On a Fully Nonlinear Parabolic Equation and the Asymptotic Behaviour of Its Solutions

J. I. DEFONSO DIAZ

Facultad de Matematicas, University of Santander, Santander, Spain

Submitted by J. L. Lions

1. Introduction

Let Ω be a smooth bounded domain in \mathbb{R}^n. Given $\psi \in L^2(\Omega)$ with $\psi \geq 0$ a.e. and $u_0 \in H_0^1(\Omega)$ we consider the problem of finding a function $u(t, x)$ satisfying

$$
\begin{align*}
&u_t = \text{Max} |\psi, dx|, & \text{on} & \ (0, \infty) \times \Omega, \\
&u = 0, & \text{on} & \ (0, \infty) \times \partial \Omega, \\
&u(0, x) = u_0(x), & \text{on} & \ \Omega.
\end{align*}
$$

(1)

Such types of problems occur in heat control (see [16, Chap. 2]). Formulations such as (1) also appear in a nonstandard statement of the Stefan problem (see Remark A.1) as well as in some particular case of the so-called Bellman’s equation of dynamic programming (see Remark 6).

Problem (1) can be expressed in a weak form by means of the following evolution variational inequality:

$$
\begin{align*}
&u_t \in K, & K = \{v \in H_0^1(\Omega): v \leq \psi \text{ a.e. on } \Omega \} \\
&\int_{\Omega} u_t (v - u_t) \, dx + \int_{\partial \Omega} \text{grad } u \cdot \text{grad } (v - u_t) \, ds \geq 0, & \forall v \in K \text{ and } t > 0.
\end{align*}
$$

(2)

The existence and uniqueness of a solution of (2), for each $u_0 \in H_0^1(\Omega)$, was proved by Brezis [8] (see also [5]). Also the asymptotic behaviour is considered in [8] by means of the abstract result on asymptotic behaviour of solutions of evolution equations. It is shown there that $u(t, x)$ converges weakly in $H_0^1(\Omega)$, when $t \to \infty$, to a function $u_\infty(x) \in H_0^1(\Omega)$ satisfying

$$
\min \{\Delta u_\infty, \psi\} = 0 \quad \text{on} \quad \Omega
$$

(3)

* Sponsored by the United States Army under Contract DAAG29-80-C-0041. Present address: Facultad de Matematicas, University of Madrid, Madrid-3, Spain.
in the sense that

\[\int_\Omega \operatorname{grad} u \cdot \operatorname{grad} v \, dx \geq 0, \quad \forall v \in K. \quad (4) \]

Nevertheless it is neither known how the solution selects an equilibrium point among all of them nor if the convergence also holds in the strong topology of \(H_0^1(\Omega) \). Both questions were proposed in [8] and they are, essentially, the main aims of this work.

Our methods for the study of the asymptotic behaviour are based on considerations made in terms of strong solutions, i.e., solutions which satisfy Eq. (1) a.e. Because of this we shall first consider some regularity results. In this respect it is not difficult to see that if the solution \(u \) of (2) is such that \(\partial u(t, \cdot) \in L^1(\Omega) \), for \(t > 0 \), then \(u \) is a strong solution. Nevertheless not every solution of (2) is a strong solution. For instance, when \(\psi \equiv 0 \) and \(u_0 \) is such that \(\partial u_0 \geq 0 \) in \(D'(\Omega) \) it can be directly verified that \(u(t, x) = u_0(x) \), \(\forall t > 0 \), and then \(u \) is a strong solution iff \(\partial u_0 \in L^1(\Omega) \). We shall show that if \(\psi \in H^1(\Omega) \) with \((\partial \psi) = L^1(\Omega) \) and \(\partial u_0 \in L^1(\Omega) \), the solution of (2) is a strong one and satisfies \(\partial u \in C([0, \infty); L^1(\Omega)) \). (A stronger regularity result will also be obtained when \(\psi \in C^1(\overline{\Omega}) \) and \(\partial u_0 \in L^{\infty}(\Omega) \).

The main result in our study of asymptotic behaviour of the solutions shows the strong convergence, in \(H_0^1(\Omega) \), of the solution to the equilibrium point zero provided \(\psi > 0 \) and \(\partial \psi \geq 0 \) a.e. on \(\Omega \). If in addition \(\psi(x) \geq \delta > 0 \) a.e. \(x \in \Omega \) (for some \(\delta \)), then the asymptotic behaviour is completely described in the sense that we show the solution verifies the linear heat equation \(u_t = \partial u \) on \((T_0, \infty) \times \Omega \) for an adequate finite time \(T_0 \). Other answers on the strong convergence and the selection of the equilibrium point are also given.

The essential tool in our treatment of (1) is the consideration of the "dual" (or adjoint) problem

\[
\begin{align*}
\beta(x, u(t, x)) &= 0, & \text{on } (0, \infty) \times \Omega, \\
P^\ast, \quad \beta(x, u(t, x)) &= 0, & \text{on } (0, \infty) \times \partial \Omega, \\
v(0, x) &= u_0(x), & \text{on } \Omega,
\end{align*}
\]

where

\[\beta(x, r) = -\min\{\psi(x), -r\} \quad \text{a.e. } x \in \Omega, \quad \forall r \in \mathbb{R}. \quad (5) \]

The existence of solutions of \(P^\ast \) in \(L^1(\Omega) \) implies the existence of strong solutions of (1) using the relation \(v = -\partial u \). The former question, that is, the existence of solutions of \(P^\ast \), has been very much studied recently but, as far

1 Duality arguments have already been used in Diaz–Díaz [14].
as we know, the term \(\beta(x, r) \) (a maximal monotone graph of \(R^2 \) for a.e. \(x \in \Omega \)) is always taken in the following two cases: (a) \(\beta(x, r) \) is independent of \(x \), (b) \(\beta(x, r) \) is onto a.e. \(x \in \Omega \) \([9]\). Notice that the \(\beta(x, r) \) given in (5) is neither in case (a) nor (b). Anyway, using the theory of variational inequalities we shall show that \(P^* \) is a “well-posed” problem in \(L^1(\Omega) \) when \(\psi \in H^1(\Omega) \) and \((-\Delta \psi)^- \in L^2(\Omega) \).

The strong solutions of (1) satisfy

\[
\begin{align*}
 u(t, x) + \beta(x, -\Delta u(t, x)) &= 0, & \text{on} & \quad (0, \infty) \times \Omega, \\
 u(t, x) &= 0, & \text{on} & \quad (0, \infty) \times \partial \Omega, \\
 u(0, x) &= u_0(x), & \text{on} & \quad \Omega,
\end{align*}
\]

with \(\beta \) given by (5). We shall show that \(P \) is well posed on \(L^\infty(\Omega) \) when \(\psi \in C^1(\Omega) \); then it is possible to obtain more regular solutions of (1). (\(P \) was previously studied by Benilan–Ha \([4]\) when \(\beta(x, r) \) as in Case (a) or (b).)

This paper is organized as follows: In Section 2 the existence of strong solutions of (1) is proved when \(\psi \in H^1(\Omega) \) and \(\Delta \psi \) is a measure such that \((-\Delta \psi)^- \in L^2(\Omega) \); besides, such solutions are shown to be more regular if \(\psi \in C^2(\Omega) \). The arguments of duality between (1) and \(P^* \) are also presented. In Section 3 we show several comparison results of different nature. Finally, in Section 4, the asymptotic behaviour is considered.

Some results of the theory of evolution equations governed by accretive operators in Banach spaces are used through the paper. In several appendices we present a summary of the abstract theory as well as the proofs of the fact that the abstract hypotheses are satisfied when problems \(P \) and \(P^* \) are studied as abstract Cauchy problems on \(L^\infty(\Omega) \) and \(L^1(\Omega) \) (or \(H^{-1}(\Omega) \)), respectively.

2. About the Regularity and the Dual Problem

In the following it is useful to recall the essential part of the proof of the existence and uniqueness of solutions of (2) given in \([8]\). It is based in the fact that (2) can be equivalently formulated as

\[
\int_\Omega \nabla u \cdot \nabla (v - u) \, dx + \varphi(v) - \varphi(u) \geq 0,
\]

\[\forall v \in H^1_0(\Omega) \quad \text{and} \quad t > 0. \tag{6}\]

where \(\varphi \) is a convex lsc function defined on \(H^1_0(\Omega) \) by

\[
\begin{align*}
 \varphi(v) &= \frac{1}{2} \int_\Omega |v|^2 \, dx, \quad \text{if} \quad v \in K, \\
 &= +\infty, \quad \text{if} \quad v \not\in K. \tag{7}
\end{align*}
\]
Introducing the conjugate convex function of φ by
\[
\varphi^*(x) = \sup_{y \in H^1_0(\Omega)} \left\{ \int_\Omega \nabla x \cdot \nabla y - \varphi(y) \right\}
\]
(8)

inequality (6) can be written as $-u \in \partial \varphi(u)$ or equivalently,
\[
u_i - \varphi^*(-u) \geq 0.
\]
(9)

By the theory of maximal monotone operators on Hilbert spaces [7] it is known that for any $u_\in H^1_0(\Omega)$, $u_\in D(\partial \varphi^*(-\cdot))$ there exists a unique solution $u \in C([0, \infty): H^1_0(\Omega)) \cap W^{1,1}_{loc}((0, \infty); H^1_0(\Omega))$ of (9). In addition,
\[
u(t) \in D(\partial \varphi^*(-\cdot)) \text{ for any } t > 0.
\]
(10)

Finally, by the results of [5, Proposition II.10 and Lemma II.7], we have that $D(\partial \varphi^*(-\cdot))$ is a dense set in $H^1_0(\Omega)$. So the result of [8] follows.

As it has been pointed out in the Introduction we are interested in the solutions of (1) that satisfy it a.e. Such functions will be termed strong solutions of (1) in contrast to the solutions of (2) or weak solutions. Lemma 1 enlightens the connection between weak and strong solutions.

