UNIVERSIDAD COMPLUTENSE MADRID FACULTAD DE CIENCIAS MATEMÁTICAS	Ejercicios del ALUMNO	
	APELLIDOS	
	NOMBRE	D.N.I. nº.
	ASIGNATURA	GRUPO
	CURSO	№ DE MATRICULA FECHA

GEOMETRIA DE VARIEDADES

Curso 2010-11

Examen final de Febrero PRIMERA PARTE: de 16:00 a 17:15

Sea $\phi: M \to \bar{M}$ una aplicación diferenciable entre variedades. Se dice que los campos $V \in \mathfrak{X}(M)$ y $\bar{V} \in \mathfrak{X}(\bar{M})$ están ϕ -relacionados, si $\phi_*V(p) = \bar{V}(\phi(p))$ para todo $p \in M$.

Demostrar que están ϕ -relacionados si y solo si ϕ transforma curvas integrales de V en curvas integrales de \bar{V} .

Supuesto que V y \bar{V} están ϕ -relacionados se pide:

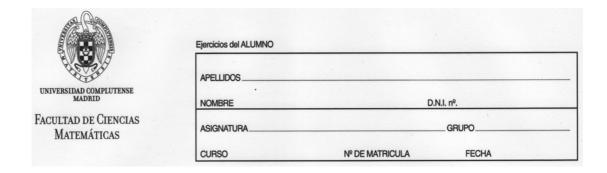
1. Probar que si ϕ es suprayectiva se verifica la implicación

$$V$$
 completo $\Rightarrow \bar{V}$ completo

2. Demostrar que si $\phi: M \to \phi(M)$ es homeomorfismo y $\phi(M)$ es cerrado en \overline{M} , entonces

$$\bar{V}$$
 completo $\Rightarrow V$ completo

- 3. Estudiar si en las condiciones indicadas se verifican las implicaciones recíprocas (\Leftarrow).
- 4. Discutir la implicación \bar{V} completo $\Rightarrow V$ completo en el supuesto de que ϕ sea difeomorfismo local.



GEOMETRIA DE VARIEDADES

Curso 2010-11

Examen final de Febrero SEGUNDA PARTE: de 17:45 a 20:15

Ejercicio 1

Determinar el abierto maximal de \mathbb{R}^3 en donde los campos

$$X = zx\frac{\partial}{\partial x} + zy\frac{\partial}{\partial y} + (1+z^2)\frac{\partial}{\partial z}; \ Y = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$$

definen una distribución bidimensional \mathcal{D} y demostrar que la superficie S de ecuación $x^2 + y^2 - z^2 = 1$ es una variedad integral maximal. Probar que de hecho \mathcal{D} es integrable, y todas sus integrales son superficies de revolución alrededor del eje Z. Determinar explícitamente otra variedad integral maximal de \mathcal{D} distinta de S.

Estudiar si X o Y son campos de Killing en \mathbb{R}^3_0 y si inducen o no campos de Killing en S

Ejercicio 2

Demostrar que $G = \mathbb{R}^3$ con la operación

$$(a, b, c)(x, y, z) = (a + x + cy, b + y, c + z)$$

tiene estructura de grupo de Lie. Determinar su álgebra de Lie \mathfrak{g} .

Calcular las subálgebras de Lie bidimensionales de $\mathfrak g$ y los subgrupos de Lie bidimensionales de G.