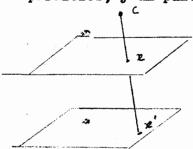
GEOMETRIA II

INTRODUCCION:

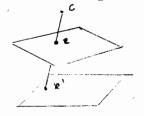
En el espacio afin intuitivo tridimensional & imaginemos dos planos afines P y P' paralelos, y un punto c no situado sobre P P'.



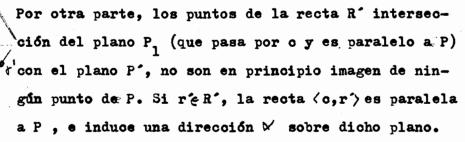
Si x es un punto de P, la recta (o,x) no es paralela a P (ni a P') y corta a P' en un punto x'. La aplicación P > x -> x' e P' es una biyección que transforma rectas en rectas. Por el Teorema Fundamental de la geometría afin, se concluye que f es una aplicación

afin, y se denomina proyección cónica (paralela) de P sobre P:

Imaginemos ahora que P no es paralelo a P'. La aplicación f antes descrita parece a primera vista que transforma rectas en rectas. ¿Es aplicación afin?.



Un análisis más detenido muestra que los puntos de la recta R'intersección del plano P' (que pasa por el punto c y es paralelo a P') con el plano P, no tiene imagen en P': Si $r \in R$, la recta $\langle c,r \rangle$ es paralela a P', e induce por tanto una "dirección" \otimes ' en dicho plano. Parece natural asignar al punto r dicha dirección, y escribir $f(r)=\otimes$ '.



Parece natural asignar como imagen de « el punto r', es decir f(»)=r'

Los elementos « y y ' se denominan puntos del infinito (de P y P'respectivamente).

Denotando por P y P' a los planos P y P'"completados" por los puntos del infinito correspondientes, la aplicación f descrita anteriormente, aparece como una biyección de P en P', y se denomina preyección cónica (no paralela) de P en P'.

Nótese que f no induce aplicación afin entre P y P', pero sin embargo conserva en cierto sentido las rectas. Las aplicaciones de P en P' verificando esta propiedad se denominarán aplicaciones proyectivas. Las transformaciones proyectivas de P es-

tablecen la geometría proyectiva del plano, que incluye en un sentido que más tar-

de explicitaremos, a la geometría afin.

Estableceremos el concepto de espacio proyectivo mediante la adjunción de los puntos del infinito (ó direcciones) a un espacio afin. La geometría proyectiva no distinguirá entre puntos ordinarios ó puntos del infinito, y el espacio proyectivo abstracto se identificará con la familia de rectas de cierto espacio vectorial. Desde este punto de vista, las propiedades proyectivas aparecen como las propiedades de los espacios vectoriales que hacen intervenir rectas.

El interés del estudio de la geometría proyectiva, se centra en tres aspectos fundamentales:

- 1.- Las propiedades de incidencia de subespacios son mas sencillas que en geometría afin.
- 2.- La posibilidad de enviar puntos al infinito, para obtener un espacio afin en el cual dos subespacios son paralelos si y solo si su intersección está formada por puntos del infinito. Permite obtener propiedades afines con téonicas de geometría proyectiva.
- 3.- La dualidad, que permite por ejemplo en un plano proyectivo intercambiar bajo ciertas condiciones las palabras recta y punto en enunciados de proposiciones que hacen intervenir propiedades de incidencia.

1. ESTRUCTURA DE ESPACIO PROYECTIVO

1.1 Puntos del infinito de un espacio afin

X es un espacio afin sobre el K-espacio vectorial \hat{X} . \hat{X} denota la extensión vectorial canónica de X, y ms: $\hat{X} \rightarrow K$ es la aplicación masa.

1.1.1 Definición

- a) Sea \mathcal{R} el conjunto de rectas del espacio afin X. La relación de paralelismo "//" induce sobre \mathcal{R} una relación de equivalencia. Si $R \in \mathcal{R}$ se denota por $\mathcal{R}_R = \mathbb{R}^2 / \mathbb{R}^2 / \mathbb{R}^2 / \mathbb{R}^2$ a la clase de equivalencia definida por \mathbb{R} en \mathbb{R}^2 , y se denomina punto del infinito (de \mathbb{R}). El conjunto $\mathcal{L}_{\mathbb{R}} = \mathcal{R}^2 / \mathbb{R}^2 / \mathbb{R}^2$ es el conjunto de puntos del infinito de \mathbb{R} , y se denomina hiperplano del infinito.
- b) Una dirección del espacio afin X, es una recta vectorial D de X. Se escribe $P(\overline{X})$ para denotar al conjunto de todas las direcciones de X

La relación entre puntos del infinito y direcciones, viene explicitada en la siguiente proposición:

1.1.2 Proposición

La correspondencia $\bowtie_{\mathbf{X}} \mathbf{D} \bowtie_{\mathbf{R}} \longmapsto \widetilde{\mathbf{R}} \in P(\widetilde{\mathbf{X}})$ es una aplicación bien definida y biyectiva.

Demostración:

Notese que si R, R' $\in \mathcal{R}$ se tiene la equivalencia: $\alpha_{R} = \alpha_{R} + \alpha_{R} = R'$.

1.1.3 Observación

La biyección anterior permite identificar cada punto $\bowtie_R \in \bowtie_X$ con la dirección \overrightarrow{R} de la recta R ($\bowtie_R = \overrightarrow{R}$). Si A es subespacio afin de X con dimensión mayor que cero, el conjunto \bowtie_A se identifica con $P(\overrightarrow{A})$. Esto permite escribir la inclusión $\bowtie_A \subset \bowtie_X$

1.1.4 Definición

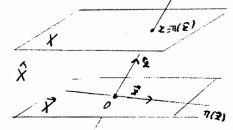
Se denomina extensión proyectiva del espacio afín X, al espacio $\widetilde{X} = X \cup \mathcal{O}_{\widetilde{X}} = X \cup P(\widetilde{X})$. A la pareja $(\widetilde{X}, \mathcal{O}_{\widetilde{X}})$ se le denomina espacio proyectivo afin. Por abuso de notación se escribe a veces que $\widetilde{X} = (\widetilde{X}, \mathcal{O}_{\widetilde{X}})$ es un espacio proyectivo afin.

1.1.5 Notación

Si \hat{E} es un espacio vectorial y $\hat{e} \in \hat{E}$, escribir $[\hat{e}]$ significa que $\hat{e} \neq 0$ y $[\hat{e}] = K \hat{e} = \{\lambda \hat{e} \mid \lambda \in K\}$. $P(\hat{E}) = \{[\hat{e}] : \hat{e} \in \hat{E} = 0\}$, es el conjunto de rectas vect. de \hat{E} El siguiente teorema permitirá "ver" la extensión proyectiva de un espacio afín como el conjunto de rectas vectoriales de su extensión vectorial. Esto motivará

1.1.6 Teopema

La aplicación $\forall i: \hat{X} = \{0\} \rightarrow \hat{X}$, tal que $\forall (\hat{x}) = [\hat{x}]$ si $\hat{x} \in \hat{X} = 0$ y $\forall (\hat{x}) = \frac{1}{ms(\hat{x})} \hat{x} \in X$ para $\hat{x} \in \hat{X} = \hat{X}$, es una aplicación que verifica la propiedad: $\forall (\hat{x}) \mid (\hat{x})$



la definición general de espacio proyectivo.

Demostración:

Note se que si $x \in X$, es $\Pi(x)=x$ y $\Pi(\lambda x)=x$ para tode $\lambda \in K=0$. Así $\Pi^{-1}(x) \cup \{0\} = [x]$.

Por otra parte, $\pi^{-1}(\vee)\cup \{0\} = \mathbb{N}$ para cada $\vee \in \mathscr{A}_{\mathbb{X}} = \mathbb{P}(\mathbb{X})$

1.1.7 Corolario

La aplicación I: $\tilde{X} \ni \tilde{x} \mapsto \eta^{-1}(\tilde{x}) \cup \{0\} \in P(\tilde{X})$ es una aplicación biyectiva. Esta biyección permite identificar cada punto $\tilde{x} \in \tilde{X}$ con su imagen $I(\tilde{x}) \in P(\hat{X})$, y escribir por ejemplo la igualdad x = [x] para $x \in X$.

Demostración:

Si $\hat{x}_1, \hat{x}_2 \in \hat{x}_1$) y es $\hat{x}_1 \neq \hat{x}_2$, entonces $\hat{x}_1 = \hat{x}_1 = \hat{x}_2$, por tanto $\hat{x}_1 = \hat{x}_2 = \hat{x}_1 = \hat{x}_2 = \hat{x}_1 = \hat{x}_2 = \hat{x}_2 = \hat{x}_1 = \hat{x}_2 =$

1.1.0 Ejemplos

a) Considerese el modelo analítico cartesiano $A_n(K) = A_n = \begin{cases} \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} : x_i \in K \end{cases}$, y su extensión vectorial canónica $A_n = \begin{pmatrix} x_0 \\ x_1 \\ \vdots \end{pmatrix} : x_i \in K \end{pmatrix}$. Entonces $A_n = \begin{pmatrix} 0 \\ x_1 \\ \vdots \\ x_n \end{pmatrix} : x_i \in K \end{pmatrix}$,

 $\begin{array}{lll}
\mathbf{y} & \mathbf{\hat{A}_n} = \mathbf{A_n} & \mathbf{\hat{A}_n} & \mathbf{\hat{A}_n} \\
\mathbf{La aplicación} & \mathbf{\hat{A}_n} : & \mathbf{\hat{A}_n} - \mathbf{\hat{A}_n} & \mathbf{\hat{A}_n} & \mathbf{\hat{A}_n} & \mathbf{\hat{A}_n} & \mathbf{\hat{A}_n} & \mathbf{\hat{A}_n} & \mathbf{\hat{A}_n} \\
\mathbf{X_i} & = & \frac{\mathbf{X_i}}{\mathbf{X}_n} & \mathbf{\hat{A}_n} & \mathbf{\hat{A}_n}$

La identificación 1.1.7 permite escribir $\begin{bmatrix} 1 \\ x_1 \\ x_n \end{bmatrix} = \begin{pmatrix} 1 \\ x_1 \\ x_n \end{pmatrix}$, y por tanto $A_n = \{ \begin{bmatrix} x_0 \\ x_1 \\ x_n \end{bmatrix} : x_i \in K \}$.

Se denomina a $A_n = (\widetilde{A}_n, \bowtie_{A_n})$ modelo analítico n-dimensional de espacio proyectivo afin.

b) En particular para n=1 se tiene $A_1 = \langle \begin{pmatrix} x_1 \\ x_1 \end{pmatrix} : x_i \in K \rangle$ y $A_1 = \langle \begin{pmatrix} 0 \\ 1 \end{pmatrix} \rangle$.

La recta proyectivo afin A_1 se identifica con el conjunto $K = K \cup \{4\}$ de la forma:

 $\begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \frac{x_1}{x_0} \in K \quad \text{si } x_0 \neq 0 \text{ , y } \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \% \text{ si } x_0 = 0. \text{ A \widetilde{K} se le denomina extension pro-$

yectiva del cuerpo K.

1.2 El espacio proyectivo

La construcción anterior sugiere la siguiente definición general:

1.2.1 Definición

Un espacio proyectivo es una terna $E=(E,\widehat{E}, n)$ en donde:

- E es un conjunto de nominado conjunto de puntos
- È es un espacio vectorial no nulo que denominamos espacio vectorial asociado
- $-\eta: \widehat{E} \to 0 \longrightarrow E$ es una aplicación suprayectiva denominada proyección, tal que $\eta^{-1}(x) \lor 0$ es una recta vectorial de \widehat{E} para cada $x \in E$.

Si la dimensión de E es finita igual a n+1, se dice que E tiene dimensión n, y se escribe $\dim(E)=n$.

Es habitual también decir en estas condiciones, que la proyección T da estructura de espacio proyectivo, al conjunto de puntos E.

1.2.1 Ejemplos

- 1) Si X es espacio afin la proyección $\Box : \hat{X} = \{0\} \rightarrow \hat{X}$ de 1.1.6, da estructura de espacio proyectivo a \hat{X} sobre \hat{X} . Así $\hat{X} = (\hat{X}, \hat{X}, \hat{\Box})$.
- 2) Si È es espacio vectorial no nulo, la aplicación []:Ê-⟨0|∍ê → [ê]←P(Ê)

da estructura a $P(\hat{E})$ de espacio proyectivo sobre \hat{E} , y se escribe $P(\hat{E})=(P(\hat{E}),\hat{E},C)$.

3) En particular tomando $\hat{E} = \hat{A}_n(K) = \hat{A}_n = \{ \begin{pmatrix} \hat{E}_n \\ \hat{E}_n \end{pmatrix} : x_i \in K \}$, se denota a $P(\hat{E})$ por $P_n(K)$, y se denomina modelo analítico n-dimensional de espacio proyectivo.

Los puntos de $P_n(K)$ son de la forma $\begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$ (se sobrentiende $\begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} \neq 0$)

El ejemplo 2) es el más general posible, como vamos a ver a continuación:

1.2.3 Proposición

Si $E=(E,\widehat{E}, \neg)$ es un espacio proyectivo, la aplicación $I:E \Rightarrow e \mapsto \bigcap^{-1}(e) \cup \{0\} \in P(\widehat{E})$ es aplicación biyectiva.

La demostración es la misma que la de 1.1.7

1.2.4 Observación

La biyección anterior, permite identificar en la practica cada punto $e \notin E$ con la recta vectorial $I(e) = \bigcap^{-1}(e) \cup \{0\}$; En consecuencia si $\hat{e} \notin \hat{E} = \{0\}$ escribimos pozabuso de notación $\bigcap^{1}(\hat{e}) = [e]$. Con éste convenio, podemos suponer que E es el espacio proyectivo $P(\hat{E})$ descrito en 1.2.1 2), y escribimos $E = P(\hat{E})$ cuando se sobrentienda \bigcap .

2. SUBESPACIOS

2.1 Definiciones

2.1.1 Sea X espacio afin. Si A es subespacio afin no vacío de X, entonces A es espacio afin, y cabe considerar su extensión proyectiva = A∪ ¥ =A∪P(Ã).

Si A es un punto, entonces à = (0) y convenimos en escribir P(Ã)=P(0)=Ø, yà = A.

Si A= Ø convendremos en que à = Ø.

2.1.2 Definición

En las condiciones de 2.1.1 se dice que A es un subespacio proyectivo afin de X , y se denota por $\int A(\tilde{X})$ a la familia de dichos subespacios (incluido el subespacio vacío \emptyset).

La siguiente proposición pretende motivar la definición general de subespacio de un espacio proyectivo:

2.1.3 Proposición

Si $\widetilde{\mathbf{A}}$ es un subespacio proyectivo afin de $\widetilde{\mathbf{X}}$, entonces $\bigcap_{i=1}^{n-1} (\widetilde{\mathbf{A}}) \circ \langle 0 \rangle = \widehat{\mathbf{A}}$ es la extensión vectorial del subespacio afin \mathbf{A} de \mathbf{X} .

Demostración:

Si $\hat{a} \in \Pi^{-1}(\hat{A})$ entonces $\Pi(\hat{a}) \in \hat{A}$, y hay dos posibilidades: si $\Pi(\hat{a}) \in A$, entonces $a = \frac{1}{ms(\hat{a})} \hat{a} \in A \subset \hat{A}$, y por tanto $\hat{a} \in \hat{A}$. si $\Pi(\hat{a}) \in P(\vec{A})$ entonces $\Pi(\hat{a}) = [\hat{a}] < \vec{A}$, y por tanto $\hat{a} \in \vec{A} < \hat{A}$.

La otra inclusión se demuestra de forma análoga.

Sea $E=(E,\hat{E},\Pi)$ un espacio proyectivo y A un subconjunto de E. La proposición anterior sugiere la siguiente definición general:

2.1.4 Definición

Se dice que A es un subespacio proyectivo de E, si $\pi^{-1}(A) \cup \{0\} = \widehat{A}$ es un subespacio vectorial de \widehat{E} .

En estas condiciones la proyección \Box_{A} $/A - \{0\}$: $A - \{0\}$:

2.1.5 Observaciones

- 1) Utilisando el abuso de notación establecido en 1.2.4 , para un subespacio proyectivo A de E se tiene la igualdad $A=P(\hat{A})$ siendo $\hat{A}= \Box^{-1}(A) \cup \{0\}$.
- 2) Los subespacios proyectivo afines de un espacio proyectivo afin X son subespacio cios proyectivos de X, es decir $\mathcal{G}A(\widetilde{X})\subset\mathcal{G}P(\widetilde{X})$. Observese que si A es subespacio afin de dimensión finita, se tiene dim A = dim \widehat{A} =dim \widehat{A} -1.

2.1.6 Proosición

Sea \overline{A} subespacio proyectivo del espacio proyectivo afin X . Si $A = \overline{A} \cap X \neq \emptyset$, entonces A es subespacio afin de X, y $\overline{A} = \overline{A}$.

Demostración:

Por hipótesis es $\Pi^{-1}(\bar{A}) \cup \{0\} = \hat{A}$ subespacio vectorial de \hat{X} . Si $a \in \bar{A} \cap X$, entonces $a = \Pi(a) \in \hat{A} \cap X$, y recíprocamente, si $a \in \hat{A} \cap X$ es $a = \Pi(a) \in \bar{A} \cap X$, y se tiene por tanto: $\emptyset \neq \bar{A} \cap X = \hat{A} \cap X = A$; así por 1.4.1 (Cap VI) A es subespacio afin de X con extensión vectorial \hat{A} , y $\Pi^{-1}(\bar{A}) \cup \{0\} = \hat{A} = \Pi^{-1}(\hat{A}) \cup \{0\}$. La igualdad $\bar{A} = \bar{A}$ se deduce de forma inmediata por la sobreyectividad de .

2.2 Reticulo de subespacios

$$E=(E, E, T)$$
 es un espacio proyectivo sobre el cuerpo K, y $\mathcal{G}P(E)$ denota a la familia de sus subespacios.

Como cuestión previa se establece el siguiente resultado:

2.2.1 Proposición

Si $GL(\hat{E})$ denota al retículos de subespacios vectoriales de E, entonces la aplicación $\wedge : GP(E) \ni A \mapsto \hat{A} = \Pi^{-1}(A)U \setminus O \setminus \in GL(\hat{E})$ es biyectiva.

wenotando por P: $GL(E) \rightarrow GP(E)$ a la inversa de \wedge , se verifica la identidad $A=P(\hat{A})$ para cada $A \in GP(E)$. (Notese que la igualdad $A=P(\hat{A})$ es consistente con la identificación de 2.1.5. 1))

Demostración

La aplicación \wedge es claramente inyectiva. Veamos que es sobreyectiva: Si $V \in \mathcal{G}L(\hat{E})$, sea $A=\Pi(V-\{0\})$. Entonces $\hat{A}=\Pi^{-1}(A)\cup\{0\}=V$, ya que si $V \in V-\{0\}$ es $\Pi(V) \in A$ y por tanto $V \in \Pi^{-1}(A)$. Reciprocemente, si $\hat{a} \in \Pi^{-1}(A)$, entonces $\Pi(\hat{a}) = a \in A = \Pi(V-\{0\})$ y existe $V \in V-\{0\}$ con $a = \Pi(V)$. Así \hat{a} , V = X en la recta vectorial $\Pi^{-1}(a)\cup\{0\}$ contenida en V. En particular $a \in V$. Nótese que la aplicación P viene definida por $P: \mathcal{G}L(\hat{E}) \ni V \mapsto \Pi(V-\{0\}) \in \mathcal{G}P(E)$. Si V = 0 entonces $P(V) = \emptyset$.

2.2.2 Teorema

Si $(A_i)_{i \in I} \subset \mathcal{GP}(E)$ es una familia de subespacios, entonces $A = \bigcap_{i \in I} A_i$ es subespacio prejetivo de E y se verifica $\widehat{A} = \bigcap_{i \in I} \widehat{A}_i$.

Demostración

En efecto, $\hat{A} = \pi^{-1}(A) \cup \{0\} = \pi^{-1}(\bigcap_{i \in I} A_i) \cup \{0\} = \bigcap_{i \in I} (\pi^{-1}(A_i) \cup 0) = \bigcap_{i \in I} \hat{A}_i$.

2.2.3 Definición

- a) Si S es un subconjunto de E, se llama subespacio proyectivo generado por S, al subespacio $\langle S \rangle$, intersección de la familia de todos los subespacios proyectivos de E que centienen a S. $\angle \langle a_1, ... a_r \rangle \in \angle \langle a_1, ... a_r \rangle = \angle \langle a_1, ... a_r \rangle$
- b) Si A y B son subespacios proyectivos de E se define la suma A+B = $\langle A \cup B \rangle$.

La estructura reticular de 9P(E) viene establecida automáticamente por medio de la siguiente proposición:

2.2.4 Proposición

Si A,B $\in \mathcal{G}P(E)$, U,V $\in \mathcal{G}L(\widehat{E})$ se verifica:

- i) ACB⇔Ãc ; UCV⇔P(U)⊂P(V)
- ii) $\widehat{A+B} = \widehat{A+B}$; P(U+V)=P(U)+P(V)

Demostración

- i) Si $A \subset B$, es $\Pi^{-1}(A) \subset \Pi^{-1}(B)$, y por tanto $\widehat{A} \subset \widehat{B}$. Reciprocamente: si $\widehat{A} \subset \widehat{B}$ es $\Pi(\widehat{A} \{0\}) = A \subset B = \Pi(\widehat{B} \neq \{0\})$.
- ii) Como A CA+B y B CA+B, por i) se tiene cÂ+B y B cÂ+B, por tanto Â+B cÂ+B.

Por otra parte $P(\hat{A}+\hat{B})$ contiene a $P(\hat{A})=A$ y a $P(\hat{B})=B$, por tanto $P(\hat{A}+\hat{B})$ contiene a $A+B=P(\hat{A}+B)$, es decir, $\hat{A}+\hat{B}>\hat{A}+B$.

Las demás afirmaciones se deducen del hecho de ser \wedge biyectiva y $P = \wedge^{-1}$

2.2.5 Corolario

 $(GP(E), +, \cap)$ es un retículo isomorfo (según la aplicación \wedge) al reticulo (gL(Ê),+, ∩) de subespacios vectoriales de E.

Consideremos ahora el espacio proyectivo afin $\tilde{X} = (\tilde{X}, \hat{X}, 77)$ con la familia de sus subespacios proyectivo-afines A(X):

2.2.6 Proposición

La aplicación $\sim : A(X) \rightarrow A \mapsto \widetilde{A} \in A(\widetilde{X})$ es una aplicación biyectiva, y se verifica para A,B & SA(X):

- i) Si $A \cap B \neq \emptyset$ entonces $\widetilde{A \cap B} = \widetilde{A} \cap \widetilde{B}$, $y \bowtie_{A \cap R} = \bowtie_{A} \cap \bowtie_{B}$.
- ii) A ⊂ B ← A ← B
- iii) $\widetilde{A+B} = \widetilde{A} + \widetilde{B}$

Demostración

La biyectividad de la aplicación ~ es evidente.

i) Si $A \cap B \neq \emptyset$ entonces por . . (Cap) es $\overrightarrow{A \cap B} = \overrightarrow{A \cap B}$, y se tiene:

$$\widehat{A \cap B} = (A \cap B) \cup \omega_{\widehat{A} \cap B} = (A \cap B) (\omega_{\widehat{A}} \cap \omega_{\widehat{B}}) = (A \cup \omega_{\widehat{A}}) \cap (B \cup \omega_{\widehat{B}}) = \widetilde{A} \cap \widetilde{B}.$$

- ii) A < B (Â) Â (B (P (Â) < P (Ê)) Ã C B .
- iii) es consecuencia de ii)

2.2.7 Observación

Para un espacio afin X de dimensión > 1, la familia $\mathcal{G}A(X)$ con las operaciones + y \cap no tiene estructura de retículo. Así por ejemplo dos rectas paralelas se cortan en un punto del infinito que no es subespacio proyectivo-afin

2.3 Fórmulas de dimensión

Si A es subespacio del espacio proyectivo E , y la dimensión de A es finita, entonces dim A = dim \widehat{A} -1, es decir dim $P(\widehat{A})$ =dim \widehat{A} -1 para cada subespacio vectorial de E. Este hecho y el teorema 2.2.4 permiten establecer trivialmente el siguiente resultado:

2.3.1 Teorema

Si A y B son subespacios proyectivos de E con dimensión finita, entonces el subespacio A+B tiene dimensión finita, y se verifica:

$$\dim(A+B) = \dim A + \dim B - \dim(A \cap B)$$

Demostración

Sea A=P(\widehat{A}), B=P(\widehat{B}). Por la fórmula de dimensiones para subespacios vectoriales (4.3 Cap I) se tiene $\dim(\widehat{A} + \widehat{B}) = \dim\widehat{A} + \dim\widehat{B} - \dim(\widehat{A} \cap \widehat{B})$, por tanto: $\dim(A+B) = \dim(P(\widehat{A}) + P(\widehat{B})) = \dim(P(\widehat{A} + \widehat{B})) = \dim(\widehat{A} + \widehat{B}) - 1 = (\dim \widehat{A} - 1) + (\dim \widehat{B} - 1) - 1$ $-(\dim(\widehat{A} \cap \widehat{B})-1)=\dim A + \dim B - \dim(A \cap B)$.

- a) Si dim E = n , dim A = p ,dim B = q y dim $(A \cap B)$ = r entonces: $\max(-1, p+q-n) \leq r \leq \min(p,q) \qquad (1)$
- b) Reciprocamente, si p , q son números entros con $-1 \le p \le n$, $-1 \le q \le n$, y E es espacio proyectivo n-dimensional, entonces para cada entero n verificando las desigualdades (1) , existen A y B subespacios proyectivos de E tales que dim A = p dim B = q , y dim $(A \cap B)$ = r.

La demostración es evidente del resultado análogo (4.3.3 ^Cap I) para subespacios vectoriales.

2.3.3 Observación

La formula de dimensiones 2.3.1 para subespacios proyectivos, contiene implicitamente la correspondiente fórmula para subespacios de un espacio afin: Si A,B son subespacios del espacio afin X con $A \cap B = \emptyset$, entonces $\widetilde{A} \cap \widetilde{B} = P(\overrightarrow{A}) \cap P(\overrightarrow{B}) = P(\overrightarrow{A} \cap B)$, y $\dim(\widetilde{A} \cap B) = \dim(\widetilde{A} \cap B)$

Cuando A∩B ≠ Ø la fórmula se deduce trivialmente de 2.2.6 i)

3. CORRESPONDENCIAS ENTRE ESPACIOS PROYECTIVOS

$$E=(E,\widehat{E},\Pi)$$
, $E'=(E',\widehat{E}',\Pi')$ denotan espacios proyectivos sobre los cuerpos K y K'respectivamente.

Las técnicas de traducción proyectiva de elementos de la geometría vectorial, y de extensión proyectiva de elementos de la geometria afin, utilizados en epígrafe anterior, se desarrollan ahora en forma paralela para el estudio de las correspondencias naturales entre espacios proyectivos.

3.1 Conceptos preliminares

Sea $\hat{f}: \hat{E} \to \hat{E}'$ una aplicación semilineal con núcleo ker $\hat{f}=\hat{N} \neq \hat{E}$. Si $\hat{x} \in \hat{E} \to \hat{R}$ entonces \hat{f} transforma la recta vectorial $[\hat{x}]$ en la recta vectorial $[\hat{f}(\hat{x})]$, e induce por tanto una aplicación natural $f:P(\hat{E})-P(\hat{N}) \ni [\hat{x}] \mapsto [\hat{f}(\hat{x})] \in P(\hat{E}')$. Esto motiva la siguiente definición

3.1.1 Definición

Sea N =P(\hat{N}) subespacio proyectivo de E (N/E). Una correspondencia semilineal proyectiva de E en E' con centro N, es una aplicación f:E-N-E' tal que existe $\hat{f}:E \mapsto E'$ aplicación semilineal con ker $\hat{f}=\hat{N}$ de forma que el diagrama:

todo(x) c= N.

.1.2 Definición

En las mismas se condiciones de 3.1.1 :

- a) Si N=9 se llama a f aplicación semilineal proyectiva. Nótese que en este caso es $\hat{N}=\{0\}=\ker \hat{f}$, y por tanto f:E \longrightarrow E´ es una aplicación inyectiva.
- b) Una aplicación semilineal proyectiva y suprayectiva, se demomina semihomografía.

Obviamente se suprimirá el prefijo "semi" cuando f sea lineal.

- c) En particular las homografías de E en si mismo se denominan transformaciones proyectivas
- d) Si escribimos $\Pi(\hat{f})=f$, entonces Π define una aplicación de $FL(\hat{E},\hat{E}')=\{0\}$ en el conjunto de correspondencias proyectivas de E en E' que denotamos por CP(E,E').

.1.3 Ejemplos

a) Si E es un espacio vectorial tridimensional, y f:Ê→Ê es una proyección vectorial con base el plano R y dirección la recta Ñ,entonces N=P(Ñ) es un punto de P(E), y R=P(R) es una recta proyectiva. La aplicación f=∏(f) de E-N en E transforma cada punto x ∈E-N en ⟨N,x⟩∩R.

Se trata de la proyección cónica de centro

Se trata de la proyección cónica de centro N y base R. Más adelante haremos un estudio general de éste tipo de correspondencias.

$$\begin{pmatrix} x_0' \\ \vdots \\ x_n' \end{pmatrix} = \begin{pmatrix} \hat{A} \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$$
 siempre que $A \begin{pmatrix} x_0 \\ x_n \end{pmatrix}$ sea no nulo.

Probaremos que el conjunto CP(E,E') de correspondencias proyectivas de E en E' tiene estructura natural de espacio proyectivo:

2.1.4 Teorema

a) Si $f: \hat{E} \to \hat{E}'$ es aplicación lineal no nula, entonces para todo $A \in K - 0$ es $\Pi(A \hat{f}) = \Pi(\hat{f})$.

b) Recíprocamente, si $\varphi, \varphi \in FL(\hat{E}, \hat{E}')$ verifican $\Pi(\varphi) = \Pi(\varphi)$ entonces existe $\lambda \in K-i0$ tal que $\psi = \lambda \varphi$.

Demostración:

- a) Claramente es ker $\hat{f} = \ker(\lambda \hat{f})$, y para cada $\hat{x} \in \hat{E} \hat{N}$ se verifica $\left[\hat{f}(\hat{x})\right] = \left[\lambda \hat{f}(\hat{x})\right] = \left[(\lambda \hat{f})(\hat{x})\right]$. Esto prueba la afirmación.
- b) Por hipótesis ker φ =ker φ = \hat{N} , y para todo $\hat{x} \in \hat{E} \hat{N}$ se verifica: $[\varphi(\hat{x})] = [\varphi(\hat{x})]$, es decir, $\varphi(\hat{x}) = \lambda_{\hat{x}} \varphi(\hat{x})$ para cierto $\lambda_{\hat{x}} \in K \to 0$. Se probará que $\lambda_{\hat{x}} = \lambda \in K \to 0$ para todo $\hat{x} \in \hat{E} \hat{N}$. En efecto, sea \hat{M} un complementario en \hat{E} de \hat{N} , es decir, $\hat{E} = \hat{N} \oplus \hat{M}$. Si $\hat{x}, \hat{y} \in \hat{M} \{0\}$, llamando $\hat{X} = \lambda_{\hat{x}}$, $\hat{\beta} = \lambda_{\hat{y}}$, es facil probar que $\hat{X} = \hat{\beta}$ si (\hat{x}, \hat{y}) es l.d. .Cuando (\hat{x}, \hat{y}) es l.i , se verifica que $(\varphi(\hat{x}), \varphi(\hat{y}))$ es l.i (pues si $0 = \hat{\beta} = \hat{\beta} = \hat{\beta}$) $\hat{y} = \hat{y} =$

.1.5 Observación

El teorema 3.1.4 admite una versión obvia para correspondencias semilineales proyectivas, cuyo enunciado y demostración dejamos al lector como ejercicio. El siguiente resultado es inmediato a partir de 3.1.4

fica $\psi(\hat{\mathbf{x}}) = \psi(\hat{\mathbf{n}}) + \psi(\hat{\mathbf{m}}) = 0 + \lambda \varphi(\hat{\mathbf{m}}) = \lambda \varphi(\hat{\mathbf{n}} + \hat{\mathbf{m}}) = \lambda \varphi(\hat{\mathbf{x}})$.

..... Corolario

La aplicación $\forall : FL(\hat{E}, \hat{E}') - \{0\} \rightarrow CP(E, E')$ define en CP(E, E') una estructura de espacio proyectivo.

Identificando como en 1.2.4 f con $\Pi^{-1}(f) \vee (0)$, para $f \in CP(E,E')$, podemos escribir $f = [\hat{f}]$ donde $\Pi(\hat{f}) = f$, y así puede establecerse la fórmula general: $[f][\hat{x}] = [\hat{f}(\hat{x})]$ que refleja todo el contenido de 3.1 , si se utiliza el convenio 1.1.5

3.2 Correspondencias proyectivas y subespacios

 $f = \{\hat{f}\}$ denota una correspondencia semilineal proyectiva con centro $N = P(\hat{N})$, entre los espacios proyectivos E y E'.

- a) Si A es un subespacio proyectivo de E no contenido en N, se llama imagen por f de A, y se denota por f(A) al conjunto $\{f(x) \mid x \in A-N\}$. Si A \in N escribimos $f(A) = \emptyset$.
- b) Si A' es subespacio proyectivo de '', se denomina imagen inversa por f de A', y se denota per $f^{-1}(A')$ al conjunte $\{x \in E \mid f(x) \in A', 6 \mid x \in N \}$. Prebaremos que f(A) y $f^{-1}(A')$ son subespacios proyectivos.

3.2.2 Teorema

Sean A y A'subespacios proyectivos de E y E' respectivamente. Entonces:

- 1) f(A) es subespacio proyectivo de E' y $\widehat{f(A)}=\widehat{f}(\widehat{A})$. Además si $f(A)\neq\emptyset$, la aplicación $f/A:A-(A\cap N)\ni x \mapsto f(x)$ f(A) es correspondencia proyectiva de A en f(A) con centro $A\cap N$, y $f/A=[\widehat{f}/\widehat{A}]$.
- 2) $f^{-1}(A^{r})$ es subespacio proyectivo de E, y $\widehat{f^{-1}(A^{r})}=\widehat{f^{-1}}(\widehat{A}^{r})$

Demostración:

Teniendo en cuenta la conmutatividad del diagrama de abajo, se tiene:

$$E - N \longrightarrow E'$$

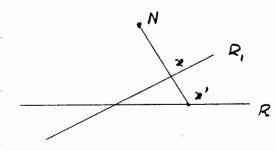
$$\widehat{E} - \widehat{N} \longrightarrow \widehat{E}' - \{o\}$$
1) $\pi^{-1}(f(A)) \cup \{o\} = \pi^{-1}(f(A-N)) \cup \{o\} = \widehat{f}(\pi^{-1}(A-N)) \cup \{o\} = \widehat{f}(\pi^{-1}(A) - \pi^{-1}(N)) \cup \{o\} = \widehat{f}(\widehat{A} - \widehat{N}) \cup \{o\} = f(\widehat{A} - \widehat{N}) \cup \widehat{f}(\widehat{N}) = \widehat{f}(\widehat{A}).$ Además $\ker(\widehat{f}/\widehat{A}) = \widehat{N} \cap \widehat{A}$ y f/A verifica la conmutatividad del diagrama: $A - N \cap A \longrightarrow f/A$

$$\widehat{\pi}_{A} \cap \widehat{A} \longrightarrow \widehat{f}(\widehat{A}) - \widehat{f}(\widehat{A})$$

$$\widehat{\pi}_{A} \cap \widehat{A} \longrightarrow \widehat{f}(\widehat{A}) - \widehat{f}(\widehat{A})$$

2)
$$\exists f^{-1}(f^{-1}(A')) \cup \{0\} = \exists f^{-1}(f^{-1}(A') \cup N) \cup \{0\} = \exists f^{-1}(f^{-1}(A')) \cup \widehat{N} = \widehat{f}^{-1}(A') \cup \widehat{N} = \widehat{f}^{-1}(\widehat{A}' - \{0\}) \cup \widehat{f}^{-1}(\widehat{A}')$$

3.2.3 Comentarie



Si $A \cap N = \emptyset$ la aplicación $f/A:A \mapsto f(A)$ es una semihomografía. Así en el ejemple 3.1.3, la proyección cónica en el plano proyectivo de centro el punto N y base la recta R, induce homografías de R_1 en R para cualquier recta R_1 que no pase por el punto N.

3.2.4 Corelarie

Si E es de dimensión finita, entences dim f(E) +dim $N = \dim E - 1$.