Lemma 1. Let $\psi \in L^2(\Omega)$ with $\psi \geq 0$ a.e. and let $u \in C([0, \infty): H^1_0(\Omega)) \cap W^{1,1}_{loc}((0, \infty); H^1_0(\Omega))$ be such that $\Delta u(t) \in L^1(\Omega)$ a.e. $t > 0$. Then, u is a weak solution of (1) iff u is also a strong solution.

Proof. Suppose u is a weak solution of (1) such that $\Delta u(t) \in L^1(\Omega)$, a.e. $t > 0$. Taking $v = u_i + \zeta$ in (2) with $\zeta \in D^*(\Omega)$, a simple integration by parts shows that $u_i(t) \leq \Delta u(t)$ a.e. and also that u is a strong solution of (1). On the other hand, if $u \in C([0, \infty): H^1_0(\Omega)) \cap W^{1,1}_{loc}((0, \infty); H^1_0(\Omega))$ satisfies (1) a.e. it is clear that $u_i \in K$ and also

\[-\Delta u(v - u_i) \geq u_i(v - u_i) \text{ a.e. on } \Omega \text{ for a.e. } t > 0. \forall v \in K.
\]

Then it is enough to apply [6, Lemma 2] to $F = -\Delta u$, $w = v - u_i$, $h = g = -u_i(v - u_i)$ and remark that $(F, w) = \int_\Omega \nabla u \cdot \nabla(v - u_i) dx$.

A first answer about the regularity of the weak solutions of (1) is the following:

Theorem 1. Assume $\psi \in H^1(\Omega)$ such that $\psi \geq 0$ on Ω and $(-\Delta \psi) \in L^2(\Omega)$. Let $u_\in H^1_0(\Omega)$ with $\Delta u_\in L^1(\Omega)$. Then the weak solution u of (1) satisfies $\Delta u \in C([0, \infty); L^2(\Omega))$.

\footnote{We identify $u(t, \cdot)$ with $u(t)$.}
As we have said in the Introduction, the proof of Theorem 1 comes essentially from considering the problem F^* (when β is given by (5)) formulated as an abstract Cauchy one on the $L^1(\Omega)$ space

$$\frac{dv}{dt} + Av \ni 0 \quad \text{in} \quad L^1(\Omega), \quad \text{on} \quad (0, \infty),$$

$$v(0) = v_0,$$

(11)

A being the operator on $L^1(\Omega)$ given by

$$D(A) = \{ w \in L^1(\Omega) : \beta(x, w(x)) \in W^{1,1}_0(\Omega) \text{ and } \Delta \beta(x, w(x)) \in L^1(\Omega) \},$$

$$Aw = -\Delta \beta(x, w(x)) \quad \text{if} \quad w \in D(A).$$

(12)

The following result is proved in Appendix 2:

Proposition 1. Assume $\psi \in H^1(\Omega)$ such that $\psi \geq 0$ on Ω and $(-\Delta \psi)^{-\frac{1}{2}} \in L^1(\Omega)$. Then for every $v_0 \in L^1(\Omega)$ there exists $v \in C([0, \infty) ; L^1(\Omega))$ unique $L^1(\Omega)$ semigroup solution of F^*.

A first duality result is given by

Lemma 2. Assume $\psi \in H^1(\Omega)$ such that $\psi \geq 0$ on Ω and $(-\Delta \psi)^{-\frac{1}{2}} \in L^1(\Omega)$. Let B the operator on the $H^1(\Omega)$ space given by

$$B(\theta) = -\Delta \psi^*(-\theta), \quad \forall \theta \in D(-\Delta \psi^*(-\theta)) \equiv D(B).$$

(13)

Consider $b \in D(B)$ such that $-\Delta b \in L^1(\Omega)$. Denoting $a = (I + \lambda B)^{-1}(-\Delta b)$ for every $\lambda > 0$, then $a \in L^1(\Omega)$ and $(-\lambda)^{-1} a = (I + \lambda B)^{-1} b$.

Proof. The definition of a implies (for instance when $\lambda = 1$)

$$a(x) - \Delta \beta(x, a(x)) = -\Delta b(x), \quad \text{on} \quad \Omega,$$

$$\beta(x, a(x)) = 0, \quad \text{on} \quad \partial \Omega.$$

(14)

As seen in Appendix 2 (Lemma A.4) the previous problem can be formulated as a stationary variational inequality. Then the conclusion $a \in L^1(\Omega)$ comes from the hypotheses on ψ. On the other hand, as $L^1(\Omega) \subset H^{-1}(\Omega)$ then $(-\lambda)^{-1} a = b^* \in H^1(\Omega) \cap H^2(\Omega)$ and

$$b^*(x) - b(x) = \min \{ \psi(x), \Delta b^*(x) \}.$$

(15)

\footnote{For simplicity in the notation we identify $-\Delta$ with the canonical isomorphism A from $H^1_0(\Omega)$ onto its dual $H^{-1}(\Omega)$.}
From (15) \(b^u - b \in C \) and besides

\[
\begin{align*}
b^u(x) - b(x) &= \Delta b^u(x) \quad \text{a.e.} \quad x \in \{x \in \Omega: (b^u(x) - b(x)) < \psi(x)\}, \\
b^u(x) - b(x) &\leq \Delta b^u(x) \quad \text{a.e.} \quad x \in \{x \in \Omega: (b^u(x) - b(x)) = \psi(x)\}.
\end{align*}
\]

Then, for every \(v \in C \) we have

\[
\int_{\Omega} (-\Delta b^u + (b^u - b))(v - (b^u - b)) \, dx \geq 0
\]

and integrating by parts

\[
\int_{\Omega} \nabla b^u \cdot \nabla (v - (b^u - b)) \, dx + \varphi(v) - \varphi(b^u - b) \geq 0,
\]

namely, \(-b^u \in \partial \varphi(b^u - b)\), i.e., \(b^u + B(b^u) \ni b \). \tag*{2}

We are ready now to prove Theorem 1.

Proof. From Proposition 1 it is enough to show that if \(u \) is the weak solution of (1), then \(-\Delta u(t)\) coincides with \(v(t) \) the unique \(L^1(\Omega) \) semigroup solution of \(P^u \) corresponding to the initial datum \(v_0 = -\Delta u_0 \). It is done in two steps: (a) \(u_0 \in H^1_0(\Omega) \cap H^2(\Omega) \) and (b) \(u_0 \) in the general case.

Case (a). By definition \(v(t) = \lim_{n \to \infty} v_n(t) \), where \(v_n(t) \) are piecewise constant functions defined by \(v_n(t) = a^u_k \) for \(k_\lambda \leq t < (k + 1) \lambda \), \(a^u_k \in D(A) \) satisfying

\[
\frac{a^u_k - a^u_{k-1}}{\lambda} + A a^u_k = 0, \quad k = 1, \ldots, n, \quad a^u_0 = -\Delta u_0
\]

and \(\lambda_n > 0 \) being such that \(\lambda_n \to 0 \). It is clear that \(a^u_k = (I + \lambda_n A)^{-n}(-\Delta u_0) \) and then \(a^u_k \in L^1(\Omega) \) because of Lemma 2. Defining \(b^u_0 = (-\Delta)^{-1} a^u_0 \), \(b^u_k = (I + \lambda_n A)^{-n} u_0 \) holds. Therefore by defining \(u_n(t) = (-\Delta)^{-1} u_n(t) = b^u_k \) for \(k_\lambda \leq t < (k + 1) \lambda \) we have,

\[
-\Delta u(t) = -\Delta (\lim_{n \to \infty} u_n(t)) = \lim_{n \to \infty} (-\Delta u_n(t)) = \lim_{n \to \infty} v_n(t) = v(t)
\]

for the \(m \)-accretiveness of \(B \) in \(H^1_0(\Omega) \).

Case (b). Let \(u_{0, m} \in H^1_0(\Omega) \cap H^2(\Omega) \) be such that \(\Delta u_{0, m} \to \Delta u_0 \) in \(L^1(\Omega) \) as well as in \(H^{-1}(\Omega) \) (obviously then, \(u_{0, m} \to u_0 \) in \(H^1_0(\Omega) \)) when \(m \to \infty \). As the semigroup generated by \(B \) is continuous on \(H^1_0(\Omega) \) it follows that \(u_{0, m} \to u(t) \) in \(H^1_0(\Omega) \) (then \(\Delta u_{0, m} \to \Delta u(t) \) in \(H^{-1}(\Omega) \)), \(u \) and \(u_{0, m} \) being the solutions of (1) for the initial datum \(u_0 \) and \(u_{0, m} \), respectively. Analogously, by the continuity in \(L^1(\Omega) \) of the semigroup generated by \(A \) we have
−Δu_\ast(t) \to v(t) \text{ in } L^1(Ω), \text{ where } v(t) \text{ is the solution of } P^\ast \text{ with respect to the initial datum } u_0 = −Δu_0. \text{ Therefore } v(t) = −Δu(t) \text{ for any } t > 0.

Remark 1. Another regularity result follows by using different methods. Precisely, if \(v ∈ H^2(Ω) \cap H^1_0(Ω), \psi \geq 0 \text{ on } Ω, \text{ and } u_0 ∈ H^1_0(Ω) \cap H^2(Ω), \) then the weak solution \(u \) of (1) verifies \(u ∈ L^{∞,∞}(0, \infty : H^2(Ω)) \) (see Brezis [5, Remark II and Theorem II.13]). It is clear that Theorem 1 improves Brezis’ result because it can be applied to a wider class of obstacles and initial data (for instance, when \(ψ(x) \geq \delta > 0 \) on Ω for some \(\delta \)).

Supplementary hypotheses allow us to find a more regular solution of (1).

