejjuejj2L2ðRe;dÞ:

Since this argument can be done for a finite covering of @O0 we obtain that

jjruejj2L2ðOe\KeÞXCkejjuejj2L2ðOe\KeÞ

for certain constant C independent of e: This shows that (ii) holds.
Notice that the only requirement on fe is the uniform convergence to f0:

In particular, we may consider perturbations with a highly oscillating behavior.
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For instance

feðx0Þ ¼ f0ðx0Þ þ eF
x1

ea1
;y;

xN�1

eaN�1

� �
;

where F : RN�1-R is a smooth bounded function.

5.2. A nonstandard dumbbell-type perturbation

A typical dumbbell domain consists of a pair of disjoints domains OL and OR

which are joined by a thin channel Re: Usually, the shape of the channel is given by
(for instance in two dimensions)

Re ¼ fðx; yÞ : xAð0;LÞ; 0oyoegeðxÞg;

where ge-g0 uniformly in ½0;L� and g0 is some smooth strictly positive function.
The unperturbed domain is given by O0 ¼ OL,OR: The dumbbell domain is given

by Oe ¼ OL,Re,OR: It represents a prototype of nonconvex perturbation and it
has been extensively studied from many points of view. Notice that we have O0COe

and therefore the sets Ke in (2.1) can be taken Ke ¼ O0; (see also Remark 2.2). In
terms of the spectral behavior of the Laplace operator, the results in [2,3,22] say that
there is a net contribution of the spectra of the Laplace operator coming from the
thin channel. That is, the eigenvalues and eigenfunctions of the dumbbell domain
converge as e-0 to the eigenvalues and eigenfunctions of the unperturbed domain
O0 ¼ OL,OR and to the eigenvalues and eigenfunctions of a problem coming from
the channel:

� 1

g0
ðg0uxÞx ¼ mu; xAð0;LÞ;

uð0Þ ¼ 0; uð1Þ ¼ 0:

8<: ð5:1Þ

Moreover, it is known that the eigenvalues of

�Du ¼ tu; xARe;

u ¼ 0; @Re-@ðOL,ORÞ;
@u

@n
¼ 0; @Re\@ðOL,ORÞ

8>><>>: ð5:2Þ

converge to the eigenvalues of (5.1), see [2,3,18].
In particular, (ii) of Proposition 2.3 does not hold and we cannot apply the results

in this paper.

Here, we are going to construct a dumbbell domain OeCRN ; NX2; with a thin
channel Re such that property (ii) of Proposition 2.3 holds, that is, the first
eigenvalue of (5.2) diverges to infinity as the parameter e-0: For this dumbbell
domain we obtain the convergence of the spectra given by Proposition 2.3, that is,
the eigenvalues and eigenfunctions in Oe converge to the eigenvalues and
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eigenfunctions of O0; so that no contribution from the channel occurs. Hence, all the
results of this paper will apply to this example.

The channel Re will be constructed as follows:

Re ¼ fðx; x0Þ; xAð0;LÞ; x0ARN�1; jx0jogeðxÞg;

where

geðxÞ ¼

1

2
� x

2L

� �1
e
; 0oxoL=2;

x

2L

� �1
e
; L=2oxoL:

8>>>><>>>>:
Hence, consider the eigenvalue problem (5.2) in Re and denote by te the first

eigenvalue. Since geðL � xÞ ¼ geðxÞ; by symmetry we will have that the first
eigenfunction will satisfy the same symmetry condition and therefore if we define

R̃e ¼ Re-fL=2oxoLg;

the first eigenvalue of (5.2) coincides with the first eigenvalue of

�Du ¼ tu; xAR̃e;

u ¼ 0; @R̃e-fx ¼ Lg;
@u

@n
¼ 0; @R̃e-fL=2pxoLg:

8>><>>: ð5:3Þ

Denote by ke the first eigenvalue of the problem

� 1

xðN�1Þ=eðx
ðN�1Þ=euxÞx ¼ ku; L=2oxoL;

u ¼ 0; x ¼ L;

@u

@x
¼ 0; x ¼ L=2:

8>>>><>>>>: ð5:4Þ

Let us show that there exists a positive number a such that teXake: To see this,
denote by geðx; x0Þ the eigenfunction corresponding to the eigenvalue te of problem
(5.3). Assume it is normalized so that jjgejj2L2ðR̃eÞ ¼ 1 and hence, jjrgejj2L2ðR̃eÞ ¼ te:
Denote also by %geðxÞ the averaged function in the x0 direction of ge; that is, if

GeðxÞ ¼ fx0ARN�1; ðx; x0ÞAR̃eg then

%geðxÞ ¼
1

jGeðxÞj

Z
GeðxÞ

geðx; x0Þ dx0; L=2oxoL:

Notice that jGeðxÞj ¼ ð x
2L
ÞðN�1Þ=ejBð0; 1Þj; where Bð0; 1Þ is the ðN � 1Þ-dimensional

unit ball.
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Then we obviously have

kep

R L

L=2 xðN�1Þ=ej%ge;xj2 dxR L

L=2 xðN�1Þ=ej%gej2 dx
:

But, changing variables in the integral above,

%geðxÞ ¼
1

jBð0; 1Þj

Z
Bð0;1Þ

geðx; geðxÞx0Þ dx0

which implies that for L=2oxoL

%ge;xðxÞ ¼
1

jBð0; 1Þj

Z
Bð0;1Þ

ðge;xðx; geðxÞx0Þ þ g0
eðxÞx0 � rx0geðx; geðxÞx0ÞÞ dx0:

Hence,

j%ge;xðxÞj2pC

Z
Bð0;1Þ

ðjge;xðx; geðxÞx0Þj2 þ jg0
eðxÞj

2jrx0geðx; geðxÞx0Þj2Þ dx0:

Since jg0
eðxÞj-0 as e-0; uniformly in xA½L=2;L�; we obtain

j%ge;xðxÞj2pC

Z
Bð0;1Þ

jrgeðx; geðxÞx0Þj2 dx0 ¼ C

gN�1
e ðxÞ

Z
GeðxÞ

jrgeðx; x0Þj2 dx0

which impliesZ L

L=2

x
ðN�1Þ

e j%ge;xj2 dxpC

Z L

L=2

ð2LÞ
N�1
e

Z
GeðxÞ

jrgeðxÞj2 dx0 dx

¼Cð2LÞ
N�1
e

Z
R̃e

jrgej2 dx0 dx:

Moreover,Z L

L=2

x
N�1
e j%geðxÞj2 dx ¼

Z L

L=2

ð2LÞ
N�1
e

Z
GeðxÞ

j%geðxÞj2 dx0 dx ¼ ð2LÞ
N�1
e

Z
R̃e

j%gej2 dx0 dx

which implies

kepC

R
R̃e
jrgej2R

R̃e
j%gej2

¼ C
teR

R̃e
j%gej2

: ð5:5Þ

But, by the definition of %ge we have

jj%gejj2L2ðR̃eÞ ¼ jjgejj2L2ðR̃eÞ � jjge � %gejj2L2ðR̃eÞ ¼ 1� jjge � %gejj2L2ðR̃eÞ ð5:6Þ
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and applying, for fixed x; the second Poincaré inequality in GðxÞ; we haveZ
GeðxÞ

jgeðx; x0Þ � geðxÞj2pCjgeðxÞj2
Z
GeðxÞ

jrx0geðx; x0Þj2pC4
�1
e

Z
GeðxÞ

jrx0geðx; x0Þj2 dx0;

where we have used that jgeðxÞjp2�1=e; xAðL=2;LÞ: Integrating in x; we get

jjge � %gejj2L2ðR̃eÞpC4�1=ejjrgejj2L2ðR̃eÞ ¼ C4�1=ete: ð5:7Þ

But it is not difficult to see that tepC
e2 for e small enough. To show this, just

consider the function weðx; x0Þ ¼ L � x as a test function in the Rayleigh quotient for
te: This implies that

jjge � %gejj2L2ðR̃eÞpC2ð1�NÞ=ee�2-0 as e-0:

Hence, from this last statement, (5.5)–(5.7) we show that kepCte for some
constant C independent of e:

Let us see now that ke-N as e-0: Denote by fe the positive eigenfunction
associated to ke: Assume also that we normalize the eigenfunction so that
jjfejjLNðL=2;LÞ ¼ 1: By the maximum principle applied to (5.4), we have

feðxÞpweðxÞ where

� 1

xðN�1Þ=e ðx
ðN�1Þ=ewxÞx ¼ ke; L=2oxoL;

w ¼ 0; x ¼ L;

@w
@x

¼ 0; x ¼ L=2:

8>>>><>>>>: ð5:8Þ

By direct computation, the solution of the problem above is given by

weðxÞ ¼ � keL2

2ðN�1
e þ 1Þ

x

L

� �2
�1þ 1

2
N�1
e ðN�1

e � 1Þ

x

L

� �1�N�1
e �1

 !0@ 1A
which satisfies

jjwejjLNðL=2;LÞ ¼ weðL=2ÞpCeke:

This implies that

1 ¼ jjfejjLNðL=2;LÞpjjwejjLNðL=2;LÞpCeke

so

keXC̃=e-N as e-0:

Since teXake; we also obtain that te-N as e-0: Hence, Proposition 2.3(ii) holds
and all the results of this paper apply to this perturbation. &
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Remark 5.1. For this kind of dumbbell domain the formation of nonconstant stable
equilibrium solutions is a direct consequence of Proposition 3.1. If for instance we

consider the nonlinearity f ðuÞ ¼ u � u3; we have that for any domain the equilibria
u ¼ 1 and �1 are asymptotically stable. Hence if we consider u0 an equilibria in
O0 ¼ Ol,OR given by u0 ¼ 1 in OL and u0 ¼ �1 in OR; we know that this
equilibrium is asymptotically stable. By Proposition 3.1 there exists an equilibrium

ueAH1ðOeÞ which is near u0 in H1
e and that the linearization around ue converges to

the linearization of the limit problem around u0: In particular ue is an asymptotically
stable equilibrium (with the same index as u0) and ue is obviously nonconstant.
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