Demestración:

Es consecuencia de la fórmula dim (im \hat{f})+dim Ker (\hat{f}) =dim \hat{E} , y de 3.2.2 3.2.5 Proposición

a) Si A y B son subespacios proyectives de E, entences f(A+B)=f(A)+f(B)

c) Si $(a_1, ..., a_r)$ es un sistema de puntos de E, entonces $f(\langle a_1, ..., a_r \rangle) = \langle f(a_1), ..., f(a_r) \rangle$ en donde se sobrentiende que si $a_i \in \mathbb{N}$, es $f(a_i) = \emptyset$.

Demostración:

- a) $f(A+B)=\hat{f}(\hat{A}+\hat{B})=\hat{f}(\hat{A}+\hat{B})=\hat{f}(\hat{A})+\hat{f}(\hat{B})=\hat{f}(A)+\hat{f}(B)$. El resultado se obtiene por la biyectividad de \wedge .
- b) Se prueba de forma análoga
- c) Por inducción se prueba trivialmente a partir de a) que para A_i subespacios de E , es $f(A_1 + \dots + A_r) = f(A_1) + \dots + f(A_r)$. Tomando $A_i = a_i$ se obtiene la conclusión buscada.

3.2.5 Observación

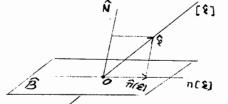
En particular se deduce que una semihomografía transforma rectas proyectivas en rectas proyectivas. La afirmación recíproca es en general cierta y constituye el segundo teorema fundamental de la geometrá proyectiva.

.2.6 Proyecciones cónicas

Sean B y N dos subespacios complementarios de E, es decir, B+N=E y B \cap N = \emptyset .

Para cada $x \in E-N$, por el teorema de incidencia 2.3.1 se ve que $(x+N) \cap B$ es un punto de E. La aplicación $\forall r: E-N \ni x \longmapsto (x+N) \in B \subseteq E$ define una correspondencia proyectiva en E que denominamos proyección cónica de centro N y bas B. Em efecto:

Las condiciones B+N=E y $B \cap N = \emptyset$ se traducen vectorialmente en la fórmula $B \oplus N=E$. Sea $\widehat{\pi} : \widehat{E} \longrightarrow \widehat{E}$ la proyección vectorial sobre B con di-



rection N . Probaremos que $\Pi = [\hat{\Pi}]$. Si $x = [\hat{x}] \in E - N$, es $\widehat{\Pi}(\hat{x}) \in ([\hat{x}] \oplus \widehat{N}) \cap \widehat{B}$, $y [\widehat{\Pi}(\hat{x})] \in P(([\hat{x}] \oplus \widehat{N}) \cap \widehat{B}) = (x+N) \cap B = \Pi(x)$.

3.3 Extensión proyectiva de aplicaciones semiafines

3.3.1 Definición

Sea $f: X \longrightarrow X'$ una aplicación semiafin. Una correspondencia semilineal proyectiva \widehat{f} de \widehat{X} en \widehat{X}' se denomina extensión proyectiva de f, si $\widehat{f}/X=f: X \longrightarrow X'$.

3.3.2 Teorema

Dada la aplicación semiafin $f:X \longrightarrow X'$ existe una única extensión proyectiva \widetilde{f} para f. Por otra parte se verifica:

- i) $f/_{\omega_{\nu}} = \lfloor f \rfloor$ si f no es constante
- ii) Si \hat{f} es constante , el centro de f es ∞_{χ} iii) $f=(\hat{f}]$ siendo $\hat{f}:\hat{\chi}\to\hat{\chi}$ la extensión vectorial de la aplicación semifin f.

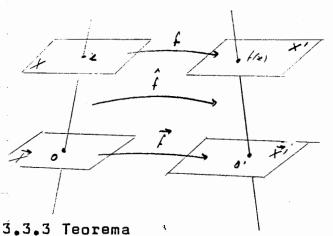
Demostración:

Sea $\vec{N}=\ker \vec{f}$, $N=P(\vec{N})$. Supóngase que existe la extensión proyectiva \hat{f} de f , y probemos que \widehat{f}/\bigotimes_x queda univocamente determinada por \widehat{f} . Sea $\alpha \in \omega_X$ y R una recta afin de X con dirección $R = \alpha$;

- a) Si ♥ ∉ N entonces f(R) es una recta afin de X´con dirección $f(R) = \hat{f}(R) = \alpha'$ y $\alpha' = [\hat{f}](\alpha)$. Por otra parte $\hat{f}(R) = \hat{f}(R \cup \{\alpha\}) = \alpha'$ $=f(R)\cup\{\widetilde{f}(\alpha)\}$ es una recta proyectiva de X´ que tiene al menos dos puntos comunes distintos con la recta proyectiva $\widetilde{f(R)}=f(R)\cup\{\alpha'\}$. Por tanto $\hat{f}(\hat{R}) = \hat{f}(\hat{R})$ y $\propto = [\hat{f}](\approx) = \hat{f}(\approx)$.
- b)Si $w \in \mathbb{N}$, y a $\in \mathbb{R}$ entonces $f(\mathbb{R})$ consta de un único punto f(a), by $\hat{f}(\hat{R}) = f(R \cup \{\alpha\}) = f(a) \cup \{\hat{f}(\alpha)\}$ es subespacio proyectivo de X. Como no existen subespacios proyectivos formados solo por dos puntos, se concluye que ó bien $f(a)=\hat{f}(\triangle)$ ó bien $\hat{f}(\triangle)=\emptyset$. Probemos que solo ésta posibilidad es factible:

Si $\widehat{f}(x) \neq \emptyset$, el razonamiento anterior sirve para probar que $f(x) = \widehat{f}(x) \in \emptyset$ \(\) \($N=\ker f=\overline{X}$, y f(X) es un único punto de X. Por 3.2.4 el centro M de \widetilde{f} es un hiperplande \widetilde{X} , y está contenido en $\boldsymbol{\bowtie}_{\widetilde{X}}$ (ya que f está de-€inida en todos los puntos de X) por tanto $M= \bigotimes_{X} = N$ y $f(\bigotimes) = \emptyset$: Esto prueba la unicidad de f , y los apartados i) y ii) del teorema.

Para concluir la demostración es suficiente probar que $\mathcal{L}\mathbf{\hat{f}}$] es una ex-



tensión proyectiva de f:

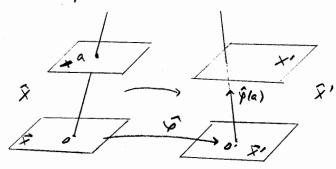
Para cada $x \in X$ (identificando x con [x]) se verifica: $[\hat{f}]([x]) = [\hat{f}(x)] = [f(x)] = f(x)$.

El siguiente resultado es una caracterización de las correspondencias semilineales proyectivas que son extensión proyectiva de aplicaciones semiafines:

Si arphi es una correspondencia semilineal proyectiva de $\widehat{\mathtt{X}}$ en $\widehat{\mathtt{X}}$ tal que φ (\sim_{X})< \sim_{X} y φ (X) $\not\leftarrow$ \sim_{X} , entonces existe f (única) aplicación semiafin de X en X´ tal que $\tilde{f} = \varphi$.

Demostración:

Sea $\varphi = [\hat{\varphi}]$, $\hat{\varphi} : \hat{x} \longrightarrow \hat{x}'$ semilineal. La condición $\Psi(\bowtie_X) \subset \bowtie_{X'}$ implica que $\hat{\varphi}(\vec{x}) \subset \vec{x}'$, y la condición $\Psi(x) \not\leftarrow \bowtie_{X'}$ permite concluir que existe



a $\in X$ tal que $\hat{\varphi}(a) \notin \vec{X}'$; Multiplicancando $\hat{\varphi}$ por una constante adecuada $(\lambda' = \frac{1}{ms'}(\hat{\varphi}(a)))$ podemos suponer que $\hat{\varphi}(a) \in X' \text{ manteniendo la igualdad}$ $\varphi = [\hat{\varphi}] \cdot \text{Para cada } x \in X \text{ se tiene:}$ $\hat{\varphi}(x) = \hat{\varphi}(a + \vec{a}x) = \hat{\varphi}(a) + \hat{\varphi}(\vec{a}x) \in X'.$

Así $\varphi(X) \subset X'$ y por . . $\widehat{\varphi}/X = f: X \longrightarrow X'$ es aplicación semiafin con extensión vectorial $\widehat{\varphi}$. Por 3.3.2 iii) es $\widehat{f} = [\widehat{\varphi}]$.

3.3.4 Proposición

Si $f:X \longrightarrow X'$ es aplicación semiafin , A subespacio afin de X y A'subespacio afin de X'se verifica:

i)
$$\widetilde{f(A)} = \widetilde{f}(\widetilde{A})$$

ii)
$$\widetilde{f^{-1}(A')} = \widetilde{f^{-1}(\widetilde{A'})}$$

Demostración:

i) Teniendo en cuenta que $\widehat{f} = \widehat{f}$ y $\widehat{A} = \widehat{A}$ se tiene: $\widehat{f(A)} = \widehat{f(A)} = \widehat{f(\widehat{A})} = \widehat{\widehat{f}(\widehat{A})} = \widehat{\widehat{f}(\widehat{A})}$, y así $\widehat{f(A)} = \widehat{\widehat{f}(\widehat{A})}$.

La demostración de ii) es análoga.

3.4 Composición de correspondencias semilineales proyectivas

Sean f y g correspondencias semilineales proyectivas de centros respectivos N y N', f:E-N \rightarrow E', g:E'-N' \rightarrow E'. Se verifica el siguiente resultado:

.4.1 Teorema

Si $f^{-1}(N') \neq E$ entonces la composición de aplicaciones g.f define una correspondencia semilineal proyectiva de E en E' con centro $f^{-1}(N')$. Además si $f=[\hat{f}]$, $g=[\hat{g}]$ se verifica g. $f=[\hat{g}.\hat{f}]$.

Demostración:

Notese que $\widehat{g} \cdot \widehat{f}(\widehat{x}) = 0 \iff \widehat{f}(\widehat{x}) \in \widehat{N} \iff \widehat{x} \in \widehat{f}^{-1}(\widehat{N}') = \widehat{f}^{-1}(\widehat{N}')$, y se tiene para $x = [\widehat{x}] \in E - f^{-1}(\widehat{N}')$:

 $(g.f)(x)=g(\left[\hat{f}(\hat{x})\right])=\left[(\hat{g}.\hat{f})(\hat{x})\right] \text{ y as } \text{ g.f}=\left[\hat{g}.\hat{f}\right] \text{es correspondencia semilineal proyectiva.}$

Los resultados que siguen tienen ya demostración casi inmediata

4.2 Corolario

i) La composición de aplicaciones (semilineales) proyectivas, es apli-

cación (semilineal) proyectiva.

- ii) La composición de (semi)homografías es (semi)homografía.
- 3.4.3 Corolario

El conjunto GP(E) de transformaciones proyectivas de un espacio proyectivo E , tiene estructura de grupo respecto a la composición de aplicaciones. El operador $[]:GL(\hat{E})\ni \hat{F} \longrightarrow [\hat{f}] \in GP(E)$ es un homomorfismo suprayectivo de grupos cuyo núcleo es el subgrupo $Z(\hat{E})$ de homotécias vectoriales de E.

.4.4 Corolario

Sean $f: X \longrightarrow X'$ $g: X \longrightarrow X''$ aplicaciones semiafines. Entonces $\widehat{g}_{\bullet}f = \widehat{g}_{\bullet}\widehat{f}$ Demostración $\widehat{g}_{\bullet}f = [\widehat{g}_{\bullet}\widehat{f}] = [\widehat{g}]_{\bullet}[\widehat{f}] = \widehat{g}_{\bullet}\widehat{f}$

~.4.5 Corolario

Demostración

Es consecuencia inmediata de 3.4.4 y 3.3.3

- 3.4.6 Observaciones
 - a) El grupo proyectivo GP(E) establece una actuación natural sobre el conjunto ς P(E) $^{\rm r}$ de r-étuplas ordenadas de subespacios.

Un invariante completo de la clasificación para r=l es la dimensión.

Para r=2 las diferentes clases describen las posibles posiciones relativas entre dos subespacios descritas ya en 2.3.2. Estas afirmaciones se deducen de forma inmediata a partir de ... (Cap)

b) La geometría proyectivo afin de un espacio afin X viene definida por el grupo $GA(\widetilde{X})$ subgrupo de $GP(\widetilde{X})$. En virtud de 3.4.5 , la geometría proyectivo afin es la propia geometría afin mirada desde un punto de vista proyectivo. Todos los teoremas y conceptos de la geometría afin desarrollados en la sección precedente, tienen una traducción precisa en el lenguaje proyectivo afín.

Por otra parte en \widetilde{X} puede hablarse de propiedades ó conceptos afines(invariantes por $GA(\widetilde{X})$) y proyectivos (invariantes por $GP(\widetilde{X})$). La razón simple es un ejemplo de concepto afín no proyectivo. El concepto de subespacio es proyectivo (y por tanto afín)

Trittal All Control of Grant Control of Cont

Los sistemas de coordenadas homogeneos permiten representar en forma analítica los elementos de la geometría proyectiva de un espacio abstracto de dimensión finita n,y describirlos como elementos de la geometria proyectiva de los modelos analíticos Pn(K).

Estos sistemas de coordenadas deducidos inicialmente a partir de bases vectoriales, se pueden obtener a través de ciertos sistemas de puntos denominados sistemas de referencia proyectivos, que desempeñan en geometría proyectiva el mismo papel que los sistemas de referencia afin en geometría afin. A partir de aquí se establece de forma natural una versión proyectiva del primer teorema fundamental, que aplicado al caso de rectas proyectivas da lugar al invariante razón doble que es caracteristico de una estructura proyectiva.

Por otra parte, los sitemas de coordenadas naturales en un espacio afin dan lugar a sistemas de coordenadas homogeneos sobre su extensión proyectiva, y establecen la geometría analítica proyectivo afin , que será desarrollada en forma paralela a lo largo del capitulo.

E=(E,E, \cap) denota un espacio proyectivo, y X=(X, \otimes_X) un espacio proyectivo afin, ambos definidos sobre el cuerpo K, y de dimensión finita n.

1. SISTEMAS HOMOGENEOS DE COORDENADAS

1.1 Coordenadas homogeneas inducidas por una base vectorial

Sea
$$\hat{\mathcal{E}} = (\hat{e}_0, ... \hat{e}_n)$$
 base vectorial de \hat{E} , y $\hat{h} = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} : \hat{E} \ni \hat{e} \mapsto \begin{pmatrix} x_0 (\hat{e}) \\ \vdots \\ x_n (\hat{e}) \end{pmatrix} \in \hat{A}_n(K)$

el isomorfismo de cocordenadas definido por la igualdad:

$$\hat{e} = \sum_{i=0}^{\infty} x_i(\hat{e})\hat{e}_i$$
 para $\hat{e} \in \hat{E}$

.l.l Definición

A la homografía
$$h = \{\hat{h}\} = \{\hat{x}_0 \\ \hat{x}_n\}$$
: $E \mapsto P_n(K)$ se denomina sistema de coor-

denadas homogéneas inducido en E por la base vectorial $\widehat{\mathcal{E}}$

.1.2 Observación

De la definición anterior se deduce inmediatamente la siguiente equivalencia para cada e E:

$$h (\theta) = \begin{bmatrix} \lambda_0 \\ \lambda_n \end{bmatrix} \Leftrightarrow \theta = \begin{bmatrix} \lambda_0 \theta_0 + \dots + \lambda_n \theta_n \end{bmatrix}$$

Sean $\hat{\mathcal{E}} = (\hat{e}_0, \dots, \hat{e}_n)$ $\hat{\mathcal{E}}' = (\hat{e}_0, \dots, \hat{e}_n')$ dos bases de \hat{E} . Entonces , los sistemas de coordenadas homogéneas h y h' inducidos por $\hat{\mathcal{E}}$ y $\hat{\mathcal{E}}'$ coinciden si y solo si existe $\lambda \in K - \langle 0 \rangle$ tal que $\hat{\mathcal{E}}' = \lambda \hat{\mathcal{E}}$ (es decir $\hat{e}_i' = \lambda \hat{e}_i$ para $i = 0, \dots, n$)

Demostración

Si $\hat{z}'=\lambda$ $\hat{\epsilon}$ para $\lambda \neq 0$ entonces $\lambda \hat{h}'=\hat{h}$, y h= $(\hat{h})=[\lambda \hat{h}']=[h]=h'$. Reciprocamente: si h=h' por 3.1.4 (Cap VIII) se deduce que existe $\lambda \neq 0$ tal que $\hat{h}=\lambda \hat{h}'$. En particular se tiene, $\hat{h}(\hat{e}_{\hat{i}}')=\lambda \hat{h}'(\hat{e}_{\hat{i}}')=$

$$= \lambda \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} = \begin{pmatrix} 0 \\ \lambda \\ 0 \end{pmatrix} \text{ as decir } \hat{e}_{i} = \lambda \hat{e}_{i} \text{ para cada } i=0,...,n.$$

1.1.4 Observación

Si $\hat{\mathcal{E}}$ es base de $\hat{\mathcal{E}}$, se escribe $\hat{\mathcal{E}} = \{\hat{\mathcal{E}}\} = \{\hat{\mathcal{A}}\hat{\mathcal{E}}/\hat{\mathcal{A}} \in K - \{0\}\}$. Por la proposición anterior, cada $\hat{\mathcal{E}}$ se corresponde biunívocamente con un sistema de coordenadas homogéneas.

1.1.5 Ejemplo

La base canónica $\hat{\delta} = (\hat{\mathbf{I}}_0, \dots, \hat{\mathbf{I}}_n)$ de \hat{A}_n da lugar a un sistema de coordenadas homogéneas $h: P_n \longrightarrow P_n$ tal que $h \begin{bmatrix} \lambda_0 \\ \lambda_u \end{bmatrix} = \begin{bmatrix} \lambda_0 \\ \lambda_u \end{bmatrix}$ para todo $\begin{bmatrix} \lambda_0 \\ \lambda_u \end{bmatrix} \in P_n$

.1.6 Coordenadas homogéneas cartesianas

Un sistema de referencia afin $\widehat{\mathcal{E}} = (e_0, e_1, \dots, e_n)$ en el espacio afin X con coordenadas cartesianas: $h = \begin{pmatrix} 1 \\ x_1 \\ x_n \end{pmatrix} : X \longrightarrow A_n$

induce un sistema de coordenadas (cartesianas) homogéneas $\hat{h} = \begin{bmatrix} x_0 \\ x_n \end{bmatrix}$ en X, ya que $\hat{\mathcal{E}}$ es base de \hat{X} . \hat{h} es justamente la extensión proyectiva del isomorfismo afin h, y se tiene:

Si $a \in X$ $h(a) = \begin{bmatrix} \lambda_0 \\ \lambda_n \end{bmatrix} \Leftrightarrow a = \begin{bmatrix} \lambda_0 e_0 + \lambda_1 e_1 + \dots + \lambda_n e_n \end{bmatrix} = e_0 + \frac{\lambda_1}{\lambda_0} e_1 + \dots + \frac{\lambda_n}{\lambda_0} e_n$ Si $\alpha \in X$ $h(\alpha) = \begin{bmatrix} \lambda_1 \\ \lambda_n \end{bmatrix} \Leftrightarrow \alpha = \begin{bmatrix} \lambda_1 e_1 + \dots + \lambda_n e_n \end{bmatrix}$

Por tanto $X_i = \frac{x_i}{x_0}$ para $i=1,\ldots,n$ para puntos del espacio afín X.

Al fijar el sistema de coordenadas homogéneas cartesianas podemos pasar a trabajar (por medio de $h: X \to A_n$) sobre el modelo analítico A_n .

1.1.7 Coordenadas homogéneas baricentricas Sea $\mathcal{E} = (e_0, \dots, e_n)$ un sistema de referencia afin sobre el aspacio X con coordenadas baricéntricas $h = \begin{pmatrix} X_0 \\ X_n \end{pmatrix} : X \longrightarrow B_n \quad (véase ... (Cap))$

Como \mathcal{E} es base de \hat{X} , induce un sistema $\begin{bmatrix} x \end{bmatrix} = \hat{h} : \hat{X} \rightarrow \hat{B}_n$ de coordena-

coordenadas viene dada per $X_i = \frac{x_i}{x_i}$ para puntos del espacio afin X_i

das homogéneas (baricéntricas). La relación entre ambos sistemas de

Fijado el sistema de coordenadas homogéneas baricentricas en X podemos pasar a trabajar al modelo baricentrico proyectivo afín $\widehat{B}_n = (\widehat{B}_n, \infty_B)$ $B_{n} = \left\{ \begin{pmatrix} X_{0} \\ Y_{-} \end{pmatrix} : \underbrace{Z}_{i} X_{i} = 1 \right\} = \left\{ \begin{pmatrix} X_{0} \\ \vdots \\ X_{n} \end{pmatrix} : \underbrace{Z}_{i} X_{i} \neq 0 \right\}$

$$\widetilde{B}_{n} = \left\{ \begin{bmatrix} x_{0} \\ \vdots \\ x_{n} \end{bmatrix} : x_{i} \in \mathbb{K} \right\} , \quad \bowtie \quad \underset{B_{n}}{=} \left\{ \begin{bmatrix} x_{0} \\ x_{n} \end{bmatrix} : \sum_{i=0}^{n} x_{i} = 0 \right\}$$

1.2 Dependencia e independencia proyectiva

1.2.1 Definición

-) Sea $\xi = (e_0, \dots, e_r)$ un sistema de puntos de E
- a) Se dice que el punto e ϵ E depende proyectivamente de ϵ si e ϵ ϵ se escribe entonces e d.p 8.
- b) El sistema $\mathcal E$ se dice proyectivamente dependiente , si existe $e \in \mathbb{Z}$ tal que e d.p $(\mathcal{E} - (e))$, y escribimos entonces \mathcal{E} p.d
- c) Se dice que el sistema ε es proyectivamente independiente (p.i) si no es proyectivamente dependiente.

La dependencia e independencia proyectiva, está intimamente ligada a la dependencia e independencia vectorial, tel como se indica a continuación:

..2.2 Teorema

Sea $\xi = (e_0, \dots, e_r)$ un sistema de puntos de E. Supóngase $e_i = (\hat{e_i})$ para i=0,...,r y sea $\hat{\xi} = (\hat{e}_n, ..., \hat{e}_r)$. Entonces:

- i) Si e=[ê]∈E se verifica : e d.p ε ⇔ ê d.l ε̂ .
- p.i 1.i

Demostración:

Es inmediata si se tiene en cuenta la igualdad (e,,...,e, = < e,...,e, ...

.2.3 Definición

Un sistema $\xi = (e_1, \dots e_r) \subset E$ se denomina generado**s** de E si se verifica $\langle \mathcal{E} \rangle$ =E . Un sistema generador e independiente, se denomina base (proyectiva) de E.

1.2.4 Teorema

Con las mismas hipótesis de 1.2.2:

- a) & es base de E 👄 🛍 es base de Ê
- b) Todas las bases de E tienen nil puntos un
- c) Es válido un teorema de extensión de bases proyectivas

1.2.5 Corokario

Si $\mathcal E$ es un sistema de puntos en un espacio afin X, las afirmaciomes que siguen son equivalentes:

- i) & es afinmente independiente (en X)
- ii) & es proyectivamente independiente (en X)

Demostración

Observese que ξ a.i en $X \iff \xi$ l.i en $\widehat{X} \iff \xi$ p.i en \widehat{X} .

1.3 Sistemas de referencia proyectivos

.3.1 Definición

Un sistema de puntos $\mathcal{E}=(e_0,\ldots,e_n;e)$ $\subset E$ se llama sistema de referencia proyectivo si cualquier subsistema formado por n‡l puntos de \mathcal{E} es proyectivamente independiente.

El interés de los sistemas de referencia proyectivos radica esencialmente en el hecho de que inducen de forma biunívoca sistemas de coordenadas homogéneas:

1.3.2 Proposición (Definición)

Sea $\hat{\xi} = (\hat{e}_0, \dots, \hat{e}_n)$ una base de \hat{E} , $e_i = [\hat{e}_i]$ para $i = 0, \dots$, $y = e_i = [\hat{e}_i]$ don-de $\hat{e} = \hat{e}_0 + \dots + \hat{e}_n$. Entonces $\hat{\xi} = (e_0, \dots, e_n; e)$ es un sistema de referencia proyectivo de \hat{E} . A \hat{E} se le denomina s.r.p inducido por $\hat{\xi}$ en \hat{E} .

Demostración

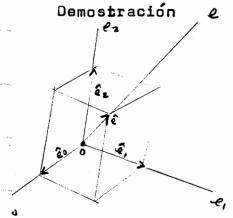
Claramente (e_0, \dots, e_n) es p.i. Probemos por ejemplo que (e_1, \dots, e_n, e) es proyectivamente independiente:

Si
$$\lambda_i \hat{e}_1 + \dots + \lambda_k \hat{e}_n + \lambda_i \hat{e}_n = 0$$
 entonces $\lambda_i \hat{e}_i + \dots + (\lambda_i + \lambda_k) \hat{e}_1 + \dots + (\lambda_i + \lambda_k) \hat{e}_n = 0$, y como $\hat{\epsilon}$ es l.i se concluye que $\lambda_i = 0$ y $\lambda_i = \dots = \lambda_k = 0$

Estableceremos ahora el resultado recíproco

..3.3 Teorema

Si $\mathcal{E} = (\mathbf{e}_0, \dots, \mathbf{e}_n; \mathbf{e})$ es un sistema de referencia proyectivo en E, existe una base $\widehat{\mathcal{E}}$ que induce a \mathcal{E} . Por otra parte dos bases vectoriales $\widehat{\mathcal{E}}$ y $\widehat{\mathcal{E}}'$ inducen el mismo sistema de referencia proyectivo, si y solamente si existe $\lambda \in K = \{0\}$ tal que $\widehat{\mathcal{E}} = \lambda \widehat{\mathcal{E}}$.



Fijemos $\hat{e} \in \hat{E} - \{0\}$ con $e = \{\hat{e}\}$. Como (e_0, \dots, e_n) es p.i, entonces \hat{E} se descompone en suma directa de rectas vectoriales: $E = e_0 \oplus \dots \oplus e_n$, y existen únicos $\hat{e}_i \in e_i$ tales que $\hat{e} = \hat{e}_0 + \dots + \hat{e}_n$. Si algún \hat{e}_j es nulo, el sistema $(\dots \hat{e}_{j-1}, \hat{e}_{j+1}, \dots)$ es l.d, y $(\dots, e_{j-1}, e_{j+1}, \dots)$ es p.d en contradicción con la hipótesis.

Así $\hat{\mathcal{E}} = (\hat{e}_0, \dots, \hat{e}_n)$ es base de \hat{E} que induce el sistema $\hat{\mathcal{E}}$.

Si $\hat{\mathcal{E}}' = (\hat{e}_0', \dots, \hat{e}_n') = \hat{\mathcal{E}}$ para cierto $\lambda \in K - \langle 0 \rangle$, entonces $e_i' = [\hat{e}_i'] = [\lambda \hat{e}_i] = [\hat{e}_i] = e_i$, $y = e' = [\hat{e}_0' + \dots + \hat{e}_n'] = [\lambda (\hat{e}_0 + \dots + \hat{e}_n)] = [\hat{e}] = e$.

Por último, si dos bases \hat{E} y \hat{E}' inducen el mismo sistema de referencia proyectivo $\hat{E} = (e_0, \dots, e_n; e)$ se verifica, $e_i = [\hat{e}_i'] = [\hat{e}_i']$, y = x is the $x \in K - \langle 0 \rangle$ tal que $\hat{e}_i' = \lambda_i \hat{e}_i$ para $i = 0, \dots, n$.

Por otra parte, $\hat{e} = [\hat{e}_0' + \dots + \hat{e}_n'] = [\hat{e}_0' + \dots + \hat{e}_n']$ y existe $\lambda \in K - \langle 0 \rangle$ tal que $\hat{e}_0' + \dots + \hat{e}_n' = \lambda_0 + \dots + \lambda_n = \lambda_0 e_0 + \dots + \lambda_n = n$, y por ser \hat{E} base, es $\lambda = \lambda_0 = \dots = \lambda_n$.

L.3.4 Comentario

En virtud de 1.3.2 y 1.3.3 existe una biyección natural entre los sistemas de referencia proyectivos \mathcal{E} y los elementos de la forma $\left[\hat{\mathcal{E}}\right]$ para $\hat{\mathcal{E}} = (\hat{\mathbf{e}}_0, \dots, \hat{\mathbf{e}}_n)$ base de $\hat{\mathbf{E}}$, y esto permite identificar ambos objetos. Así escribir $\mathcal{E} = \left[\hat{\mathcal{E}}\right]$, significa que $\mathcal{E} = (\mathbf{e}_0, \dots, \mathbf{e}_n; \mathbf{e})$ es el sistema de referencia proyectivo inducido por $\hat{\mathcal{E}}$.

Notese por otra parte que el sistema de coordenadas homogéneas $h = \begin{pmatrix} 0 \\ x_n \end{pmatrix}$ inducido por ξ viene caracterizado por: $h(e_i) = I_i = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}$, $h(e) = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$

.3.5 Teorema

- i) Un sistema de referencia cartesiano $\mathcal{E} = (e_0, \vec{e_1}, \dots, \vec{e_n})$ sobre el espacio afin X, dálugar a un sistema de referencia proyectivo (cartesiano) $[\mathcal{E}] = \mathcal{E} = (e_0, \dots, e_n; e)$, donde $e_i = [\vec{e_i}] \in \mathcal{A}_X$ para $i = 1, \dots, n$, y $e = e_0 + \vec{e_1} + \dots + \vec{e_n}$.
- ii) Reciprocamente, si $\mathcal{E}=(e_0,\dots,e_n;e)$ es un sistema de referencia proyectivo en \widehat{X} tal que $e_0,e\in X$ y $e_1,\dots,e_n\in \mathcal{A}_X$, entonces \mathcal{E} es cartesiano (es decir , existe $\widehat{\mathcal{E}}$ sistema de referencia cartesiano tal que $\mathcal{E}=\widehat{[\mathcal{E}]}$)

i) Es evidente (si se identifica cada punto $x \in X$ con la recta(x).

ii) \vec{X} se descompone en suma de rectas vectoriales de la forma, $\vec{X} = e_1 \oplus \dots \oplus e_n$, y por tanto existen $\vec{e}_i \in e_i$ $i = 1, \dots, n$ tales que $\vec{e}_i = \vec{e}_1 + \dots + \vec{e}_n$, es decir $\vec{e}_i = e_0 + \vec{e}_1 + \dots + \vec{e}_n$, y necesariamente cada \vec{e}_i es no nulo, pues caso contrario \vec{e} no sería sistema de referencia proyectivo. $\vec{\xi} = (e_1, e_1, \dots, e_n)$ es el sistema de referencia buscado, que eviden-

1.3.6 Teorema

Sea $\hat{\mathcal{E}} = (e_0, \dots, e_n)$ un sistema de referencia afín en el espacio afin X. Se verifica entonces que $\mathcal{E} = [\hat{\mathcal{E}}] = (e_0, \dots, e_n; e) \in X$, siendo $e = \frac{\hat{\mathcal{E}}}{n+1} e_i$ el baricentro de (e_0, \dots, e_n) (se supone K de caracteristica distinta de n+1)

Demostración:

Notese que
$$e = \left[e_0 + \dots + e_n\right] = \left[\frac{1}{n+1}(e_0 + \dots + e_n)\right] = \sum_{i=0}^{n+1} \frac{1}{n+1} e_i$$

- 2. GEOMETRIA ANALITICA PROYECTIVA
- 2.1 Ecuaciones de correspondencias proyectivas. Primer Teorema Fundamental.

 Aunque el desarrolo de éste parágrafo puede hacerse para el caso semilineal, nos ceñiremos por razones de claridad al caso lineal. De cualquier forma la generalización al caso semilineal de las cuestiones.

 fundamentales, es tan obvia como trivial.
- 1.1.1 E y E'denotan espacios proyectivos (sobre el mismo cuerpo K) de dimensiones n y m respectivamente. \mathcal{E} y \mathcal{E}' son sistemas de referencia proyectivos queinducen coordenadas homogéneas $h = \begin{bmatrix} x_0 \\ x_n \end{bmatrix} : E \longrightarrow P_n(K)$ y $h' = \begin{bmatrix} x'_0 \\ x'_n \end{bmatrix} : E' \longrightarrow P_m(K)$.
 - Si f es una correspondencia proyectiva de E en E´ con centro N, existe una única correspondencia proyectiva A de $P_n(K)$ en $P_m(K)$ con centro h(N), tal que $A=h.f.h^{-1}$, es decir, Ah(p)=h.f(p) para p.e.E-N, y por 3.1.3 b) A es de la forma:

$$A:P_{n}(K)\ni \begin{bmatrix} x_{0} \\ x_{n} \end{bmatrix} \longmapsto \begin{bmatrix} A\begin{pmatrix} x_{0} \\ x_{n} \end{pmatrix} \end{bmatrix} \in P_{m}(K) \text{ , donde } A \in FL(n+1,m+1).$$

Sa tiene entonces la siguiente definición:

.1.2 Definición

En las condiciones de 2.1.1, se dice que $\begin{pmatrix} \lambda & x_0 \\ x_n \end{pmatrix} = \begin{bmatrix} x_0 \\ x_m \end{bmatrix}$ representa la ecuación matricial homogénea de la correspondencia proyectiva f, respec-

 \mathbf{x}_{0} a los sistemas de coordenadas h y h . Las ecuaciones $\mathbf{x}_{0} = \mathbf{z}_{0}$ a $\mathbf{x}_{0} = \mathbf{x}_{0}$ (i=0,...,m) representan unas ecuaciones homogéneas para f.

Se escribe $A=[\widehat{A}]=M_{\varepsilon_{e'}}(f)$.

•1.3 Comentario

La aplicación $M_{\mathcal{E},\mathcal{E}'}$ de CP(E,E') en $CP(n,m)=\{[\widehat{A}]:\widehat{A}\in FL(n+1,m+1)-\{0\}\}$ define una homografía entre espacios proyectivos, y $\mathbb{M}_{\xi,\xi'} = \mathbb{M}_{\hat{\xi},\hat{\xi'}}$ siendo £ =[ĝ] y &'=[ĝ'].

Como consecuencia de esto, el siguiente teorema tiene demostración inmediata.

-.1.4 Teorema

Si E , E', y E' son espacios proyectivos con sistemas de referencia respectivos \mathcal{E} , \mathcal{E}' , \mathcal{E}'' , \mathcal{E}'' , \mathcal{E}''), se verifica entonces : $M_{\xi,\xi''}$ (g.f)= $M_{\xi,\xi''}$ (g) $M_{\xi,\xi'}$ (f)

2.1.5 Comentario

Si & es sistema de referencia proyectivo en E, la homografía M_c = $M_{\mathcal{E},\mathcal{E}}$ de CP(E)=CP(E,E) en CP(n)=CP(n,n) aplica el grupo proyectivo GP(E) en el grupo $GP(n)=\{[\hat{A}]: \hat{A} \in GL(n+1)\}$ que se identifica con el grupo proyectivo de Pn.