Theorem 2. Assume \(ψ ∈ C^2(\overline{Ω}), \psi \geq 0 \text{ on } \overline{Ω}. \) Let \(u_0 ∈ H^1_0(Ω) \) be such that \(Δu_0 ∈ L^{∞}(Ω). \) Then the weak solution \(u \) of (1) satisfies

\[
u ∈ W^{1,∞}((0, \infty) × Ω) \cap L^{∞}(0, \infty : H^2(Ω))
\]

and

\[Δu(t) ∈ L^{∞}(Ω) \quad a.e. \quad t > 0.
\]

To prove Theorem 2 we consider (1) (or equivalently \(P \) with \(β \) given by (5)) as an abstract Cauchy problem on \(L^{∞}(Ω), \) i.e.,

\[
\frac{d\tilde{u}}{dt} + C\tilde{u} \geq 0 \quad \text{in } L^{∞}(Ω), \quad \text{on } (0, \infty),
\]

\[
\tilde{u}(0) = \tilde{u}_0,
\]

\(C \) being the operator on \(L^{∞}(Ω) \) given by

\[
D(C) = \{w ∈ L^{∞}(Ω) \cap H^1_0(Ω); Δw ∈ L^{∞}(Ω), \min\{ψ, Dw\} ∈ L^{∞}(Ω)\}
\]

\[
Cw = −\min\{ψ, Dw\} \quad \text{if } w ∈ D(C).
\]

The two results stated are needed for the proof of Theorem 2; the first being shown in Appendix 3.

Proposition 2. Assume \(ψ ∈ C^2(\overline{Ω}), \psi \geq 0 \text{ on } \overline{Ω}. \) Let \(\tilde{u}_0 ∈ H^1_0(Ω) \) be such that \(Δ\tilde{u}_0 ∈ L^{∞}(Ω). \) Then there exists \(u ∈ C([0, \infty); L^{∞}(Ω)) \) unique \(L^{∞}(Ω) \)-semigroup solution of (16) (or \(P \)). Moreover, \(u ∈ W^{1,∞}((0, \infty) × Ω) \cap L^{∞}(0, \infty : H^2(Ω)) \) and \(Δu ∈ L^{∞}(0, \infty × Ω). \)

Lemma 3. Let \(b ∈ D(B) \cap D(C) \). Setting \(c = (I + λC)^{−1}b, \) then \(c = (I + λB)^{−1}b, \) for any \(λ > 0. \)
Proof. From the definition of \(c \) it follows that
\[
c(x) - \lambda \min \{ \psi(x), \Delta c(x) \} = b(x), \quad \text{on } \Omega,
\]
\[
c(x) = 0, \quad \text{on } \partial \Omega.
\]
As \(c - b \in K \) (because \(c \in D(C) \)) it is easily seen that \(-c \in \partial \phi(c - b)\) proceeding as in Lemma 2. \[\square\]

Proof of Theorem 2. It is enough to see that the weak solution \(u \) of (1) coincides with the \(L^\infty(\Omega) \)-semigroup solution \(\bar{u} \) of (16) corresponding to the initial datum \(u_0 = \bar{u}_0 \). Without loss of generality we suppose \(u_0 \in D(B) \). By definition \(\bar{u}(t) = \lim_{n \to \infty} \bar{u}_n(t) \), where \(\bar{u}_n(t) \) are piecewise constant functions given by \(\bar{u}_n(t) = b^n_k \) for \(k \lambda_n \leq t < (k + 1) \lambda_n \), \(b^n_k \in D(C) \), satisfying
\[
\frac{b^n_k - b^n_{k-1}}{\lambda_n} + Cb^n_k = 0, \quad k = 1, \ldots, n,
\]
\[
b^n_n = u_0
\]
(or equivalently \(b^n_k = (I + \lambda_n C)^{-n} u_0 \)) when \(\lambda_n > 0 \) is such that \(\lambda_n \to 0 \). Thanks to Lemma 3 it is known that \(b^n_k = (I + \lambda_n B)^{-n} u_0 \). On the other hand, \(B \) being \(m \)-accretive in \(H^1_0(\Omega) \), \(u(t) = \lim_{n \to \infty} \bar{u}_n(t) \) in \(H^1_0(\Omega) \) and \(u(t) = \bar{u}(t) \) holds. \[\square\]

3. Comparison Results

The following comparison results will be used in the next section under the present formulation which is not the most general one that we could consider. Let us start with two lemmas.

Lemma 4. Let \(\psi \in L^1(\Omega) \) with \(\psi \geq 0 \) a.e. on \(\Omega \) and let \(u_0 \in H^1_0(\Omega) \). Let \(h(t, x, \tau, v) \) be the solution of the heat equation
\[
h_t = \Delta h, \quad \text{on } (\tau, \infty) \times \Omega.
\]
\[
h = 0, \quad \text{on } (\tau, \infty) \times \partial \Omega.
\]
\[
h(\tau, x) = v(x), \quad \text{on } \Omega.
\]
(18)

Then if \(u \) is the weak solution of (1), we have
\[
u(t, x) \leq \min \{ u_0(x) + \tau \psi(x), h(t, x, 0, u_0) \} \]
a.e. \(x \in \Omega \) and \(t > 0 \). (19)
Proof. By the regularizing effect (10) we know that for any $t > 0$, $u(t) \in D(B)$ and so $(du/dt)(t) \in K$, i.e., $(du/dt)(t) \leq \psi$ a.e. on Ω. Integrating on the t variable it follows $u(t) - u_0 \leq t\psi(\cdot)$. To show the inequality $u \leq h$, let $\zeta \in L^2_{x_0}(0, \infty; H^1_0(\Omega))$ be such that $\zeta(t, \cdot) \geq 0$ a.e. $t > 0$ and $x \in \Omega$. Then $v = (du/dt) - \zeta \in K$ and substituting in (2) we have

$$\int_{\Omega} u \zeta \, dx + \int_{\Omega} \nabla u \cdot \nabla (v - u_i) \, dx \leq 0.$$

On the other hand

$$\int_{\Omega} h \zeta \, dx + \int_{\Omega} \nabla h \cdot \nabla \zeta \, dx = 0.$$

Then choosing $\zeta = (u - h)^+$ and subtracting these expressions we obtain,

$$\frac{1}{2} \frac{d}{dt} \left\| (u - h)^+ \right\|_{L^1(\Omega)} + \int_{\Omega} \nabla (u - h)^+ \cdot \nabla (u - h)^+ \, dx \leq 0.$$

So $\left\| (u - h)^+ (t) \right\|_{L^1(\Omega)} \leq \left\| (u - h)^+ (0) \right\|_{L^1(\Omega)}$ holds which finishes the proof.

Lemma 5. Assume $\psi \in L^2(\Omega)$, $\psi \geq 0$ on Ω and $u_{0,i} \in H^1_0(\Omega)$, $i = 1, 2$. Then if u_i is the weak solution of (1) corresponding to $u_{0,i}$, it follows that

$$\left\| (u_i(t) - u_2(t))^+ \right\|_{L^1(\Omega)} \leq \left\| (u_{0,1} - u_{0,2})^+ \right\|_{L^1(\Omega)}$$

and

$$\left\| (u_i(t) - u_2(t))^+ \right\|_{L^1(\Omega)} \leq \left\| (u_{0,1} - u_{0,2})^- \right\|_{L^1(\Omega)}.$$

In particular when $u_0 \geq 0$ (resp. $u_0 \leq 0$) a.e. on Ω we have $u(t) \geq 0$ (resp. $u(t) \leq 0$) a.e. on Ω and $t > 0$.

Proof. Immediate from the proof of Lemma 4 taking $h(t, x, 0, 0)$, i.e., $h = 0$.

Remark 2. Better comparison results could be obtained using the fact that P is well posed on $L^\infty(\Omega)$ under supplementary hypotheses (on ψ and u_0).

The two following results are derived from the m-accretiveness in $H^1_0(\Omega)$ of the operator B as well as the theory of Variational Inequalities.

Proposition 3. Let $\psi_i \in L^2(\Omega)$ with $\psi_i \geq 0$ a.e. on Ω for $i = 1, 2$. Assume $u_0 \in H^1_0(\Omega)$ and let u^i be the weak solution of (1) corresponding to the obstacle ψ_i. Then $\psi_1 \leq \psi_2$ a.e. on Ω implies $u^1(t, x) \leq u^2(t, x)$ a.e. on $(0, \infty) \times \Omega$.

Proof. Taking into account the definition of the $H^1_0(\Omega)$-semigroup solution it is enough to see that when $u^t(x) \in H^1_0(\Omega)$ verifies
\[u^t + \lambda B_{\alpha} u^t = f \]
(with $f \in D(B_{\alpha})$), then $u^t(x) \leq u^t(x)$ a.e. $x \in \Omega$. Proceeding as in Appendix 3 (Lemma A.8), we know that the functions $\tilde{u}_i = u^i - f$ are solutions of the variational inequality given by $\tilde{u}_i \in K_i = \{ v \in H^1_0(\Omega) : v(x) \leq \lambda \psi(x) \}$ a.e. $x \in \Omega$ and
\[\int_{\Omega} \nabla \tilde{u}_i \cdot \nabla (v - \tilde{u}_i) \, dx + \frac{1}{\lambda} \int_{\Omega} \tilde{u}_i (v - \tilde{u}) \, dx \geq \langle A f, v - \tilde{u}_i \rangle_{H^{-1}(\Omega) \times H^1_0(\Omega)}, \]
$\forall v \in K_i$. Therefore from [5, Proposition 1.9] we get $\tilde{u}_i \leq \tilde{u}_2$ a.e. on Ω and the proof ends. \qed

PROPOSITION 4. Let $\psi \in L^1(\Omega)$ with $\psi \geq 0$ a.e. on Ω. For $i = 1, 2$, let $u_{0,i} \in H^1_0(\Omega)$ and denote by u_i the associated weak solution of (1). Then $-\Delta u_{0,1} \leq 0 \leq -\Delta u_{0,2}$ in $D'(\Omega)$ implies $-\Delta u_i(t) \leq 0 \leq -\Delta u_i(t)$ in $D'(\Omega)$ a.e. $t > 0$.

