- 12. Sea \mathcal{U} un abierto de una variedad diferenciable M, que contiene a un compacto K no vacio de M
 - a) Probar que existe una función $h \in \mathcal{F}(M)$ con $h \geq 0$, h(p) > 0 para todo $p \in K$, y sop(h) compacto y contenido en \mathcal{U} .
 - b) Probar que existe una función $\mu \in \mathcal{F}(M)$ con $\mu \geq 0$, $\mu(p) = 1$ para todo $p \in K$, y $sop(\mu)$ compacto y contenido en \mathcal{U} .
- 13. Sea M variedad diferenciable de dimensión $m, y \xi^1, \ldots, \xi^m$ vectores linealmente independientes de T_pM . Demostrar que existe una carta

$$(\mathcal{U} = \mathbb{R}^m, \varphi = (u_1, \dots, u_m))$$

de $M \operatorname{con} \varphi(p) = 0 \text{ y}$

$$\xi^i = \left(\frac{\partial}{\partial u_i}\right)_p, i = 1, \dots, m.$$

14. Probar que la función $F(x,y,z)=x^2+y^2$ define por restricción una aplicación diferenciable f en la esfera \mathbb{S}^2 de ecuación $x^2+y^2+z^2=1$, encontrar los puntos p de \mathbb{S}^2 para los cuales se tenga

$$\left(2\left(\frac{\partial}{\partial\phi}\right)_p + 3\left(\frac{\partial}{\partial\theta}\right)_p\right)(f) = 0$$

siendo (ϕ, θ) las coordenadas dadas por la parametrización

$$x = \cos \phi \cos \theta, y = \cos \phi \sin \theta, z = \sin \phi.$$

- 15. Sea M una variedad diferenciable de dimensión ≥ 2 y sea p un punto dado de M. Probar que existe $f: M \to \mathbb{R}$ diferenciable, que toma el valor cero solamente en el punto p. Probar que entonces $\xi(f) = 0 \ \forall \xi \in T_p M$.
- 16. Probar que la función

$$\mathbb{R}P^2 \ni [x, y, z] \to \frac{x^2 + z^2}{x^2 + y^2 + z^2} \in \mathbb{R}$$

da lugar a una aplicación diferenciable, $f:\to \mathbb{R}$ que se anula sólo en un punto. Determinar los puntos $p\in \mathbb{R}P^2$ con $\xi(f)=0 \ \forall \xi\in T_p(\mathbb{R}P^2)$.