Si $f \in CP(E)$, $y \in f = A$ las ecuaciones de f respecto al sistema de $h = \begin{pmatrix} x_0 \\ x_n \end{pmatrix}$ definido por \mathcal{E} se escriben aún matricial- $\begin{pmatrix} x_0 \\ x \end{pmatrix} = \begin{pmatrix} x_0 \\ x \end{pmatrix}$ coordenadas homogéneas mente en la forma:

1.1.6 Proposición

Sean X y X espacios afines sobre el mismo cuerpo K. Si f:X -> X es aplicación afin, las ecuaciones de f respecto a sistemas de referencia homogeneos cartesianos

homogeneos cartesianos $\begin{pmatrix} x_0 \\ x_n \end{pmatrix}, \begin{pmatrix} x_0 \\ x_m \end{pmatrix} \text{ en } X \text{ y } X' \text{ es de la forma} \begin{pmatrix} 1 & 0^t \\ a & A \end{pmatrix} \begin{pmatrix} x_0 \\ x_n \end{pmatrix} = \begin{pmatrix} x_0 \\ x_m \end{pmatrix}$ en donde $\begin{pmatrix} 1 & 0^t \\ X_1 \\ a & A \end{pmatrix} \begin{pmatrix} 1 \\ X_1 \\ X_n \end{pmatrix} = \begin{pmatrix} 1 \\ X_1 \\ X_n \end{pmatrix} \text{ son las correspondientes ecuaciones}$

Demosteación:

 $\begin{pmatrix} 1 & 0^{t} \\ & & \\ a & \overrightarrow{A} \end{pmatrix} \begin{pmatrix} x_{0} \\ \vdots \\ x_{n} \end{pmatrix} = \begin{pmatrix} x_{0} \\ \vdots \\ x_{n} \end{pmatrix} \text{ son las ecuaciones}$ Nótese que las ecuaciones

Veamos por último que una homografía entre espacios proyectivos viene determinada por los valores que toma sobre un sistema de referencia proyectivo:

Sean E y E' espacios proyectivos sobre el mismo cuerpo K, y con la misma dimensión n. Si $\mathcal{E}=(e_0,\ldots,e_n;e)$, $\mathcal{E}'=(e_0',\ldots,e_n';e')$ son sistemas de referencia proyectivos en E y E' respectivamente, existe una única homografía f:E \longrightarrow E' tal que $f(e_i)=e_i'$, $i=0,\ldots,n$ y f(e)=e'. Demostración

Sean $\hat{\mathcal{E}} = (\hat{\mathbf{e}}_0, \dots, \hat{\mathbf{e}}_n)$ $\hat{\mathcal{E}}' = (\hat{\mathbf{e}}_0', \dots, \hat{\mathbf{e}}_n')$ bases vectoriales con $\mathcal{E} = [\hat{\mathcal{E}}]$, $\mathcal{E}' = [\mathcal{E}']$ Existe $\hat{\mathbf{f}}$ isomorfismo lineal (único) de $\hat{\mathbf{E}}$ en $\hat{\mathbf{E}}'$ tal que $f(\hat{\mathcal{E}}) = \hat{\mathbf{E}}'$, \mathbf{y} la homografía $\mathbf{f} = [\hat{\mathbf{f}}] : \mathbf{E} \longrightarrow \mathbf{E}'$ verifica: $\mathbf{f}(\mathbf{e}_i) = [\hat{\mathbf{f}}]([\hat{\mathbf{e}}_i]) = [\hat{\mathbf{f}}(\hat{\mathbf{e}}_i)] = [\hat{\mathbf{e}}_i'] = \hat{\mathbf{e}}_i'$ para $\mathbf{i} = 0, \dots, n$ y además $\mathbf{f}(\mathbf{e}) = \hat{\mathbf{f}}([\hat{\mathbf{e}}_i]) = [\hat{\mathbf{f}}([\hat{\mathbf{e}}_i])] = [\hat{\mathbf{e}}_i'] = \hat{\mathbf{e}}_i'$ para $\mathbf{f}(\mathbf{e}) = \hat{\mathbf{f}}([\hat{\mathbf{e}}_i]) = [\hat{\mathbf{e}}_i'] = \hat{\mathbf{e}}_i'$ y existe $\mathbf{f}(\mathbf{e}) = \hat{\mathbf{f}}([\hat{\mathbf{e}}_i]) = \hat{\mathbf$

.1.8 Comentario

Si $\mathcal{E} = (e_0, \dots, e_n)$, $\mathcal{E}' = (e_0', \dots, e_n')$ son sistemas de referencia afin en el espacio afin X, se sabe (por el teorema fundamental(primero) de la geometría afin) que existe una unica transformación afin que envia \mathcal{E} a \mathcal{E}' . Sin embargo existen muchas transformaciones proyectivas en \widetilde{X} verificando ésta condición: Una por cada elección de puntos e,e \mathcal{E}' tales que $(e_0, \dots, e_n; e)$ y $(e_0', \dots, e_n'; e')$ sean sistemas de referencia proyectivos.

2.2 Ecuaciones de subespacios

.2.1 Ecuaciones implícitas de subespacios proyectivos

Sea E un espacio proyectivo de dimensión n, y $h=\begin{pmatrix} x_0 \\ x_n \end{pmatrix}: E \longmapsto P_n$ un sistema de coordenadas homogéneas inducido por el sistema de referencia proyectivo $\mathcal{E}=[\widehat{\mathcal{E}}]$.

Si A es un subespacio proyectivo de E con dimensión n-r , y A=P(Â), enton ces es subespacio vectorial de Ê , y admite unas ecuaciones implícitas en las coordenadas (de Ê) $\hat{h} = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$ con (n+1)-(r+1) ecuaciones lineales homogéneas independientes , de la forma:

$$\sum_{j=0}^{\infty} \lambda_{ij} x_{j} = 0 , i=1,...,r rg((\lambda_{ij}))=r.$$

Al sistema anterior, se denomina sistema de ecuaciones implícitas del

subespacio proyectivo A, que puede describirse de la forma: $A = \left\{ a = \left[\hat{a} \right] \in E : \sum_{j=0}^{\infty} \lambda_{ij} x_{j}(a) = 0, i = 1, \dots, nr \right\}.$

2.2.2 Ecuaciones implicitas de las extensiones proyectivas de aplicaciones

afines.

Sea ahora $X = (X, \infty_X)$ un espacio proyectivo afin, $y = \begin{pmatrix} \frac{1}{X_1} \\ X_n \end{pmatrix}$ un sistema $\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$ de coordenadas cartesianas con coordenadas homogeneas

Si A es un subespacio afin de X con dimensión n-r, admite em las coordenadas cartesianas ecuaciones implícitas de r ecuaciones lineales inde-

pendientes: $\lambda_{i0} + \lambda_{i1} X_1 + \dots + \lambda_{im} X_n = 0$ $\lambda_{in} X_1 + \dots + \lambda_{im} X_n = 0$ $\lambda_{in} X_1 + \dots + \lambda_{im} X_n = 0$ Las ecuaciones de A (y de $\widehat{A} = \widehat{A}$) se escriben entonces:

$$\lambda_{r_0} \times_0 + \lambda_{r_1} \times_1 + \dots + \lambda_{r_n} \times_n = 0$$

$$\lambda_{r_0} \times_0 + \lambda_{r_1} \times_1 + \dots + \lambda_{r_n} \times_n = 0$$

Finalmente, las ecuaciones de ∞_A (y las de $\overline{A} = \widehat{\infty}_A$) son:

$$\left.\begin{array}{ccc} \lambda_{i}^{\bullet} \times_{1} + \cdots + \lambda_{i} \times_{n} \times_{n} = 0 \\ \vdots \\ \lambda_{i}^{\bullet} \times_{1} + \cdots + \lambda_{i} \times_{n} \times_{n} = 0 \end{array}\right\}$$

3.HOMOGRASIAS ENTRE RECTAS PROYECTIVAS: RAZON DOBLE

ca en la ecuación anterior.

El estudio de las homografias en el caso particular de las rectas proyectivas, es la clave para la determinación del concepto de grazón doble. La razón doble es el invariante que desempeña en geometría proyectiva, el papel análogo de la razón simple en geometría afin. La relación sobre una recta afin de ambos invariantes, permite dar estructura afín canónica al complementario de un punto en una recta proyectiva.

3.1 Representaciones analíticas de homografías entre rectas proyectivas

-1-1 Sean $\triangle = P(\hat{\triangle})$, $\triangle '= P(\hat{\triangle}')$ rectas proyectivas (eventualmente coincidentes) sobre el mismo cuerpo K. Suponganse fijados sistemas de coordenadas homogéneas $h=\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$, $h'=\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$ sobre Δ y Δ' respectivamente.

La ecuación matricial homogénea de una homografía $f: \Delta \longrightarrow \Delta'$ es en virtud de 2.1.1 de la forma: $\begin{bmatrix} \begin{pmatrix} c & d \\ a & b \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$ con det $\begin{pmatrix} c & d \\ a & b \end{pmatrix} = cb - ad \neq 0$ Esto significa que el punto de coordenadas homogeneas x1 se trabsforma por f en el de coordenadas homogéneas $\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$ en la forma en que se indiEn las condiciones 3.1.1 , la actuación de la homografía f puede describirse por médio de la ecuación bilineal:

$$(x_0, x_1) \begin{pmatrix} a & -c \\ b & -d \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = 0$$
 (2)

que se denominan ecuación bilineal homogénea de f.

Demostración:

Nótese que se verifica la equivalencia: $\begin{bmatrix} \lambda \\ \mu \end{bmatrix} = \begin{bmatrix} \lambda' \\ \mu' \end{bmatrix} \iff \lambda \mu' - \lambda \mu = 0$, aplicando esto a la igualdad:

 $\begin{bmatrix} cx_0 + dx_1 \\ ax_0 + bx_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$ so verifica a $ax_0 x_0 - cx_0 x_1 + bx_1 x_0 - dx_1 x_1 = 0$, que está de acuerdo con la ecuación (2).

1.1.3 Comentario

La ecuación bilineal (2), significa que la imagen de un punto con coordenadas homogéneas $\begin{pmatrix} \lambda_1 \\ \lambda_1 \end{pmatrix}$ viene definida por la recta vectorial en $\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix}$ que en coordenadas lineales $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$ tiene por ecuación: $\begin{pmatrix} \lambda_1 \\ \lambda_2 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} \begin{pmatrix} x_1 \\ --d \end{pmatrix} \begin{pmatrix} x_2 \\ x_1 \end{pmatrix} = 0$

Supongase ahora que D y D´ son rectas afines, y $\binom{1}{x}$, $\binom{1}{x}$ son sistemas de coordenadas cartesianas en D y D´respectivamente, y sean $\binom{x_0}{x_1}\binom{x_0}{x_1}$ los correspondientes sistemas de coordenadas homogeneas cartesianas inducidos sobre D y D´ respectivamente, es decir, $x = \frac{x_1}{x_0}$, $x' = \frac{x_1}{x_0}$ con el convenio, $\frac{\lambda}{x_0} = \checkmark \in \mathring{K}$, s i $\lambda \in K - \langle 0 \rangle$.

1.1.5 Proposición

En las condiciones de 3.1.4, si f: $\widetilde{D} \longrightarrow \widetilde{D}'$ es una homografía con ecuación homogénea matricial:

$$\begin{bmatrix} \begin{pmatrix} c & d \\ a & b \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} \quad cb-ad \neq 0$$

entonces la ecuación de f en coordenadas cartesianas se escribe en la forma: $x' = \frac{a + bx}{c + dx} \qquad (3) \qquad \text{\'o bien}$

$$dxx'-bx+cx'+a=0 \qquad (4)$$

Las ecuaciones (3) y (4) se denominanarespectivamente, ecuación cartesiana, y bilineal cartesiana de la homografía.

Demostración:

De la ecuación matricial de f se deduce que para puntos con coordenada x_0 y x_0' no nulas (puntos prépios) se tiene: $x' = \frac{x_1'}{x_0'} = \frac{ax_0 + bx_1}{cx_0 + dx_1} = \frac{a + bx_1/x_0}{c + dx_1/x_0} = \frac{a + bx_0}{c + dx_0}$

- a) Si em (3) es d $\neq 0$ y c \neq dx=0 (es decir x= $-\frac{c}{d}$), entonces a \neq bx = $\frac{ad-bc}{d} \neq 0$, y x'= \checkmark , resultado al que se puede llegar por medio de la ecuación matricial (1). Por otra parte, si x= \checkmark = $\begin{pmatrix} 0 \\ 1 \end{pmatrix}$, entonces x'= $\frac{b}{d}$.
- b) La condición necesária y suficiente para que f sea proyectivo afin, es que d sea nulo.

3.2 Razón doble de cuatro puntos alineados

La razón simple establece en geometría afin un invariante que caracteriza la estructura afin del espacio y el grupo afin de transformaciones.
Un invariante análogo en geometría proyectiva, no puede depender solo de tres puntos:Por el primer teorema fundamental 2.1.6, trés puntos distintos alineados pueden ser enviados a otros trés puntos distintos alineados arbitrarios mediante una adecuada homografía.

Cabe esperar que dicho invariante - la razón doble- dependa de cuatro puntos alineados.

La extensión proyectiva del cuerpo K , K = K∪{∞}será identificada con P₁(K) tal como se indica en 1.1.8

.2.1 Tres puntos distintos (a,b,c) de una recta proyectiva Δ (sobre K) determinan un sistema de referencia proyectivo, y un sistema de coordenadas homogéneas h: $\Delta \longmapsto \widetilde{K}$, que es la única homografía (ver 2.1.6) tal que h(a)= $\begin{pmatrix} 1 \\ 0 \end{pmatrix} = 0$, h(b)= $\begin{pmatrix} 0 \\ 1 \end{pmatrix} = \omega$, h(c)= $\begin{pmatrix} 1 \\ 1 \end{pmatrix} = 1$

3.2.2 Definición

En las condiciones de 3.2.1 , para cada $x \in \Delta$ se denomina razón doble [a,b;x,c] al valor $h(x) \in \widetilde{K}$, es decir:

$$[a,b;x,c] = h(x)$$

Nótese que : [a,b;a,c] = 0, [a,b;b,c] = 0, [a,b;c,c] = 1

La propiedad de invariancia proyectiva de la razón doble se deduce de forma inmediata a partir del siguiente teorema:

1.2.3 Teorema

Sean Δ y Δ' rectas proyectivas sobre el cuerpo K, (a,b,c) un sistema de trés puntos distintos de Δ , y (a',b', c') un sitema de tres puntos distintos de Δ' , Sean d $\in \Delta'$.

La condición necesaria y suficiente para que exista f: $\Delta \longrightarrow \Delta'$ homogra-

fía tal que f(a,b,c,d)=(a',b',c',d'), es que [a,b;d,c]=[a',b';d',c'].

Demostración:

Considérense las homografías $h: \Delta \ni x \mapsto [a,b;x,c] \in K$, y $h': \Delta' \ni x \mapsto [a',b';x',c'] \in K$. Nótese que $h(a,b,c) = h'(a',b',c') = (0,\infty,1)$ Sea $h(d) = \lambda$, $h'(d') = \lambda'$. Tomando $f = h'^{-1} \cdot h$, se verifica $si = \lambda = \lambda'$ que f(a,b,d,c) = (a',b',d',c'). Recíprocamente, si existe $g: \Delta \mapsto \Delta'$ tal que g es homografía con g(a,b,d,c) = (a',b',d',c'), entonces por el primer teorema fundamental 2.1.7, se deduce que $g = f = h'^{-1} \cdot h$, y en particular $g(d) = h'^{-1}(\lambda) = d' = h'^{-1}(\lambda')$, y $\lambda = \lambda'$.

3.2.4 Definición

Una biyección $f: \Delta \longrightarrow \Delta'$ entre rectas proyectivas, se dice que conserva la razón doble si para cualesquiera que sean los puntos $(a,b,d,c) < \Delta$, a,b,c distintos, se verifica: [a,b;d,c] = [f(a),f(b);f(d),f(c)].

3.2.5 Corolario

- Si g: $\Delta \rightarrow \Delta'$ es una aplicación biyectiva entre rectas proyectivas, son equivalentes las siguientes afirmaciones:
- i) g es homografía
- ii) g conserva la razón doble

Demostración

- i) ii) es consecuencia inmediata de 3.2.3
- ii) \Rightarrow i): Sean (a,b,c,d) $\angle \Delta$, a,b,c distintos, y sea g(a,b,d,c)=
 (a',b',d',c'). Por hipótesis es [a,b;d,c]=[a',b';d',c'], y por 3.2.3
 existe una homografía f: $\triangle \rightarrow \triangle$ 'tal que f(a,b,d,c)=(a',b',d',c'). Prebemos que g=f: Si $x \in \triangle$ (utilizando i) \Rightarrow ii)) se tiene,
 [a,b;x,c]=[a',b';g(x),c']=[a',b';f(x),c']. Como la aplicación
 h: \triangle ' \Rightarrow x' \rightarrow [a',b';x',c'] \in K es biyectiva, se deduce que g(x)=f(x).

3.2.6 Definición

Sean E y E' espacios proyectivos. Una aplicación f:E \rightarrow E' se dice que conserva la razón doble, si transforma biyectivamente cada recta proyectiva \triangle de E en una recta proyectiva \triangle de E', y la aplicación f/ \triangle : \triangle \leftarrow > \triangle conserva la razón doble.

3.2.7 Corolario

Una aplicación proyectiva f:E → E conserva la razón doble Demostración:

Es consecuencia inmediata de 3.2.5 c) (Cap VIII), y de 3.2.5

3.3 Expresión analítica de la razón doble: Propiedades

Fijado sobre la recta proyectiva 4 un sistema de coordenadas homogé: neas $h=\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}: \Delta \longrightarrow \tilde{K}$, y dados los puntos distintos (a,b,c)< Δ 3.2.5 i), se deduce que para todo $x \in \Delta$, [a,b,;x,c]=[h(a),h(b);h(x),h(c y para determinar la razón doble, es suficiente conocer la fórmula explicita para cuatro puntos en $P_1(K)=\widetilde{K}$.

3.3.1 Teorema

 $\hat{a} = \begin{pmatrix} a_0 \\ a_1 \end{pmatrix} \hat{b} = \begin{pmatrix} b_0 \\ b_1 \end{pmatrix} \hat{c} = \begin{pmatrix} c_0 \\ c_1 \end{pmatrix} \hat{x} = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \text{ vectores de } \hat{P}_1(K) \text{ que determinan}$ puntos $a=[\hat{a}], b=[\hat{b}], c=[\hat{c}], x=[\hat{x}] de P_1(K)$, siendo a,b,c distintos se verifica entonces:

 $[a,b;x,c] = \frac{\det(\hat{a},\hat{x})}{\det(\hat{a},\hat{c})} \cdot \frac{\det(\hat{b},\hat{x})}{\det(\hat{b},\hat{c})} \quad \text{con al convenio } \frac{1}{\delta} = \omega \quad \lambda \in \widetilde{K}_{-1}$ 4 = 0 X = R-14)

Demostración:

Fijado $\hat{y} = \begin{pmatrix} y_0 \\ y_1 \end{pmatrix} \in \hat{P}_1(K)$, se tiene por la regla de Cramer la identidad:

 $\hat{y} = \lambda \hat{y} \hat{a} + \mu \hat{y} \hat{b}$ con $\lambda \hat{y} = \frac{\det(\hat{y}, \hat{b})}{\det(\hat{a}, \hat{b})}$, $\mu \hat{y} = \frac{\det(\hat{a}, \hat{y})}{\det(\hat{a}, \hat{b})}$

Por tanto, ($\lambda_{\hat{\mathbf{c}}},\hat{\mathbf{a}},\mu_{\hat{\mathbf{c}}}$ $\hat{\mathbf{b}}$) es la base asociada al sistema de referencia proyectivo (a,b,c) (véase 1.3.3), y la homografía h: $\widetilde{K} \longrightarrow \widetilde{K}$ tal que $h(a,b,c)=(0, \infty,1)$ es de la forma $h=[\widehat{h}]$ donde $\widehat{h}: \widehat{P}_1(K) \mapsto \widehat{P}_1(K)$ es el isomorfismo lineal(tal que: $\hat{h}(\lambda_{\hat{c}} \hat{a}, \mu_{\hat{c}} \hat{b}) = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \begin{pmatrix} 1 \\ 1 \end{pmatrix} \end{pmatrix}$

Por la definición 3.2.2 es h(x)=[a,b;x,c], pero

 $\hat{h}(\hat{x}) = \hat{h}(\frac{\lambda_{\hat{x}}}{\lambda_{\hat{x}}} (\lambda_{\hat{x}} \hat{a}) + \frac{\mu_{\hat{x}}}{\mu_{\hat{x}}} (\mu_{\hat{x}} \hat{b})) = \begin{pmatrix} \lambda_{\hat{x}}/\lambda_{\hat{x}} \\ \mu_{\hat{x}}/\mu_{\hat{x}} \end{pmatrix} \text{ as i:}$ $h(x) = [\hat{h}(\hat{x})] = \begin{pmatrix} \lambda_{\hat{x}}/\lambda_{\hat{x}} \\ \mu_{\hat{x}}/\mu_{\hat{x}} \end{pmatrix} = \frac{\mu_{\hat{x}}}{\lambda_{\hat{x}}} : \frac{\lambda_{\hat{x}}}{\lambda_{\hat{x}}} \text{ (se he idulipheas de la fatue helituel } \hat{k} , P. (14)$

Sustituyendo $\lambda_{\hat{x}}$, $\lambda_{\hat{c}}$, $\lambda_{\hat{c}}$, $\lambda_{\hat{c}}$, por su valor en (1) se obtiene la fórmula pedida

3.3.2 Propiedades

Denotando $[a,b;x,c] = \begin{bmatrix} a & b \\ x & c \end{bmatrix}$ entonces para cuatro puntos distintos de una recta proyectivaarDelta , se deducen de forma inmediata a p $_{
m a}$ rtir de \odot .

3.3.1 las siguientes propiedades:

1)
$$\begin{bmatrix} a & b \\ x & c \end{bmatrix} = \begin{bmatrix} b & a \\ x & c \end{bmatrix}$$
; 2) $\begin{bmatrix} a & b \\ x & c \end{bmatrix} = \begin{bmatrix} a & b \\ c & x \end{bmatrix}$; 3) $\begin{bmatrix} a & b \\ x & c \end{bmatrix} = \begin{bmatrix} x & c \\ a & b \end{bmatrix}$

y como consecuencia de 1) y 2) se obtiene : 4) $\begin{bmatrix} a & b \\ x & c \end{bmatrix} = \begin{bmatrix} b & a \\ c & x \end{bmatrix}$

$$\begin{bmatrix} a & b \\ a & c \end{bmatrix} = 0$$
, $\begin{bmatrix} a & b \\ b & c \end{bmatrix} = \infty$, $\begin{bmatrix} a & b \\ c & c \end{bmatrix} = 1$, es natural establecer, utilizando

las propiedades anteriores el siguiente

3.3.3 Convenio

Si a,b,c son tres puntos (al menos dos distintos) de una recta proyectiva , convenimos en escribir:

$$\begin{bmatrix} a & b \\ a & c \end{bmatrix} = \begin{bmatrix} b & a \\ c & a \end{bmatrix} = 0 \quad \text{v\'alida aun cuando} \quad b = c \neq a$$

$$\begin{bmatrix} a & b \\ b & c \end{bmatrix} = \begin{bmatrix} b & a \\ c & b \end{bmatrix} = \infty \quad \text{válida aún cuando } a = c \neq b$$

$$\begin{bmatrix} a & b \\ c & c \end{bmatrix} = \begin{bmatrix} c & c \\ a & b \end{bmatrix} = 1 \quad \text{válida aún: cuando} \quad a=b \neq c$$

3.3.4 Comentario

Esta ampliación de la definición de razón doble-compatible por su própia construcción con las propiedades 3.3.2- no aporta mada esencialmente nuevo a las definiciones 3.2.4 y 3.2.6 por lo que los resultados
3.2.5 y 3.2.7 permanecen válidos.

3.3 Razón doble y razón simple

Si a,x,b son tres puntos de una recta afin R , a\(\angle \) , la raz\(\omega \) simple (a;x;b) viene definida por la condici\(\omega \) : (a;x;b) $\overline{ab} = \overline{ax}$. Convendremos en escribir (a;x;a)= $\infty \in \widetilde{K}$, cuando x\(\angle a \) , y adoptaremos los siguientes convenios para $\lambda \in \widetilde{K}$:

$$\frac{\lambda}{\infty} = 0 \quad \text{si } \lambda \neq \infty , \frac{\infty}{\infty} = 1$$

$$\frac{\lambda}{0} = \infty \quad \text{si } \lambda \neq 0 \quad , \frac{0}{0} = 1$$

3.4.1 Teorema

Sea R una recta afin y sean a,b,x,c $\in \mathbb{R}$ cuatro puntos entre los cuales hay por lo menos dos distintos. Entonces:

i) Si a,b,x,c
$$\in \mathbb{R}$$
 es $[a,b;x,c] = \frac{(a;x;c)}{(b;x;c)}$

ii) Si $b= \bigotimes_{R} , (a,x,c) \in R$ entonces [a,b;x,c] = (a;x;c)

Demostración:

Fijemos en R un sistema de coordenadas cartesianas $h=\binom{1}{x}:R\longrightarrow K$, y sea $\widehat{h}=\binom{x_0}{x_1}:\widehat{R}\longrightarrow \widehat{K}$ el sistema de coordenadas homogéneas inducido por h (vease 1.1.6):

biendo $\binom{1}{\lambda} = \lambda$ para $\lambda \in K$ y aplicando la fórmula de 3.3.1, se obtiene teniendo en cuenta la invarianza de la razón doble por h, y de la razón simple por h:

$$[a,b;x,c] = [a',b';x',c'] = \frac{x'-a}{c'-a} : \frac{x'-b'}{c'-b'} = \frac{(a';x';c')}{(b';x';c')} = \frac{(a;x;c)}{(b;x;c)}$$

Por otra parte, los convenios establecidos más arriba, son compatibles con los convenios 3.3.3 .

ii) Tomando b'=
$$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$$
 = $\varnothing \in \widetilde{K}$ se verifica:
$$\begin{bmatrix} a, \varnothing, x, c \end{bmatrix} = \begin{bmatrix} a', \varnothing, x', c' \end{bmatrix} = \frac{x'-a'}{c'-a'} : \frac{\det \begin{pmatrix} 0 & 1 \\ 1 & x' \end{pmatrix}}{\det \begin{pmatrix} 0 & 1 \\ 1 & c' \end{pmatrix}} = (a'; x'; c') = (a; x; c)$$

La afirmación ii) admite cierta reciprocidad:

3.4.2 Teorema

Sea \triangle una recta proyectiva, $b \in \triangle$. Existe entonces una única estrucatura afin en $R = \triangle - \{b\}$ respecto a la cual se verifica la propidad:

 $(a;x;c)_R = [a,b;x,c]_\Delta$ para todo $a,x,c \in R$.

Además la aplicación $h: \hat{R} \mapsto \Delta$ tal que h(x)=x para $x \in R$ y $h(\bowtie_R)=b$ es una homografía que permite identificar de manera canónica \hat{R} con Δ y el punto $b \notin \Delta$ con el infinito de R.

Demostración

fijemos una homografía arbitraria $h: \Delta \longrightarrow \widetilde{K}$ con $h(b) = \infty$.

la aplicación $h_b=h_{\Delta-\{b\}}: \Delta-\{b\} \longrightarrow K$ es una aplicación biyectiva, y existe una única estructura afin en $R=\Delta-\{b\}$ tal que h_b es isomorfismo afin, y se verifica para a,x,c $\in R$:

(a;x;c)=(h(a);h(x);h(c))=[h(a), w;h(x),h(c)]=[h(a),h(b);h(x),h(c)]= =[a,b;x,c].

La unicidad de la estructura afin de R es evidente a priori.

3.4.3 Corolario

Sea f: $\Delta \longrightarrow \Delta'$ biyección entre rectas proyectivas, y b $\epsilon \Delta$. Son equivalentes las siguientes afirmaciones:

- i) f:△ → △´ es homografía
- ii) $f_b: \Delta \{b\} \longrightarrow \Delta' \{f(b)\}$ es aplicación afin Demostración
- i) \Rightarrow ii) Si f es homografía, por 3.2.5, conserva la razón doble, y por 3.4.2 f_h conserva la razón simple, y es por tanto isomorfismo afin
- ii) i) Si f es afin, entonces conserva la razóń simple en Δ (b)

utilizando 3.3.1 y 3.4.2 se prueba que f: $\triangle \longmapsto \triangle$ conserva la razon doble de cuatro puntos en los que no intervenga b. En efecto: si (a,b_1,x,c) son cuatro puntos de \triangle - $\{b\}$ se tiene,

$$[a,b_1;x,c] = \frac{(a;x;c)}{(b;x;c)} = \frac{(f(a);f(x);f(c))}{(f(b_1);f(x);f(c))} = [f(a),f(b_1);f(x),f(c)].$$

Si en la razón doble interviene el punto b en segundo lugar, se tiene [a,b;x,c]=(a;x;c)=(f(a);f(x);f(c))=[f(a),f(b);f(x),f(c)] Finalmente si el punto b interviene en otro lugar distinto, el resultado se sigue de las propiedades 3.3.2, que permiten pasarlo a segundo lugar.

3.4.4 Ejemplo

Fijado en la recta proyectiva Δ un sistema de referencia proyectivo $(e_0,e_1;e)$ con coordenadas $h=\begin{bmatrix}x_0\\x_1\end{bmatrix}:\Delta\longmapsto\widetilde{K}$, es $h(e_0,e_1,e)=(0,\infty,1)$ y así $h_{e_1}:\Delta-\langle e_1 \rangle \longmapsto K$ es isomorfismo afin. Nótese que $x=\frac{x_1}{x_0}$ es coordenada cartesiana en $\Delta-\langle e_1 \rangle$.

3.4.5 Comentario

Sean $\mathcal{E} = (e_0, e_1; e)$ $\mathcal{E}' = (e_0, e_1; e')$ sistemas de referencia proyectivos sobre las rectas Δ y Δ' respectivamente con sistemas correspon dientes de coordenadas $h = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$ y $h' = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$.

Si f es una homografía de Δ en Δ 'pueden establecerse como en 3.1 ecuaciones cartesianas y bilineales cartesianas para f considerada como aplicación de la recta $\Delta = \widehat{\Delta} - \{e_1^{\ \ \ }\}$ en Δ '= $\widehat{\Delta}$ ' $- \{e_1^{\ \ \ \ }\}$.

Notese que las coordenadas cartesianas correspondientes son $x = \frac{x_1}{x_0} \quad y \quad x' = \frac{x_1'}{x_0'} \quad .$

TEOREMAS DE ESTRUCTURA PROYECTIVA

El principio de dualidad y la técnica de envio de puntos al infinito constituyen las dos herramientas básicas de trabajo en geometría proyectiva, y serán analizadas en la primera parte del capítulo.
La segunda parte presenta una versión proyectiva del segundo teorema fundamental probado en geometría afin, y analiza las relaciones entre estructura y geometría proyectiva.

1. ESPACIO PROYECTIVO DUAL

Dotaremos al conjunto E de hiperplanos de un espacio proyectivo E=

P(E) de estructura canónica de espacio proyectivo sobre el espacio vectorial dual E. La "traducción" de los elementos de la geometría proyectiva de E en términos de la geometría proyectiva del espacio original E permitirá enunciar el principio general de dualidad.

1.1 Estructura proyectiva dual

Ê denotará aquí un espacio vectorial de dimensión finita n+l , y la aplicación ω: GL(Ê) → GL(E*) es la ortogonalidad introducida en 3.1 (Cap II)

A partir de las propiedades básicas de la ortogonalidad dual, puede establecerse de forma inmediata el siguiente lema técnico:

.1.1 Lema

Si $\widehat{\mathcal{X}} \in \widehat{\mathbb{E}}^* - \{0\}$ entonces $\widehat{\mathcal{X}}^{\omega} = [\widehat{\mathcal{X}}]^{\omega}$ es un hiperplano de $\widehat{\mathbb{E}}$. Además si $\widehat{\mathcal{X}}$, $\widehat{\mathcal{A}} \in \widehat{\mathbb{E}}^* - \{0\}$ y $\widehat{\mathcal{X}}^{\omega} = \widehat{\mathcal{A}}^{\omega}$ entonces $[\widehat{\mathcal{X}}] = [\widehat{\mathcal{A}}]$.

Este resultado es la clave para la demostración del siguiente teorema:

1.1.1 Teorema

Sea E^* el conjunto de hiperplanos del espacio proyectivo $E=P(\widehat{E})$.

La aplicación $\pi: \widehat{E}^* - \{0\} \ni \widehat{\alpha} \longrightarrow P(\widehat{\alpha}^{\omega}) \in E^*$, da a E^* estructura de espacio proyectivo sobre el espacio vectorial \widehat{E}^* .

Demostración:

Es suficiente probar que fijado $H \in E_*^*$ el conjunto $\pi^{-1}(H)U \setminus 0$ es una recta vectorial de \hat{E}^* :

Si H=P(\hat{H}), y $\hat{k} \in \hat{E}^* - \{0\}$ es tal que $\hat{k}^{\omega} = \hat{H}$, entonces $\mathcal{T}(\hat{\alpha}) = H$, y por el lema l.l.l si $\hat{\beta} \in \hat{E}^* - \{0\}$, se verifica la equivalencia:

7 (3)=H => 3 =H

En las hipótesis de 1.1.2 se denomina a $E^*=(E^*,\widehat{E}^*,\mathcal{T})$ espacio proyectivo dual.

1.1.4 Notación

Se identificará como es habitual para $\hat{\alpha} \in \hat{E}^* - \{0\}, [\hat{\alpha}] = \pi (\hat{\alpha})$ y escribiremas para $\hat{A} < \hat{E}^*$, $P(\hat{A}) = \pi (\hat{A} - \{0\})$. En particular , $E^* = P(\hat{E}^*)$

- 1.2 Subespacios: Razón doble de hiperplanos
- 1.2.1 Definición

Si $A=P(\hat{A})$ es subespacio proyectivo de $E=P(\hat{E})$ se define $A=P(\hat{A}^{\omega})$ que es subespacio proyectivo de E, y se denomina ortogonal dual de A. La aplicación $\omega: \mathcal{G}L(E) \longrightarrow \mathcal{G}L(E^{\omega})$ se denomina correlación de dualidad.

1.2.2 Teorema

La correlación de dualidad ω : $gL(E) \longrightarrow gL(E^*)$ es una aplicación biyectiva. Por otra parte, si A y B son subespacios proyectivos de E se verifican las propiedades:

- i) dim A + dim $A^{\omega} = n-1$
- ii) Si A < B entonces $A > B = \emptyset$ = E . E = \emptyset .
- iii) $(A+B)^{\omega} = A^{\omega}AB^{\omega}$; $(A \cap B)^{\omega} = A^{\omega}+B^{\omega}$.

Demostración: (Se utilizarán los resultados de 3.1 Cap II)

Si $A=P(\widehat{A})$, $B=P(\widehat{B})$, se tiene:

 $A^{\omega}=B^{\omega} \rightarrow A^{\omega}=\hat{B}^{\omega} \rightarrow \hat{A}^{\omega}=\hat{A}=\hat{B}=\hat{B}^{\omega} \rightarrow A=B$ por tanto ω es inyectiva.

Por otra parte, si $\Im = P(\widehat{\mathfrak{L}})$ es subespacio de E*, tomando $\widehat{A} = \widehat{\mathfrak{L}}^{\omega}$ se verifica $\widehat{A}^{\omega} = P(\widehat{A}^{\omega}) = P(\widehat{\mathfrak{L}}^{\omega}) = P(\widehat{\mathfrak{L}}) = \Im$. Por tanto ω es biyectiva.

- i) $A \subset B \Rightarrow \hat{A} \subset \hat{B} \Rightarrow \hat{B}^{w} \subset \hat{A}^{w} \Rightarrow B^{\omega} = P(\hat{B}^{w}) \subset P(\hat{A}^{w}) = A^{\omega}$.
- ii) $(A+B)^{\omega} = P((\hat{A}+\hat{B})^{\omega}) = P(\hat{A}^{\omega} \cap \hat{B}^{\omega}) = P(\hat{A}^{\omega}) \cap P(\hat{B}^{\omega}) = A^{\omega} \cap B^{\omega}$.

La otra igualdad se prueba de forma análoga.

La siguiente proposición expresa la propiedad de ser subespacio proyectivo de E * en términos de la geometría de E *

1.2.3 Proposición

Dado A=P(\hat{A}) subespacio proyectivo de E entonces: $A^{\omega} = \{H \in E^{\omega} / H > A\}$. Se denomina por ésta razón a A^{ω} haz de hiperplanos con lomo A, ó r-haz si dim A=r.

Demostración:

Si $A=P(\hat{A})$ y $\& \in \hat{E} - \{0\}$ se tiene:

ハンハンハロンス コスマット C M C リハハノー

122.4 Corolario

Demostración:

Apliquese 1.2.2 i) y 1.2.3

1.2.5 Ejemplos

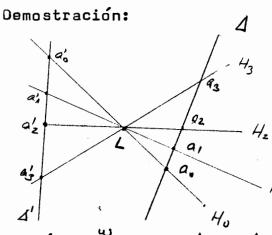
Una recta de hiperplanos de E está formada por la familia de hiperplanos que contienen a cierta subvariedad L de dimensión n-2. Así en el plano proyectivo, la familia de rectas que pasan por un punto dado constituye una recta de hiperplanos ó haz rectilineo de rectas.

En el espacio proyectivo tridimensional, las rectas de E son haces de hiperplanos que pasan por una recta, y los planos de E son familias de hiperplanos que pasan por un punto

Interpretemos ahora la razón doble de puntos de E en la geometría de E :

1.2.5 Teorema

Sean $(H_i)_{i=0,\ldots,4}$ cuatro hiperplanos de E (al menos dos distintos) que contienen a cierto subespacio L de dimensión n-2. Se tiene: Cualesquiera que sean las rectas Δ y Δ de E tales que $\Delta \cap L = \Delta \cap L = \emptyset$, se verifica que $\Delta \cap H_i = \{a_i\}$ $\Delta \cap H_i = \{a_i\}$ $i=0,\ldots,4$ siendo a_i y a_i puntos de E , y $[a_0,a_1;a_2,a_3] = [a_0,a_1;a_2,a_3] = P$. Por otra parte , P coincide con la razón doble $[H_0,H_1;H_2,H_3]$ en la recta proyectiva L^{ω} de E .



Dada la recta proyectiva Δ de E, por el Teorema de Incidencia se verifica que ó bién $\Delta \cap H_i$ es un punto a_i , ó bién es $\Delta \subset H_i$, y en éste último caso, como L es hiperplano de H_i se verifica $\Delta \cap L \neq \emptyset$.