Proof. It is easy to see that $v^i = -\Delta u^i$, $i = 1, 2$, are the $H^{-1}(\Omega)$-semigroup solutions of the abstract Cauchy problems
\[\frac{dv}{dt} + Ev \geq 0 \quad \text{in} \quad H^{-1}(\Omega) \quad \text{on} \quad (0, \infty), \]
\[v(0) = v_0 \]
corresponding to the initial data $v_0 = -\Delta u_{0,i}$, where E is the operator in $H^{-1}(\Omega)$ defined by,
\[E = (-\Delta) B(-\Delta)^{-1} \]
(we recall that E is an m-accretive operator on $H^{-1}(\Omega)$, see Appendix 2). Then it is enough to prove that when $v_i(x) \in H^{-1}(\Omega)$ verify
\[v^i + \lambda E v^i = g_i \quad \text{on} \quad H^{-1}(\Omega) \]
($g_i \in H^{-1}(\Omega)$, such that $g_1 \leq g_2$ in $D'(\Omega)$ and g_1 or g_2 is identical to zero), then $v^1 \leq v^2$ in $D'(\Omega)$. Arguing as in Appendix 2 it is easily seen that the function $h_i(x) = -\min \{ \psi(x), -u_i(x) \}$ is the solution of the variational inequality $h_i \in K^* = \{ w \in H^1_0(\Omega) : w(x) \geq -\psi(x) \}$ a.e. $x \in \Omega$ and
\[\lambda \int_{\Omega} \nabla h_i \cdot \nabla (w - h_i) \, dx + \int_{\Omega} h_i (w - h_i) \, dx \]
\[\geq \langle g_i, w - h_i \rangle_{H^{-1}(\Omega) \times H^1_0(\Omega)}, \]
\(\forall w \in K^n. \) Therefore, by applying [5, Corollary I.5] we get \(h^i \leq h^j \) a.e. on \(\Omega. \) Finally, the result follows from the fact that \(g_0 = 0 \) implies \(h_j = 0. \)

Remark 3. Better comparison results about \(-\Delta u(t)\) could be obtained using the fact that \(P^n \) is well posed on \(L^1(\Omega) \) under supplementary hypotheses on \(\psi \) and \(u_0 \). The situation is similar to the one in Remark 2.

This section is finished with a curious and very useful estimate which is, through slight modifications, a particular application of the abstract result of Benilan–Díaz [3].

Proposition 4. Let \(\psi \in H^1(\Omega) \) with \(\psi \geq 0 \) a.e. on \(\Omega \) and \((-\Delta \psi)^{-} \in L^2(\Omega). \) Assume \(u_0 \in H^1_0(\Omega) \) such that
\[
-\Delta u_0 \in D^+(A)^{L^1(\Omega)} \quad (D^+(A) = \{ \psi \in D(A): \psi \geq 0 \}).
\]

Then
\[
h(t, x; 0, \bar{u}_0) \leq \min \{ \psi(x), \Delta u_0(t, x) \} \quad \text{a.e.} \quad (t, x) \in (0, \infty) \times \Omega.
\]

where \(\bar{u}_0 = -\min \{ \psi, \Delta u_0 \}. \)

Proof. For \(\alpha > 0 \) let \(a_0 \in D^+(A) \) be such that \(\| -\Delta u_0 - a_0 \|_{L^1(\Omega)} < \alpha. \)
Consider \(a^n \in D(A) \) verifying
\[
a^n + \lambda_n A a^n = a_0 \quad \text{for any} \quad n = 1, 2, \ldots.
\]

By the \(T \)-accretiveness of operator \(A \) we have,
\[
\| (a^n - a_0^+) \|_{L^1(\Omega)} \leq \left\| \left(\frac{a^n - a_0}{\lambda_n} + \left(\frac{a_0 - a^+_n}{\lambda_n} - \varepsilon_n \right) \right)^+ \right\|_{L^1(\Omega)} = 0
\]
if \(\varepsilon_n \in A a_0. \) So \(a^n \leq a_0 \) and also \(a^n \in D^+(A). \) Arguing by induction there exists \(a^n \in D^+(A) \) such that \(a_0 = a_0^+ \geq a_0^+ \geq a_0^+ \geq \cdots \geq a_0^+ \geq \cdots \) and
\[
\frac{a^n_k - a^{k-1}_n}{\lambda_n} + A a^n = 0, \quad k = 1, 2, \ldots, n.
\]

Set \(a^n_k = \min \{ \psi, -a^n_k \}. \) Then from (24) we have
\[
w^n_k - \lambda_n A w^n_k = f^n_k,
\]
where \(f^n_k = a^n_{k-1} - a^n_k + w^n_k. \) It is easy to check that
\[
f^n_k = a^n_{k-1} + \min \{ \psi, -a^n_{k-1} \} - a^n_k - \min \{ \psi, -a^n_k \} = \min \{ \psi, -a^n_{k-1} \}
\]
\[

\geq -\min \{ \psi, -a^n_{k-1} \} = w^n_{k-1}.
\]
On the other hand, if we denote $h(t) = h(t, \cdot, 0; \tilde{\nu}, \tilde{\gamma})$, then $h(t) = \lim_{n \to \infty} h_n(t)$ with $h_n(t) = d_n^k$ if $\lambda_n \leq t < \lambda_{n}(k+1)$. The elements $d_n^k \in \{v \in W^{1,1}_0(\Omega):\Delta v \in L^1(\Omega)\}$ satisfy

$$
\frac{d_n^k - d_n^{k-1}}{\lambda_n} - \Delta d_n^k = 0 \quad \text{in} \quad L^1(\Omega), \quad k = 1, 2, \ldots, n,
$$

$$
d_n^n = \tilde{\nu}, \quad \forall n \in \mathbb{N}.
$$

(26)

Using the T-accretiveness of the operator $-A$ on $L^1(\Omega)$ (i.e., operator A given by (12) when $\beta(x, \cdot) = r$) we deduce from (25) and (26)

$$
\|d_n^k - w_n^k\|_{L^1(\Omega)} \leq \|d_{n-1}^k - f_n^k\|_{L^1(\Omega)} \leq \cdots \leq \|\tilde{\nu} - w_n^n\|_{L^1(\Omega)}.
$$

(27)

Now by the Crandall–Liggett theorem [11] and the proof of Theorem 1, we know that if $v(t) = -Au(t)$, then $v(t) = \lim_{n \to \infty} u_n(t)$, where $u_n(t) = a_n^k$ for $k\lambda_n \leq t < (k+1)\lambda_n$ and for T fixed we have the estimate

$$
\max_{k=1, \ldots, k(n)} \max_{t \in [k\lambda_n, (k+1)\lambda_n)} \|v(t) - a_n^k\|_{L^1(\Omega)} \leq \alpha + (\lambda_n)^{1/2} T \min \|\psi, a_n\|_{L^1(\Omega)},
$$

where $k(n)$ is such that $|k(n)\lambda_n - T| < \lambda_n$. By the continuity in $L^1(\Omega)$ of the transformation $w \mapsto -\min|\psi, -w|$ we have,

$$
\max_{k=1, \ldots, k(n)} \max_{t \in [k\lambda_n, (k+1)\lambda_n]} \|\min\{\psi, v(t)\} - w_n^k\|_{L^1(\Omega)} \leq \rho(n, \alpha)
$$

with $\lim_{n \to \infty} \lim_{\alpha \to 0} \rho(n, \alpha) = 0$. Then, we obtain (23) passing to the limit in (27) when $n \to \infty$ and $\alpha \to 0$.

Remark 4. In Benilan–Diaz [3] it is proved that (23) is not true (in general) without hypothesis (22).

4. ON THE ASYMPTOTIC BEHAVIOUR

Our attention is fixed, at the moment, on the convergence of the weak solution u to an equilibrium point of (1). It is clear that, in general, the asymptotic behaviour of u depends in an essential way on u_0 (for any fixed obstacle ψ). The following result improves that of Brezis in some particular cases:

Proposition 5. Let $\psi \in L^1(\Omega)$ with $\psi \geq 0$ a.e. on Ω. Let $u_0 \in H^1_0(\Omega)$ and u be the weak solution of (1). The following holds:
(i) If \(-\Delta u \geq 0\) in \(D'(\Omega)\), then \(u(t) \to 0\) (strongly) in \(H^1_0(\Omega)\) when
\(t \to \infty\).

(ii) If \(-\Delta u \leq 0\) in \(D'(\Omega)\), then \(u(t) \to u_\infty\) (strongly) in \(H^1_0(\Omega)\) when
\(t \to \infty\), where \(u_\infty\) is a solution of (3).

Proof: (i) By Proposition 4, \(-\Delta u(t) \geq 0\) in \(D'(\Omega)\). Then \(u(t)\) satisfies
\(u_t = \Delta u\) a.e. \(t > 0\) and the conclusion holds from the results about the
asymptotic behaviour for the linear heat equation. (ii) In this case
\(-\Delta u(t) \leq 0\) in \(D'(\Omega)\) by Proposition 4. Then it is easy to see that \(u\) is the
solution of the problem

\[
\begin{align*}
|u_t| &\leq \psi & \text{on} & (0, \infty) \times \Omega, \\
u_t - \Delta u &= 0 & \text{on} & \{(t,x) : |u_t(t,x)| < \psi(x)\}, \\
u_t - \Delta u &\leq 0 & \text{on} & \{(t,x) : u_t(t,x) = \psi(x)\}, \\
u_t - \Delta u &\geq 0 & \text{on} & \{(t,x) : u_t(t,x) = -\psi(x)\}, \\
u &= 0 & \text{on} & (0, \infty) \times \partial \Omega, \\
u(0,x) &= u_0(x) & \text{on} & \Omega,
\end{align*}
\]

(28)

and so it is well known that \(u(t) \to u_\infty\) (strongly) in \(H^1_0(\Omega)\) (see [8]). Finally,
as \(-\Delta u \leq 0\) in \(D'(\Omega)\), \(u_\infty\) is a solution of (3). \(\blacksquare\)

The next theorem is the main result of this section and guarantees the
strong convergence of the solution to zero.

Theorem 5. Assume \(\psi \in H^1(\Omega)\) with \(\psi \geq 0\), \(\Delta \psi \geq 0\) a.e. on \(\Omega\) and let
\(u_\infty \in H^1_0(\Omega)\). Then if \(\psi(x) > 0\) a.e. \(x \in \Omega\) \(u(t) \to 0\) (strongly) in \(H^1_0(\Omega)\) when
\(t \to \infty\) if in addition \(\psi(x) \geq \delta\) for some \(\delta > 0\), then \(u_t = \Delta u\) on \((0, \infty) \times \Omega\),
where \(T_0 = ((C/\delta) \|\psi\|_{L^1(\Omega)})^{2/\gamma}\) and \(C_1\) a positive constant depending only on
\(|\Omega|\).