Así si $\Delta \cap L = \emptyset$ es $H_i = \{a_i\}$.

Probemos que si $\Delta \cap L = \emptyset$ entonces la apli-

cación h: L' \ni H \longmapsto $\triangle \cap$ H \in \triangle es una homografía. Esto concluiría la demostración , ya que las homografías conservan la razón doble. Si L=P(\hat{L}), sea $\hat{L}^{\omega}=\langle \hat{\alpha},\hat{\beta} \rangle$ con $\hat{\alpha},\hat{\beta} \in \hat{E}^{*}-\langle 0 \rangle$, y tomemos $\hat{a},\hat{b} \in \hat{E}$ tales que $\langle \hat{a},\hat{b} \rangle = \hat{\Delta}$:

si H ∈ L H= [] (\ A + 4 6)) .

Análogamente (\hat{a} , \hat{b}) determina en \triangle un sistema de coordenadas homogéneas de forma que si $p \in \triangle$, $p = \begin{bmatrix} x \\ y \end{bmatrix} \Leftrightarrow p = \begin{bmatrix} x \hat{a} + y \hat{b} \end{bmatrix}$.

La condición
$$h\begin{bmatrix} \lambda \\ \mu \end{bmatrix} = \begin{bmatrix} x \\ y \end{bmatrix}$$
 equivale a:
$$(\hat{\alpha}/\hat{a}), (\hat{\alpha}/\hat{b})$$
 (\hat{x}/\hat{b}) $(\hat{x}/\hat{a}), (\hat{x}/\hat{b})$ $(\hat{x}/\hat{a}), (\hat{x}/\hat{b})$ $(\hat{x}/\hat{a}), (\hat{x}/\hat{b})$

determina las ecuaciones de **bn**a homografía siempre que

det:
$$\begin{pmatrix} (\hat{s}/\hat{a}) & (\hat{s}/\hat{b}) \\ (\hat{s}/\hat{a}) & (\hat{s}/\hat{b}) \end{pmatrix} \neq 0$$

lo cual es cierto, ya que por ser $\Delta \cap L=\emptyset$, el sistema homogeneo $\left(\hat{x}/\hat{a}\right) \left(\hat{x}/\hat{b}\right) \left(x\right)$

$$\begin{pmatrix} (\hat{x}/\hat{a}) & (\hat{x}/\hat{b}) \\ (\hat{y}/\hat{a}) & (\hat{y}/\hat{b}) \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = 0$$
 es incompatible.

1.3 Homografía dual

Sean E=P(E), E'=P(E') espacios proyectivos. Si $\hat{f}: \hat{E} \to \hat{E}'$ es aplicación lineal, la aplicación lineal transpuesta $\hat{f}^t: \hat{E}' \to \hat{E}'$ viene definida por la condición $\hat{f}^t(\hat{\chi}') = \hat{\chi}' \cdot \hat{f}$ (véase . . Cap II). La traducción proyectiva de la transposición viene explicitada en el siguiente resultado:

1.3.1 Teorema

Sea $f = [\hat{f}] : E \longrightarrow E'$ una homografía. Si iH es hiperplano de E entonces f(H) es hiperplano de E, y la aplicación $f^*: E^* \ni H \longmapsto f(H) \in E'$ es una homografía que verifica $f^* = [(\hat{f}^t)^{-1}]$.

Demostración:

La primera afirmación es evidentea partir de

La segunda es consecuencia de la conmutatividad del diagrama:

En efecto: si $\hat{\alpha} \in E^{'} - \{0\}$ se verifican las equivalencias: $\hat{x} \in \ker(\hat{f}^{t}(\hat{\alpha}')^{\omega}) \iff (\hat{\alpha}' : \hat{f})(\hat{x}) = 0 \iff \hat{f}(\hat{x}) \in \ker(\hat{\alpha}') \neq 0 \iff \hat{f}(\hat{x}) \in \ker(\hat{\alpha}') \neq 0 \iff \hat{f}(\hat{x}) \in \ker(\hat{\alpha}') \neq 0 \iff \hat{f}(\hat{x}') = 0 \iff \hat{f}(\hat{x}') \in \ker(\hat{\alpha}') \neq 0 \iff \hat{f}(\hat{x}') = 0 \iff \hat{f}(\hat{x}') \in \ker(\hat{\alpha}') = 0 \iff \hat{f}(\hat{x}') = 0 \iff \hat{f}(\hat{x}') \in \ker(\hat{\alpha}') = 0 \iff \hat{f}(\hat{x}') = 0 \iff \hat{f}(\hat{x}') \in \ker(\hat{\alpha}') = 0 \iff \hat{f}(\hat{x}') =$

La aplicación $\psi: GP(E) \supset f \mapsto f \in GP(E^*)$ es un isomorfismo de grupos Demostración:

Por las proppiedades de la transposición (. . Cap II) se deduce que es un homomorfismo suprayectivo de grupos.

Si $f \in GP(E)$ y $f' = id : E' \longrightarrow E'$, se concluye que todos los hiperplanos de E son invariantes por $f \cdot C$ omo cada punto de E puede escribirse como intersección de hiperplanos, se concluye que $f = id \cdot C$

1.3.3 Corolario

Si f:E \rightarrow E' es homografía, y A es subespacio proyectivo de E, entonces f* $(A^{\omega})=f(A)^{\omega}$.

La demostración queda como ejercicio.

1.4 El Principio de Dualidad

Es un principio básico de argumentación caracteristico de la geometría proyectiva, y se basa en la existencia de estructura proyectiva dual

1.4.1 Teoremas duales:

Supuesto demostrado un teorema T de geometría proyectiva, al aplicarlo al espacio proyectivo (dual) de hiperplanos, y traducir su enunciado en terminos de la geometría proyectiva del espacio puntual original, se obtiene un nuevo teorema T^{ω} que se denomina teorema dual de T. Puede probarse que $T^{\omega\omega} = T$.

Trataremos de clarificar ésta idea mediante algunos ejemplos sencillos:

1.4.2 Ejemplo

El siguiente teorema T_n es valido para espacios proyectivos de dimensión $n \geqslant 2$:

"Dos rectas con um punto común em un espació proyectivo n-dimensional, son coplanarias"

Notese que el enunciado T_2 es banal

Para encontrar el enunciado T_3^ω debe tenerse en cuenta que en un espacio proyectivo tridimensional se tiene:

- i) tres planos son "coplanarios" si (y solo si) tienen un punto en común
- ii) tres planos estań "alineados" si tienen una recta en comun.

Así T₃ se enuncia: literalmente: "Todos los hiperplanos de dos haces rectilineos de hiperplanos en un espacio proyectivo tridimensional, con un hiperplano común, tienen un punto en común."

Dado que la recta de cada haz viene determinada por la intersección de dos de sus hiperplanos distintos, se observa que el enunciado

 T_3 : "En un espacio proyectivo tridimensional, dos rectas coplanarias tienen un punto en común", que es el enunciado recíproco de T_3 . El paso directo de T_3 a T_3 puede realizarse directamente de la siquiente forma:

- 1°) Se establece un enunciado esquemático de T_3 del tipo:
- " Sean a, b dos rectas de un espacio proyectivo tridimensional, tales que existe un punto c con $c < a \land b$. Existe entonces un plano d tal que a < d y b < d"
- 3º) Si escribimos este último enunciado en un lenguaje más compacto, se obtiene el enunciado T´ recíproco de T.

Este ejemplo ilustra el siguiente enunciado general:

1.4.3 Teoremas de incidencia duales

En relacion con un teorema de incidencia T de un espacio proyectivo n-dimensional, puede obtenerse su teorema dual T^ω , intercambiando en el enunciado de T los siguientes términos:

SUBESPACIO r-DIMENSIONAL \leftrightarrow SUBESPACIO (n-r-1)-DIMENSIONAL $+ \leftrightarrow \cap$, $< \leftrightarrow >$.

La demostración de éste principio descansa esencialmente en las propiedades de la correlación de dualidad establecidas enl.2.2, y será sugerida en la sección de ejercicios.

1.4.4 Ejemplo

El enunciado T_4^{ω} dual de T_4 del ejemplo 1.4.2, se obtiene directamente de 1.4.3 quedando:

T₄: En un espacio proyectivo de dimensión cuatro, dos planos contenidos en un hiperplano, tienen una recta común"

El principio de dualidad va sin embargo más alláde los teoremas de incidencia, y es aplicable a cualquier teorema de la geometrúa proyectiva:

1.4.5 Ejemplo

Considerese el siguiente enunciado:

T:"Toda transformación proyectiva en un espacio proyectivo comple-

jo admite algun punto fijo".

Aplicando T al espacio proyectivo dual , y teniendo en cuenta 1.3 se obtiene:

T:"Toda transformación proyectiva en un espacio proyectivo complejo admite un hiperplano invariante"

2. RESTRICCIONES AFINES EN GEOMETRIA PROYECTIVA

En 3.4.2 Cap IX se probó la existencia de una estructura afin canónica para el complementario de un punto b de una recta proyectiva Δ , de forma que fué posible identificar de forma natural la complección proyectiva de la recta afin Δ - \langle b \rangle con Δ , y b con el punto del infinite.

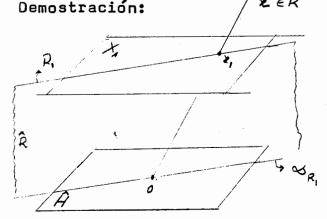
En éste epígrafe mandaremos al infinito todos los puntos de un hiperplano H de un espacio proyectivo E, de manera que la extensión proyectiva X del espacio afin canónico X=E-H pueda identificarse de forma
natural con E, y H con los puntos del infinito de X. Esto permitirá
traducir sistemáticamente la teoría de extensiones proyectivas de
subespacios afines y aplicaciones a éste nuevo contexto.

2.1 Estructura afin canomica para el complementario de un hiperplano.

2.1.1 Sea E un espacio proyectivo de dimensión n-1, y sea H un hiperplano de E. Por el teorema de incidencia, cada recta proyectiva △ de E ó bien está contenida en H, ó bien △ ∩ H= b punto de H. En este caso △ -{b}∠E-H es unarecta afin. Parece razonable pensar que dicha recta está sumergida en una estructura afín global para E-H:

2.1.2 Teorema

En las hipótesis de 2.2.1, existe una estructura afin sobre el conjunto X=E-H tal que toda recta afin R de X es de la forma $R=R \cap X=R-(R\cap H)$ siendo R una recta proyectiva de E no contenida en H. $\begin{pmatrix} con & c$



Sea H=P(\hat{H}) y $\hat{\alpha} \in \hat{E}' - \langle 0 \rangle$ tal que ker $\hat{\alpha} = \hat{H}$. Sea $X_1 = \{x_1 \in \hat{E} / \hat{\alpha} (x_1) = 1\}$. La aplicación $I_1: X = E - H \Rightarrow x \mapsto x_1 = x \cap X_1 \in X_1$ es biyectiva. Damos a X la estructura de espacio afin inducida a traves de X_1 por la estructura afin canónica de X_1 con espacio vectorial asociado \hat{H}

Probemos que ésta es la estructura afin buscada para X:

Sea R recta afin de X, es decir, $I_1(R)=R_1$ es recta afin de X_1 . Su extensión vectorial $\hat{R}_1 \subset \hat{E}$ verifica $\hat{R}_1 \cap X_1=R_1$. Sea $\overline{R}=P(\hat{R}_1)$; claramente es $\overline{R} \cap H = \bigotimes_{R_1} y \widehat{I}_1(\bigotimes_{R}) = \bigotimes_{R_1} = \overline{R} \cap H$, así si $(a,x,c) \subset R$, $I_1(a,x,c) = (a_1,x_1,c_1) \subset R_1$ se verifica:

 $(a;x;c)_{R} = [a, \infty_{R}; x, c]_{\widetilde{R}} = [a_{1}, \infty_{R_{1}}; x_{1}, c_{1}]_{\widetilde{R}_{1}} = [a, \overline{R} \cap H; x, c]_{\overline{R}} \text{ en donde:}$

- -la igualdad (1) es consecuencia de 3.4.2 (Cap IX) en donde se dió estructura afin canónica al complementario de un punto en una recta proyectiva.
- -La igualdad (2) se verifica por ser $\widetilde{I}_1: \widetilde{X} \longrightarrow \widetilde{X}_1 = E$ homografía, (donde I_1 es la extensión proyectiva de la aplicación afin \widetilde{I}_1).
- -La igualdad (3) es consecuencia de la identificación canónica que permite escribir \widetilde{X}_{γ} =E

Los siguientes resultados, consecuencia inmediata del teorema anterior establecen la unicidad de la estructura afin sobre X=E-H, y la igual-dadeX = E, salvo homografías:

2.1.3 Corolario

En las hipótesis de 2.1.1, si X=E-H es el espacio afin construido en 2.1.2, se verifica:

- i) Dada una recta afin R de X, existe una única recta proyectiva, que denotamospor \overline{R} , tal que $\overline{R} \cap X = R$.
- ii)Recíprocamente, el espacio afin X=E-H, verifica la siguiente propiedad P:"Para toda recta proyectiva \triangle de E no contenida en H, es \triangle $\triangle \cap$ H con su estructura afin canónica (dada en 3.4.2 Cap IX) recta afin de X"

Demostración:

- i) Si \overline{R}_1 y \overline{R}_2 son rectas proyectivas que verifican $\overline{R}_1 \cap X = \overline{R}_2 \cap X = R$, recta afin de X, entonces \overline{R}_1 y \overline{R}_2 tienen al menos dos puntos en común, y por tanto $\overline{R}_1 = \overline{R}_2$.
- ii) Si \triangle es una recta proyectiva de E no contenida en H, entonces $\triangle \cap H$ es un punto de \triangle y existen al menos dos puntos distintos a , b $\in \triangle \cap X$. A partir de la recta afin R de X definida por los puntos a y b , se obtiene por i) una recta proyectiva R tal que $R \cap X = R$, y R coincide con \triangle por tener comunes los puntos a y b. Así se tiene $R R \cap H = \triangle \triangle \cap H$ que es recta afin de X

2.1.4 Corolario

La estructura afin de X=E-H dada en 2.1.2 es la única verificando la propiedad P de 2.1.3 ii)

Demostración:

Nótese que la propiedad P caracteriza a las rectas afines de X, y la razón simple:

Si (a,x,c) es un sistema de tres puntos (al menos dos distintos) simbre la recta afin R de X, existe una única recta proyectiva \overline{R} de E con $\overline{R} \cap X=R$, y $(a;x;c)=[a,\overline{R} \cap H;x,c]$.

2.1.5 Corolario

Dos rectas afines R_1, R_2 de X=E-H (cob su estructura afin canónica) son paralelas, si y solo si $\overline{R}_1 \cap H = \overline{R}_2 \cap H$.

Demostración:

Supóngase R₁≠R2.

Si $\overline{R}_1 \cap H = \overline{R}_2 \cap H = \alpha \in H$, las rectas \overline{R}_1 , \overline{R}_2 generan (por el teorema de incidencia) un plano proyectivo P,y $\overline{R}_1 = \overline{R}_1 \cap H$, $\overline{R}_2 = \overline{R}_2 \cap H$ son dos rectas afines del plano afin P-(P \cap H), que tienen intersección vacía. Por el teorema de incidencia afin, se concluye que \overline{R}_1 y \overline{R}_2 son rectas afines paralelas.

El recíproco se prueba de forma analoga.

2.1.6 Corolario

Dotemos a X=E-H de su estructura afin canónica dada en 2.1.2: La aplicación h: $\widetilde{X} \mapsto E$ definida por h(x) $\neq x$ si $x \in X$, y h(\bowtie_R)= $\overline{R} \cap H$ para toda recta afin de X, es una homografía que permite identificar:

- \overline{R} con \widehat{R} , para toda recta afin R de X
- ≪_X con H
- X con E

Demostración:

La aplicación h está definida sin ambigüedad, y es biyectiva en virtud de 2.1.5. Nótese además que h coincide con la homografia $\widetilde{\mathbf{I}}_1:\widetilde{\mathbf{X}}\longrightarrow\widetilde{\mathbf{X}}_1=\mathbf{E}$ considerada en la demostración del teorema 2.1.2.

Retomando la definición l.l.4 del capVIII, se puede establecer una aparente generalización del concepto de espacio proyectivo afin:

2.1.7 Definición

Un espacio proyectivo afin es una pareja (E,H) donde E es un espacio proyectivo, y H es un hiperplano de E

tivo afin. Observese que si (E,H) es un espacio proyectivo afin, to-mando X=E-H se verifica que \widetilde{X} =E , \bigotimes_{X} =H y por tanto (E,H)= \widetilde{X} .

2.1.8 Ejemplo

En el espacio proyectivo $P_n(K)$ se fija el hiperplano H de ecuación x = 0. Entonces en $X = P_n(K) - H = \{[x_i] / x_i \neq 0\}$ la estructura afin canónica se define por la biyección: $I_1: X \ni \begin{bmatrix} x_0 \\ x_n \end{bmatrix} \mapsto \begin{bmatrix} 1 \\ x_i/x_0 \\ x_n/x_0 \end{bmatrix} \in A_n(K)$, y por tanto $\widehat{A}_n(K) = (P_n(K), H)$.

Traduciendo al lenguaje de la definición 2.1.7 anterior/los resultados del epígrafe 2.1 del capitulo VIII se tiene:

2.1.9 Teorema

Dado (E,H) espacio proyectivo afin, X=E-H entonces:

- i) Para A subespacio afin de X, existe un unico \widetilde{A} subespacio proyectivo de E tal que $\widetilde{A} \wedge X = A$. Ademas $\widetilde{A} \wedge H = \omega_A$.
- ii) Reciprocamente, Si \overline{A} es subespacio proyectivo de Etal que $\overline{A} \not\leftarrow H$, entonces $\overline{A} \cap X = A$ es subespacio afib de X, y $\widetilde{A} = \overline{A}$.

 Benotamos por $GA(E,H) = \overline{A} / A \in GA(X) = \overline{A} \in GP(E) / \overline{A} \not\leftarrow H$.

2.2 RESTRICCIONES AFINES DE TRANSFORMACIONES PROYECTIVAS

Notese que $GA(E,H) \subset GP(E)$.

Como consecuencia de 2,1.6 es posible traducir sistemáticamente toda la teoría de espacios proyectivo afines desarrollada en el Cpitulo VIII a los espacios (E,H) de la definición 2.1.7. Destaquemos
no obstante explícitamente los siguientes conceptos y resultados:

2.2.1 Definición

Sea (E,H) un espacio proyectivo afin. Una transformación proyectivo afin de (E;H) es una transformación proyectiva de E que deja invariante el hiperplano H. Escribimos $GA(E,H)=\{f\in GP(E)\ /\ f(H)=H\}$. GA(E,H) tiene estructura natural de grupo, y se denomina grupo proyectivo afin de (E,H), que permite identificar f y \widetilde{f}

2.2.2 Teorema

Sea (E,H) un espacio proyectivo afin, X=E-H con su estructura afin canonica. Se tiene:

- i) Si $f \in GA(X)$ exists una única transformación $\widetilde{f} \in GA(E,H)$ tal que $\widetilde{f}_X = \widetilde{f}/X = f : X \longrightarrow X$. La aplicación $GA(X) \ni f \longmapsto \widetilde{f} \in GA(E,H)$ es un isomorfismo de grupos.
- ii) Si $A \in \mathcal{G}A(X)$ y $f \in GA(X)$ se verifica $\widetilde{f}(\widetilde{A}) = \widetilde{f(A)}$.

tivo de dimensión finita n 2, y H es un hiperplano de E. X=E-H es el espacio afin construido en 2.1; Si f GA(E,H) escribimos f para denotar la restricción de f a X. f GA(X) y verifica f en tental dentificará X con E y X con H.

2.2.3 Definición (Homologías)

Una transformación proyectiva f de E que deja fijos todos los puntos de H (es decir, f(a)=a para todo a 4 H) se denomina hómología de E con hiperplano central H.

El estudio de las homologías se realiza mejos desde la prespectiva del espacio afin X=E-H:

2.2.4 Teorema

Sea $f \in GA(E,H)$. Entonces f es homología de hiperplano central H si y solo si f_X es una dilatación del espacio afin X=E-H. Demostración:

Si f es homología , para probar que f es dilatación es suficiente demostrar (por 1.2.5 Cap V) que f_{χ} transforma cada recta afin en uha recta paralela:

Si R es una recta afin de X, se verifica para $\widehat{R} \cap H = a \in H$ que $\widetilde{f_{\chi}(R)} \cap H = \widetilde{f_{\chi}(\widetilde{R})} \cap H = f(\widetilde{R}) \cap f(H) = f(\widetilde{R} \cap H) = f(a) = a$.

Por 2.1.5 las rectas R y $f_{\chi}(R)$ son paralelas.

Traduciendo los elementos geométricos de las dilataciones al lenguaje proyectivo se tiene:

2.2.5 Teorema

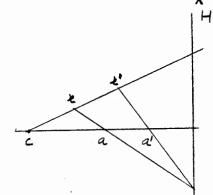
Sea $f: E \longrightarrow E$ una homología de hiperplano central H, distinta de la aplicación identidad. Existe entonces un único punto $c \in E$, tal que para todo $x \in E$ los puntos c, x, f(x) están alimeados. Además $H \cup \{c\}$ es el conjunto de puntos fijos para f. Por otra parte:

- i) f queda univocamente determinada por su hiperplano central H, su centro c, y una pareja a,a de puntos homologos distintos.
- ii) Si c $\not\in$ H, existe un único $\lambda \in K \rightarrow 0$ de nominado razón de homología tal que para todo $x \not\in H \cup \{c\}$ se tiene: $[c, c, x \ H; f(x), x] = \lambda \quad (\lambda \not= 1)$ Si c \in H se dice que la razón λ de homología es la unidad.

Uemostracion:

Por 2.2.4 fx:X --->X es dilatación. Hay dos posibilidades:

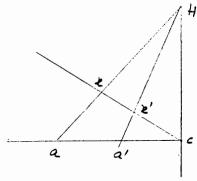
a) f_{χ} es homotecia de centro c. En este caso el punto c es el único punto fijo para f_{χ} , y HU/cy es el conjunto de puntos fijos de f.



Para $x \notin H \cup \{c\}$, los puntos c, x, f(x) están situados sobre la recta afin R_x que contiene a c y a x y sobre la recta proyectiva \widetilde{R}_x extensión proyectiva de R_x . Se verifica: $(c; f(x); x) = \lambda$, siendo λ la razón de homotécia de f_x . Por 2.1.2 se verifica: $\lambda = [c, R_x \cap H; f(x), x]$.

Si se conocen a,a' tales que a'=f(a) \neq a, entonces a \in X,y λ se determina por la fórmula $\lambda = [c,R] \cap H;a,a]$, con lo cual queda determinada f.

b) f_X es traslación. El conjunto de puntos fijos para f es enfeste caso, exactamente H (ya que ahora f_X no tiene puntos fijos)



Para cada $x \in X$ las rectas afines R_X definidas por los puntos x y $f_X(x)=f(x)$ tienen todas la misma dirección $c \in H$, es decir $\widehat{R}_X \cap H = c$.

Por tanto c,x,f(x) están situados sobre la misma recta proyectiva \widehat{R}_X . Esto concluye la demostración.

3. SEGUNDO TEOREMA FUNDAMENTAL DE LA GEOMETRIA PROYECTIVA La técnica de envio de puntos al infinito permite traducir al lenguage proyectivo el segundo teorema fundamental de la geometría afin: Se prueba que una biyección entre espacios proyectivos (de dimensión superior a la unidad) que conserve rectas, es automáticamente semihomografía. Para rectas proyectivas se da una versión espacial del teorema basada en la conservación de la separación armónica de puntos

3.1 <u>Segundo Teorema Fundamental (Versión general</u>)

Probemos dos lemas auxiliares:

3.1.1 Lema

Un subconjunto A de un espacio proyectivo E es subespacio proyectivo si y solo si contiene a cada recta definida por dos cualesquiera de sus puntos.

Demostración

Supongase que para cada a,b $\in A$ se verifica que $\langle a,b \rangle \in A$:

Si \hat{a} , $\hat{b} \in \Pi^{-1}(A)$ entonces $a=\Pi(\hat{a}),b=\Pi(\hat{b})$ son puntos de A; como $\langle a,b\rangle = \langle \hat{a},\hat{b}\rangle$ y $\langle a,b\rangle \in A$ se concluye que $\langle a,b\rangle \in \Pi^{-1}(A) \cup \langle 0\rangle$, y en consecuencia $\Pi^{-1}(A) \cup \langle 0\rangle = \hat{A}$ es subespacio vectorial de \hat{E} . La otra implicación es trivial.

3.1.2 Lema

Sea H un subespacio proyectivo de E. Entonces son equivakentes las afirmaciones:

- i) H es hiperplano proyectivo de E
- ii) Existe p ϵ E-H tal que $\Delta \cap H \neq \emptyset$ para toda recta proyectiva Δ tal que p $\epsilon \Delta$.

Demostración

i) \Rightarrow ii) Por el teorema de incidencia para subespacios proyectivos.
ii) \Rightarrow i) Si dim H < n-l , entonces para todo p \notin H , p=[$\hat{\rho}$], se verifica que $\hat{\rho}$ \notin \hat{H} y existe \hat{A} subespacio vectoria de \hat{E} con $\hat{\rho}$ \in \hat{A} y \hat{E} = \hat{H} \oplus \hat{A} . As \hat{I} dim \hat{A} \Rightarrow 2 , dim A \Rightarrow 1 , y H \cap A \Rightarrow \emptyset . Cada recta proyectiva contenida en A, que pasa por p no corta a H.

3.1.3 Teorema

Sea f:E \rightarrow E'una aplicación biyectiva entre espacios proyectivos, y dim E' \geqslant 2. Supongase que f(\triangle) es una recta proyectiva de E'para cada recta proyectiva \triangle de E. Entonces f es una semihomografía. Demostración:

Si A es un subespacio proyectivo de E, fijados dos puntos a',b $\not\in$ f(A), a'=f(a), b'=f(b), a,b $\not\in$ A, por 3.1.1 se tiene: $\not<$ a,b><A y así $f(\not<$ a,b>)= $\not<$ a',b'><cf(A). Por 3.1.1 f(A) es subespacio proyectivo de E'. Probemos que f transforma un hiperplano (cualquiera) H de E en un hiperplano f(H) de E.

En efecto: por 3.1.2 se sabe que existe un punto $p \in E-H$ tal que $\triangle \cap H \neq \emptyset$ para toda recta proyectiva \triangle que contiene a p. Si \triangle es una recta proyectiva de E´con $f(p) \in \triangle$, es facil ver que puede construirse \triangle recta proyectiva de E con $f(\triangle) = \triangle$ y $p \in \triangle$. Como $\triangle \cap H \neq \emptyset$ se deduce que $f(\triangle \cap H) = \triangle \cap f(H) \neq \emptyset$, y por 3.1.2 f(H) es hiperplano de E´.

Sean X=E-H X'=E'-f(H) los espacios afines correspondientes a (E,H) y (E',f(H)). Veamos que $f_X:X\longrightarrow X'$ transforma rectas en rectas: Si R es recta afin de X, \widehat{R} es recta proyectiva de E y se tiene $f_X(R)=\widehat{f_X}(\widehat{R}\cap X)=f(\widehat{R}\cap X)=f(\widehat{R})\cap X'$ que es recta afin de X', ya que por

hipotesis f(R) es recta proyectiva de E.

Por otra parte si R_1 y R_2 son rectas afines paralelas de X, entonces $\widehat{R}_1 \cap H = \widehat{R}_2 \cap H = \infty$ y $f(\widehat{R}_1) \cap f(H) = f(\widehat{R}_2) \cap f(H) = f(\infty)$. Así $f_X(R_1)$ es paralela a $f_X(R_2)$, y por la modificación introducida en 1.1.8 Cap V del teorema fundamental de la geometría afin, se concluye que f_X es aplicación semiafin (sin hipótesis adicional $K \neq Z_2$!). Aplicando ahora la teoría de extensiones proyectivas expuesta en 3.3 Cap VIII, y teniendo en cuenta el corolario 2.1.6 se concluye que \widehat{f}_X =f es semihomografía.

Estamos ahora en condiciones de probar el recíproco del teorema 3.2.7 Cap IX:

3.1.4 Corolario

Una biyección f de un espacio proyectivo E sobre un cuerpo K es transformación proyectiva si y solo si conserva la razón doble.

Demostración:

Si dim E=1, el resultado es equivalente al corolario 3.2.5 Cap IX. Supongase que dim $E \geqslant 2$:

Si f conserva la razón doble (def. 3.2.6 Cap IX) verifica en particular la hipótesis de 3.1.3 y f es por tanto semihomografía.

Si $K=Z_2$ entonces f es homografía (pues el único automorfismo del cuerpo Z_2 xes la identidad)

Si $K \neq Z_2$, tomando H hiperplano de E, X=E-H, X´=E-f(H), se concluye facilmente que $f_X: X \longrightarrow X$ ´ conserva la razón simple (utilícase 3.4.1 ii) Cap IX); f_X es por 4.3.4 Cap IV aplicación afin y así $f = \widetilde{f}_X$ es transformación proyectiva.

El resultado recíproco es justamente el corolario 3.2.7 Cap IX

3.2 Un Teorema Fundamental para rectas proyectivas

3.2.1 Definición

Cuatro puntos ordenados (a,b,c,d) de una recta proyectiva \triangle se dice que están en división armónica si [a,b;c,d] = -1

3.2.2 Proposición

Si (a,b,c,d) son puntos en división armónica de una recta proyectiva Δ , entonces también están en división armónica:

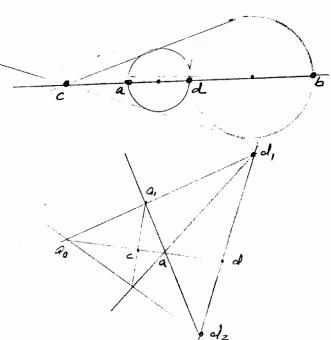
(b,a,c,d) y (c,d,a,b)

Dmostración:

Es consecuencia de que $[a,b;c,d]=[b,a;c,d]^{-1}=[c,d;a,b]$. (Véase

3.2.3 Observaciones

- i) Si (a,b,c,d) son cuatro puntos en división armónica de la recta proyectiva \triangle , se dice también que $\{a,b\}$ separa armónicamente $a\{c,d\}$. Nótese que en virtud de 3.3.2 no existe ambigüedad en la terminología, y la relación de separación armónica es simétrica
- ii) Notese que en virtud de 3.4.1 ii) Cap IX, si a,b,c,d son puntos de la recta proyectiva Δ entonces $\{a,b\}$ separa armónicamente a $\{c,d\}$ si y solo si $\{a;c;d\}_{\Delta-\{b\}} = -1$, es decir, a es el punto medio entre c y d en la recta afin Δ b
- iii) Una idea intuitiva de la separación armónica de puntos viene dada



en la figura: Los puntos {a,b} separan armónicamente a {c,d} (compruebese)

iv) Utilizando la observación ii) puede verse en la figura de la izquierda que los puntos {a,a separan armónicamente a {c,d}. Basta enviar al infinito la recta {d1,d2} y observar que {a1,a2}, {a0,a} son las diagonales del paralelogramo de vertices a0,a1,a,a2 así c es el punto medio del segmento definido por a0 y a.

Demostraremos que la conservación de la separación armónica caracteriza a las semihomografías entre rectas proyectivas. Probemos antes el siguiente lema de tipo técnico:

3.2.4 Lema

Si $\sigma: K \longrightarrow K'$ es un isomorfismo de cuerpos, entonces la aplicación $\widehat{\sigma}: \widehat{K} \longrightarrow \widehat{K}'$ tal que $\widehat{\tau}(\omega) = \omega'$ y $\widehat{\sigma}/K = \sigma: K \longmapsto K'$, es una semihomografía que verifica $[a,b;c,d]^{\widehat{\tau}} = [\widehat{\sigma}(a),\widehat{\tau}(b);\widehat{\tau}(c),\widehat{\sigma}(d)]$ para todo $[a,b,c,d] \in \widehat{K}$.

Demostración

Nótese que si a,b,c \in K , $\sigma((a;b;c)) = \sigma(\frac{b-a}{c-a}) = \frac{\sigma(b) - \sigma(a)}{\sigma(c) - \sigma(a)} =$ = $(\sigma(a);\sigma(b);\sigma(c))$. Por 4.3.2 Cap IV se concluye que $\sigma:K \longrightarrow K'$ es semiafim, y $\widehat{\sigma}$ su extensión es por tanto semihomografía.
La última afirmación es ya evidente.

3.2.5 Definición

Sea $f: \Delta \longrightarrow \Delta'$ una aplicación biyectiva entre rectas proyectivas. Se dice que f conserva la separación armónica de puntos si para todo a,b,c,d $\in \Delta$ con [a,b;c,d]=-1, se verifica [f(a),f(b);f(c),f(d)]=-1

3.2.6 Teorema

Sea f: $\Delta \longmapsto \Delta'$ una biyección entre las rectas proyectivas Δ y Δ' sobre los cuerpos K y K', entonces:

- i) Si f es semihomografía respecto al isomorfismo de cuerpos $\sigma: K \longrightarrow K'$, entonces $[a,b;c,d]^{\widetilde{V}} = [f(a),f(b);f(c),f(d)]$ para todo $[a,b,c,d] \in A$. En particular f conserva la división armónica.
- ii) Recíprocamente, si f conserva la separación armónica , y K \neq Z $_2$, entonces f es semihomografía.

Demostración:

i) Fijemos (a,b,c) tres puntos distintos de \triangle y sea f(a,b,c)=
=(a',b',c'). Tomando h: $\triangle \longrightarrow \widetilde{K}$ (respectivamente h': $\triangle \hookrightarrow \widetilde{K}$) homografías tales que h(a,b,c)=(0, \bowtie ,1) (respectivamente h'(a',b',c')=(0, \bowtie ,1))
se ve que el diagrama:

es conmutativo, ya que $\widetilde{\sigma}$ y h'f h⁻¹ son semihomografías respecto al isomorfismo de cuerpos $\sigma: K \mapsto K'$ que transforman $(0, \infty, 1)$ en $(0, \infty', 1)$ (apliquese una versión ampliada de 2.1.7 Cap IX). Se tiene entonces para a,b,c,d $\in \Delta$:

 $[f(a),f(b);f(c),f(d)] = [h'f(a),h'f(b);h'f(c),h'f(d)]_{\sigma} = \frac{1}{2} \left[\frac{1}$

ii) Supóngase que f consetva la separación armónica.

Construyamos h y h' como en i) a partir de un terna $(a,b,c) < \Delta$ de tres puntos distintos, y como antes, sea $\tilde{\nabla}$ la aplicación que hace conmutativo el diagrama:

$$\begin{array}{ccc}
\Delta & & & \uparrow & \downarrow h' \\
h & & & \downarrow & h' \\
K & & & & K'
\end{array}$$

de K y $a=\frac{1}{2}$ es su punto medio, se verifica:

(a;b;c)=-l=[a,\omega;b,c] y por tanto $[\sigma(a),o';\sigma(b),\sigma(c)]$ = -l , es decir $(\sigma(a);\sigma(b);\sigma(c))$ =-l. En consecuencia, $\sigma(a)$ = $\frac{\sigma(b)+\sigma(c)}{2}$ = $\sigma(\frac{b+c}{2})$. En particular tomando c=0 se tiene:

 $\frac{\mathcal{O}(b)}{2} = \mathcal{O}(\frac{b}{2})$ para cada bek . Esto permite concluir que \mathcal{O} es aditi-

Si x \in K, teniendo en cuenta que` [1, x²; x,-x] =-1 se deduce que [1, $\sigma(x^2)$; $\sigma(x)$,- $\sigma(x)$] =-1 y por tanto $\sigma(x^2)$ = $\sigma(x)^2$.

Si a,b & K tomando a=x+y b=x-y se deduce que:

 $\sigma(ab) = \sigma(x^2 + y^2) = \sigma(x)^2 - \sigma(y)^2 = (\sigma(x) + \sigma(y))(\sigma(x) - \sigma(y)) = \sigma(a)\sigma(b)$.

Esto finaliza la demostración

Por último por 3.1.3 y 3.2.6 i) se tiene:

3.2.7 Teorema

Sea f:E → E' una biyección entre espacios proyectivos sobre los cuerpos K y K'respectivamente. Supóngase dim E > 2. Son equivalentes las siguientes afirmaciones:

- i) f transforma biyectivamente rectas proyectivas de E en rectas proyectivas de E'
- ii) f es semihomografía
- iii) Existe $\nabla: K \mapsto K'$ isomorfismo de cuerpos, tal que cualquiera que sean los puntos alineados a,b,c,d de E se verifica que f(a),f(b),f(c) f(d) están alineados, y [f(a),f(b);f(c),f(d)] = [a,b;c,d].

 Demostración:
- i) ⇒ii) Es el teorema fundamental 3.1.3
- ii) ⇒ iii) Es consecuencia de 3.2.6 i)
- iii) \Rightarrow i) Sea \triangle recta proyectiva de E, (a,b,c) sistema de referencia proyectivo en \triangle . Los puntos (a',b',c')=f(a,b,c) estan situados sobre una recta \triangle ' de E'. Sean h: $\triangle \mapsto \widehat{K}$, h': $\triangle \hookrightarrow \widehat{K}$ ' las homografías tales que h(a,b,c)=(0, \bowtie ,1), h'(a',b',c')=(0, \bowtie ,1). Por hipótesis el diagrama: $\triangle \vdash \longrightarrow \triangle$

es conmutativo. Como h,h', y $\widehat{\nabla}$ son biyecciones, se concluye que f es biyectiva, es decir $f(\Delta) = \Delta'$.

4.GEOMETRIA Y ESTRUCTURA PROYECTIVAS

Dos espacios proyectivos (E,E_1,\mathcal{T}_1) (E,E_2,\mathcal{T}_2) definidos sobre el mismo conjunto de puntos E se dirá que inducen la misma estructura proyectiva (sobre E) si definen la misma razón doble.

En general dos estructuras proyectivas distintas sobre E pueden inducir el mismo grupo de transformaciones proyectivas. El objeto final de éste epígrafe 4 es por una parte caracterizar las distintas estructuras proyectivas sobre el conjunto E que dan lugar a la misma geometría y por otra mostrar como la geometría proyectiva de un espacio viene determinada por la familia de sus rectas proyectivas.

El analisis de éstas cuestiones requieren ciertos preparativos que dan lugar a resultados con interés própio tales como algunos teoremas de extensión de homografías, y una caracterización de las semihomografías como biyecciones que conservan la geometría

E y E´ denotan espacios proyectivos de dimensión finita sobre los cuerpos K y K´respectivamente

4.1 Teoremas de extensión de homografías .

El primer teorema fundamental de la geometría proyectiva (2.1.7 Cap IX) nos da un primer ejemplo de la posibilidad de construir transformaciones proyectivasa las que se exigen ciertas restricciones de partida. Utilizaremos el teorema para mostrar otros resultados de este tipo que nos serán de utilidad más adelante.

4.1.1 Teorema

Sean A y A´subespacios proyectivos de E, y g:A \rightarrow A´ una homografía. existe entonces una transformación proyectiva f:E \rightarrow E tal que f/A=g. Demostración: Supóngase A=P(Â),A´=P(´) g=[ĝ].

Demostración: Supóngase A=P(Â),Â'=P(Â') g=[ĝ]. Sea $\hat{\delta}$ =(\hat{a}_0 ,..., \hat{a}_n) base de \hat{E} con $\langle \hat{a}_0$,..., $\hat{a}_r \rangle$ = \hat{A} . Entonces $(\hat{g}(\hat{a}_0),...,\hat{g}(\hat{a}_r))$ es bse de \hat{A} y puede extenderse a una base $\hat{\delta}'$ = =($\hat{g}(\hat{a}_0)$,..., \hat{a}_r), \hat{a}_{r+1} ,..., \hat{a}_n) de \hat{E} . Si \hat{f} es la única transformación lineal de \hat{E} tal que f($\hat{\delta}$) = $\hat{\delta}'$ se concluye que \hat{f}/\hat{A} = \hat{g} y por tanto f/A=g, siendo f=[\hat{f}].

4.1.2 Teorema

Sean A (respectivemente A') i=1,2 , subespacios proyectivos de E y $f_i:A_i \longrightarrow A'_i$ i=1,2 homografías.

Supongase que $A_1 \cap A_2 = A_1 \cap A_2' = \emptyset$, existe entonces una transformación proyectiva $f \in GP(E)$ tal que $f/A_1 = f_1$, i=1,2.

Demostración:

En virtud de 4.1.1 podemos suponer sin perdida de generalidad que $A_1 + A_2 = A_1 + A_2 = E$. Nótese que dim $A_i = \dim A_i$ i = 1, 2.

Si $A_i = P(\hat{A}_i)$ $A_i = P(\hat{A}_i)$ $f_i = \{\hat{f}_i\}$ i = 1, 2, utilizando una técnica parecida a 4.1.1, se puede construir \hat{f} transformación lineal en \hat{E} tal que $\hat{f}/\hat{A}_i = \hat{f}_i$ i = 1, 2, y tomando $f = \{\hat{f}\}$ se tiene $f/A_i = f_i$.

Nótese que la transformación proyectiva f no es única (¿porqué?).

4.1.3 Corolario

Si (a_0,a_1,a_2) son tres puntos distintos situados sobre una recta proyectiva \triangle de E, y $a \in E - \triangle$, entonces dada $\tau:\{0,1,2\} \rightarrow \{0,1,2\}$ permutación, existe $g_{\tau} \in GP(E)$ tal que $g_{\tau}(a_i) = a_{\tau(i)}$, i=0,1,2, y $g_{\tau}(a)=a$. Demostración:

Por el primer teorema fundamental de la geometría proyectiva (2.1.7 Cap IX) existe $f \in GP(\Delta)$ con $f(a_i)=a_{\tau(i)}$ i=0,1,2. Como $\Delta \cap \{a\}=\emptyset$, se concluye por 4.1.2 que existe $g_{\tau} \in GP(E)$ con $g_{\tau}/\Delta = f$ y $g_{\tau}(a)=a$, y g_{τ} verifica las condiciones pedidas.

4.1.4 Corolario

Sean (a_0,a_1,a_2,a_3) cuatro puntes de E de los cuales no hay trés alineados. Fijada τ permutación de $\{0,1,2,3\}$, existe $g \in GP(E)$ tal que $g_{\tau}(a_i)=a_{\tau}(i)$ para i=0,1,2,3.

Demostración:

Sea $P=\langle a_0,a_1,a_2,a_3\rangle$. Si el sistema es proyectivamente dependiente, entonces P es un plano , y (a_0,a_1,a_2,a_3) es un sitema de referenciamproyectivo en P. Por el primer teorema fundamental existe f transformación proyectiva en P tal que $f(a_i)=a_{\mathcal{L}(i)}$ i=0,1,2,3. Aplicando ahora 4.1.1 se construye $g_{\mathcal{L}}$.

Si (a_0, a_1, a_2, a_3) es proyectivamente independiente, entonces dim P =3, y podemos elegir $a \in P$ tal que (a_0, a_1, a_2, a_3, a) sea sistema de referencia proyectivo en P. La construcción de g_{τ} es análoga al caso anterior: Sea toma $f \in GP(P)$ con $f(a_i) = a_{\tau(i)}$ $f(a) = a_{\tau(i)}$ y se extiende a g_{τ} .

4.2 Biyecciones que conservan la geometría

4.2.1 Definición

Una biyección f entre los espacios proyectivos E y E´ se dice que es compatible con las geometrías (proyectivas de E y E´) si f g $f^{-1} \in GP(E')$ para todo $g \in GP(E)$, y $f^{-1}g'f \in GP(E)$ para todo $g \in GP(E')$.

Si E=E' se dice que f conserva la geometría

4.2.2 Observaciones

- i) Si f:E \rightarrow E' es una biyección compatible con las geometrías, entomces la aplicación f:GP(E) \ni g \mapsto f g f $\stackrel{-1}{\in}$ GP(E') es un isomorfismo de grupos.
- ii) El producto de dos biyecciones compatibles con las geometrías, también es del mismo tipo, y se verifica: (f f') = f f', id = id En particular la familia de biyecciones de Eque conservan la geometria tiene estructura de grupo, que contiene a GP(E) como subgrupo.

4.2.3 Proposición

Si $f:E \longrightarrow E'$ es semihomografía entonces f es compatible con las geometrías.

Demostración:

SupoHgase f semihomografía respecto al isomorfismo $\sigma: K \longrightarrow K'$. Por 2.2 cap IV, se concluye que si $g \in GP(E)$, el isomorfismo asociado a f g f^{-1} es σ .id. σ^{-1} =id, y así f g $f^{-1} \in GP(E')$. La otra condición se demuestra análogamente.

4.2.4 Teorema

Supongase K con mas de tres elementos:

Si f:E->E' es una biyección compatible con las geometrías, entonces f es semihomografía

Demostración:

Probaremos que f transforma puntos alineados en puntos alineados. Aplicando el mismo razonamiento a f^{-1} , se concluye que f transforma
rectas en rectas, y por el segundo teorema fundamental (3.1.3 Cap X)
que f es semihomografía.

Sean (a_0,a_1,a_2) tres puntos distintos situados sobre una recta proyectiva Δ de E. Como K tiene más de tres elementos, es posible elegir $a_3 \in \Delta - \{a_0,a_1,a_2\}$, tal que $\lambda = [a_0,a_1;a_2,a_3] \neq -1$, y así $\lambda \notin \{0,1,2,3\}$ (pues los a_1 son distintos).

Si en el sistema $f(a_0, a_1, a_2, a_3) = (a'_0, a'_1, a'_2, a'_3)$ no hay tres puntos alineados, por 4.1.4 se concluye que fijada \mathcal{T} permutación de $\{0,1,2,3\}$ existe $g_{\tau} \in GP(E')$ con $g_{\tau}(a'_1) = a'_{\tau}(i)$ i=0,1,2,3. Por hipótesis $g=f^{-1}g_{\tau}f \in GP(E)$, y verifica $g(a_i) = f^{-1}g_{\tau}(a_i) = f^{-1}g_{\tau}(a'_1) = f^{-1}(a'_{\tau(i)}) = a_{\tau(i)}$ para i=0,1,2,3. Como g conserva la razón doble (3.2.7 Cap IX), se deduce tomando f(a) = f(a) = f(a) = f(a) = f(a)

 $\lambda = \begin{bmatrix} a_0, a_1; a_2, a_3 \end{bmatrix} = \begin{bmatrix} a_1, a_0; a_2, a_3 \end{bmatrix} = \frac{1}{\lambda}$ y en particular $\lambda^2 = 1$. Esto contradice que $\lambda \notin \{1, -1\}$.

ASI pues en el sistema (a_0,a_1,a_2,a_3) nay al menos tres puntos alineados. Si por ejemplo a no está situado sobre la recta \triangle_1 que contiens a (a_1,a_2,a_3) , por el corolario 4.1.3 se concluye utilizando un argumento similar al anterior que:

$$\lambda = [a_0, a_1; a_2, a_3] = [a_0, a_1; a_3, a_2] = \frac{1}{\lambda}$$
y esto conduce a la misma contradicción anterior.

4.2.5 Observación

Nótese que en en espacio proyectivo sobre el cuerpo Z_3 , la razón doble λ de <u>los</u> cuatro puntos distintos de una recta proyectiva Δ es (por exclusión, ya que $\lambda \neq 0,1,\infty$) igual a -1 cualquiera que sea el orden en que se toman, por otra parte, en Z_3 para λ =-1 se verifican las igualdades $\lambda = \frac{1}{\lambda} = 1 - \lambda = \frac{1}{1 - \lambda}$ por lo que el argumento de 4.1.4 no puede incluir el caso $K=Z_3$ (ni pos supuesto $K=Z_2$)

- 4.3 Estructura proyectiva. Estructuras que inducen la misma Geometría.
- 4.3.1 Sea E un conjunto de puntos sobre el cual se han definido dos espacios proyectivos (E,E_1,\mathcal{H}_1) , (E,E_2,\mathcal{H}_2) que denotamos abreviadamente por (E,\mathcal{H}_1) y (E,\mathcal{H}_2) . Sean K_1 y K_2 los correspondientes cuerpos base. Si a,b,c,d son cuatro puntos alineados en (E,\mathcal{H}_1) , denotamos por $[a,b;c,d]_i$ su razón doble (i=1,2). $GP(E,\mathcal{H}_i)$ denotan los correspondientes grupos proyectivos.

4.3.2 Definición

En las condiciones 4.3.1 se dice que 71 y 77 definen la misma estructura proyectiva sobre E si 71 y 77 definen la misma razón doble, es decir:

- i) (E, Π_1) y (E, Π_2) tienen las mismas rectas proyectivas
- ii) Si a,b,c,d son cuatro puntos alineados entonces $\left[a,b;c,d\right]_1 = \left[a,b;c,d\right]_2$ (en particular $K_1 = K_2$)

 Como consecuencia la caractrización de homografías por medio de la razón doble (3.1.4 Cap X) , y la propia definición de homografía , se

4.3.3 Teorema

tiene el siguiente resultado:

En las hipótesis de 4.3.1, son equivalentes las afirmaciones:

- i) \forall_1 y \forall_2 definen la misma estructura proyectiva sobre E
- ii) La aplicación identidad id: $(E, \pi_1) \rightarrow (E, \pi_2)$ es homografía
- iii) Existe $\Theta: \hat{E}_1 \longrightarrow \hat{E}_2$ isomorfismo lineal que hace conmutativo el diagrama:

$$\Pi_{1} = \Pi_{2}$$
 as decir $\Pi_{2} \cdot \theta = \Pi_{1}$

$$\hat{E}_{1} - 104 \xrightarrow{\partial} \hat{E}_{2} - 105$$

4.3.4 Corolario

Sean $X_1=(X,X_1,\Delta_1)$, $X_2=(X,X_2,\Delta_2)$ dos espacios afines sobre el mismo conjunto X, que inducen la misma estructura fin sobre X (véase 1.2.6 Cap IV). Entonces las estructuras proyectivas sebre $\widetilde{X}=X\cup \infty_X$ inducidas por \widetilde{X}_1 y \widetilde{X}_2 coinciden.

Demostración:

Utilizando 4.3.5 b) Cap IV se deduce que id: $X_1 \longrightarrow X_2$ es aplicación afín , y su extensión proyectiva $\widetilde{id}: \widetilde{X}_1 \longrightarrow \widetilde{X}_2$ es por tanto homografía.

4.3.5 Definición

En las condiciones de 4.3.1 se dice que π_1 y π_2 inducen la misma geometría si $GP(E,\pi_1)=GP(E,\pi_2)$

4.3.6 Observación

Nótese que si Π_1 y Π_2 definen la misma estructura proyectiva en E por ser la razón doble invariante característica (3.1.4 $^{\text{C}}$ ap X), se deduce que Π_1 y Π_2 definen la misma geometría proyectiva. Sin embargo como veremos, no se verifica al recíproco:

- 4.3.7 Teorema (Se supone que el cuerpo K tiene más de tres elementos)
 En las condiciones 4.3.1, las afirmaciones que siguen son equivalentes:
 - i) Π_1 y Π_2 definen la misma geometría proyectiva
 - ii) La aplicación identidad, id: $(E, T_1) \longrightarrow (E, T_2)$ es semihomografúa
 - iii) Las rectas proyectivas de (E, T_1) y (E, T_2) coinciden Demostración:
 - i) \Leftrightarrow ii) Nótese que la afirmación i) equivale a decir que la aplicación id: $(E, 7_1) \mapsto (E, 7_2)$ es compatible con las geometrías. Basta aplicar entonces 4.2.3 y 4.2.4 para probar la equivalencia
 - ii) ⇔ iii) es consecuencia inmediata del segundo Teorema Fundamental de la geometría proyectiva.

4.3.8 Observación

En el caso de que (E,Π_1) y (E,Π_2) estén definidos sobre el mismo cuerpo K que no admita automorfismos distintús de la identidad, (por ejemplo K=R) los conceptos de Geometría y estructura se determinan entre si biunívocamente.

CLASIFICACION DE CORRESPONDENCIAS EN UN ESPACIO PROYECTIVO

Dos correspondencias proyectivas en un espacio proyectivo E se consideran equivalentes, si su "expresión analítica" puede ser formalmente la misma, respecto a sistemas de coordenadas homogéneos adecuadamente elegidos. Esto significa que ambas correspondencias se ven actuar de la misma forma respecto a puntos de vista proyectivos aducuados. Así por ejemplo, se puede intuir faciamente que dos homologías de la misma razón à son proyectivamente equivalentes, ya que la actuación de este tipo de transformaciones puede describirse geométricamente sin utilizar sistemas de coordenadas. (véase 2.2.5 Cap X)

El problema de clasificación proyectiva de correspondencias se resuelve a partir del Teorema de Jordan (4. Cap III), y es el objetivo final de este capítulo.

E es un espacio proyectivo de dimensión n > l sobre el cuerpo K .

1. EQUIVALENCIA PROYECTIVA DE CORRESPONDENCIAS. INVARIANTES

1.1 Introducción

1.1.1 Denotamos como es habitual por CP(E) al espacio proyectivo de las correspondencias proyectivas de E . Recordemos que la estructura proyectiva de CP(E) viene definida por la aplicación

 $\forall T: EL(\hat{E}) \rightarrow \{\hat{f}\} \leftarrow \{\hat{f}\} \in CP(E)$ (véase 3.1.6 Cap III)

En particular si $E=P_n(K)=P_n$, CP(E) se identifica con CP(n)=P(EL(n+1))= $\{\{\hat{A}\}/\hat{A} \in EL(n+1)\}$ con su estructura proyectiva canónica.

1.1.2 Proposición

Sea $\mathcal E$ un sistema de referencia proyectivo, y $\widehat{\mathcal E}$ la base de $\widehat{\mathcal E}$ inducida por $\mathcal E$.

La aplicación $\mathbf{M}_{\varepsilon}: \mathbb{CP}(\mathbf{E}) \ni [\hat{\mathbf{f}}] \mapsto [\mathbf{M}_{\hat{\mathbf{E}}}(\hat{\mathbf{f}})] \in \mathbb{CP}(\mathbf{n})$ depende solo de ε , y es una homografía con $\mathbf{M}_{\varepsilon} = [\mathbf{M}_{\hat{\mathbf{E}}}]$.

Demostración

Basta comprebar que el diagrama

$$CP(E) \xrightarrow{\mathcal{M}_{\mathcal{E}}} CP(n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$EL(\hat{E}) - \{0\} \xrightarrow{\mathcal{M}_{\hat{E}}} EL(n+1) - 0$$

es commutativo, y que para todo $\lambda \in K - \{0\}$ se verifica $M_{\widehat{\mathcal{E}}} = M_{\lambda \widehat{\mathcal{E}}}$ l.1.3 Observación

Notese que en

Notese que en las condiciones l.l.2 si $f \in CP(E)$ y $M_{\epsilon}(f) = [\hat{A}]$, entonces $\left[\widehat{A} \begin{pmatrix} \times_{o} \\ \times_{u} \end{pmatrix} \right] = \begin{bmatrix} \times'_{o} \\ \times'_{u} \end{bmatrix}$ son las ecuaciones de f en el sistema de coordenadas inducido por $\hat{\epsilon}$.

Parece pues natural la siguiente definición:

1.1.4 Definición

Dos correspondencias proyectivas f, f \in CP(E) se dicen (proyectivamente) equivalentes (y escribimos f p.e f') si existem & y & sistemas de referencia proyectivos tales que $M_{\&}(f) = M_{\&'}(f')$

1.1.5 Teorema

Sean $f=(\hat{f})$, $f'=(\hat{f}')$ correspondencias proyectivas de E, y ϵ sustema de referencia proyectivo. Las siguientes afirmaciones son equivalentes:

- i) Existe ε' sistema de referencia proyectivo con $M_{\varepsilon}(f)=M_{\varepsilon'}(f')$
- ii) f p.e f'

iii) Existe $\lambda \in K-\{0\}$ tla que \hat{f} es l.e (linealmente equivalente) a $\lambda \hat{f}'$.

iv) Existe g & GP(E) tal que f'=g-lf g

Demostración

- i) ⇒ ii) es trivial
- ii)⇒piii) : Sean δ y δ′ sistemas de referencia proyectivos con

 $\mathbf{M}_{\delta}(\mathbf{f}) = \mathbf{M}_{\delta'}(\mathbf{f}')$, y $\hat{\delta}$, $\hat{\delta}'$ las bases vectoriales correspondientes. Por 1.1.2 se tiene $\left[\mathbf{M}_{\hat{\delta}}(\hat{\mathbf{f}})\right] = \left[\mathbf{M}_{\hat{\delta}'}(\hat{\mathbf{f}}')\right]$ y existe $\lambda \in \mathbf{K} = 0$ tal que

 $M_{\hat{r}}(\hat{f}) = \lambda M_{\hat{r}'}(\hat{f}') = M_{\hat{r}'}(\lambda \hat{f}')$. Por tanto \hat{f} es 1.e a $\lambda \hat{f}'$.

iii) \Rightarrow iv): Como \hat{f} es l.e a \hat{f}' existe $\hat{g} \in GL(\hat{E})$ tal que $\hat{f} = \hat{g}^{-1}\lambda \hat{f}$ \hat{g} .

Tomando $g = [\hat{g}] \in GP(E)$ se tiene:

$$f' = [\hat{f}] = [\lambda (\hat{g}^{-1}\hat{f} \hat{g})] = [\hat{g}^{-1}\hat{f} \hat{g}] = [\hat{g}^{-1}][\hat{f}][\hat{g}] = g^{-1}fg$$

iv) ⇒i):

Sea $\hat{\mathcal{E}}$ base vectorial inducida por \mathcal{E} , y $\hat{A} = M_{\hat{\mathcal{E}}}(\hat{f})$. Por hipótesis existe $g = [\hat{g}] \in GP(E)$ con $f' = g^{-1}fg$, y por tanto, existe $\lambda \in K - \langle 0 \rangle$ talque $\hat{f}' = \lambda \hat{g}^{-1}\hat{f}$ \hat{g} . Tomemos $\mathcal{E}' = g^{-1}(\mathcal{E})$ (es decir $\hat{\mathcal{E}}' = \hat{g}^{-1}(\hat{\mathcal{E}})$) Se tiene: $\hat{f}'(\hat{\mathcal{E}}') = \hat{f}'\hat{g}^{-1}(\hat{\mathcal{E}}) = \lambda \hat{g}^{-1}\hat{f}(\hat{\mathcal{E}}) = \lambda \hat{g}^{-1}(\hat{\mathcal{E}})\hat{A} = \hat{\mathcal{E}}'(\lambda \hat{A})$, y así $M_{\hat{\mathcal{E}}'}(\hat{f}') = \lambda \hat{A}$, por tanto $M_{\hat{\mathcal{E}}'}(\hat{f}') = [\hat{A}] = M_{\hat{\mathcal{E}}}(f)$.

1.1.6 Observación

Dos elementos (\hat{A}) y (\hat{A}') \in CP(n) son proyectivamente equivalentes cuando existe $\lambda \in K - \{0\}$ y (\hat{P}) matriz no singular tal que $(\hat{A}' = \lambda \hat{P})^{-1} (\hat{A}) (\hat{P})$.

1.1.7 Corolario

Sean f, f' \in CP(E) y sean \pounds y \pounds ' sistemas de referencia proyectivos. son equivalentes las afirmaciones

- i) fespesaf
- ii) $M_{\varepsilon}(f)$ es p.e a $M_{\varepsilon'}(f')$.

Demostración:

i) = ii) sea δ sistema de referencia proyectivo con M_ε(f)=M_δ(f'). (δ ενώ te por la equiva lucia i) επί) de 1.1.5)

As1 pues $m_{e}(r)=m_{g}(r)$ y $m_{e}(r)$ son dos representaciones de f'en CP(n), y por tanto son proyectivamente equivalentes.

ii) \Rightarrow i) Recíprocamente, si $M_{\mathcal{E}}(f)=[\widehat{A}]$ es p.e a $M_{\mathcal{E}'}(f')=[\widehat{A}']$ se ve, utilizando l.1.6 que \hat{A}' es l.e a λA para cierto $\lambda \in K = \langle 0 \rangle$, y teniendo ahora en cuental.1.4 Cap III se concluye que $\hat{\mathbf{f}}$ 'y $\lambda\hat{\mathbf{f}}$ son linealmente equivalentes.

1.1.8 Corolario

La relación de equivalencia proyectiva en CP(E) es relación de equivalencia.

Demostración:

Es consecuencia de la equivalencia ii) aiv) de 1.1.5

1.1.9 Ejemplo

Dos homologías f y f' en el espacio proyectivo E son proyectivamente equivalentes si y solo si tienen la misma tazón.

En efecto: si f es homología de hiperplano central H razón $\lambda \neq 0$, y centro c , c ∉ H, tomando en el espacio afin X=E-H coordenadas cartesianas $\binom{X_1}{X_2}$ con origen en c , la transformación afin $f_H = f/X: X \rightarrow X$ es uma homotecia de centro c que tiene por ecuaciones:

$$\begin{pmatrix} 1 & 0 & \cdots & 0 \\ 0 & \lambda & & & \\ \vdots & & & & \lambda \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_n \end{pmatrix} = \begin{pmatrix} x_1' \\ x_n' \\ x_n' \end{pmatrix}$$

donde son las coordenadas homogéneas en E asociadas al sistema de coordenadas cartesianas de partida (es decir $X_i = \frac{x_i}{x_c}$) De ésta forma cualquier homología de razón 40,1 puede expresarse analíticamente por las ecuaciones (1) respecto a ciertos sistemas de

coordenadas homogéneas, y todas son proyectivamente equivalentes. Si λ =1 , se prueba de forma análoga que puede obtenerse para f una expresión analítica de la forma:

$$\begin{bmatrix}
\begin{pmatrix} 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix} v_0 \\ v_1 \\ v_m \end{pmatrix} = \begin{bmatrix} v_0 \\ v_1 \\ v_m \end{bmatrix}$$
(2)

respecto a cierto sistema de coordenadas homogéneas.

Recíprocamente , las ecuaciones (1) y (2) representan homologías de razones λ y l respectivamente. Así si f es homología de raz**é**n λ \neq 0 , y f'es p.e a f entonces f'admite una representación analítica del tipo

- (1) \bullet (2) , y así f´es homología de razón λ (Utilícese 1.1.7).
- 1.2 Invariantes proyectivos. Planteamiento del problema de clasificación
- 1.2.1 Definición

Un invariante proyectivo en CP(E) es una aplicación Φ de CP(E) en un conjunto A de forma que $\Phi(f) = \Phi(f')$ si f y f' son p.e

1.2.2 Ejemplo

La aplicación $\lambda: CP(E) \rightarrow K$ tal que $\lambda(f)=0$ si f no es homología, y $\lambda(f)$ es la razón de homología en caso contrario, es en virtud del ejemplo 1.1.9 un invariante proyectivo, que es suficiente para la clasificación de homologías de CP(E)

1.2.3 Definición

Un sistema completo de invariantes (proyectivos) es una colección (Φ_1,\ldots,Φ_s) de invariantes tales que $\overline{\Phi}_i(f)=\overline{\Phi}_i(f')$ i=1,...,s implica que f y f' son proyectivamente equivalentes. El sistema se dice irreducible, si $(\overline{\Phi}_1,\ldots,\overline{\Phi}_s)$ - $(\overline{\Phi}_i)$ ya no es sistema completo de invariantes para i=1,...,s .

1.2.4

La solución completa del problema de clasificación proyectiva de correspondencias consiste en determinar un sistema completo de invariantes $(\not \Phi_1, \dots, \not \Phi_s)$ y una colección $\vec J$ de matrices $\vec J$ de Jordan de forma que: Dado $f \in CP(E)$ pueda determinarse a partir se $\not \Phi_1(f), \dots, \not \Phi_s(f)$ uma matriz $\hat J$ de Jordan talque $M_{\epsilon}(f) = [\hat J]$ para cierto sistema de referencia proyectivo $\mathcal E$ de E.

Por otra parte, en virtud de 1.1.7, si dos correspondencias proyectivas admiten representaciones de Jordan (\hat{J}) y (\hat{J}') entonces son proyectivamente equivalentes, si y solo si lo son (\hat{J}) y (\hat{J}') has pues interesará dar criterios practicos para recomocer cuando (\hat{J}) y (\hat{J}') son o.e Para establecer el teorema general de clasificación de correspondencias proyectivas, son aun necesarios algunos prerequisitos:

- 1.3 Semejanza de polinomios
- 1.3.1 Preliminar

K[t] denota como es habitual el anillo de polinomios sobre el cuerpo. K en la variable t . Si $\varphi \in K[t] - \{0\}y$, $A \in K - \{0\}$ se denota por $A = \emptyset$ al polinomio $A = \emptyset$ (t) = $A = \emptyset$ (t/ $A = \emptyset$) siendo m el grado del polinomio . Si por ejemplo $A = \emptyset$ (t) = $A = \emptyset$

En particular, si $\varphi = a_0$ es $\varphi = a_0$, si $\varphi(t) = t + a_0$ es $\varphi(t) = t + A_0$.

No es dificil establecer las siguientes propiedades:

1.3.2 Teorema

Sea $\varphi \in K[t] - \{0\}$, $\lambda \in K - \{0\}$. Se verifica entonces:

i)
$$\mu \varphi = \lambda(\mu \varphi)$$
 para $\mu \in K - 0$. $1 \varphi = \varphi$.

- ii) Śi arphi es mónico de grado m, entonces $_{\mathcal{A}}arphi$ es mónico de grado m
- iii) Si $\gamma = \varphi_1 \cdots \varphi_r$ entonces $\lambda \gamma = \lambda \varphi_1 \cdots \lambda \varphi_r$. En particular si p es polinomio primo, también lo es γp .
- iv) Si $\varphi = p_1^{m_1} \cdots p_r^{m_r}$ es una descomposición de φ en factores primos, entonces $\varphi = \varphi_1^{m_1} \cdots \varphi_r^{m_r}$ es una descomposición de φ en factores primos. Demostración:

Los apartados i) y ii) son evidentes. Probaremos iii): para $\varphi = \varphi_1 \varphi_2$ si m , m₁ y m₂ son los grados respectivos de φ , φ_1 y φ_2 se tiene m=m₁+m₂ y $\varphi_1(t)$ $\varphi_2(t) = \lambda^{m_1} \varphi_1(t/\lambda) \lambda^{m_2} \varphi_2(t/\lambda) = \lambda^m \varphi(t/\lambda) = \lambda^{\varphi}(t)$. La afirmación iv) se deduce ya trivialmente de iii).

1.3.3 Definición

Dos polinomios φ , $\varphi \in K[t]$ se dicen semejantes si existe $\lambda \in K-\{0\}$ tal que $\gamma = \lambda \varphi$. The denomina a λ razón de semejanza.

1.3.4 Proposición

La relación de semejanz, definida anteriormente , es relación de equivalencia en $K(t] - \{0\}$, se denota por K(t] al conjunto cociente.

Demostración:

Es inmediata a partir de i) de 1.3.2

-1.3.5 Observación

Si $\psi = t^m + a_{m-1} t^{m-1} + \dots + a_1 t + a_0$, $\psi = t^m + b_{m-1} t^{m-1} + \dots + b_1 t + b_0$ son polinémios semejantes de razón $\lambda \in K - \{0\}$, entonces: $\psi(t) = t^m + \lambda a_{m-1} t^{m-1} + \dots + \lambda^{m-1} a_1 t + \lambda^m a_0 = \psi(t)$, y esto equivale a

 $\int_{a_{m-j}=b_{m-j}}^{j} para todo j=1,...,m.$

En particular los polinimios t- λ_1 t- λ_2 ($\lambda_1 \neq 0$) son semejantes con razón $\lambda = \lambda_1 / \lambda_2$.

1.3.6 Definición

Si S es un subconjunto de K[t]- $|0\rangle$, y $\lambda \in K-\{0\}$, escribimos $\lambda = \{\lambda \neq 1 \neq 1 \}$. Dos familias S y S'de polinimios se dicen semejantes si existe $\lambda \in K-0$ tal que S'= λS .

La relación anterior, es obviamente de equivalencia sobre las partes de K[t]-0. Si $S\subset K[t]-10$, denotamos por $_{\mu}S$ su correspondiente clase de equivalencia.

- 2. TEOREMA DE CLASIFICACION DE CORRESPONDENCIAS PROYECTIVAS En este apartado se desarrollará el programa esbezado en 1.2.4
- 2.1 Sistema completo de invariantes

Se denotará com es habitual $\chi_{\widehat{f}}$ y $\emptyset_{\widehat{f}}$ al polinomio caracteristico y mínimo respectivamente del endomorfismo lineal \widehat{f} de \widehat{E} (véase 2.3 y 3.2 cap III).

El siguiente resultado es crucial, y muestra la utilidad del concepto de semejanza de polinomios para conectar el problema que nos ocupa con el de clasificación lineal de endomorfismos resuelto en el Capitulo III.

2.1.1 Teorema

Sea \hat{f} endomorfismo lineal de \hat{E} y $\lambda \in K - \{0\}$. Se tiene entonces:

i)
$$\chi_{\hat{p}} = \chi \chi_{\hat{p}}$$
; ii) $\phi_{\chi p} = \chi \phi_{p}$.

Demostración:

i) Si $\hat{\mathcal{E}}$ es base de $\hat{\mathbf{E}}$ y $\mathbf{M}_{\hat{\mathcal{E}}}(\hat{\mathbf{f}}) = \mathbf{A}$ se tiene: $\chi_{\hat{\mathbf{f}}}(\mathbf{t}) = \det(\mathbf{t}\mathbf{I} - \mathbf{A}) = \det(\mathbf{A}(\frac{\mathbf{t}}{\lambda}\mathbf{I} - \mathbf{A})) = \lambda^{\frac{n+1}{2}} \det(\frac{\mathbf{t}}{\lambda}\mathbf{I} - \mathbf{A}) = \frac{1}{\lambda}\chi_{\hat{\mathbf{f}}}(\mathbf{t}).$

ii) Si $\varphi \in K[t]$ y el grado de φ es m se verifican las equivalencias: $\varphi(\hat{f})=0 \iff \lambda^m \varphi(\frac{\lambda \hat{f}}{\lambda})=0 \iff \varphi(\lambda \hat{f})=0$. En consecuencia, todo polinomio $\varphi \in K[t]-\langle 0 \rangle$ tal que $\varphi(\lambda \hat{f})=0$ verifica $\chi \varphi(\hat{f})=0$, $\chi \chi \varphi = \chi \varphi_{\hat{f}}$ en consecuencia $\chi \varphi = \chi_{\hat{f}}$. En consecuencia $\chi \varphi = \chi_{\hat{f}}$.

2.1.2 Corolario

Las aplicaciones $\mathcal{X}: CP(E) \Rightarrow f = [\hat{f}] \mapsto \mathcal{X}_{f} = \mathcal{X}_{\hat{f}} \notin_{\mathcal{K}} K[t], y$ $\emptyset: CP(E) \Rightarrow f = [\hat{f}] \mapsto \emptyset_{f} = \mathcal{M}_{\hat{f}} \notin_{\mathcal{K}} K[t] \text{ son invarianates proyectives de CP(E).}$ Demostración:

Si $f = \{\hat{f}\}$, $f' = \{\hat{f}'\}$ son correspondencias proyectivas de E tales que f es p.e a f', entonces existe $\lambda \in K - \{0\}'$ tal que \hat{f} es l.e $\lambda \hat{f}'$ y por tanto $\lambda \hat{f} = \lambda \hat{f} = \lambda \hat{f}$, (respectivamente, $\beta \hat{f} = \beta \hat{f} = \beta \hat{f}$), por tanto $\lambda \hat{f} = \lambda \hat{f}$, ($\lambda \hat{f} = \lambda \hat{f}$) como queriamos demostrar.

Para establecer el teorema de clasificación se necesita aun del siguiente lema técnico:

2.1.3 Lema

Sea p \in K[t] de grado m , f endomorfismo lineal de \widehat{E} y $\lambda \in$ K = $\langle 0 \rangle$, enton-ces $rg(p(\widehat{f}))=rg(\lambda p(\lambda \widehat{f}))$

Demostración

 $rg(_{\lambda}P(\lambda \hat{r})) = rg(\lambda^{m}p(\hat{r})) = rg(p(\hat{r})).$

4.1.4 legrema

Sea $f = \{\hat{f}\} \in CP(E)$ con $\emptyset_{\hat{f}} = p_1^{m_1} \cdot \cdot \cdot p_r^{m_r}$ (grado de p_i igual a V_i) la descomposición en factores primos del polinomio mínimo de f. Entonces:

- i) $\{p_1, \dots, p_r\}$ depende solo de la correspondencia fii) Para cada p_j y cada $i=0, \dots, \mathcal{V}_j$, $p_i(p_j) = \frac{rg(p_j(\hat{f})^i)}{\mathcal{V}_i}$ definen invariantes proyectivos en CP(E).
- iii) El sistema de invariantes descritos en ii) constituye un sistema completo de invariantes.