Proof: Step 1. Assume \(\psi \in C^1(\overline{\Omega})\), \(\psi \geq 0\), \(\Delta \psi \geq 0\), and \(u_\infty \in H^1_0(\Omega)\)
such that \(h = -\Delta u_\infty \in L^\infty(\Omega)\). Set \(u_{0,+}\) and \(u_{0,-}\) belonging to \(H^1(\Omega)\) such that
\(\Delta u_{0,+} = h^+\) and \(\Delta u_{0,-} = -h^-\). Let \(u_+\) and \(u_-\) be the weak solutions of (1)
corresponding to the initial data \(u_{0,+}\) and \(u_{0,-}\), respectively. By
Theorem 2 and the \(T\)-accretiveness of \(\mathcal{A}\), we know that

\[-\Delta u_-(t) \leq -\Delta u(t) \leq -\Delta u_+(t) \in L^\infty(\Omega), \text{ a.e. } t > 0.\]

(29)

From Proposition 5 and the well-known results on the asymptotic behaviour
for the linear heat equation we deduce that \(-\Delta u_+(t) \to 0\) in \(L^\infty(\Omega)\) when
\(t \to +\infty\). On the other hand it is possible to find a \(\tilde{u}_n \in H^1(\Omega)\) with
\(\tilde{u}_n \in L^\infty(\Omega)\) and such that \(-\Delta \tilde{u}_n \leq -\Delta u_{0,-}\) a.e. on \(\Omega\) as well as
\(-\Delta \tilde{u}_n \in D'(\mathcal{A})\). Indeed, it suffices to choose \(\tilde{u}_n \in L^1(\Omega)\) such that \(\tilde{u}_n \rightarrow\)
min\{−ψ, −Δu_0\} and then \(\delta = (−Δ)^{-1} \delta_0\). (We remark that in this case
min\{ψ, Δu_0\} = ψ so \(A(−Δ) = Δψ \geq 0\).) Therefore, Proposition 4 shows that
\[
h(t, x; 0, −ψ(x)) \leq \min\{ψ(x), Δ\delta(t, x)\} \leq −\min\{ψ(x), Δu_-(t, x)\} \leq 0,
\]
(30)
where \(\delta\) is the weak solution of (1) corresponding to the initial datum \(\delta_0\).
From the results on the asymptotic behaviour for the linear heat equation it is well known that:

(i) \(∀ t > 0, h(t, x; 0, −ψ(x)) \in L^∞(Ω),\)

(ii) there exists a positive constant \(C\) (only depending on \(|Ω|\)) such that

\[
\frac{−C}{τ^{1/2}} ∥ψ∥_{L^1(Ω)} ≤ h(t, x; 0, −ψ(x)) ≤ 0 \quad \text{a.e.} \quad (t, x) ∈ (0, \infty) × Ω. \tag{31}
\]

Estimates (30) and (31) show that if \(ψ(x) > 0\) a.e. \(x \in Ω\), then \(Δu_-(t) → 0\) in
\(L^∞(Ω)\) when \(t → +∞\) and the first assertion follows from (29) and the fact that
\(−Δu(t) → 0\) in \(L^∞(Ω)\) implies \(u(t) → 0\) (strongly) in \(H^1_0(Ω)\) when \(t → ∞\).
On the other hand, if \(ψ(x) ≥ δ > 0\), from (30) and (31) it follows that

\[
−ψ(x) ≤ −Δu_-(t) ≤ −Δu(t).
\]

For \(t ≥ T_0\), \(T_0 = [(C/δ)∥ψ∥_{L^1(Ω)}]^{1/2}\). Then \(\min\{ψ(x), Δu(t, x)\} = Δu(t, x)\) a.e.
\((t, x) ∈ (T_0, ∞) × Ω\) and the second assertion holds.

Step 2. Take \(ψ ∈ C^1(Ω)\) with \(ψ ≥ 0\) and \(Δψ ≥ 0\) a.e. on \(Ω\). Let
\(u_0 ∈ H^1_0(Ω)\). Consider \(u_{0,n} ∈ H^1_0(Ω)\) with \(−Δu_{0,n} ∈ L^∞(Ω)\) and \(u_{0,n} → u_0\) in
\(H^1_0(Ω)\) when \(n → ∞\). Then if \(u_n(t)\) is the weak solution of (1) of initial datum
\(u_{0,n}\), it is known that \(u_n(t) → u(t)\) in \(H^1_0(Ω)\) when \(n → ∞\) and so the first
assertion follows from Step 1. Besides, when \(ψ(x) ≥ δ > 0\), one has
\(u_n(T_0) = u(T_0)\) a.e. on \((T_0, ∞) × Ω\) with \(T_0 = [(C/δ)∥ψ∥_{L^1(Ω)}]^{1/2}\). Therefore by
the “exponential formula” (see, e.g., [7, Corollary 4.4]) we have for \(t ≥ T_0\)

\[
u(t) = \lim_{m → ∞} \left(I + \frac{t}{m} B \right)^{-m} u(T_0) = \lim_{m → ∞} \left(I + \frac{t}{m} B \right)^{-m} \left(\lim_{n → ∞} u_n(T_0) \right)
\]

\[
= \lim_{n → ∞} \left(\lim_{m → ∞} \left(I + \frac{t}{m} B \right)^{-m} u_n(T_0) \right)
\]

\[
= \lim_{n → ∞} \left(\lim_{m → ∞} \left(I + \frac{t}{m} (−Δ) \right)^{-m} u_n \right) T_u
\]

\[
= \lim_{n → ∞} \left(I + \frac{t}{m} (−Δ) \right)^{-m} u(T_u)
\]
(we have identified \(d \) with the \(m \)-accretive operator on \(H^1_0(\Omega) \) of domain \(\{ z \in H^1_0(\Omega) : dz \in H^1_0(\Omega) \} \). Therefore the second assertion holds.

Step 3. Let \(\psi \in H^1(\Omega) \) with \(\psi \geq 0 \), \(d \psi \geq 0 \) a.e. on \(\Omega \), and \(u_n \in H^1_0(\Omega) \). Consider \(\psi_n \in C^2(\overline{\Omega}) \) with \(d \psi_n \geq 0 \) such that \(\| \psi_n \|_{L^1(\Omega)} \leq \| \psi \|_{L^1(\Omega)} \) and \(\psi_n \to \psi \) in \(H^1(\Omega) \) when \(n \to \infty \). Arguing as in Step 2 it is enough to prove that if \(u_n \) is the weak solution of (1) corresponding to the obstacle \(\psi_n \), then \(u_n(t) \to u(t) \) (strongly) in \(H^1_0(\Omega) \) when \(n \to \infty \). By an abstract result of the theory of evolution equations (see [7, Theorem 4.2]) it is sufficient to show that

\[
(I + \lambda B_n)^{-1} z \to (I + \lambda B)^{-1} z \quad \text{when} \quad n \to \infty,
\]

\[\forall \lambda > 0, \quad \text{and} \quad \forall z \in D(B) \cap D(B_n),\]

\((B_n \text{ designates the operator } B \text{ corresponding to the obstacle } \psi_n.)\)

Setting \(y_n = (I + \lambda B_n)^{-1} z \) and \(y = (I + \lambda B)^{-1} z \) and arguing as in Appendix 2 we know that \(\bar{y}_n = y_n - z \) satisfies \(\bar{y}_n \in K_n \equiv \{ v \in H^1_0(\Omega) : \psi(x) \leq \lambda \psi_n(x) \text{ a.e. } x \in \Omega \} \)

and

\[
\int_{\Omega} \nabla \bar{y}_n \cdot \nabla (v - \bar{y}_n) \, dx + \frac{1}{\lambda} \int_{\Omega} \bar{y}_n (v - \bar{y}_n) \, dx \\
\geq \langle dz, v - u \rangle_{H^{-1}(\Omega) \times H^1(\Omega)}.
\]

\(\forall v \in K_n \). Then by the results of the theory of Variational Inequalities (and thanks to the fact that \(\psi_n \to \psi \) in \(H^1(\Omega) \)) we obtain \(\bar{y}_n \to \bar{y} = y - z \) (strongly) in \(H^1_0(\Omega) \) when \(n \to \infty \). \(\square \)

Remark 5. This result improves a previous one of [15] concerning the case \(\psi(x) \equiv \delta > 0 \) a.e. \(x \in \Omega \).

When \(\psi(x) \geq \delta > 0 \) but without any additional regularity hypotheses we do not know if the identification, after a finite time, between \(u \) and a solution of the linear heat equation occurs or not. Nevertheless the following result shows that in this case the asymptotic behaviour is not very different:

Proposition 6. Let \(\psi \in L^2(\Omega) \) with \(\psi(x) \geq \delta \) a.e. on \(\Omega \), for some \(\delta > 0 \), and \(u_0 \in H^1_0(\Omega) \). Then, with the notation of Lemma 4, we have

\[
h(t, x; T_0, u_0(T_0, x)) \leq u(t, x) \leq h(t, x; 0, u_0(x))
\]

a.e. \((t, x) \in (T_0, +\infty) \times \Omega \), \(\text{ (32) } \)

where \(u_0 \) is the solution of (1) corresponding to \(\psi(x) \equiv \delta \) and \(T_0 \) is given in Theorem 3. In particular \(u(t) \to \delta \) (strongly) in \(L^p(\Omega) \) for every \(1 \leq p \leq +\infty \) when \(t \to +\infty \).
Proof. From Theorem 3, \(u_\delta(t, \cdot) = h(t, \cdot; T_\delta, u_\delta(T_\delta, \cdot)) \) with \(T_\delta = (C \cup \Omega)^{2/\nu} \). Then Proposition 3 and Lemma 4 lead to estimate (32). So \(u(t) \to 0 \) (strongly) in \(L^p(\Omega) \) for every \(1 \leq p < +\infty \).