La correspondencia proyectiva f admite una representación analítica de la forma: $\left[\hat{J}\left(\frac{x_0}{x_0}\right)\right] = \left[\frac{x_0}{x_0}\right]$ respecto a cierto sistema de coordenadas homogeneas $[x_i]$, siendo \hat{J} una matriz de Jordan asociada al endomorfismo lineal f de É (vease 4.4.3 Cap III)

Demostración

- i) Es una facil consecuencia de 2.1.1 ii), 1.3.2 iii) y la definicion
- ii) Se deduce del lema 2.1.3 y de que $\frac{rg(p_j(\hat{f})^1)}{2!}$ son invariantes lineales (véase 4.2.2 Cap III)
- iii) Es consecuencia de que los invariantes $\frac{rg(p)(\hat{f})^{i}}{\lambda_{i}}$ constituyen un sistema completo de invariantes para la clasificación lineal de endomorfismos (4.2.2 Cap III).

Establezcamos por último un criterio practico para reconocer cuando dos elementos de la forma $[\hat{J}]$ y $[\hat{J}']$ (donde \hat{J} y \hat{J} 'son matrices de jordan) son proyectivamente equivalentes:

2.1.5 Notación

Recordemos que una matriz $\hat{\mathbf{J}}$ de Jordan (correspondiente al endomorfismo \hat{f} de 3.1.4) es de la forma $\hat{J}=diag(\hat{J}(p_1),...,\hat{J}(p_r))$, donde para cada $p_i = p \ (m = m_i, \ v = v_i)$ es $\widehat{J}(p) = diag(C(p, k_1), \dots, C(p, k_s))$ siendo

$$m=k_1 \geqslant k_2 \geqslant \cdots \geqslant k_s > 0$$
, y
$$C(p,k) = \begin{pmatrix} A(p), & & \\ & N \geqslant & \\ & & & A(p) \end{pmatrix}$$

con A(p) y No como en 4.3.4 Cap III.

Denotando para cada $\lambda \in K-\langle 0 \rangle$, $A(p)=A(\ p)$, convendremos en escribir $J(p)=diag(C(_{\lambda}p,k_{_{1}}),...,C(_{\lambda}p,k_{_{S}}))$, y $J=diag(_{\lambda}J(p_{_{1}}),...,J(p_{_{S}}))$ En estas condiciones se tiene el siguiente criterio:

2.1.6 Proposición

Sea f un endomorfismo lineal de É, y Ĵ una representación matrícial reducida de Jordan para \hat{f} , $\lambda \in K-\{0\}$. Entonces \hat{J} es una representaDemostración:

Sea $\emptyset_{f} = p_{1}^{m} 1 \cdots p_{r}^{m_{r}}$ ($\mathcal{V}_{j} = \text{grado de } p_{j}$) la descomposición en factores primos del polinomio mínimo de f. Utilizando 2.1.1 ii) y 1.3.2 iv) se ve que $\emptyset_{\lambda \hat{f}} = \lambda^{0} \hat{f} = \lambda^{0} \hat{f}^{m_{1}} \cdots \hat{f}^{m_{r}}$, y para cada $j=1,\ldots,r$, $i=1,\ldots,j$ es

$$\frac{\operatorname{rg}(p_{j}(\hat{f})^{i})}{\hat{v}_{i}} = \frac{\operatorname{rg}(\lambda p_{j}(\lambda \hat{f})^{i})}{\hat{v}_{i}} \quad \text{(véase 2.1.3)}$$

Así si $\hat{J}=\mathrm{diag}(\hat{J}(p_1),\ldots,\hat{J}(p_r))$ es la representación matricial de Jordan de \hat{f} deducida (por 4.4.2 Cap III) de los invariantes de rango, se concluye que $\hat{J}=\mathrm{diag}(\hat{J}(\hat{J}(p_1),\ldots,\hat{J}(p_r))$ es la correspondiente a \hat{J} . La última afirmación es consecuencia de que \hat{J} y \hat{J} son dos representaciones matriciales de \hat{J} , y por tanto son linealmente equivalentes.

2.1.7 Corolario

Dadas dos matrices de Jordan J y J', entonces $[\widehat{J}]$ es proyectivamente equivalente a $[\widehat{J}']$ si y solo si existe $\lambda \in K - \{0\}$ tal que \widehat{J}' y $\lambda \widehat{J}$ son linealmente equivalentes. En particular \widehat{J}' se obtiene a partir de $\lambda \widehat{J}$ por permutación de cajas.

Demostración

Es suficiente observar que $[\hat{J}]$ es p.e. a $[\hat{J}]$ si y solo si existe λ no nulo con λJ l.e a J'. Aplíquese ahora la última afirmación de la proposición anterior.

La última afirmación del corolario es consecuencia del criterio de equivalencia lineal de matrices de Jordan dado en 4.3.6 Cap III.

1.8 Ejemplo
$$\begin{pmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 $\hat{J}' = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$ entonces \hat{J} y \hat{J}' son p.e. de hecho se tiene que \hat{J}' es 1.e a la matriz $\hat{J}'_1 = \begin{pmatrix} 1/2 & 0 & 0 \\ 0 & 0 & 1/2 \end{pmatrix}$

$$y_{1/2} = J_1'$$
 ya que $\emptyset_J(t) = (t-2)(t-1)$ $y_{1/2} = (t-1)(t-\frac{1}{2}) = \emptyset_{J_1'}$

2.1.9 Observación

En general, cuando los factores irreducibles del polinomio mínimo son lineales (por ejemplo si K es algebraicamente cerrado), el criterio practico para reconocer cuando dos matrices de Jordan son proyectivamente equivalentes, es que salvo permutación de cajas se pueda obtener una de la otra multiplicando por un escalar no nulo los términos de la diagonal principal.

- 2.2 Subespacios invariantes de una transformación proyectiva
- 2.2.1 Definición

Sea f una transformación proyectiva de E. Un subespacio A de E se dice f-invariante (ó invariante si se sobrentiende f) si f(A) < A.

Nótese que la condición anterior equivale a decir que f(A)=A, pues dim $f(A)=\dim A$.

Se tiene la siguiente caracterización:

2.2.2 Proposición

Sea $f = [\hat{f}] \in GP(E)$, y $A = P(\hat{A})$ subespacio proyectivo de E. Son equivalentes:

- i) A es f-invariante
- ii) Â es f-invariante

Demostración

- i) \Rightarrow ii) Supongase A f-invariante, si $\hat{a} \in \widehat{A} \{0\}$ entonces $[\hat{a}] \in A$ y $f([\hat{a}]) = [\hat{f}(\hat{a})] \in A$, luego $\hat{f}(\hat{a}) \in \widehat{A}$.
- El recíproco se prueba de forma análoga.

2.2.3 Corolario

Sea $f = [\hat{f}] \in GP(E)$. Los puntos fijos de f son exactamente los puntos $a = [\hat{a}]$ de E definidos por autovectores a de \hat{f} .

2.2.4 Observación

- a) La intersección de dos subespacios invariantes es siempre invariante, sin embargo no puede dedirse lo mismo de la suma, como veremos
 mas adelante en algun ejemplo.
- b) Para cuerpos algebraicamente cerrados, toda transformación lineal admite un autovector, es decir, toda transformación proyectiva admite algub punto fijo.
- 2.2.5 Calculo de hiperplanos invariantes

Los hiperplanos invariantes de una transformación proyectiva $f = [\hat{f}]$ de E son los puntos invariantes de la transformación dual $f^* : E^* \ni H \mapsto f(H) \in E^*$ (vease 1.3 Cap X). En la practica el calculo se realiza de la siguiente forma: Si $\mathcal{E} = [\hat{\mathcal{E}}]$ es un sistema de referencia proyectivo con coordenadas $\begin{bmatrix} x \\ x \end{bmatrix}$

las ecuaciones de f se escriben de la forma: $\left(\hat{A}\begin{pmatrix} x_0 \\ x_L \end{pmatrix}\right) = \left(\begin{pmatrix} x_0 \\ x_L \end{pmatrix}\right) = \left(\begin{pmatrix} x_0 \\ x_L \end{pmatrix}\right)$ (1) siendo $\hat{A} = M_{\hat{L}}(\hat{f})$. Si $u \times f = 0$ es un hiperplano H de E, la ecuación de su transformado H es de la forma $u \times f = 0$, y se obtiene sustituyendo en la anterior ecuación cada x_i por su valor a partir de (1) en función de x_j , es decir, tomando $u = (u_0, \dots, u_n)$ y $x_i = \begin{pmatrix} x_0 \\ x_L \end{pmatrix}$

se tiene: H: (u x = 0) y H': (u A⁻¹x'= 0) por tanto u' = u A⁻¹ ó bien
$$\left[(\widehat{A}^{-1})^{t} \begin{pmatrix} u_{0} \\ u_{n} \end{pmatrix} \right] = \begin{bmatrix} u'_{0} \\ u'_{n} \end{bmatrix}. \text{ La invarianza de H se expresa } \left[(\widehat{A}^{-1})^{t} \quad u'_{n} \right] = \begin{bmatrix} u_{0} \\ u'_{n} \end{bmatrix}$$

of de forma equivalente
$$\hat{A}^t \begin{pmatrix} u_0 \\ \vdots \\ u_n \end{pmatrix} = \begin{pmatrix} \lambda u_0 \\ \vdots \\ \lambda u_n \end{pmatrix}$$
 para cierto $\lambda \in K - \langle 0 \rangle$.

Es decir los hiperplanos invariantes H se obtienen a partir de los autovectors de \hat{A}^{t} .

2.3 Clasificación de las homografías de una recta proyectiva

$$\triangle = P(\widehat{\triangle})$$
 es una recta proyectiva sobre el cuerpo K_{\bullet}

2.3.1 Definición

Una transformación proyectiva $f \in GP(\Delta)$, $f \neq id$ se demomina:

- a) Hiperbólica, si tiene unicamente dos puntos fijos
- b) Eliptica , si no tiene puntos fijos
- c) Parabólica, si tiene unicamente un punto fijo.

2.3.2 Observaciones

- a) Los conceptos de transformación hiperbólica eliptica y parabólica son invariantes proyectivos, es decir, si f es de alguno de estos tipos y f´es p.e. a f entonces f´es del mismo tipo que f. Esto es consecuencia de que si f es el conjunto de puntos fijos para f, y f'=g, f, $g \in GP(\Delta)$, entonces f'=g(F) es el conjunto de puntos fijos para f´.
- b) Si el cuerpo K es algebraicamente cerrado (por ejemplo K=C) entonces no existen transformaciones elipticas. Esto es consecuencia de 2.12.4
- c) La clasificación de homografías en la recta proyectiva 🛆 descrita en 2.3.1 es exahustiva si se excluye la aplicación identidad. En efecto: Si una transformación proyectiva f de 🖒 tiene mas de dos puntos fijos, por el primer teorema fundamental de la geometría proyectiva, se concluye que f es la identidad.

La clasificación de transformaciones proyectivas de Δ , puede hacerse por tanto de formamexahustiva estudiando la clasificación de cada uno de los tipos descritos en 2.3.1

2.3.3 Teorema

Sea $f = [\hat{f}] \in GP(\Delta)$ una transformación hiperbólica con puntos fijos $\{a,b\}$. Existe entonces una constante $\lambda \in K - \{0\}$ tal que si $x \in \Delta - \{a,b\}$, se

verifica la equivalencia: $f(x)=x \iff [a,b;x',x]=\lambda$. Se denomina a $\{\lambda,\frac{1}{\lambda}\}$ razón de la transformación hiperbólica.

Por otra parte dos transformaciones hiperbólicas son proyectivamente equivalentes, si y solo si coinciden sus razones respectivas.

Bemostración:

Sea $c \notin \Delta - \{a,b\}$. Sea (\hat{a},\hat{b}) la base de $\widehat{\Delta}$ asociada al sistema de referencia proyectivo (a,b;c) de Δ . Se tiene entonces, por 2.2.3 que \widehat{a} y \widehat{b} som autovectores de \widehat{f} asociados a autovlores no nulos. Es posible elegir \widehat{f} de forma que $\widehat{f}(\widehat{a}) = \widehat{a}$ y $\widehat{f}(\widehat{b}) = \lambda \widehat{b}$, y las ecuaciones de \widehat{f} son : $\left(\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} \right) = \begin{bmatrix} x'_0 \\ 0 \\ x_1' \end{bmatrix} (1)$

Mandando b: $(x_0=0)$ a infinito , y tomando en la recta afin $0=\sqrt{4-6b}$ la coordenada cartesiana $x=x_1/x_0$ (vease 2.1.8 Cap X) , las ecuaciones de f/D son: $\begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix} \begin{pmatrix} 1 \\ x \end{pmatrix} = \begin{pmatrix} 1 \\ x \end{pmatrix}$

y se trata de una homotecia de centro a y razón λ , así para $x \in A - \{a,b\}$ es $\lambda = (a; f(x); x)_D = [a,b; f(x), x]$.

Intercambiando los papeles de a y b se tiene para $x \in A - \{a,b\}$ $\frac{1}{\lambda} = [b,a;f(x),x], y respecto al sistema de referencia proyectivo (b,a;c) f admite una expresión analítica de la forma:$

$$\begin{bmatrix} 1 & 0 \\ 0 & \frac{1}{\lambda} \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{bmatrix} x'_0 \\ x'_1 \end{bmatrix}$$

La segunda parte es ahora evidente: Si f y f' son transformaciones hiperbólicas de razones respectivas $\{\lambda_1, \frac{1}{\lambda_1}\}$, $\{\lambda_2, \frac{1}{\lambda_2}\}$, y ambas razones coinciden, podemos suponer por ejemplo $\lambda = \lambda'$ y concluir por la anterior que f y f'admiten ecuaciones reducidas de la forma (1) respecto a ciertos sistemas de referencia; por 1.1.7 son proyectivamente equivalentes. El recíproco se deduce inmediatamente del criterio de equivalencia proyectiva de matrices de Jordan establecido en 2.1.7, y queda como ejercicio.

2.3.4 Definición

Una transformación hiperbólica de Δ se llama armónica si su razón $\lambda = \frac{1}{\lambda} = -1$

2.3.5 Corolario

Dos transformaciones hiperbólicas armónicas de Δ son proyectivamente equivalentes.

Dos transformaciones parabólicas de 🛆 son siempre proyectivamente equivalentes.

Demostración:

Si f es parabólica, y b es su único punto fijo, sea D la recta afin $\triangle -\{b\}$. So ve que $f/D:D \rightarrow D$ no tiene puntos fijos, y es por tanto una traslación que admite por ecuación x =x+1 respecto a cierto sistema de coordenadas cartesianas $\binom{1}{x}$, es decir $\binom{1}{1}$ $\binom{1}{x}$ = $\binom{1}{x}$ Tomando las coordenadas homogeneas $\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$ correspondientes a $\begin{pmatrix} x \\ x \end{pmatrix}$ (es decir $x = \frac{x_1}{x_0}$) las ecuaciones de f son $\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$

El resultado se sigue ahora de 1.1.5

Estudiemos finalmente la clasificación proyectiva de transformaciones elipticas solo en el caso real:

2.3.7 Teorema

Si f \in GP(\triangle) es una transformación eliptica, existe un sitema de coordenadas homogéneas y un 🗸 >0 único de forma que las ecuaciones de f denominamos a ≪ parametro de f.

En particular, dos transformaciones elipticas son proyectivamente equivalentes, si y solo si tienen el mismo parámetro.

Demostración:

Tomando $f = [\hat{f}]$, como f no tiene puntos fijos, \hat{f} no tiene autovalores, y el polinomio caracteristico de f' es de la forma:

 χ_{a} ,(t)(t-a)²+b²=t²-2at+(a²+b²) donde bes no nulo. Para $\lambda \in K-0$ es $\chi_{e'}(t) = \chi_{ie'}(t) = t^2 - 2\lambda at + \lambda^2(a^2 + b^2)$, y podemos elegir λ de forma que $\lambda^2(a^2+b^2)=1$, y $-2\lambda a=4>0$. Tomando $\hat{f}=\lambda \hat{f}'$, por el teorema de clasificación lineal de endomorfismos se concluye que existe una base $\hat{\xi} = (\hat{s}_0, \hat{e}_1)$ con coordenadas $\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$ tal que las ecuaciones de \hat{f} son de la forma $\begin{pmatrix} 0 & -1 \\ 1 & \varkappa \end{pmatrix} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$

Así las ecuaciones de f respecto a $\mathcal{E} = \begin{bmatrix} \hat{\xi} \end{bmatrix}$ son $\begin{bmatrix} 0 & -1 \\ 1 & \alpha \end{bmatrix} \begin{pmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$

que es lo que queriamos probar.

El resto del teorema es ya trivial.

Una transformación proyectiva f en un espacio proyectivo E se llama involución, si f²=id.

la calsificación proyectiva de transformaciones involutivas en la recvien descrita en la siguiente proposición

2.3.9 Proposición

Sea $f \in GP(\Delta)$ involutiva, entonces:

- i) Si f es hiperbólica, entonces es necesáriamente armónica
- ii) Si f es eliptica, su parametro 🛭 es nulo
- iii) No existen transformaciones parabolicas involutivas en Δ . Bemostración

El resultado es evidente a partir de las representaciones analíticas reducidas dadas en (las demostraciones de) 2.3.3 2.3.6 y 2.3.7 La condición f^2 =id impone:

- a) En el caso hiperbólicæ, existe $k \in K = \{0\} \text{con} \begin{pmatrix} 1 & 0 \\ 0 & \lambda \end{pmatrix}^2 = k \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ y esto implica que $\lambda = \pm 1$.
- b) En el caso eliptico, $\begin{pmatrix} 0 & -1 \\ 1 & \alpha \end{pmatrix}^2 = k \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \text{ para } k \in K \{0\} \Rightarrow \alpha = 0$

la afirmación iii) es evidente

Nótese en particular, que las involuciones distintas de la identidad se clasifican proyectivamente en hiperbólicas y elipticas

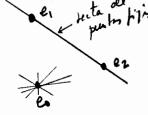
2.4 Clasificación de transformaciones proyectivas em el plano.

Sea E=P(E) un plano proyectivo sobre el cuerpo K=R \acute{o} C. Particularizando a esta situaci \acute{o} n el teorema de clasificaci \acute{o} n 2.1.4 y los criterios de equivalencia proyectiva de matrices de Jordan dados en 2.1.7 se puede concluir que para f \acute{e} GP(E)- \acute{e} 1, existe un sistema de referencia proyectivo \acute{e} =(e, e1, e2; e) con coordenadas [x] respecto al cual

las ecuaciones de f son
$$\left[\hat{J} \begin{pmatrix} x_0 \\ x_1 \\ x_2 \end{pmatrix} \right] = \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix}$$
 donde \hat{J} puede tomar los si-

guientes valores:

$$\hat{J} = \begin{pmatrix}
1 & 0 & 0 \\
0 & \lambda & 0 \\
0 & 0 & \lambda
\end{pmatrix}$$



f es homología de base $\langle e_1, e_2 \rangle$ centro e_0 y razón $\lambda \neq 0$.

les puntos fijos (vease figura) son el punto

e, y los de la recta base (e, e, 2). Las rectas invariantes son las que pasan por e, y
además, la recta base.

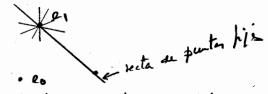
$$\widehat{J} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \lambda_1 & 0 \\ 0 & 0 & \lambda_2 \end{pmatrix} \qquad \lambda_1 \neq \lambda_2$$

22

f es una transformación proyectiva con puntos fijos e_0, e_1, e_2 , y rectas invarantes, las determinadas por dichos puntos

$$3 = 1 \quad 0 \quad 0$$

0 0 1



f es homología de base la recta $B=\langle e_1,e_2\rangle$ y centro e_1 . Los puntos fijos son los de la recta B, y son rectas invariantes, todas las que pasam por el centro e_1 .

2.4.4 1 0 0
$$\hat{J} = 1 1 0 \lambda \neq I$$

f tiene unicamente dos puntos fijos e_1 , e_2 y dos rectas invariantes $\langle e_1, e_2 \rangle$, y $\langle e_0, e_1 \rangle$.

$$\hat{J} = \begin{pmatrix} 1 & 0 & 0 \\ 1 & 1 & 0 \\ 0 & 1 & 1 \end{pmatrix}$$

f tiene un único punta fijo, e y una única recta invariante e_1, e_2 (que contiene al punto fijo)

$$J = \begin{pmatrix} \lambda & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & \alpha \end{pmatrix}$$

La transformación f tiene un unico punto fijo e y una única recta invariante , $\langle e_1, e_2 \rangle$ (que no contiene al punto fijo)

2.4.7 Observación

Nótese que la configuración geométrica del conjunto de puntos fijos, cuando consta de más de un punto, detremina el tipo proyectivo de la transformación (2.4.1, .2.4,2, .2,4.3, 2.4.4)

Cuando solo hay un punto fijo, es preciso recurrir a su posición relativa respecto a la única recta invariante (2.4.5, 2.4.6)

CAPITULO XII

FORMAS CUADRATICAS. CUADRICAS PROYECTIVAS

En este Capítulo Ê denota un espacio vectorial de domensión n‡l sobre un cuerpo K de caracteristica distinta de dos. E=P(Ê) es el correspondiente espacio proyectivo.

Fijado el sistema de coordenadas $\binom{x_0}{x_n}$ en \hat{E} , una expresión del tipo $\hat{\alpha} = \sum_{i=0}^n a_i x_i$ $(a_i \in K)$ representa una forma lineal que - si no es identicamente nula - da lugar a un hiperplano proyectivo H de E de ecuación $\sum_{i=0}^n a_i x_i = 0$. Dicho hiperplano determina la forma lineal $\hat{\alpha}$ salvo constantes multiplicativas no nulas, y la identificación $\mathbb{H} \leftarrow \hat{\alpha}$ permite establecer una estructura proyectiva canónica sobre la familia \mathbb{E}^* de hiperplanos de \mathbb{E} .

El objetivo de este capitulo consiste inicialmente en desarrollar un esquema análogo para expresiones de la forma $G = \sum_{i=0}^{\infty} a_{ij} x_{i} x_{j}$ $(a_{ij} \in K)$ denominadas formas cuadráticas. La ecuación $\sum_{i=0}^{\infty} a_{ij} x_{i} x_{j} = 0$ representará ahora lo que será denominada una cuádrica en el espacio proyectivo E, y será posible dar estructura proyectiva al conjunto Q(E) de todas ellas.

El estudio de la relación de ortogonalidad (polaridad) inducida por una forma cuadrática (cuadrica) es el ingrediente geométrico fundamental de esta teoría, y prepara el camino para determinar expresiones analíticas reducidas. Este será el último tema del capitulo, que estará planteado de la forma habitual, es decir, como un problema de clasificación geométrica.

1. DEFINICIONES Y RESULTADOS BASICOS 🔊

1.1 Formas bilineales y cuadráticas. Cuádricas

1.1.1 Definición

Una forma bilineal en \hat{E} , es una aplicación \hat{Q} : \hat{E} , \hat{E} \longrightarrow K que es lineal respecto a cada componente, es decir, para $\hat{x},\hat{y},\hat{v}\in\hat{E}$, λ , μ \in K:

- i) $\hat{q}(\lambda \hat{x} + \mu \hat{y}, \hat{v}) = \lambda \hat{q}(\hat{x}, \hat{v}) + \mu \hat{q}(\hat{y}, \hat{v})$
- ii) $\hat{\mathbf{Q}}(\hat{\mathbf{v}}, \lambda \hat{\hat{\mathbf{x}}} + \mu \hat{\mathbf{y}}) = \lambda \hat{\mathbf{Q}}(\hat{\mathbf{v}}, \hat{\mathbf{x}}) + \mu \hat{\mathbf{Q}}(\hat{\mathbf{v}}, \hat{\mathbf{y}})$

La forma bilineal se dice simétrica si $\hat{Q}(\hat{x},\hat{y})=\hat{Q}(\hat{y},\hat{x})$ para todo $\hat{x},\hat{y}\in\hat{E}$.

1.1.2 Ejemplo

Tomando $\hat{E} = \hat{P}_n$, para $\hat{x} = \begin{pmatrix} x_0 \\ x_n \end{pmatrix} \hat{y} = \begin{pmatrix} y_0 \\ y_n \end{pmatrix}$ se define:

a) $\hat{Q}_{0}^{\rho} : \hat{P}_{n} \hat{P}_{n} \ni (\hat{x}, \hat{y}) \mapsto \underbrace{\overset{F}{\underset{i=1}{\longleftarrow}}}_{i=1}^{i} x_{i-1} y_{i-1} \in K$, $0 < \rho \le n+1$ $\hat{Q}_{0}^{\rho} : \hat{P}_{n} \hat{P}_{n} \ni (\hat{x}, \hat{y}) \mapsto -\overset{F}{\underset{i=1}{\longleftarrow}} x_{i-1} y_{i-1} \in K$, $0 < \rho \le n+1$ $\hat{Q}_{0}^{\rho} : \hat{P}_{n} \hat{P}_{n} \ni (\hat{x}, \hat{y}) \mapsto -\overset{F}{\underset{i=1}{\longleftarrow}} x_{i-1} y_{i-1} + \underbrace{\overset{F}{\underset{i=1}{\longleftarrow}}}_{\underset{i=1}{\longleftarrow}} x_{j-1} y_{j-1} \in K$, donde ahora

es $0 < \rho \le n+1$, y $0 < \nu < \rho$. Se prueba inmediatamente que \hat{Q}^{ρ}_{ν} ($0 < \rho \le n+1$, $0 \le \nu \le \rho$) son formas bilineales simetricas.

Se denota a \hat{Q}_{v}^{n+1} , directamente por \hat{Q}_{v} .

b) Fijada la matriz $A = \begin{pmatrix} a_{nn} & \dots & a_{nn} \\ \vdots & \vdots & \vdots \\ a_{no} & \dots & a_{nn} \end{pmatrix}$ con coeficientes en K, la aplicación $\hat{Q}(\hat{x},\hat{y}) = (x_0,\dots,x_n)A\begin{pmatrix} y_0 \\ y_n \end{pmatrix}$ es una forma bilineal, y_n y es simétrica si y solo si la matriz A es simétrica.

Notese que $Q_{\nu}^{\rho}(x,y) = (x_{0},...,x_{n}) \mathcal{N}\begin{pmatrix} y_{0} \\ y_{n} \end{pmatrix}$ siendo \mathcal{N} la matriz diagonal \mathcal{N} = diag $(-1,...,-1,1,\frac{\rho-\nu}{2},1)$

1.1.3 Definición

Dada la forma bilineal simetrica \hat{Q} de \hat{E} , se denomina forma cuadrática asociada a la aplicación $\hat{Q}: \hat{E} \ni \hat{X} \longrightarrow \hat{Q}(\hat{X},\hat{X}) \in K$.

1.1.4 Ejemple (continuación de 1.1.2)

La forma cuadrática asociada a \hat{q}_{ν}^{ρ} es $\hat{q}_{\nu}^{\rho}(x) = -\sum_{i=1}^{\nu} x_{i-1}^{2} + \sum_{j=1}^{\nu} x_{j-1}^{2}$

1.1.5 Proposición

Si \hat{q} es la forma cuadrática asociada a la forma bilineal simétrica \hat{q} de \hat{E} , se verifica la siguiente identidad de polaridad:

 $\hat{\mathbf{q}}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \frac{1}{2} (\hat{\mathbf{q}}(\hat{\mathbf{x}} + \hat{\mathbf{y}}) - \hat{\mathbf{q}}(\hat{\mathbf{x}}) - \hat{\mathbf{q}}(\hat{\mathbf{y}})) \quad \text{para tode } \hat{\mathbf{x}}, \hat{\mathbf{y}} \in \hat{\mathbf{E}}$

En particular, dos formas bilineales simetricas en Ê coinciden si y solo si inducen la misma forma cuadrática.

Demostración:

 $\hat{\mathbf{q}}(\hat{\mathbf{x}}+\hat{\mathbf{y}}) = \hat{\mathbf{q}}(\hat{\mathbf{x}}+\hat{\mathbf{y}},\hat{\mathbf{x}}+\hat{\mathbf{y}}) = \hat{\mathbf{q}}(\hat{\mathbf{x}},\hat{\mathbf{x}}) + 2\hat{\mathbf{q}}(\hat{\mathbf{x}},\hat{\mathbf{y}}) + \hat{\mathbf{q}}(\hat{\mathbf{y}},\hat{\mathbf{y}}) = \hat{\mathbf{q}}(\hat{\mathbf{x}}) + 2\hat{\mathbf{q}}(\hat{\mathbf{x}},\hat{\mathbf{y}}) + \hat{\mathbf{q}}(\hat{\mathbf{y}})$

y de aquí, despejando $\hat{Q}(\hat{x},\hat{y})$ se obtiene la formula pedida.

La última afirmación ya es inmediata.

Teniendo en cuenta que $\hat{q}(\lambda \hat{x})=\hat{Q}(\lambda \hat{x},\lambda \hat{x})=\lambda^2\hat{Q}(\hat{x},\hat{x})=\lambda^2\hat{q}(\hat{x})$ ($\lambda \in K$) y la identidad de polaridad, puede establecerse de forma intrinseca el concepto de forma cuadrática:

1.1.6 Definición

Una aplicación q̂:Ê → K se dice que es una forma cuadrática si

- i) Para todo $\lambda \in K$, $\hat{x} \in \hat{E}$ as $\hat{q}(\lambda \hat{x}) = \lambda^2 \hat{q}(\hat{x})$
- ii) La aplicación $\hat{Q}: \hat{E}_{y}\hat{E} \ni (\hat{x},\hat{y}) \mapsto \frac{1}{2} (\hat{q}(\hat{x}+\hat{y})-\hat{q}(\hat{y})) \in K$ es una forma bilineal.

La forma bilineal \hat{Q} -simétrica por construcción- se denomina forma polar asociada a la forma cuadrática \hat{q} .

1.1.7 Proposición

Si \hat{q} es forma cuadrática y \hat{Q} su forma polar, entonces \hat{q} es la forma cuadrática asociada a \hat{Q} .

Demostración

$$\hat{Q}(\hat{x}, \hat{x}) = \frac{1}{2} (\hat{q}(2\hat{x}) - \hat{q}(\hat{x}) - \hat{q}(\hat{x})) = \frac{1}{2} (4\hat{q}(\hat{x}) - 2\hat{q}(\hat{x})) = \hat{q}(\hat{x})$$

1.1.8 Proposición

Si \hat{q} es una forma cuadrática en \hat{E} con forma polar \hat{Q} , \hat{y} \hat{F} es subespacio vectorial de \hat{E} , entonces la aplicación $\hat{q}_{\hat{F}} = \hat{q}/\hat{F}:\hat{F} \ni \hat{x} \mapsto \hat{q}(\hat{x}) \in K$, es una forma cuadrática en \hat{F} con forma polar $\hat{Q}_{\hat{F}}:\hat{F}_{\hat{y}}:\hat{F} \ni (\hat{x},\hat{y}) \mapsto \hat{Q}(\hat{x},\hat{y}) \in K$.

Demostración:

Notese que para $\hat{x} \in \hat{F}$, $\lambda \in K$ es $\hat{q}_{\hat{F}}(\lambda \hat{x}) = \hat{q}(\lambda \hat{x}) = \lambda^2 \hat{q}(\hat{x}) = \lambda^2 \hat{q}_{\hat{F}}(\hat{x})$. Por otra parte, si \hat{x} , $\hat{y} \in \hat{F}$ se verifica:

 $\frac{1}{2} \left(\hat{q}_{\hat{F}}(\hat{x} + \hat{y}) - \hat{q}_{\hat{F}}(\hat{x}) - \hat{q}_{\hat{F}}(\hat{y}) \right) = \hat{Q}(\hat{x}, \hat{y}) . \text{ Esto concluye la demostración.}$

1.1.9 Observación

Si $\lambda, \mu \in K$ \hat{Q}_1 , \hat{Q}_2 son formas bilineales simetricas en \hat{E} , $y \hat{Q}_1$, \hat{Q}_2 son las correspondientes formas cuadráticas asociadas, se define: $\hat{Q} = \lambda \hat{Q}_1 + \mu \hat{Q}_2$ de la forma $\hat{Q}(\hat{x},\hat{y}) = \lambda \hat{Q}(\hat{x},\hat{y}) + \mu \hat{Q}(\hat{x},\hat{y})$

$$\hat{\mathbf{Q}} = \lambda \hat{\mathbf{Q}}_1 + \mu \hat{\mathbf{Q}}_2 \quad \text{de la forma} \quad \hat{\mathbf{Q}}(\hat{\mathbf{x}}, \hat{\mathbf{y}}) = \lambda \hat{\mathbf{Q}}_1(\hat{\mathbf{x}}, \hat{\mathbf{y}}) + \mu \hat{\mathbf{Q}}_2(\hat{\mathbf{x}}, \hat{\mathbf{y}})$$

$$\mathbf{q} = \lambda \hat{\mathbf{q}}_1 + \mu \hat{\mathbf{q}}_2 \quad \text{es tal que} \quad \hat{\mathbf{q}}(\hat{\mathbf{x}}) = \lambda \hat{\mathbf{q}}_1(\hat{\mathbf{x}}) + \mu \hat{\mathbf{q}}_2(\hat{\mathbf{x}})$$

Se prueba de manera totalmente trivial que \widehat{Q} es una forma bilineal simetrica con forma cuadratica asociada \widehat{q} .

Por otra partex, con estas operaciones el conjunto de formas bilineales simetricas, y el de formas cuadraticas subre E, son espacios vectoriales, y se denota a ambos por el simbolo $Q(\widehat{E})$. La razón de ésta ambigüedad está en la siguiente proposición, cuya demostración está contenida en este mismo epígrafe:

.1.10 Proposición

La aplicación $\hat{q} \rightarrow \hat{Q}$ que hace corresponder a cada forma cuadratica su forma polar, es un isomorfismo lineal entre espacios vectoriales.

1.1.11 Uerinicion

Una cuadrica q de E es un-elemento de la forma q=[q̂] donde q̂ es una forma cuadrática (no nula) de Ê.

El conjunto de cuadricas de E, es el espacio proyectivo $P(Q(\hat{E}))$ construido sobre el espacio vectorial $Q(\hat{E})$, y lo denotaremos por Q(E).

Nétese que una cuadrica viene determinada por una forma cuadrática no nula, y dos formas cuadráticas determinan la misma cuadrica si y solo si son proporcionales.

1.2 Cono isótropo. Puntos de una cuadrica

1.2.1 Definición

Un vector $\hat{x} \in \hat{E}$ se denomina isótropo respecto a la forma cuadrática $\hat{q} \in Q(\hat{E})$ si $\hat{q}(\hat{x})=0$.

1.2.2 Proposición

Si $\hat{\mathbf{x}} \in \hat{\mathbf{E}}$ es un vector isotropo respecto a $\hat{\mathbf{q}} \in \mathbb{Q}(\hat{\mathbf{E}})$, entences $\lambda \hat{\mathbf{x}}$ es isótropo respecto a la forma cuadrática $\mu \hat{\mathbf{q}}$, para todo λ , $\mu \neq K$.

Demostración:

Notese que $(\mu \hat{q})(\lambda \hat{x}) = \mu \lambda^2 \hat{q}(\hat{x})$

1.2.3 Definición

- i) Se denomina cono isótropo \widehat{C} de la forma cuadrática $\widehat{q} \in \mathbb{Q}(\widehat{E})$ al conjunto de sus vectores isotropos. Es decir $\widehat{C} = \{\widehat{x} \in \widehat{E} / \widehat{q}(\widehat{x}) = 0\}$.
- ii) Se denomina imagen de la cuadrica $q = [q] \neq Q(E)$ al conjunto im $q = C = \{ [\hat{x}] \notin E \ / \ \hat{q}(\hat{x}) = 0 \}$. Los puntos de im q se denominan puntos de la cuadrica.

1.2.4 Observación

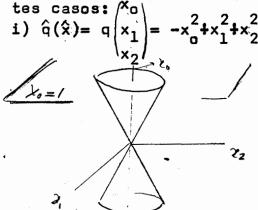
Notese que en virtud de 1.2.2 la definición 1.2.3 ii) carece de ambigüedad, es decir, el criterio para decidir si un punto $x=(\hat{x}) \in E$ es punto de la cuadriva $q=(\hat{q})$ es independiente del vector x elegido tal que $x=(\hat{x})$, y de la forma cuadrática q que verifique $q=(\hat{q})$.

1.2.5 Ejemplos

En el espacio proyectivo $P_1(R)$, determinemes el cono isotropo de la forma cuadrática \hat{q} (en \hat{P}_1) y la imagen de la cuadrica $q=[\hat{q}]$ en los siguientes casos:

i) $\hat{q} = -x_0^2 + x_1^2$. La ecuación del cono isotropo es $-x_0^2 + x_1^2 = 0$, es decir $x_1 + x_2 = 0$ $-x_0 + x_1 + x_2 = 0$ $(-x_0 + x_1)(x_0 + x_1) = 0$. Así el cono isótropo es la unión de las rectas vectoriales $-x_0 + x_1 = 0$ y $x_0 + x_1 = 0$. La imagen de la cuadrica es

- $\lim_{n \to \infty} q = \{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \}$
- ii) Tomemos $\hat{q} {x_0 \choose x_1} = x_0^2 + x_1^2$. La ecuación $x_0^2 + x_1^2 = 0$ da lugar únicamente al vector nullo, y por tanto im $q = \emptyset$.
- iii) $\hat{q} \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = x_0^2$. El cono isótropo está formado por la recta vectorial $x_0=0$, que dá lugar a un único punto $\begin{bmatrix} a \\ t \end{bmatrix}$ para im q.
- b) Analicemos ahora la cuestión análoga e**n** P $_2(R)$ para q $=[\hat{\mathfrak{q}}]$ en los siguien \cdot



La ecuación del cono isótropo y de los puntos de la cuadrica es $-x_0^2+x_1^2+x_2^2=0$, y estan representados en el cono de la figura. Nótese que si mandamos al infinito la recta $x_0=0$ la representación de im q en el correspondiente plano afin $(x_0=1)$ es una circunferencia ...