We consider now (in some particular cases) the problem of choosing \(\lim_{t \to \infty} u(t) \) among all the equilibrium points of (1).

Proposition 7. Let \(\psi \in L^1(\Omega) \) with \(\psi \geq 0 \) a.e. on \(\Omega \), and \(u_0 \in H^1_0(\Omega) \). Then the following holds:

(a) if \(\int u_0 \geq 0 \) a.e. on \(\Omega \), then \(u(t, x) = 0 \) a.e. \(x \in \{ x \in \Omega : u_0(x) = 0 \} \) and \(\psi(x) = 0 \), \(\forall t > 0 \). Moreover \(\lim_{t \to \infty} u(t, x) = 0 \) (weakly) in \(H^1_0(\Omega) \);

(b) if \(\int \Delta u_0 \leq 0 \) in \(D'(\Omega) \), then \(u(t, x) = u_0(x) \) a.e. \(x \in \{ x \in \Omega : \psi(x) = 0 \} \), \(\forall t > 0 \).

Proof. (a) By Lemmas 4 and 5 it follows that

\[
0 \leq u(t, x) \leq u_0(x) + t\psi(x).
\]

On the other hand

\[
0 \leq u(t, x) \leq h(t, x; 0, u_0)
\]

which implies that \(u(t, x) \to 0 \) (strongly) in \(L^2(\Omega) \) when \(t \to \infty \). Then if \(u_\infty \) is the weak limit point of \(u(t) \) when \(t \to \infty \), because of the compactness of the inclusion \(H^1_0(\Omega) \subseteq L^2(\Omega) \) we deduce that \(u(t, x) \to u_\infty \) (strongly) in \(L^2(\Omega) \).

Part (b) is a consequence of the fact that \(\int u(t, x) \geq u_0(x) \) as it can be checked from the definition of \(u \). Then the conclusion holds by the Lemma 4.

Part (a) of the previous result shows that if the measure of the set \(\{ x \in \Omega : \psi(x) = 0 \} \) is positive, then the second assertion of Theorem 3 is not possible. Part (b) gives a simple situation where \(\lim_{t \to \infty} u(t) \) is not identically zero.

Remark 6. The equation of problem (1) can obviously be written as

\[
u_t + \max \{ -\Delta u, -\psi \} = 0
\]

and then it is similar to the so-called Bellman's equation of dynamic programming (see, e.g., [1]). It would be interesting to know if our results can be proved (or improved) by stochastic arguments.

Remark 7. In [8] the study of the asymptotic behaviour of the solutions of problem (28) is also proposed. Our methods still remain valid and its application is left to the reader.
APPENDIX I: Basic Theory of Accretive Operators

Given a Banach space \(X \) and an operator \(A: D(A) \subseteq X \rightarrow P(X) \) we call \(u \in C([0, \infty); X) \) a \textit{semigroup solution} of the abstract equation
\[
\frac{du}{dt} + Au \ni 0 \quad \text{on} \quad (0, \infty) \tag{A.1}
\]
if there exists \(\lambda_n > 0, \lambda_n \rightarrow 0 \) when \(n \rightarrow \infty \) and a sequence \(\{a_k^n\} \), \(k = 0, 1, \ldots \), satisfying
\[
\frac{a_k^n - a_{k-1}^n}{\lambda_n} + Aa_k^n \ni 0, \quad k = 1, 2, \ldots, n \in \mathbb{N} \tag{A.2}
\]
and such that the sequence \(u_n(t) \) defined by \(u_n(t) = a_k^n \) if \(k\lambda_n \leq t < (k + 1)\lambda_n \) verify \(\|u(t) - u_n(t)\| \leq \lambda_n \). Roughly (A.2) represents a simple implicit Euler approximation of (A.1) and we are defining solutions of (A.1) to be limits of solutions of these difference approximations.

There are many criteria ensuring the existence of the \(\lambda_n \)-approximate solution \(u_n \), being a simple one the following "range condition":
\[
R(I + \lambda A) \supseteq D(A), \quad \forall \lambda > 0 \tag{A.3}
\]
(see details in the survey article of Crandall [10]). The question of the convergence of such a sequence leads to the notion of accretive operator.

Definition A.1. An operator \(A: D(A) \subseteq X \rightarrow P(X) \) is called accretive if \(\forall [x, y], [x, y'] \in A \)
\[
\| (x - \tilde{x}) - \lambda (y - \tilde{y}) \| \leq \| (x - \tilde{x}) + \lambda (y - \tilde{y}) \| \quad \text{for all} \quad \lambda > 0. \tag{A.4}
\]
If \(X \) is also a Banach lattice, then \(A \) is called \(T \)-accretive if \(\forall [x, y], [\tilde{x}, \tilde{y}] \in A \)
\[
\| (x - \tilde{x})^+ - \lambda (y - \tilde{y})^+ \| \leq \| (x - \tilde{x} + \lambda (y - \tilde{y}))^+ \| \quad \text{for all} \quad \lambda > 0. \tag{A.5}
\]
where \(h^+ = \max(h, 0) \). Finally, if \(A \) satisfies (A.4) and \(R(I + \lambda A) = X \) \(\forall \lambda > 0 \), \(A \) is called \(m \)-accretive.

Proposition A.1. Let \(A \) be accretive (resp. \(T \)-accretive). Let \(u_0 \in \overline{D(A)} \). If there exists an \(\lambda_n \)-approximate solution \(u_n \) of (A.1) such that \(\|u_n(0) - u_0\| < \lambda_n \), then there exists \(u \in C([0, \infty); X) \) semigroup solution of

\[^* \text{If } X \text{ is a normal Banach lattice (i.e., } \|x^+\| \leq \|x\| \text{ and } \|x\| \leq \|x^+\| \text{ implies } \|x\| \leq \|x^+\|), \text{ then any } T \text{-accretive operator is also accretive.} \]
(A.1) such that \(u(0) = u_0 \). Moreover if \(u \) and \(\tilde{u} \) are semigroup solutions of (A.1), then
\[
\| u(t) - \tilde{u}(t) \| \leq \| u(0) - \tilde{u}(0) \| \quad \text{(resp. } \| (u(t) - \tilde{u}(t))^+ \| \leq \| (u(0) - \tilde{u}(0))^+ \|),
\]
i.e., the application \(S(t)u_0 = u(t) \) is a semigroup of contractions on \(\overline{D(A)} \).

This proposition is proved in [12] (resp. in [2]) for accretive (resp. \(T \)-accretive) operators. In both works more sophisticated situations are also considered.

Let us introduce some notation that provides an alternative characterization of accretiveness and \(T \)-accretiveness (often easier to verify in practice than (A.4) and (A.5)). For \(x, y \in X \), define
\[
\tau(x, y) = \inf_{\lambda > 0} \frac{\| x + \lambda y \| - \| x \|}{\lambda}, \quad \sigma(x, y) = \sup_{\lambda < 0} \frac{\| x + \lambda y \| - \| x \|}{\lambda},
\]
and also
\[
\tau^*(x, y) = \inf_{\lambda > 0} \frac{\| (x + \lambda y)^+ \| - \| x^+ \|}{\lambda}, \quad \sigma^*(x, y) = \sup_{\lambda < 0} \frac{\| (x + \lambda y)^+ \| - \| x^+ \|}{\lambda}
\]
when \(X \) is assumed to be a Banach lattice. It is easy to check that \(A \) is accretive (resp. \(T \)-accretive) if and only if
\[
\tau(x - \check{x}, y - \check{y}) \geq 0 \quad \text{(resp. } \tau^*(x - \check{x}, y - \check{y}) \geq 0)\]
for all \([x, y], [x, y] \in A \). If \(A \) satisfies the stronger assumption
\[
\sigma(x - \check{x}, y - \check{y}) \geq 0 \quad \text{(resp. } \sigma^*(x - \check{x}, y - \check{y}) \geq 0)\]
for all \([x, y], [x, y] \in A \), \(A \) is called strongly accretive (resp. strongly \(T \) accretive). It is well known (see [10]) that a densely defined, linear, and accretive (resp. \(T \)-accretive) operator is a strongly accretive (resp. \(T \) accretive) one.

The advantage of these alternative characterization is that for certain spaces \(X \) these products are easy to compute.

Lemma A.1 (cf. Sato [19]). Let \(\Omega \subset \mathbb{R}^n \):

(i) If \(X = L^p(\Omega) \) for \(1 < p < \infty \),
\[
\tau^*(f, g) = \sigma^*(f, g) = \frac{1}{\| f^+ \|^{p-1}} \int_{\Omega} |f|^{p-1} \text{sign} f g \, dx, \quad f \neq 0.
\]
\[
= \| g^+ \|. \quad f = 0.
\]
(ii) if $X = L^1(\Omega)$,

$$\tau^+(f, g) = \max \left\{ \int \alpha g \, dx, \alpha \in L^\infty, \alpha(x) \in \text{sign} \, f(x) \text{ a.e.} \right\},$$

$$\sigma^+(f, g) = \min \left\{ \int \alpha g \, dx, \alpha \in L^\infty, \alpha(x) \in \text{sign} \, f(x) \text{ a.e.} \right\};$$

(iii) if $X = L^\infty(\Omega)$,

$$\tau^+(f, g) = \max \{ \lim \text{ess sup} \{ \alpha(x) \, g(x): x \in \Omega(f, \lambda) \}, \alpha \in L^\infty, \alpha(x) \in \text{sign} \, f(x) \text{ a.e.} \},$$

$$\sigma^+(f, g) = \min \{ \lim \text{ess inf} \{ \alpha(x) \, g(x): x \in \Omega(f, \lambda) \}, \alpha \in L^\infty, \alpha(x) \in \text{sign} \, f(x) \text{ a.e.} \},$$

where $\Omega(f, \lambda) = \{ x \in \Omega: |f(x)| > \| f \|_{L^\infty} - \lambda \}$ and

$$\text{sign}_+^+(v) = 1, \quad \text{if} \quad v > 0,$$

$$= 0, \quad \text{if} \quad v \leq 0,$$

$$\text{sign}_-^+(v) = 1, \quad \text{if} \quad v > 0,$$

$$= 0, \quad \text{if} \quad v < 0.$$

When X is a Hilbert space of scalar product $(\, , \,)$ it is easy to see that A is accretive if and only if A is monotone (i.e., $(x - \xi, y - \eta) \geq 0, \forall |x, y|, [\xi, \eta] \in A$). In this case the classes of m-accretive operators and of maximal monotone ones coincide (see [7]).