- ii) Si $q(x)=x_0^2+x_1^2+x_2^2$, claramente im $q=\emptyset$
- iii) Pongamos $q(x)=-x_0^2+x_1^2$. La ecuación $(-x_0^4x_1^2)(x_0^4x_1^2)=0$ da lugar al par de planos vectoriales representados en la figura, que definen dos rectas proyectivas en E, cuya unión es im q
- iv) $q(x)=x_0 + x_1$. El único punto de la cuadrica es el punto $\begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$
- v) $q(x)=x_0^2$ im q es la recta de ecuación $x_0=0$, que da lugar a un plano vectorial (doble) en \widehat{E} como cono issótropo de \widehat{q} .
- 1.3 Expresiones analíticas
- 1.3.1 Sea $\hat{\xi} = (\widehat{\theta}_0, \dots, \widehat{\theta}_n)$ una base de \widehat{E} y $\xi = [\widehat{\xi}]$ el sitema de referencia proyectivo inducido en E. Se denota por $\begin{pmatrix} x_0 \\ x_n \end{pmatrix}$, $\begin{bmatrix} x_0 \\ x_n \end{pmatrix}$ los correspondientes sistemas de coordenadas inducidos sobre \widehat{E} y E respectivamente. Fijemos \widehat{q} forma cuadrática no nula en E, y sea \widehat{Q} su forma polar. $q = (\widehat{q})$ es la correspondmente cuadrica en E
- 1.3.2 Proposición

En las hipótesis 1.3.1, si $\hat{Q}(\hat{e}_i, \hat{e}_j) = a_{ij}$ i, j=0,...,n, se verifica para $\hat{a} = \hat{Z} a_i \hat{e}_i$, $\hat{b} = \hat{Z}_i b_j \hat{e}_j$:

$$\hat{Q}(\hat{a},\hat{b}) = \sum_{i,j=0}^{h} a_{ij} a_{ib} = (a_{0}, \dots, a_{n}) A \begin{pmatrix} b_{0} \\ \vdots \\ b_{n} \end{pmatrix} \text{ siendo } A = \begin{pmatrix} a_{00}, \dots a_{0n} \\ \vdots \\ a_{n0}, \dots a_{nn} \end{pmatrix}$$

Demostración

Utilizando la bilinealidad de Q se verifica:

$$\hat{\mathbb{Q}}(\hat{\mathbf{a}},\hat{\mathbf{b}}) = \hat{\mathbb{Q}}(\overset{\sim}{\underset{i=0}{\mathbb{Z}}} \mathbf{a}_{i}\hat{\mathbf{e}}_{i},\overset{\sim}{\underset{i=0}{\mathbb{Z}}} \mathbf{b}_{j}\hat{\mathbf{e}}_{j}) = \overset{\sim}{\underset{i,j=0}{\mathbb{Z}}} \mathbf{a}_{i}\mathbf{b}_{j}\mathbb{Q}(\hat{\mathbf{e}}_{i},\hat{\mathbf{e}}_{j}) = \overset{\sim}{\underset{i,j=0}{\mathbb{Z}}} \mathbf{a}_{i}\mathbf{b}_{j}\mathbf{a}_{i,j}.$$

1.3.3 Corolario

La forma bilineal \hat{Q} queda univocamente determinada por la matriz (simétrica) $A=(a_i)$ con $a_i=\hat{Q}(\hat{e}_i,\hat{e}_j)$ $i,j=0,\ldots,n$. Se denemina a A matriz de Q respecto a la base $\hat{\epsilon}$, y se escribe $A=M_{\hat{\epsilon}}(\hat{q})$.

Denotando por $Q(\widehat{P}_n)$ al espacio vectorial de las matrices simétricas de orden n+1, resulta que la aplicación $M_{\widehat{E}}:Q(\widehat{E})\longrightarrow Q(\widehat{P}_n)$ es un isomorfismo lineal. En particular dim $Q(E)=\frac{(n+1)(n+2)}{2}$. Demostración:

La linealidad de M $\hat{\xi}$ es evidente; si M $\hat{\xi}(\hat{q})=0$, la formula de la propesición 1.3.2 muestra que \hat{Q} es identicamente nula.

pûr otra parte, fijada $A \in \mathbb{Q}(\widehat{P}_n)$, la formula de 1.3.2 define una forma bilineal simétrica $\widehat{\mathbb{Q}}$ que tiene a A por matriz asociada (Respecto a $\widehat{\mathcal{E}}$). Finalmente la dimensión de $\mathbb{Q}(\widehat{P}_n)$ (igual a la de $\mathbb{Q}(\widehat{\mathbb{E}})$) se calcula teniendo en cuenta que si S_{ij} ($i \le j$) es la matriz de $\mathbb{Q}(P_n)$ que tiene todos los coeficientes nulos escepto el que ocupa el lugar (i,j) y el (j,i) que tiene valor la unidad, entonces la familia $\{S_{ij} \mid i \le j\}$ constituye una base de $\mathbb{Q}(\widehat{P}_n)$ que consta de $1 + 2 + \ldots + n + 1 = (n+1)(n+2)/2$

1.3.4 Corolario

En las condiciones 1.3.1, si $M_{\hat{\mathcal{E}}}(\hat{q}) = A = (a_{ij})$, entonces para cada $\hat{a} \in \hat{E}$ se tiene $\hat{q}(\hat{a}) = \sum_{j=0}^{n} a_{ij} x_i(a) x_j(a)$. Se conviene en escribir entonces $\hat{q} = \sum_{j=0}^{n} a_{ij} x_i x_j$ of tambien:

$$\widehat{q} = (x_0, \dots, x_n) A \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$$

1.3.5 Observación

La expresión anlítica anterior $\hat{q} = \underbrace{\overset{\cdot}{\underset{i,j}{\downarrow}}}_{a_{i,j}} x_{i} x_{j}$ puede escribirse en la forma q = 2 $\underbrace{\overset{\cdot}{\underset{i \in j}{\downarrow}}}_{a_{i,j}} x_{i} x_{j} + \underbrace{\overset{\cdot}{\underset{i=0}{\downarrow}}}_{a_{i,j}} a_{i,i} x_{i}^{2} = \underbrace{\overset{\cdot}{\underset{i \in j}{\downarrow}}}_{q_{i,j}} q_{i,j} x_{i} x_{j}$, donde $q_{i,j} = 2$ $a_{i,j}$ $s_{i,j} = a_{i,j}$ $q_{i,j} = a_{i,j}$.

Recíprocamente , fijada la forma cuadrática por su expresión analítica $q=\sum_{i\neq j}q_{ij}x_{i}x_{j}$, su matriz A respecto a $\hat{\xi}$ es de la forma:

$$A = \begin{pmatrix} q_{oo} & q_{o1/2} & q_{on}/2 \\ q_{o1}/2 & q_{11} & q_{1n}/2 \\ \vdots & \vdots & \vdots \\ q_{on}/2 & q_{1n}/2 & q_{nn} \end{pmatrix}$$

1.3.6 Definición

En las condiciones 1.3.4 y 1.3.5 se dice que $(x_0, ..., x_n)$ $A\begin{pmatrix} 0 \\ x_n \end{pmatrix} = 0$ ó bien $\underset{i \neq j}{\not=} q_{ij}x_ix_j = 0$ es la ecuación de la cuadrica $q = [\hat{q}]$.

Nótese que dicha ecuación representa la ecuación implícita de los puntos de la cuadrica, y viene determinada salvo constantes multiplicativas no nulas.

1.3.7 Ejemplos

Tomando E = $P_n(K)$ y siguiendo la notación establecida en 1.1.2 y 1.1.4 podemos denotar por q_j^p a la cuadrica $\left[\hat{q}_j^p\right]\left(0 , <math>0 < v \le \frac{p}{2}$) y tiene por ecuación: $-\sum_{j=1}^{\infty} x_{j-1}^2 + \sum_{j=1}^{\infty} x_{j-1}^2 = 0$. Nótese que $q_j^p = q_{p-v}^p$.

1.4 Cambios de coordenadas

1.4.1 En las condiciones de 1.3.1 , sea ahora $\hat{\mathcal{E}} = (\hat{e}_0, \ldots, \hat{e}_n)$ otra base de E con coordenadas $\begin{pmatrix} x_0 \\ x_n \end{pmatrix}$, y $\mathcal{E} = \begin{bmatrix} \hat{\mathcal{E}} \end{bmatrix}$ el sistema de referencia proyectivo inducido con coordenadas $\begin{pmatrix} x_0 \\ x_n \end{pmatrix}$. Supongase $\hat{\mathcal{E}} = \hat{\mathcal{E}}$ P siendo P la ma-

triz cuadrada no singular de cambio de base. En éstas condiciones se tie-

1.4.2 Teorema

Fijadas las hipótesis 1.4.1, si $M_{\widehat{\epsilon}}(\widehat{q}) = \widehat{A}$, entonces $M_{\widehat{\epsilon}}(\widehat{q}) = P^{t}AP$.

Demostración:

Por una parte se tiene: $\begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = P \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$ y además $\hat{q} = (x_0, \dots, x_n)$ A $\begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$

sustituyendo formalmente en ésta última igualdad las x_j en función de las x_i por el cambio de coordenadas se obtiene:

 (x_0, \dots, x_n) $P^{t}A P \begin{pmatrix} x_0 \\ x_n \end{pmatrix} = \hat{q}$ de donde se concluye la tesis.

Como consecuencia inmediata se obtiene el siguiente resultado:

1.4.3 Corolario

En las hipotesis de 1.4.1, si $(x_0, ..., x_n) A \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = 0$ es la ecuación

de una cuádrica en el sistema de coordenadas (x_i) , entonces

 (x_0, \dots, x_n) $P^t A P \begin{pmatrix} x_0 \\ x_n \end{pmatrix} = 0$ son las ecuaciones de la misma cuádrica en el sistema de coordenadas $\begin{pmatrix} x_0 \\ x_n \end{pmatrix} = P^{-1} \begin{pmatrix} x_0 \\ x_n \end{pmatrix}$

1.4.4 Comentario

Más adelante probaremos que cualquier cuadrica real admite una ecuación reducida de la forma $\hat{q}_{i,j}^{\prime}:(-\underbrace{\overset{2}{\underset{i=1}{\not\sim}}}_{x_{i-1}}\overset{2}{\underset{i=1}{\not\sim}}_{x_{j-1}}\overset{2}{\underset{i=1}{\nearrow}}_{x_{j-1}}=0)$ respecto a cierto sistema de coordenadas homogeneas.

1.4.5 Definición

En las hipotesis 1.4.1, una forma cuadrática \hat{q} se dice no degenerada si det A \neq 0 , siendo A= M $_{\hat{F}}(\hat{q})$.

Si q es no degenerada, se dice que q= [q] es cuadrica própia.

1.4.6 Observación

La definición anterior es consistente ya que el caracter no degenerado de q no depende de la base concreta $\hat{\epsilon}$ utilizada: Si $\hat{\epsilon}'=\hat{\epsilon}$ p como en 1.4.1 y M $_{\hat{\epsilon}'}(q)=A'$, se verifica por 1.4.2 que $A'=P^tAP$, y det $A'=(\det P)^2\det A$, así $\det A=0$ (\Rightarrow) det A'=0.

1.4.5 Ejemplo

La forma cuadrática \hat{q}^{ρ}_{y} de l.l.4 es no degenerada si y solo si $\rho = n+1$.

2. ORETOGONALIDAD. POLARIDAD

En este epígrafe se trabaja con una forma cuadrática fija q sobre E . Q denota su forma polar.

2.1 Range

2.1.1 Proposición (definición)

A partir de la forma cuadrática \hat{q} , y fijado $\hat{a} \in \hat{E}$ se define $\hat{Q}^{*}(\hat{a}): \hat{E} \ni \hat{x} \longrightarrow \hat{Q}(\hat{a}, \hat{x}) \in K$. Se tiene:

- i) La aplicación $\hat{Q}^{\prime}(\hat{a})$ es lineal para todo $\hat{a} \in \hat{E}$
- ii) La aplicación $\hat{Q}^*: \hat{E}^*$ sa $\longrightarrow \hat{Q}^*(\hat{a}) \in \hat{E}^*$ es lineal. Se denomina aplicación lineal asociada a la forma cuadrática \hat{q} .

La, demostración es elemental si se tiene en cuenta la definición l.l.l de forma bilineal.

- 2.1.2 Observación

Aplicando la notación "ambigüa" para espacio dual (1.1.5 Cap II), se verifica la identidad:

$$\hat{Q}(\hat{a},\hat{b}) = (\hat{Q}^*(\hat{a})/\hat{b}) = (\hat{a}/\hat{Q}^*(\hat{b}))$$

para todo â , b cê .

2.1.3 Teorema

- i) La aplicación $Q(\hat{E}) \ni \hat{Q} \mapsto \hat{Q}^* \in FL(\hat{E}, \hat{E}^*)$ es una aplicación lineal
- ii) Si $\hat{\mathcal{E}} = (\hat{e}_0, \dots, \hat{e}_n)$ es base de \hat{E} , y $\hat{\mathcal{E}}^*$ es su base dual entonces $\mathbb{M}_{\hat{F}}(\hat{q}) = \mathbb{M}_{\hat{\mathcal{E}},\hat{\mathcal{E}}^*}(\hat{q}^*)$.

Demostración

i) Si $\hat{q}_1, \hat{q}_2 \in Q(\hat{E})$ $\lambda_1, \lambda_2 \in K$, y \hat{q}_i denota la forma polam correspondiente, para todo $\hat{a} \in \hat{E}$ se tiene:

$$((\lambda_1 \hat{q}_1^* + \lambda_2 \hat{q}_2^*))(\hat{a})/\hat{b}) = (\lambda_1 \hat{q}_1 + \lambda_2 \hat{q}_2)(\hat{a}, \hat{b}) = \lambda_1 \hat{q}_1(\hat{a}, \hat{b}) + \lambda_2 \hat{q}_2(\hat{a}, \hat{b}) + \lambda_2 \hat{q}_2(\hat{a}, \hat{b}) = \lambda_1 \hat{q}_1(\hat{a}, \hat{b}) + \lambda_2 \hat{q}_2(\hat{a}, \hat{b}) = \lambda_1 \hat{q}_1(\hat{a}, \hat{b}) + \lambda_2 \hat{q}$$

- = $(\lambda_1 Q_1^*(\hat{a}) + \lambda_2 \hat{Q}_2^*(\hat{a})/\hat{b})$ para todo b E. De aquí se concluye i).
 - ii) Teniendo en cuenta la identidad de l.l.ll CapII referente a bases

duales, si
$$\mathcal{E}^{+} \stackrel{\times}{=} \stackrel{\times}{x_0}$$
, se tiene para $A = \begin{pmatrix} a_0 & \dots & a_m \\ & & & & \\ & & & & \\ a_n & \dots & a_m \end{pmatrix} \stackrel{M}{\in} (\hat{q})$:

$$\hat{Q}^{\mu}(\hat{e}_{j}) = \hat{Z}_{i} (\hat{Q}^{\mu}(\hat{e}_{j})/\hat{e}_{i}) \times_{i} = \hat{Z}_{i} Q(\hat{e}_{j}/\hat{e}_{i}) \times_{i} = \hat{Z}_{i} Q(\hat{e}_{i}/\hat{e}_{j}) \times_{i} = \hat{Z}_{i} = \hat{Z}_{i}$$

Como consecuencia de este resultado , resulta consistente la siguiente definición:

2.1.4 Definición

Supongase $\hat{q} \neq 0$, y $q = [\hat{q}]$:

- i) Se llama radical de \hat{q} y se denota por rad \hat{q} al nucleo de la aplicación lineal \hat{Q}^* asociada.
- ii) Al conjunte $P(rad \hat{q}) = rad q$ se denomina conjunto de puntos siagulares de la cuadrica.
- iii) Se denomina rango de la forma cuadrática \hat{q} (rg \hat{q}) y de la cuadrica q (rg q) al rango de la aplicación lineal $\hat{Q}^*: \hat{E} \longrightarrow \hat{E}^*$.
- iv) A la correspondencia proyectiva $Q^* = (\widehat{Q}^*)$: E rad $q \longrightarrow E$, se denomina correspondencia de polaridad inducida por la cuadrica q.

2.1.5 Consecuencias inmediatas

- i) Si $\hat{\mathcal{E}}$ es base de $\hat{\mathbf{E}}$ y $\mathbf{M}_{\hat{\mathbf{E}}}$ ($\hat{\mathbf{q}}$)=A, \mathbf{q} =[$\hat{\mathbf{q}}$] entences rg q= rg $\hat{\mathbf{q}}$ = rg A En particular se tienen las equivalencias:
- \hat{q} no degenerada \Rightarrow q cuadrica própia \Rightarrow det A \neq 0 \Leftrightarrow \hat{Q}^* isomorfismo lineal \Leftrightarrow rg q = rg \hat{q} =n+1 \Leftrightarrow rad \hat{q} = 0 \Leftrightarrow rad q = \emptyset .
 - ii) Si $(x_0, \dots, x_n) \in {x_0 \choose x_n} = 0$ son las ecuaciones de una cuadrica q en las

coordenadas $[x_i]$, las ecuaciones del conjunto de puntos singulares son $A\begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = 0$.

iii) Como rg \hat{Q}^* +dim(Ker \hat{Q}^*) = n+1 se tiene la formula:

$$\operatorname{rg} \widehat{q} + \dim (\operatorname{rad} \widehat{q}) = n+1 \tag{1}$$

Teniendo en cuenta que rad q = P(rad \hat{q}) y dim(rad q)= dim(rad \hat{q})-1: rg q $\frac{1}{2}$ dim(rad q) = n (2)

iv) Notese que rad q im q ya que si a= (\hat{a}) erad q es (\hat{a}) erad (\hat{q}) y se tiene $(\hat{q})^*(\hat{a})=0$, por tanto $(\hat{q})(\hat{a})=(\hat{q})(\hat{a})=(\hat{q})(\hat{a})=0$, y a \in im q (\hat{a})

2.1.6 Ejemple

El rango de la cuadrica $q_j^\rho = [\hat{q}_j^\rho]$ (1.3.7) es igual a ρ , ya que ρ es el rango de la matriz $\Lambda = \text{diag}(-1, \dots, -1, 1, \stackrel{\rho-\gamma}{\cdot}, 1, 0, \dots, 0)$ Nótese que las ecuaciones de rad q y rad \hat{q} son $x_{j+1}^{=0}$ $\}_{j=\rho}$,..., n

2.2.Ortogonalidad y polaridad. Definiciones

2.2.1 Definición

- i) Si \hat{a} , \hat{b} $\in \hat{E}$ se dice que \hat{a} es ortogonal \hat{a} \hat{b} (respecto \hat{a} \hat{q}) si $\hat{Q}(\hat{a},\hat{b})=0$, y escribimos $\hat{a} \perp \hat{b}$.
- ii) Si $a=\{\hat{a}\}$, $b=[\hat{b}] \in E$, se dice que a y b son conjugados (respecto a la cuádrica q) si $\hat{a} \perp \hat{b}$ (respecto a \hat{q}) y se escribe $a \perp b$

2.2.2 Observación

Nótese que la parte ii) de la definición carece de ambigüedad, pues si \hat{a} es ortogonal a \hat{b} respecto a \hat{q} , entonces $\lambda \hat{a}$ es ortogonal a $\mu \hat{b}$ respecto a $\mu \hat{q}$ para todo $\hat{\lambda}$, $\mu \hat{b}$ $\mu \in K-0$.

2.2.3 Definición (proposición)

- i) Si \hat{S} es subconjunto de \hat{E} , el conjunto $\hat{S}^{\perp} = \{\hat{a} \in \hat{E} \mid \hat{a} \perp \hat{s} \text{ para todo } \hat{s} \in \hat{S} \}$ es subespacio vectorial de \hat{E} y se denomina subespacio ortogonal a \hat{S} .
- ii) Si S es subconjunto de E, el conjunto $S=\{a\in E \mid a\perp s \text{ para todo } s\in S\}$ es subespacio proyectivo de E, y se denomina subespacio polar de S

Si $\hat{a}, \hat{b} \in S$, λ , $\mu \in K$ se tiene para todo $\hat{s} \in \hat{S}$: $\hat{Q}(\lambda \hat{a} + \mu \hat{b}, \hat{s}) = \lambda \hat{Q}(\hat{a}, \hat{s}) + \mu \hat{Q}(\hat{b}, \hat{s}) = 0 + 0 = 0$, luego $\lambda \hat{a} + \mu \hat{b} \in \hat{S}$

- ii) Notese que si $S \subset E$ se puede construir un único $\widehat{S} \subset \widehat{E}$ tal que $S = \{\widehat{s}\} / \widehat{s} \in \widehat{S} = 0\}$ (brevemente, $S = P(\widehat{S})$), y se verifica $S = P(\widehat{S}^{\perp})$.
- 2.2.4 Proposición
 - i) $\hat{E}^{\perp} = \operatorname{rad} \hat{q}$ ii) $E^{\perp} = \operatorname{rad} q$

Demostración

- i) Notese que rad $\hat{q} = \text{Ker } \hat{Q}^* = \langle \hat{a} \in \hat{E} / (\hat{Q}^*(\hat{a})/\hat{x}) = 0 \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \perp \hat{x} \quad \forall \hat{x} \in \hat{E} \rangle = \langle \hat{a} \in \hat{E} / \hat{a} \mid \hat{x} \mid \hat{x}$
- ii) Es inmediata a partir de i)

El siguiente resultado relaciona la ortogonalidad respecto a la forma cuadrática q con la ortogonalidad dual establecida en 3.1 Cap II:

2.2.5 Toerema

Sea \hat{S} subconjunto de E, $\hat{S}^{\perp}:\hat{E} \rightarrow \hat{E}^{\perp}$ la aplicación lineal asociada a \hat{q} se tiene entonces: $\hat{S}^{\perp}:\hat{S}^{\perp}=\hat{q}^{\perp}(S)^{\omega}=(\hat{q}^{\perp})^{-1}(S^{\omega})$

Demostración

Sea $\hat{\mathbf{a}} \in \hat{\mathbf{E}}$, se tienen las equivalencias:

$$\hat{a} \in \hat{S} \stackrel{\leftarrow}{\iff} \hat{Q}(\hat{a}, \hat{s}) = 0 \quad \forall \hat{s} \in \hat{S} \stackrel{\leftarrow}{\iff} (\hat{a}/\hat{Q}^{*}(\hat{s})) = 0 \quad \forall \hat{s} \in \hat{S} \stackrel{\leftarrow}{\iff} \hat{a} \in \hat{Q}^{*}(\hat{s})^{*}$$

$$\hat{a} \in \hat{S}^{\perp} \stackrel{\leftarrow}{\iff} Q(\hat{a}, \hat{s}) = (\hat{Q}^{*}(\hat{a})/\hat{s}) = 0 \quad \forall \hat{s} \in \hat{S} \stackrel{\leftarrow}{\iff} \hat{Q}^{*}(\hat{a}) \in S^{\mathcal{U}} \stackrel{\leftarrow}{\iff} \hat{a} \in (Q^{*})^{-1}(\hat{S}^{\mathcal{U}})$$

2.2.6 Corolario

Sea A subespacio proyectivo de E . Entonces:

$$A^{\perp} = Q^{*}(A)^{\omega} = (Q^{*})^{-1}(A^{\omega})$$

Demostración

Sea $A = P(\hat{A})$, se verifica:

$$A^{\perp} = P(\widehat{A}^{\perp}) = P(\widehat{Q}^{*}(\widehat{A})^{\omega}) = P(\widehat{Q}^{*}(\widehat{A}))^{\omega} = [Q^{*}(P(\widehat{A}))]^{\omega} = Q^{*}(A)^{\omega}.$$

La otra igualdad se prueba de forma análoga

2.3 Propiedades operativas de las relaciones de ortogonalidad y polaridad.

2.3.1 Convenio de notaciones

Para simplificar la exposición, describiremos de forma simultánea las propiedades de la relación de ortogonalidad y de la de polaridad se-

gun el siguiente convenio de notaciones:

X denota indistintamente al espacio vectorial \widehat{E} \widehat{o} al proyectivo E.

Si S es subconjunto de X, se denotará por S^{\perp} al subespacio ortogonal

respecto a \hat{q} , si $X=\hat{E}$, \hat{o} al subespacio polar respecto a la cuadrica q

si X = E. En general las demostraciones se efectuarán solo para el caso

Las reglas de manipulación del operador 1 pueden sistematizarse en los siguientes puntos:

2.3.2 Si S y T son subconjuntos de X, entonces $S \subset T$ $S^{\perp} \supset T^{\perp}$ Demostración : inmediata

2.3.3 Si S es subconjunto de X , entonces $S^{\perp} = \langle S \rangle^{\perp}$

Demostración:

Tomemos X= \hat{E} . Como S < (S) por 2.3.2 es S¹> (S). Recíprocamente, si a \in S¹, entonces para s \in S exiaten s₁,...,s_r \in S

 $\lambda_1, \dots, \lambda_r$ K con $s = \sum_{i=1}^r \lambda_i s_i$, y se tiene

 $\hat{Q}(a,s)=Q(a,z,\lambda,s)=\sum_{i=1}^{n}\lambda_{i}Q(a,s)=0$. Luego $a\in\langle S\rangle^{-1}$.

2.3.4 Si U y V son subespacios de X , entonces (U+V) = U \(\text{V} \) = U \(\text{V} \)

Como U \subset U+V y V \subset U+V se concluye por 2.3.2 que U \cap V \supset (U+V) $^{\perp}$ Por otra parte (tomando X=Ê) si a \in U \cap V $^{\perp}$ entonces para u \in U , v \in V, Q(a,u+v)=Q(a,u)+Q(a,v)=O+O=O. Así a \in (U+V) $^{\perp}$.

2.3.5 Si U y V son subespacios de X entonces $(U \cap V)^{\perp} \subset U^{\perp} + V^{\perp}$.

Demostración: Elemental

2.3.6 S U es subespacio de X entonces U⊂ U^{⊥⊥}
Demostración: Elemental

2.3.7 Si U es subespacio de X entonces se verifica la formula:

$$\dim U + \dim U^{\perp} = \dim X + \dim(X^{\perp} \cap U)$$

Demostración:

Supongase X= \hat{C} . Aplicando la fórmula de dimensiones a la aplicación lineal \hat{Q}^*/U : $U \longrightarrow \hat{Q}^*(U)$, y teniendo en cuenta que $\ker(\hat{Q}^*/U) = (\ker \hat{Q}^*) \cap U = \hat{E}^*/U$, se tiene:

$$\dim \widehat{Q}^+(U) + \dim(\widehat{E}^+ \cap U) = \dim U$$
 (1)

Por 3.1.4 Cap II se verifica: dim $\hat{Q}^{+}(U) + \text{dim } \hat{Q}^{+}(U)^{w} = \text{dim } \hat{E}$ y por 2.2.5 es $\hat{Q}^{+}(U)^{w} = U^{-}$, así se tiene:

$$\dim \widehat{\mathbb{Q}}^{+}(U) = \dim \widehat{\mathbb{E}} - \dim U \qquad (2)$$

Sustituyendà (2) en (1) se obtiene la fórmula pedida. (La demostración al caso X=E se obtiene ya de forma automática)

Las propiedades que siguen, de

2.3.8 a 2.3.11 son válidas solo cuan
do la forma cuadrática q es no degene
rada, es decir, la cuadrica q es propia.

The transported to the transport of the

2.3.9 Para U subespacio de E: dim U + dim U = dim E - 1

Las demostraciones son inmediatas a partir de 2.3.7, si se tiene em cuenta que en este caso $\hat{E}^{\perp}=0$ y $E^{\perp}=\emptyset$, pues entonces se verifiua $\dim(U\cap \hat{E}^{\perp})=0$ y $\dim(U\cap E^{\perp})=-1$.

3310 Para U subespacio de X , es U= U++ .

Demostración:

Nótese que por 2.3.6 $U < U^{\perp \perp}$, y por 2.3.9 U y $U^{\perp \perp}$ tiemen la misma dimensión.

.3.11 Si U y V son subespacios de X se tiene: $(U \cap V)^{\perp} = U^{\perp} + V^{\perp}$

Acliquemos 2.3.4 a los subespacios U^{\perp} y V^{\perp} , se tiene entonces: $(U^{\perp}+V^{\perp})^{\perp}=U^{\perp} \cap V^{\perp}=U \cap V$ (por 2.3.10) . Aplicando a los dos miembros el operador \perp queda , nuevamente por 2.3.10: $(U^{\perp}+V^{\perp})=(U^{\perp}+V^{\perp}+V^{\perp})=(U^{\perp}+V^{\perp}+V^{\perp})=(U^{\perp}+V^{\perp}$

El resultado iv) del siguiente teorema es conocido con el nombre de teorema fundamental de la polaridad:

2.3.12 Teorema

- i) Si a es un punto de E no singular para la cuadrica q (es decir $a \in E$ rad q) entonces a^{\perp} es un hiperplano H de E. Se dice entonces que a es el polo de H , ó que H es la polar de a.
- ii) La aplicación E-rad $q \ni a \mapsto a^{\perp} \in E^{*}$ es una correspondencia proyectiva y coincide con $Q^{*}=[\hat{Q}^{*}]:E-rad q \mapsto E^{*}$.
- iii) Si A es subespacio proyectivo de E entonces $Q^*(A)=(A^{\perp})^{\omega}$.
- iv) En particular si la cuadrica q es propia y a & E es el polo del hiperplano H, entonces Q*(H)= aw , es decir: "Las polares de los puntos de un hiperplano H son justamente el conjun-

to de hiperplanos que pasan por el polo de Hⁿ Demostración:

i) Es consecuencia inmediata de 2.3.7:

Como $a \in E$ - rad q, es $dim(\{a\} \cap E) = -1$ y se tiene

dim a + dim a = dim E - 1 , y dim a = dim E -1 .

- ii) Si a = [â], la forma lineal $\hat{Q}^*(\hat{a})$ tiene por subespacio anulador $\hat{Q}^*(\hat{a})^{\omega} = a^{\perp}$ ya que $(\hat{Q}^*(\hat{a})/\hat{e})=0 \Leftrightarrow Q(a,e)=0 \Leftrightarrow e^{\perp}a$. Esto prueba ii)
- iii) Es consecuencia de 2.1.5 y de la propiedad ω^2 = id
- iv) Notese que si $a^{\perp} = H$, por 2.2.10 es $a = a^{\perp \perp} = H^{\perp}$, y por tanto $Q^{\perp}(H) = \begin{cases} \chi^{\perp} / \chi \in H \end{cases} = a^{\omega} = \langle H \in E^{\perp} / a \in H \rangle$.

Dos formas cuadráticas (ó cuadricas) se dirán equivalentes si admiten una misma expresión analítica formal respecto a sendos sistemas de coordenadas adecuadamente elegidos.

Plantearemos el correspondiente problema de clasificación dede el pune to de vista de la actuación del grupo de transformaciones, y lo resolveremos en el caso real y complejo.

3.1 Equivalencia lineal y proyectiva

Sea \hat{E} espacio vectorial y $E'=P(\hat{E}')$ el correspondiente espacio proyectivo

3.1.1 Proposición

Sea $\hat{f}: \hat{E} \longrightarrow \hat{E}'$ una aplicación lineal.

- i) Si \hat{q}' es una forma cuadrática en \hat{E}' con forma polar \hat{Q}' , entonces $\hat{q} = \hat{f}^{\#}(\hat{q}') = \hat{q}'$. \hat{f} , es una forma cuadrática en \hat{E} cuya forma polar es $\hat{Q}:\hat{E}_*\hat{E} \ni (\hat{a},\hat{b}) \longrightarrow \hat{Q}'(\hat{f}(\hat{a}),\hat{f}(\hat{b})) \in K$.
- ii) La aplicación $\hat{f}^{\#}:Q(\hat{E}') \longrightarrow Q(\hat{E})$ es lineal Demostración:
- i) La aplicación \hat{Q} definida en i) es claramente forma bilineal simétrica y $\hat{Q}(\hat{a},\hat{a}) = \hat{Q}'(\hat{f}(\hat{a}),\hat{f}(\hat{a})) = (\hat{Q}',\hat{f})(\hat{a})$.
- ii) Si \hat{q}_{1}, \hat{q}_{2} $Q(\hat{E}')$, $\lambda_{1}, \lambda_{2} \in K$ entonces $\hat{f}^{\#}(\lambda_{1}\hat{q}_{1}+\lambda_{2}\hat{q}_{2})(\hat{a})=(\lambda_{1}\hat{q}_{1}+\lambda_{2}\hat{q}_{2})(\hat{f}(\hat{a}))=\lambda_{1}(\hat{q}_{1},\hat{f})(\hat{a})+\lambda_{2}(\hat{q}_{2},\hat{f})(\hat{a})=(\lambda_{1}\hat{f}^{\#}(\hat{q}_{1})+\lambda_{2}\hat{f}^{\#}(\hat{q}_{2}))(\hat{a})$

3.1.2 Proposición

Si $\hat{f}: \hat{E} \longrightarrow \hat{E}'$, $\hat{g}: \hat{E} \longrightarrow \hat{E}''$ son aplicaciones lineales, emtonces $(\hat{g}.\hat{f})^{\#} = \hat{f}^{\#}.\hat{g}^{\#}$. Además $(\lambda \hat{f})^{\#} = \lambda^2 \hat{f}^{\#}$ para todo $\lambda \in K$. En particular si $\hat{f}: \hat{E} \longmapsto \hat{E}'$ es isomorfismo lineal se verifica que $\hat{f}^{\#}: Q(\hat{E}') \longmapsto Q(\hat{E})$ es isomorfismo lineal con $(\hat{f}^{\#})^{-1} = (\hat{f}^{-1})^{\#}$ La demostración es elemental.

Traduciendo estas ideas al lenguage proyectivo se tiene:

3.1.3 Corolario

Si $f = [\hat{f}] : \hat{E} \longrightarrow \hat{E}'$ es una homografía , la aplicación $f'' = [\hat{f}''] : Q(E') \ni q' = [\hat{q}'] \longmapsto f''(q') = [\hat{f}''(\hat{q}')] \in Q(\hat{E})$ es homografía. Además si $g : E \hookrightarrow E'$ es otra homografía entre espacios proyectivos se verifica $(g \cdot f)^{\#} = f'' \cdot g''$. En particular $(f^{\#})^{-1} = (f^{-1})^{\#}$.

Demostración:

Como $(\lambda \hat{f})^{+} = \lambda^{2} f^{+}$, la definición de f carece de ambigüedad. Las demás afirmaciones son triviales a partir de 3.1.2

Volviendo a la notación 2.3.1 , y escribiendo G(X) Para expresar el grupo $GL(\hat{E})$ ó GP(E) segun sea $X=\hat{E}$ ó X=E , se tiene la siguiente definición comun:

3.1.4 Corolario (definición)

La aplicación $G(X)_{\chi}Q(X) \ni (f,q) \longmapsto f^{\sharp}(q) \not\in Q(X)$ establece una actuación por la derecha del grupo de transformaciones sobre el conjunto Q(X) (de formas cuadráticas de \hat{E} , si $X=\hat{E}$ ó de cuádricas de E si X=E). Dos elementos $q,q' \not\in Q(X)$ se dirán equivalentes si existe $f \not\in G(X)$ tal que $q'=f^{\sharp}(q)$. La relación es de equivalencia; Si $X=\hat{E}$ se llama equivalencia lineal de formas cuadráticas, si X=E, equivalencia proyectiva de cuádricas.

La demostración es inmediata.

-3.1.5 Proposición

Bos cuadricas $q=[\hat{q}]$, $q'=[\hat{q}']$ son proyectivamente equivalentes si y solo si existe $\lambda \in K-0$ tal que \hat{q} es linealmente equivalente a $\lambda \hat{q}'$ Demostración:

Si $f = [\hat{f}] \in GP(E)$ se tienen las equivalencias: $f^{\#}(q) = q \xrightarrow{} [\hat{f}^{\#}(\hat{q})] = [\hat{q}']$ Existe $\lambda \in K - \{0\}$ con $\hat{f}^{\#}(\hat{q}) = \lambda \hat{q}'$.