**APPENDIX 2: THE PROBLEM $P^\#$ (β GIVEN BY (5))

**IS WELL POSED ON $L^1(\Omega)$ AND $H^{-1}(\Omega)$

The main aim of this appendix is to prove that $P^\#$ is a well-posed problem on $L^1(\Omega)$ (when $\psi \in H^1(\Omega)$, $\psi \geq 0$, $(-\Delta)^{-} \in L^1(\Omega)$, and β is given by (5)); that is the statement of Proposition 1.

Lemma A.2. Assume $\psi \in L^2(\Omega)$, $\psi \geq 0$ a.e. on Ω and consider the operator A on $L^1(\Omega)$ given by (12), i.e.,

$$D(A) = \{ w \in L^1(\Omega); \beta(x, w(x)) \in W^{1,1}_0(\Omega) \text{ and } A \beta(x, w(x)) \in L^1(\Omega) \},$$

$$Aw = -\Delta \beta(\cdot, w(\cdot)) \quad \text{if} \quad w \in D(A).$$

Then A is T-accretive in $L^1(\Omega)$.

Proof. The operator $-\mathcal{A}$ defined in $L^1(\Omega)$ by $D(-\mathcal{A}) = \{w \in W^{1,1}_0(\Omega); \Delta w \in L^1(\Omega)\}$ is a strongly T-accretive operator in $L^1(\Omega)$. Then for any $u^+ \in D(-\mathcal{A})$ and any $\alpha(x) \in L^{\infty}(\Omega)$ such that $\alpha(x) \in \text{sign}^+ u^+(x)$ a.e. $x \in \Omega$, we have

$$\int_{\Omega} -\Delta u^+ \cdot \alpha \, dx \geq 0. \tag{A.6}$$

Now let $[u, v], [\tilde{u}, \tilde{v}] \in \mathcal{A}$ (i.e., $u, \tilde{u} \in D(\mathcal{A})$ and $v = -\Delta \tilde{\beta}(x, u), \tilde{v} = -\Delta \tilde{\beta}(x, \tilde{u})$). Then $u^+ = \beta(\cdot, u) - \beta(\cdot, \tilde{u})$ belongs to $D(-\mathcal{A})$. Taking

$$\alpha^+(x) = 1, \quad \text{if} \quad (u - \tilde{u})(x) \geq 0 \quad \text{and} \quad u^+(x) \geq 0,$$

$$= 0, \quad \text{if} \quad (u - \tilde{u})(x) \leq 0 \quad \text{and} \quad u^+(x) < 0$$

or $u^+ = 0$, then $\alpha^+(x) \in L^{\infty}(\Omega)$ and $\alpha^+(x) \in \text{sign}^+ (u(x) - \tilde{u}(x)) \cap \text{sign}^+ u^+(x)$. So

$$\int_{\Omega} (Au - A\tilde{u}) \alpha^+ \, dx \geq 0,$$

by (A.6), which shows the T-accretiveness of operator \mathcal{A}. \[\blacksquare\]

Our next step is to prove range condition (A.5) which is only well known for ψ not depending on x (see Brezis–Strauss [9]). For it, we begin with a technical lemma.

Lemma A.3. Assume ψ to be a measurable function on Ω and let β be given by (5). Then

$$\beta^{-1}(r, x) = r + \gamma(r + \psi(x)), \quad \forall r \in D(\beta^{-1}(x, \cdot)), \quad \text{a.e.} \quad x \in \Omega \tag{A.7}$$

being $\gamma(r)$ the maximal monotone graph of R^2 defined by

$$\gamma(r) = 0 \quad \text{if} \quad r > 0, \quad \gamma(0) = (-\infty, 0] \quad \text{and} \quad \gamma(r) = \emptyset$$

(the empty set) if $r < 0. \tag{A.8}$$

Proof. If $r > -\psi(x)$ it is clear that $\beta^{-1}(r, x) = r + \gamma(r + \psi(x))$. If $a \in \beta^{-1}(r, x)$ with $r = -\psi(x)$, then $a = r + (a - r)$, where $(a - r) \geq 0$ and so $(a - r) \in \gamma(0)$. Conversely, if $a = r + h$ $(h \in \gamma(0))$, then $-\min \{|\psi(x), -x|\} = r = -\psi(x)$ and $a \in \beta^{-1}(x, r)$. \[\blacksquare\]

Lemma A.4. Let $\psi \in H^1(\Omega)$ be such that $\psi \geq 0$ a.e. on Ω and $\Delta \psi$ is a measure with $(-\Delta \psi)^- \in L^1(\Omega)$. Let β given by (5). Then the operator \mathcal{A} is m
accretive in $L^1(\Omega)$. More concretely, for all $f \in L^1(\Omega)$ there exists a unique $u \in L^1(\Omega)$ with $\beta(x,u) \in W^{1,q}_0$ ($1 \leq q < N/(N-1)$) such that
\begin{equation}
 u(x) - \lambda \Delta u(x) = \beta(x,u(x)) = f(x), \quad \text{a.e. on } \Omega,
\end{equation}
\begin{equation}
 \beta(x,u(x)) = 0, \quad \text{on } \partial\Omega. \tag{A.9}
\end{equation}

Proof. Set $h(x) = \beta(x,u(x))$. Then u is a solution of (A.9) if and only if $h \in W^{1,q}_0(\Omega)$, $\Delta h \in L^1(\Omega)$, and $-\lambda \Delta h + \beta^{-1}(x,h(x)) \geq f(x)$ a.e. $x \in \Omega$, or equivalently (by Lemma A.3)
\begin{equation}
 -\lambda \Delta h(x) + h(x) + \gamma(h(x) + \psi(x)) \geq f(x), \quad \text{a.e. } x \in \Omega,
\end{equation}
\begin{equation}
 h = 0, \quad \text{on } \partial\Omega. \tag{A.10}
\end{equation}

Because of the accretiveness of operator $(-\lambda \Delta + I)$ on $L^1(\Omega)$ and from the monotonicity of γ we know that if $\tilde{h} \in D(-\Delta)$ is the solution of (A.10) corresponding to $\tilde{f} \in L^1(\Omega)$, then
\begin{equation}
 \|f - (-\lambda \Delta \tilde{h} + \tilde{h}) - (\tilde{f} - (-\lambda \Delta \tilde{h} + \tilde{h}))\|_{L^1(\Omega)} \leq \|f - \tilde{f}\|_{L^1(\Omega)} \tag{A.11}
\end{equation}
(see Brezis–Strauss [9]). In particular, the coercivity of the operator $(-\lambda \Delta + I)$ in $L^1(\Omega)$ implies that
\begin{equation}
 a \|h - \tilde{h}\|_{L^1(\Omega)} \leq \|f - (-\lambda \Delta \tilde{h}) + (h - \tilde{h})\|_{L^1(\Omega)} \leq 2 \|f - \tilde{f}\|_{L^1(\Omega)} \tag{A.12}
\end{equation}
for some $a > 0$.

From (A.12) the uniqueness follows. To prove the existence of solution it suffices to consider f being in a dense set of $L^1(\Omega)$. Indeed, let h_n (with $-\lambda \Delta h_n + h_n \in L^1(\Omega)$) be the solution of (A.10) corresponding to f_n and $f_n \to f$ in $L^1(\Omega)$. By (A.12) we have,
\begin{equation}
 a \|h_n - h_m\|_{L^1(\Omega)} \leq \|\lambda \Delta (h_n - h_m) + (h_n - h_m)\|_{L^1(\Omega)} \leq 2 \|f_n - f_m\|_{L^1(\Omega)}
\end{equation}
and then $h_n \to h$ and $-\lambda \Delta h_n + h_n \to -\lambda \Delta h + h$; finally, $f = (-\lambda \Delta h + h) \in \gamma(u + \psi)$ since γ is maximal.

Actually, when $f \in L^1(\Omega)$ and $h \in H^\psi_0(\Omega)$ is the solution of the variational inequality
\begin{equation}
 h(x) \geq -\psi(x) \quad \text{a.e. } x \in \Omega,
\end{equation}
\begin{equation}
 -\lambda \Delta h + h \geq f \quad \text{a.e. on } \Omega,
\end{equation}
\begin{equation}
 (h + \psi)(-\lambda \Delta h + h - f) = 0 \quad \text{a.e. on } \Omega,
\end{equation}
\begin{equation}
 h = 0 \quad \text{on } \partial\Omega. \tag{A.13}
\end{equation}
it is well known (because of the hypothesis on \(\psi \)) that \(h \in H^2(\Omega) \cap H^1_0(\Omega) \) (see Brezis [5]). Therefore \(h \) satisfies (A.10). Finally, the function \(u = f + \lambda \Delta h - \lambda \) is such that \(h(x) \in \beta(x, u(x)) \) a.e. \(x \in \Omega \) and so \(u \) is the solution of (A.9). (The regularity on \(\beta(x, u(x)) \)) comes from the fact that \(\Delta \beta(\cdot, u(\cdot)) \in L^1(\Omega) \), see [9].

Lemma A.5. Assume \(\psi \) and \(\beta \) as in Lemma A.4. Then \(\overline{D(A)}^{L^1(\Omega)} = L^1(\Omega) \).

Proof. It is enough to see \(L^\infty(\Omega) \subset \overline{D(A)}^{L^1(\Omega)} \). Take \(f \in L^\infty(\Omega) \) and for each \(\lambda > 0 \) let \(\tilde{z}_\lambda \in H^1(\Omega) \cap H^1_0(\Omega) \) be the solution of (A.10). By Brezis [5, Theorem 1.1] we get

\[
\| \lambda \Delta \tilde{z}_\lambda \|_{L^1(\Omega)} \leq \| f \|_{L^\infty(\Omega)} + C \|(-\Delta \psi)^- \|_{L^1(\Omega)},
\]

with \(C \) independent of \(\lambda \). Therefore \(\{ \lambda \tilde{z}_\lambda \} \) converges weakly in \(H^1(\Omega) \) and then strongly in \(L^1(\Omega) \), when \(\lambda \to 0 \). But \(\lambda \tilde{z}_\lambda \to 0 \) in \(L^1(\Omega) \) because \(\| \tilde{z}_\lambda \|_{L^\infty(\Omega)} \leq \| f \|_{L^\infty(\Omega)} \) (by the comparison results) and then \(\| \tilde{z}_\lambda \|_{L^1(\Omega)} \leq C \), \(C \) independent of \(\lambda \) (because \(-\psi(x) \leq -\tilde{z}_\lambda(x) \leq \tilde{z}_\lambda(x) \) a.e. \(x \in \Omega \)). Setting \(y_\lambda(x) = f(x) + \lambda \Delta \tilde{z}_\lambda(x) \) it is clear that \(y_\lambda(x) \in \beta^{-1}(\tilde{z}_\lambda(x)) \) a.e. \(x \in \Omega \) (see Lemma A.3), \(y_\lambda \in D(A) \), and \(y_\lambda \) converges (weakly) to \(f \) in \(L^1(\Omega) \) when \(\lambda \to 0 \). Finally, from (A.14) we deduce that \(\lim_{\lambda \to 0} \| y_\lambda \|_{L^1(\Omega)} = \| f \|_{L^1(\Omega)} \) and then \(y_\lambda \) converges (strongly) in \(L^1(\Omega) \).

The proof of Proposition 1 is now a consequence of Proposition A.1 and Lemmas A.2, A.4, and A.5. Problem \(P^\kappa \) is also well posed on the space \(H^{-1}(\Omega) \).

Lemma A.6. Assume \(\psi \in L^2(\Omega), \psi \geq 0 \) a.e. on \(\Omega \). Consider the operator \(E \) on \(H^{-1}(\Omega) \) given by (21), i.e.,

\[
E = (-\Delta) B(-\Delta)^{-1}.
\]

Then \(E \) is \(m \)-accruative in \(H^{-1}(\Omega) \).

Proof. Recalling that the scalar product in \(H^{-1}(\Omega) = (H^1_0(\Omega))^\prime \) is given by

\[
(f, g)_{H^{-1}(\Omega)} = (-\Delta)^{-1} f, (-\Delta)^{-1} g \|_{H^1_0(\Omega)},
\]

then if \([x, y], [\tilde{x}, \tilde{y}] \in E \)

\[
(x - \tilde{x}, y - \tilde{y})_{H^{-1}(\Omega)} = (-\Delta)^{-1} (x - \tilde{x}), (-\Delta)^{-1} (y - \tilde{y}) \|_{H^1_0(\Omega)} \geq 0
\]

because \((-\Delta)^{-1} (x - \tilde{x}), (-\Delta)^{-1} (y - \tilde{y}) \leq 0 \). Analogously,

\[
R(I + \lambda E) = H^1_0(\Omega) \implies R(I + \lambda E) = H^{-1}(\Omega), \forall \lambda > 0.
\]
The following unpublished result of A. Damlamian characterizes operator E when $\psi \in H^1_0(\Omega)$.

Proposition A.2. Assume $\psi \in H^1_0(\Omega)$ with $\psi \geq 0$ a.e. on Ω. Then $E = \partial \Phi$, where Φ is the convex, lsc function defined in $H^{-1}(\Omega)$ by

$$
\Phi(u) = -\frac{1}{2} \| u \|_{H^1(\Omega)}^2 + \langle u, -\psi \rangle_{H^{-1}(\Omega) \times H_0^1(\Omega)} + \frac{1}{2} \| (u + \psi)^+ \|_{L^2(\Omega)}^2,
$$

if $u \in L^2(\Omega)^+ - H^{-1}(\Omega)^-$,

$$= +\infty,
$$

otherwise.

Remark A.1. When $\psi(x) = \delta$, the function $\tilde{v} = v + \delta$ (v solution of P^e) coincides with the solution of the one-phase Stefan problem

$$
\tilde{v}_t - \Delta \theta(v) = 0, \quad \text{on} \quad (0, \infty) \times \Omega,
$$

$$
v = \delta^-, \quad \text{on} \quad (0, \infty) \times \partial \Omega,
$$

$$
\tilde{v}(0, \cdot) = v_0(\cdot) + \delta, \quad \text{on} \quad \Omega,
$$

where $\theta(r) = 0$ if $r \leq -\delta$ and $\theta(r) = r - \delta$ if $r \geq -\delta$. In this case, formulation (1) coincides with the one given in [20] (see also [13, Appendix]).

APPENDIX 3: THE PROBLEM P IS WELL POSED ON $L^\infty(\Omega)$

The accretiveness in $L^\infty(\Omega)$ of operator C given in (17), i.e.,

$$
D(C) = \{ w \in L^\infty(\Omega) \cap H^1_0(\Omega) : D w \in L^\infty(\Omega), \min \{ \psi, D w \} \in L^\infty(\Omega) \}
$$

$$
C w = -\min \{ \psi, D w \} \quad \text{if} \quad w \in D(C),
$$

is an application of the abstract result of [4 or 17]. Here we show it directly.

Lemma A.7. Assume $\psi \in L^2(\Omega)$, $\psi \geq 0$ a.e. on Ω, operator C is T accretive in $L^\infty(\Omega)$.

Proof. Let $[u, v], [\tilde{u}, \tilde{v}] \in C$. Let us assume that $w = (u - \tilde{u})^+ \not\equiv 0$. Then if β is given by (5), $\tau^+(w, \beta(x, -du) - \beta(x, -d\tilde{u})) \not\equiv 0$ because, otherwise, for some $\lambda > 0$ one would have $\beta(x, -du) - \beta(x, -d\tilde{u}) < 0$ a.e. on $\Omega(w, \lambda)$. From the monotonicity of $\beta(x, \cdot)$ we would deduce that $-d(u - \tilde{u}) \not\equiv 0$ a.e. on $\Omega(w, \lambda)$. But $(u - \tilde{u}) = \| w \|_{L^\infty} - 1$ in the boundary of $\Omega(w, \lambda)$ and the application of the maximum principle would lead to a contradiction. \blacksquare

About the range condition one has
Lemma A.8. Assume \(\psi \in C^1(\Omega) \) with \(\psi \geq 0 \) on \(\Omega \), \(C \) satisfies the range condition (A.3). More exactly, for all \(f \in L^\infty(\Omega) \cap H_0^1(\Omega) \) such that \(Af \in L^\infty(\Omega) \) there exists \(u \in D(C) \) solution of
\[
\lambda u + Cu = f \quad \text{if } \lambda > 0.
\]
Moreover,
\[
\| Du \|_{L^\infty(\Omega)} \leq c(\| Af \|_{L^\infty(\Omega)} + \| d\psi \|_{L^\infty(\Omega)})
\]
for some constant \(c \) independent of \(\lambda \) and \(f \).

Proof. Set \(\tilde{u} = u - f. \) Then it is easy to see that \(u \) is a solution of (A.15) if and only if \(u \in H_0^1(\Omega) \cap L^\infty(\Omega), \) \(A\tilde{u} \in L^\infty(\Omega), \) and \(\tilde{u} \) satisfies
\[
-\Delta \tilde{u}(x) + \frac{\tilde{u}(x)}{\lambda} - \gamma \left(\psi(x) - \frac{\tilde{u}(x)}{\lambda} \right) \equiv Af(x), \quad \text{a.e. } x \in \Omega,
\]
\[
\tilde{u} = 0, \quad \text{on } \partial \Omega,
\]
where \(\gamma \) is the graph given by (A.8). Problem (A.17) coincides with the variational inequality
\[
\tilde{u}(x) \leq \lambda \psi(x) \quad \text{a.e. } x \in \Omega.
\]
\[
-\Delta \tilde{u} + \frac{\tilde{u}}{\lambda} \leq Af \quad \text{a.e. on } \Omega,
\]
\[
(\tilde{u} - \lambda \psi) \left(-\Delta \tilde{u} + \frac{\tilde{u}}{\lambda} - Af \right) = 0 \quad \text{a.e. on } \Omega.
\]
\[
\tilde{u} = 0 \quad \text{on } \partial \Omega.
\]
It is well known that under the assumption \(\psi \in C^1(\Omega), \psi \geq 0 \) on \(\Omega \), there exists a unique \(\tilde{u} \in H_0^1(\Omega) \) solution of (A.18) satisfying \(A\tilde{u} \in L^\infty(\Omega) \) and
\[
\| A\tilde{u} \|_{L^\infty(\Omega)} \leq C(\| d\psi \|_{L^\infty(\Omega)} + \| d\psi \|_{L^\infty(\Omega)} \text{ sees } |18|). \text{ Then } u \in D(C) \text{ and it verifies (A.15) and (A.16).}
\]

Problem \(P \) can actually be "solved" in terms of the Proposition 1. Indeed, when \(u_0 \in D(C), \) by Proposition A.1 and Lemmas A.7 and A.8 there exists a unique \(u \in L^\infty(\Omega) \) semigroup solution of \(P. \) Finally, the regularity of \(u \) follows from Theorem 2 of Benilan-Ha [4]. (Notice that the hypothesis \(R(\beta(x, \cdot)) = R \text{ a.e. } x \in \Omega \text{ made in [4] is only used to prove the existence of the } L^\infty(\Omega) \text{ semigroup solution.}
ACKNOWLEDGMENTS

The author is greatly indebted to Alain Damlamian for his useful remarks and suggestions on a preliminary version of this paper. He also wants to thank the University of Santander, Spain, and the MRC of the University of Wisconsin-Madison, USA, for their hospitality which made it possible to have this paper started and finished respectively.

REFERENCES

Printed by the St. Catherine Press Ltd., Tempehof 41, Bruges, Belgium