El criterio analítico para reconocer la equivalencia lineal de formas cuadráticas es el siguiente:

3.1.6 Proposición

Sea $\hat{\mathcal{E}}$ base de E . Dos formas cuadráticas \hat{q} y \hat{q} con matrices $M_{\hat{\mathcal{E}}}(\hat{q})=A$, $M_{\hat{\mathcal{E}}}(q')=A'$ son linealmente equivalentes, si y solo si existe P matriz no singular tal que $A=P^{t}A'P$.

Demostración:

Sea $\hat{f} \in GL(\hat{E})$ tal que $\hat{f}^{\sharp}(\hat{q}')=\hat{q}$. Las ecuaciones de \hat{f} en el sistema de coordenadas (x_i) inducido por $\hat{\mathcal{E}}$ es de la forma:

$$P\begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = \begin{pmatrix} x' \\ \vdots \\ x' \end{pmatrix} \tag{1}$$

donde P es una matriz cuadrada no singular. Escribiendo:

$$q'=(x_0,\ldots,x_n)$$
 A' $\begin{pmatrix} x_0\\ \vdots\\ x_n \end{pmatrix}$, la composición q'f se obtiene sustituyendo

en la expresión de \hat{q} anterior las x_j en función de las x_i por medio de

(1) , y queda:
$$\hat{q} = \hat{r}^{\sharp}(\hat{q}') = (x_0, \dots, x_n) P^{t} A' P \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix}$$
 , así $M_{\epsilon}(\hat{q}) = A = P^{t} A' P$

El recíproco se prueba análogamente.

Desde el punto de vista analítico formal, dos formas cuadráticas $\hat{q} = \underbrace{\mathcal{L}}_{i \neq j} q_{ij} x_{i} x_{j} \qquad \text{son lineal mente equivalentes, cuan-}_{i \neq j}$

do existe un cambio lineal de coordenadas $x_i = \sum_{j=0}^{n} p_i j x_j$ $i=0,\dots,n$ de manera que la sustitución formal de las x_i en función de las x_i .

de manera que la sustitución formal de las x_i en función de las x_j a través del cambio de coordenadas en la expresión de q´ da lugar a la expresión analítica de q .

Si se trata de equivalencia proyectiva de cuádricas el criterio es analogo si se hace caso omiso de las constantes multiplicativas no nulas.

3.1.8 Corolario

Dos formas cuadráticas \hat{q} y \hat{q} de \hat{E} son linealmente equivalentes si y solo si existe Λ matriz simétrica, \hat{E} y \hat{E} bases de \hat{E} tales que $\hat{M}_{\hat{E}}(\hat{q})=\hat{M}_{\hat{E}}$, $(\hat{q}')=\Lambda$.

Demostración

Se obtiene de forma inmediata a partir de 1.4.2 y el criterio anlitico de equivalencia lineal 3.1.6

3.1.9 Corolario

Dos formas cuadráticas en É linealmente equivalentes, tienen el mismo rango

Demostración:

Si Λ es una representación matricial comun para las formas cuadráticas q y q', es rg $\hat{\mathbf{q}}$ = rg $\hat{\mathbf{q}}$ '.

3.2 Bases ortogonales. Representación matricial diagonal

La primera aproximación a la resolución del problema de clasificación que nos ocupa, consiste-como es habitual-en la obtención de representaciones analíticas reducidas respecto a sistemas de coordenadas adecuadamente elegidos. En éste epígrafe se probará la existemcia de representación matricial diagonal para una forma cuadrática

3.2.1 Definición

Un sistema $(\hat{u}_0, \dots, \hat{u}_r)$ de vectores de \hat{E} se denomina sistema ortogonal (respecto a \hat{q}) si $\hat{u}_i \perp \hat{u}_j$ para cada $i \neq j$. Si el sistema es ademas base de \hat{E} , se denomina base ortogonal

La existencia de bases ortogonales queda garantizada en el siguiente

3.2.2 Teorema

Fijada la forma cuadrática \hat{q} en \hat{E} , existe $(\hat{u}_0, \dots, \hat{u}_n)$ base ortogonal.

Se hace por inducción sobre la dimensión n+1 del espacio vectorial E: Si dim $\hat{E} = 1$ el resultado es evidente Supongase dim $\hat{E} = n+1$ (n > 0). Si $\hat{q}=0$ entonces por 1.1.5, $\hat{Q}=0$ y cualquier base de \hat{E} es mortogonal. Si q $\neq 0$, existe $\hat{u} \in \hat{E}$ con $\hat{q}(\hat{u}) \neq 0$, y $\hat{\mathbb{Q}}^*(\hat{\mathbf{u}}_0)$ es una forma lineal no nula (pues $(\hat{\mathbb{Q}}^*(\hat{\mathbf{u}}_0)/\hat{\mathbf{u}}_0)=\hat{\mathbf{q}}(\hat{\hat{\mathbf{u}}}_0)\neq 0$) cuyo hiperplano anulador $\hat{H} = \hat{u}_0^{\perp}$ no contiene al vector \hat{u}_0 . Considerese la forma cuadrática $\hat{q}/\hat{H}:\hat{H} \ni \hat{a} \mapsto \hat{q}(\hat{a}) \in K$, por 1.1.8 su forma polar es $\widehat{\mathbb{Q}}/\widehat{\mathbb{H}}_{\nu}\widehat{\mathbb{H}}=\widehat{\mathbb{Q}}_{\widehat{\Pi}}$. Como dim $\mathbb{H}=n< n+1$, aplicando la hipótesis de inducción se deduce la existencia de una base ortogonal $(\hat{u}_1, \dots \hat{u}_n)$ para la forma cuadrática q/H, y es evidentemente sistema ortogonal respecto a \hat{q} . Como $\hat{H} = \hat{u}_{\hat{n}}^{\perp}$ es $\hat{u}_{\hat{n}}^{\perp}$ para $i=1,\ldots,n$, y así como $\hat{u}_{\hat{n}} \notin \hat{H}$, (u,,...,u) es base ottogonal de É respecto a q.

3.2.3 Corolario

Sea \hat{q} forma cuadrática no nula de \hat{E} y $q=[\hat{q}]$. Existe entonces un sistema de coordenadas (x_i) en E de manera que la forma cuadrática \hat{q} se escribe $\hat{q} = \lambda_0 x_0^2 + ... + \bar{\lambda}_n x_n^2$. La ecuación de la cuádrica respecto al sistema (x_i) sera $\lambda_0 x_0^2 + \dots + \lambda_n x_n^2 = 0$.

Demostración:

Sea $(\hat{\mathbf{u}}_{1}, \dots, \hat{\mathbf{u}}_{n})$ base ortogonal de $\hat{\mathbf{E}}$ respecto a $\hat{\mathbf{q}}$. Entonces $\hat{\mathbf{Q}}(\hat{\mathbf{u}}_{1}, \hat{\mathbf{u}}_{1})=0$ si $i \neq j$ y $Q(\hat{u}_i, \hat{u}_i) = \lambda_i$ i = 0, ..., n. La matriz de \hat{q} es por tanto de la forma $\Lambda = \text{diag}(\lambda_0, \dots, \lambda_n)$. El resultado se deduce ahora de 1.3.4

3.2.4 Definición

Una base (ê, ..., ê,) de Ê se dice ortonormal (respecto a la forma cuadrática \hat{q}), si es base ortogonal, y $\hat{q}(\hat{e}_{j}) = \lambda_{j}$, siendo $\lambda_{j} = +1, -1, \acute{o}$ 0 La base ortonormal (ê,,...,ê,) se dice bien ordenada si todos los ê, tales que $\hat{q}(\hat{e}_{i})=-1$ corresponden a los primeros elementos de la base, y los ê, con q(ê,)=0 corresponden a los últimos, es decir:

$$(\hat{q}(\hat{e}_{0}), \dots, \hat{q}(\hat{e}_{n})) = (-1, \dots, -1, 1, \dots, 1, 0, \dots, 0)$$

3.2.5 Corolario

Si K=R o K=C, el espacio vectorial E admite una base ortonormal respecto a cualquier forma cuadrática q.

En el caso complejo, la base ortonormal $(\hat{e}_0, \dots, \hat{e}_n)$ puede tomarse de forma que $\hat{q}(\hat{e}_{i})=0$ of 1 .

uemostracion

Supongase K=R. Por 3.2.2 existe una base ortogonal de \hat{E} $(\hat{u}_0, \dots, \hat{u}_n)$ respecto a \hat{q} con $\hat{q}(\hat{u}_j) = \lambda_j$. Es facil ordenar adecuadamente los elementos de la base para conseguir que

$$\hat{q}(\hat{u}_i) = \lambda_i < 0$$
 para $i=0,..., V-1$

$$\hat{q}(\hat{u}_{j}) = \lambda_{j} > 0$$
 para $j = \emptyset, ..., \rho - 1$

$$q(\hat{u}_k) = \lambda_k = 0$$
 para $k = \rho, \dots, n$.

Tomando:

$$\hat{\mathbf{e}}_{\mathbf{i}} = \frac{1}{\sqrt{\lambda_{i}}} \hat{\mathbf{u}}_{\mathbf{i}} \quad \text{para i=0,..., } -1 \quad , \text{ es } \hat{\mathbf{q}}(\hat{\mathbf{e}}_{\mathbf{i}}) = -1$$

$$\hat{\mathbf{e}}_{\mathbf{j}} = \frac{1}{\sqrt{\lambda_{i}}} \hat{\mathbf{u}}_{\mathbf{j}} \quad \text{para j= 0,..., } \rho -1 \quad , \text{ es } \hat{\mathbf{q}}(\hat{\mathbf{e}}_{\mathbf{j}}) = 1$$

$$\hat{\mathbf{e}}_{k} = \hat{\mathbf{u}}_{k}$$
 para $k = \rho$, ..., $\hat{\mathbf{n}}_{k}$, es $\hat{\mathbf{q}}(\hat{\mathbf{e}}_{k}) = 0$

y la base (ê, ..., ê,) es base ortonormal biem ordenada.

En el caso K=C , utilizando un procedimiento análogo puede conseguirse una base ortonormal $(\hat{e}_0,\ldots,\hat{e}_n)$ con $\hat{q}(\hat{e}_j)=1$ para $j=0,\ldots,\rho-1$ y $\hat{q}(\hat{e}_k)=0$ para $k=\rho,\ldots,n$.

3.2.6 Corolario

Supongase É espacio vectorial sobre el cuerpo C de los complejos:

- i) Dos formas cuadráticas de E son linealmente equivalentes si y solo si tienen el mismo rango
- ii)Dos cuádricas en $E=P(\widehat{E})$ son proyectivamente equivalentes si y solo si tienen el mismo rango.

Demostración:

i) Si \hat{q} y \hat{q}' son formas cuadráticas en \hat{E} con el mismo rango ρ , por 3.2.5 existen sistemas de coordenadas lineales $(x_i), (x_i')$ tales que $q = x_0^2 + \dots + x_{\rho-1}^2$, $q' = x_0^2 + \dots + x_{\rho-1}^2$. Por 3.1.8 las formas cuadráticas son linealmente equivalentes.

Recíprocamente, si \hat{q} y \hat{q} son linealmente equivalentes, por 3.1.9 tienen el mismo rango.

ii) Se prueba de forma inmediata a partir de i):

Si $q = [\hat{q}] y/q' = [\hat{q}']$ se verifica:

q proy. eq. a q⇔}λ≠0 con q̂ lin eq. aλq̂⇔rg q= rg(λq̂′)=rg q̂′⇔ ⇔ rg q = rg q′. El espacio vectorial E y el proyectivo E=P(Ê) están definidos sobre el cuerpo R de los numeros reales.

Estblezcamos algunos conceptos preliminares

3.3.1 Definición

Sea q una forma cuadr'atica de \hat{E} y \hat{F} subespacio vectorial de \hat{E} .

- i) Se dice que \hat{q} es definida positiva en \hat{f} si $\hat{q}(\hat{x}) > 0 \quad \forall \hat{x} \in \hat{f} = \langle 0 \rangle$
- ii) \hat{q} es definida negativa en \hat{f} si $\hat{q}(\hat{x}) < 0 \quad \forall \hat{x} \neq \hat{f} = \langle 0 \rangle$
- iii)) \hat{q} es nula en \hat{f} si $\hat{q}(\hat{x})=0 \quad \forall \hat{x} \in \hat{f}$
- iv) q es definida en F si es definida positiva ó negativa en F
- v) \hat{q} es definida, definida positiva , \hat{c} definida negativa, si lo es en \hat{E} .

3.3.2 Ejemplos

- a) En $P_n(R)$ $\hat{q}_0 = x_0^2 + ... + x_n^2$ es definida positiva , y $\hat{q}_{n+1} = -\hat{q}_0$ es definida negativa
- b) En $P_3(R)$ la forma cuadrática $\hat{q}_1 = -x_0^2 + x_1^2 + x_2^2$ no es definida, sin embargo, es definida positiva en el subespacio $(x_0=0)$ y definida negativa en la recta vectorial $\langle \begin{pmatrix} 1 \\ 0 \end{pmatrix} \rangle$

3.3.3 Comentarios y notaciones

Si \hat{q} es una forma cuadrática en \hat{E} , aplicando el corolario 3.2.5 se deduce la existencia en \hat{E} de una base ortonormal bien ordenada $(\hat{e}_0, \dots, \hat{e}_n)$ y la expresión analítica de \hat{q} en el correspondiente sistema de coordenadas (x_i) es

$$\hat{q} = -\sum_{i=1}^{3} x_{i-1}^{2} + \sum_{i=1}^{p} x_{j-1}^{2}$$
 (1)

Denotando por $\hat{E}^{\dagger} = \langle \hat{e}_0, \dots, \hat{e}_{\nu-1} \rangle$, $\hat{E}^{-} = \langle \hat{e}_{\nu}, \dots, \hat{e}_{\rho-1} \rangle$, $\hat{E}^{0} = \langle \hat{e}_{\rho}, \dots, \hat{e}_{n} \rangle$ se ve que:

- \hat{q} es definida negativa en \hat{E} y dim \hat{E} = ν .
- \hat{q} es definida positiva en E⁺ y dim E⁺ = $\rho \nu_{\bullet}$
- \hat{q} es nula en \hat{E}^0 y dim \hat{E}^0 = n+1 ρ .

En éstas condiciones se tiene el siguiente resultado:

-3.3.4 Proposición

- i) $\hat{\mathbf{E}}^{0} = \mathbf{rad} \hat{\mathbf{q}}$
- ii) Cualquier sistema (x^-, x^+, x^0) con $\hat{x} \in E^{\kappa}$ $(\alpha = -, +, 0)$ es un sistema ortogonal

uemostracion

i) Notese que para i > 0, $\hat{e}_{\rho + i} \in \hat{\mathcal{E}}^{\perp} = \langle \hat{\mathcal{E}} \rangle^{\perp} = \hat{E}^{\perp} = \operatorname{rad} \hat{q}$, por ser $\hat{\mathcal{E}}$ trase orotogonal jy q(e,)=0.

Por otra parte dim(rad \hat{q})=n+1- ρ (por 2.1.5 ii)) con lo que (\hat{e}_{ρ} ,..., \hat{e}_{n}) es base de rad q.

ii) es inmediato a partir de la ortogonalidad de la base $\widehat{\boldsymbol{\xi}}$.

3.3.5 Observación

El rango ho de la forma cuadrática indica el numero de sumandos de su expresión reducida (1) de 3.3.3. Probaremos ahora que el número de sumandos negativos no depende más que de la forma cuadrática , y no de la base ortonormal elegida

3.3.6 Definición

Sea q una forma cuadrática en Ê. Se denomina indice de q al número $\operatorname{ind}(\hat{q}) = \emptyset = \max \{ \dim \hat{f} \mid \hat{f} < \hat{f} \}, y \hat{q} \text{ es definida negativa em } \hat{f} \}.$ Notese que $0 \le ind(q) \ne n+1$

3.3.7 Teorema

Sea γ_0 el indice de la forma cuadrática \hat{q} de E. Si $\begin{pmatrix} 0 \\ \vdots \\ x \end{pmatrix}$ son las

coordenadas correspondientes a una mase ortonormal bién ordenada cualquiera , entonces $\hat{q}=-\sum_{i=1}^{2}x_{i-1}^2+\sum_{j=k+1}^{2}x_{j-1}^2$.

Demostración:

Sea ê una base ortonormal bién ordenada de ê , y e , é , c como en 3.3.3. Probemos que V = V

En efecto, como dim $\hat{E} = 9$ y \hat{q} es definida negativa en \hat{E} se deduce per la definición de V_0 que $Y_0 \geqslant V = \dim E^{-}$.

Por otra parte, si q es definida negativa em F<Ê, probemos que dim Ŷ<₽, con lo cual será % ≤V. En efecto:

Por 3.3.4 ii) cada vector x de E se descompone de forma única en suma $\hat{x}=\hat{x}^{-}+\hat{x}^{+}+\hat{x}^{0}$ com \hat{x} $\hat{x}^{*}\in\hat{E}^{*}$ ($\hat{y}=-,+,0$), y la aplicación Ê x - x c ê es una proyección lineal. Si F< Ê y q es definida negativa en \hat{F} , probemos que $\hat{F} = \hat{X} \longrightarrow \hat{X} = \hat{E}^{-}$ es inyectiva: Si $\hat{X} \in \hat{F}$ y $\hat{x}^-=0$ entonces $\hat{x}=\hat{x}^{\frac{1}{2}}+\hat{x}^0$ y como $\hat{x}^{\frac{1}{2}}$ \hat{x}^0 se verifica $\hat{q}(\hat{x}) = \hat{q}(\hat{x}^{\dagger}) + \hat{q}(\hat{x}^{O}) = q(x^{\dagger}) > 0$, y como q es definida negativa en F es necesáriamente $\hat{q}(\hat{x})=0$ y $\hat{x}=0$. De ésta forma es dim $\hat{F} \leq \dim \hat{E}^- = \vee$.

De aquí se deduce el siguiente teorema de clasificación para formas cuadráticas reales:

3.3.8 Teorema

Dos formas cuadráticas en E son linealmente equivalentes si y solo si tienen el mismo rango y el mismo indice.

Demostracióm:

Si ν y ρ ∞ el indice y el rango comunes de las formas cuadráticas \hat{q} y \hat{q} , entonces por 3.3.7 y 3.3.5 existen en \hat{E} sistemas de coordenadas (x_i) , (x_i') de forma que:

$$q = -\frac{y}{z_{i-1}} \times \frac{1}{i-1} + \frac{p}{z_{i-1}} \times \frac{2}{j-1}$$
, $\hat{q}' = -\frac{y}{z_{i-1}} \times \frac{2}{i-1} + \frac{p}{z_{i-1}} \times \frac{2}{j-1}$

Por 3.1.8, las formas cuadráticas son linealmente equivalentes.

Reciprocamente:

Supongase \hat{q} y \hat{q} formas cuadráticas linealmente equivalentes. Existe entonces $\hat{f} \in GL(\hat{E})$ tal que $\hat{f}^{\#}(\hat{q}')=\hat{q}$ (es decir $\hat{q}.\hat{f}=\hat{q}$). Se prueba trivialmente que si \hat{q} es definida negativa sobre un subepacio \hat{F} de \hat{E} , entonces \hat{q}' también lo es sobre $\hat{f}(\hat{F})$. En particular se deduce que si \hat{F} tiene dimensión máxima dim $\hat{F}=$ ind (\hat{q}) entonces es ind (\hat{q}) = dim $\hat{F}=$ dim $\hat{f}(\hat{F})$ \leq ind (\hat{q}')

De forma análoga se prueba que ind $(\hat{q}') \le ind(\hat{q})$. Los rangos de q y q' coinciden en virtud de 3.1.9

3.3.9 Observaciones:

a) El teorema 3.3.8 se puede enunciar también diciendo que fijado en \hat{E} el sitena de coordenadas (x_i) , entonces la familia de formas cuadráticas: $\hat{q}_{\nu}^{\rho} = -\sum_{i=1}^{N} x_{i-1}^2 + \sum_{j=\nu+1}^{N} x_{j-1}^2$ con $0 \le \rho \le n+1$, $0 \le \nu \le \rho$

describe de forma biunívoca todos los tipos de formas cuadráticas en \hat{E} : es decir, si \hat{q} es forma cuadrática en \hat{E} de rango ρ e indice ν , la forma cuadrática \hat{q}_{i}^{ρ} es la única linealmente equivalente a \hat{q} de la familia anterior.

b) En buena parte de la bibliografía , al indice ν de la forma cuadrática q se denomina indice de negatividad, y si $\rho = rg \hat{q}$, $\rho - \nu$ se denomina indice de positividad que viene definido de forma intrínseca por $\rho - \nu = \max \left\{ \dim \hat{F} \middle/ \hat{F} \middle< \hat{E} \right\}$, y q es definida positiva em $F \middle> 0$. A la pareja $(\nu, \rho - \nu)$ se denomina signatura de la forma cuadrática. La signatura de la clasificación lineal de formas cuadráticas.

3.4 Clasificación proyectiva de las cuádricas reales.

 $E = P(\hat{E})$ es un espacio proyectivo sobre el cuerpo R de los números reales.

Para establecer el concepto de indice (de Witt) de una cuádrica (que junto con el rango determina un sistema completo de invariantes) se pre-cisa del siguiente lema técnico:

3_4.1 Lema

Sea \hat{q} una forma cuadrática en \hat{E} y $\lambda \in R-\{0\}$. Entonces:

- a) si d>0 es Ind $(\hat{A}\hat{q})=$ Ind (\hat{q})
- b) si $\lambda < 0$ es Ind $(\lambda \hat{q}) = rg(\hat{q}) Ind(\hat{q})$

Demostración:

Llamando $\rho = rg(\hat{q})$ y $\nu = Ind(\hat{q})$, por 3,3.7 existe un sistema de coordenadas (x_i) en E tal que:

$$\hat{q} = -\sum_{i=1}^{3} x_{i-1}^{2} + \sum_{j=0,i}^{6} x_{j-1}^{2} \quad \text{yy por tanto } \lambda \hat{q} = -\sum_{i=1}^{6} \lambda x_{i-1}^{2} + \sum_{j=0,i}^{6} \lambda x_{j-1}^{2} \quad (1)$$

Si $\lambda > 0$ tomando $y_j = \sqrt{\lambda} \times_j \quad j = 0, \dots, n$ se tiene sustituyendo em (1):

$$\hat{q} = -\sum_{j=1}^{N} y_{j-1}^2 + \sum_{j=N_1}^{N} y_{j-1}^2$$
. Por tanto Ind $(\lambda \hat{q}) = V$.

Si $\lambda \angle 0$ se toma $y_j = \sqrt{-\lambda} \times_j j = 0, \dots, n$, y se tiene sustituyendo em (1): $\hat{q} = \sum_{i=1}^{2} y_{i-1}^2 - \sum_{j=1}^{2} y_{j-1}^2$ y tiene obviamente indice $\rho - \nu$.

3.4.2 Definición

Se llama indice (de Witt) de la cuadrica q= $\left[\hat{q}\right]$ al número Ind $\left(\hat{q}\right)$ = min $\left(\operatorname{Ind}\left(\hat{q}\right)$, $\operatorname{rg}\left(\hat{q}\right)$ -Ind $\left(\hat{q}\right)$).

3.4.3 Observación

En virtud del lema 3.4.1 el indice de la cuadrica $q=[\hat{q}]$ no depende de la forma cuadrática utilizada para definirla ya que para $\lambda < 0$ se tiene: $\left(\operatorname{Ind}(\lambda \hat{q}),\operatorname{rg}(\lambda \hat{q})-\operatorname{Ind}(\lambda \hat{q})\right)=\left(\operatorname{rg}(\hat{q})-\operatorname{Ind}(\hat{q}),\operatorname{Ind}(\hat{q})\right)$. Si $\lambda>0$ es $\operatorname{Ind}(\hat{q})=\operatorname{Ind}(\lambda \hat{q})$, y la conclusión se obtiene de forma trivial.

3.4.4 Teorema de Clasificación

Dos cuadricas q y q'de E son proyectivamente equivalentes si y solo si tienen el mismo indice y el mismo rango.

Demostración:

Sea q = [q], q = [g'] dos cuadricas de E. Si rg q=rg q' y Ind(q)=Ind(q'), por el lema 3.4.1, es posible suponer- quizás cambiando el signo a

son linealmente equivalentes, y por tanto las cuádricas q y q´ son proyec‡ivamente equivalentes.

Reciprocamente , si q= [q] y/q = Lq] son proyectivamente equivalentes por 3.1.5 existe $\lambda \in \mathbb{R} = \{0\}$ tal que q es linealmente equivalente a $\lambda \neq 0$ y por 3.3.8 se tiene $\rho = \operatorname{rg}(\hat{q}) = \operatorname{rg}(\lambda \neq 0)$, $\operatorname{Ind}(\hat{q}) = \operatorname{Ind}(\lambda \neq 0) = V$. Así $\operatorname{Ind}(q) = \operatorname{Ind}(q') = \min (V, \rho - V)$, pues $q' = Aq \int_{0}^{\infty}$

3.4.5 Comentarios

Todos los tipos de cuadricas en $P_n(R)$ pueden describirse por la familia $\hat{q}_{\nu}^{\rho} = -\sum_{i=1}^{\nu} x_{i-1}^2 + \sum_{j=1}^{\nu} x_{j-1}^2$ con $1 \le \rho \le n+1$ $0 \le \nu \le \frac{\rho}{2}$ donde ν es justamente el indice de la cuadrica y ρ su rango En los ejemplos 1.2.5 se describen todos los tipos correspondientes a $P_1(R)$ y $P_2(R)$.

Describamos los tipos de cuádricas en $P_3(R)$. Dejamos al lector la tarea de interpretar los nombres y hacer los dibujos sobre un modelo afin adecuadamente elegido:

Range	Indice	Ecuación	Nombre
ρ = 1	V =0	$x_0^2 = 0$	Plano doble
ρ =2	∨ =0	$x_0^2 + x_1^2 = 0$	par de planos imaginarios
ρ =2	V=1 -	$x_0^2 + x_1^2 = 0$	par de pla n os reales
p =3	ν =0 x	$_{1}^{2}+x_{1}^{2}+x_{2}^{2}=0$	com imaginario
P =3	ν Ξ Ι -:	$x_0^2 + x_1^2 + x_2^2 = 0$	cong real
ρ =4	ν=0 x	$^{2}_{0}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$	cuádrica própia imaginaria (euclidea)
ρ =4	v=1 -x	$^{2}_{0}+x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=0$	cuadrica propia real no reglada
p =4	V=2-x	$^{2}_{0}$ - \times^{2}_{1} + \times^{2}_{2} + \times^{2}_{3} =0	cuádrica propia reglada

4. ESPACIUS VECTURIALES METRICOS. CLASIFICACION

Una forma cuadrática q induce en el espacio vectorial E en donde está definida una estructura adicional ya implícitamente estudiada en epigrafes precedentes. Explicitaremos inicialmente este estudio por medio del concepto de espacio vectorial métrico, con idea de crear una contexto adecuado para analizar las geometrías inducidas por una forma cuadrática y por una cuadrica.

4.1 Espacio vectorial métrico. Sumas ortogonales

4.1.1 Definición

Un espacio vectorial metrico es una pareja $\hat{E}=(\hat{E},\hat{q})$ donde \hat{E} es un espacio vectorial y \hat{q} es una forma cuadrática en \hat{E} .

La forma polar \hat{Q} de \hat{q} (véase 1.1.6) se denomina producto escalar em \hat{E} , y escribimos para $\hat{a},\hat{b}\in\hat{E}$: $\hat{Q}(\hat{a},\hat{b})=(\hat{a}/\hat{b})$.

4.1.2 Convenio

Haremos frecuentemente referencia a los invariantes geométricos de la forma cuadrática \hat{q} como invariantes geométricos del espacio vectorial métrico $\hat{E}=(\hat{E},\hat{q})$, así escribiremos rg \hat{E} , Ind \hat{E} , rad \hat{E} ...etc. para referirnos a los correspondientes conceptos relativos a \hat{q} .

4.1.3 Definición

El espacio vectorial métrico $\hat{E}=(\hat{E},\hat{q})$ induce sobre cada subespacio vectorial \hat{F} de \hat{E} una estructura métrica $\hat{F}=(\hat{F},\hat{q}_{\hat{F}})$, donde $\hat{q}_{\hat{F}}$ es la restricción de \hat{q} a \hat{F} . El producto escalar en \hat{F} viene entonces definido también por restricción: $\hat{F}_{\nu}\hat{F}\ni(\hat{a},\hat{b})$ \longrightarrow $(\hat{a}/\hat{b})\in K$. (Véase 1.1.8)

4.1.4 Definición

Un espacio vectorial métrico $\hat{E}=(\hat{E},\hat{q})$ se dice no singular, si la forma cuadrática \hat{q} es no degenerada, es decir, rad $\hat{E}=0$. Más genetal: Un subespacio \hat{F} de \hat{E} se dice no singular si rad $\hat{F}=\{\hat{a}\,\hat{e}\,\hat{F}\,/\,(\hat{a}/\hat{x})=0$ para todo $\hat{x}\,\hat{e}\,\hat{F}\}=\hat{F}\wedge\hat{F}^{\perp}$ es identicamente nulo. Si todos los vectores de \hat{F} son isotropos $(\hat{q}(\hat{x})=0$ para todo $\hat{x}\,\hat{e}\,\hat{F})$ se dice que \hat{F} es subespacio isótropo. En este caso es rad $\hat{F}=\hat{F}$.

4.1.5 Definición

- i) Dos subconjuntos del espacio vectorial metrico $\hat{\mathbf{E}}=(\hat{\mathbf{E}},\hat{\mathbf{q}})$, $\hat{\mathbf{A}}$ y $\hat{\mathbf{B}}$ se dicen ortogonales, y escribimos $\hat{\mathbf{A}}\perp\hat{\mathbf{B}}$, si $\hat{\mathbf{a}}\perp\hat{\mathbf{b}}$ para todo $\hat{\mathbf{a}}\in\hat{\mathbf{A}}$ y todo $\hat{\mathbf{b}}\in\hat{\mathbf{B}}$
- ii) Supongase $\hat{E} = \hat{U}_1 \oplus \dots \oplus \hat{U}_r$. Si $\hat{U}_i \perp \hat{U}_j$ para todo $i \neq j$ escribimos $E = U_1 \oplus \dots \oplus U_r$. \hat{E} e dice entonces que \hat{E} se descompone en suma ortogonal

de los subespacios $\hat{u}_1, \dots, \hat{u}_r$

4.1.6 Comentario

La existencia de una base ortogonal $(\hat{u}_0, \dots, \hat{u}_n)$ para el espacio vectorial métrico $\hat{E}=(\hat{E},\hat{q})$ establecida en 3.2.2 garantiza una descomposición de \hat{E} es suma ortogonal de rectas vectoriales de la forma: $E=\langle \hat{u}_1 \rangle \hat{\Box} \dots \hat{\Box} \langle u_n \rangle$.

El producto escalar en un espacio vectorial métrico descompuesto en suma ortogonal de la forma $\hat{E}=U_1\hat{U}\dots\hat{U}U_r$ adquiere una expresión analítica sencilla en función de las componentes de la descomposición, tal como muestra el siguiente lema cuya demostración es elemental:

4.1.7 Lema

Si $\hat{\mathbf{E}}$ es espacio vectorial métrico y $\hat{\mathbf{E}} = \hat{\mathbf{U}}_1 \oplus \dots \oplus \hat{\mathbf{U}}_r$, entonces para $\hat{\mathbf{x}} = \hat{\mathbf{Z}}_i \hat{\mathbf{x}}_i$ $\hat{\mathbf{y}}_i = \hat{\mathbf{Z}}_i \hat{\mathbf{y}}_j$ con $\hat{\mathbf{x}}_i, \hat{\mathbf{y}}_i \in \hat{\mathbf{U}}_i$ se verifica: $(\hat{\mathbf{x}}/\hat{\mathbf{y}}) = \hat{\mathbf{Z}}_i (\hat{\mathbf{x}}_i/\hat{\mathbf{y}}_i)$

4.1.8 Proposición

Sea E un espacio vectorial métrico:

i) Si Ê=U1 ... Ut, , es rad Ê= rad Û1 ... Drad Ûr

ii) En particular si \hat{U} es subespacio no singular de \hat{E} , se tiene la descomposición $\hat{E}=\hat{U} \oplus \hat{U}^{\perp}$. Por otra parte si además \hat{E} es no singular, entonces \hat{U}^{\perp} es no singular.

Demostración:

Probemos primero que rad $\hat{E}=$ rad $\hat{U}_1+...+$ rad \hat{U}_r :

- i) Si $\hat{\mathbf{x}}$ \in rad $\hat{\mathbf{E}}$, supongase $\hat{\mathbf{x}} = \sum_{i=1}^{\ell} \mathbf{x}_i$ com $\hat{\mathbf{x}}_i \in \hat{\mathbf{U}}_i$, utilizando 4.1.7 es para todo $\hat{\mathbf{U}}_i \in \hat{\mathbf{U}}_i$ ($\hat{\mathbf{x}}_i/\hat{\mathbf{U}}_i$)=($\hat{\mathbf{x}}/\hat{\mathbf{U}}_i$)=0 (pues $\hat{\mathbf{x}}$ \in rad $\hat{\mathbf{E}}$). Así $\hat{\mathbf{x}}_i \in$ rad $\hat{\mathbf{U}}_i$ y rad $\hat{\mathbf{E}}$ \in rad $\hat{\mathbf{U}}_i$ +...+rad $\hat{\mathbf{U}}_r$. La otra inclusión se prueba de forma analoga. Por otra parte como rad $\hat{\mathbf{U}}_i \in \hat{\mathbf{U}}_i$ y $\hat{\mathbf{E}} = \hat{\mathbf{U}}_1 \oplus \dots \oplus \hat{\mathbf{U}}_r$ se deduce inmediatamente la ortogonalidad de la suma de radicales.
- ii) Si \hat{U} es subespacio no singular de \hat{E} , es rad $\hat{U}=\hat{U} \wedge \hat{U}^{\perp}=0$ = $\hat{U} \wedge rad \hat{E}$. Por la formula de dimensiones 2.3.7 se deduce que dim $\hat{U}+\dim \hat{U}^{\perp}=\dim \hat{E}$ y así es $\hat{E}=\hat{U}(\hat{U})\hat{U}^{\perp}$. Si además rad $\hat{E}=\{0\}$, por i) se tiene: $\{0\}=rad \hat{U} + rad \hat{U}^{\perp}=rad \hat{U}^{\perp}$. En particular, rad $\hat{U}^{\perp}=\{0\}$.

4.2 Isometrías

Las aplicaciones naturales entre espacios vectoriales métricos serán aquellas que conservan la estructura vectorial y métrica simultaneamente:

4.2.1 Definicion Seam $\hat{E} = (\hat{E}, \hat{q})$ $\hat{E}' = (\hat{E}', \hat{q}')$ espacios vectoriales métricos. Un isomorfismo lineal $\hat{f}:\hat{E} \longrightarrow \hat{E}'$ se llama isometría, si $\hat{f}^{\#}(\hat{q}')=\hat{q}$ (véase 3.1.1 para la definición de pt). Si existe una isometría de É en É se dice que ambos espacios son isométricos.

4.2.2 Proposición

La composición de isometrías es una isometría. En particular la relación de "ser isométricos" es relación de equivalencia.

Demostración:

Vease 3.1.2

4.2.3 Teorema

Sean $\widehat{E}=(\widehat{E},\widehat{q})$ $\widehat{E}'=(\widehat{E}',\widehat{q}')$ espacios vectoriales métricos, $\widehat{E}'=\widehat{E}'$ un isomerfismo lineal, y $\hat{\xi} = (\hat{e}_1, \dots, \hat{e}_n)$ base de \hat{E} . Son entonces equivalentes las siguientes afirmaciones:

- i) f es isometría
- ii) $(\hat{f}(\hat{a})/\hat{f}(\hat{b})) = (\hat{a}/\hat{b})$ para todo $\hat{a}, \hat{b} \in \hat{E}$
- iii) $(\hat{f}(\hat{e}_i)/\hat{f}(\hat{e}_i))=(\hat{e}_i/\hat{e}_i)$ para todo i, j=0,...n

Demostración:

- i) = ii) es consecuencia de 3.1.1 i)
- ii) ⇒ iii) es trivial
- iii) \Rightarrow i) : Si $\hat{x} = \sum_{i=1}^{n} x_i \hat{e}_i \in \hat{E}$ se tiene:

$$(\hat{\mathbf{f}}^{\sharp}\hat{\mathbf{q}}')(\hat{\mathbf{x}}) = \hat{\mathbf{q}}'(\hat{\mathbf{f}}(\hat{\mathbf{x}})) = (\hat{\mathbf{z}}_{i} \times_{\mathbf{i}} \hat{\mathbf{f}}(\hat{\mathbf{e}}_{i}) / \hat{\mathbf{z}}_{i} \times_{\mathbf{j}} \hat{\mathbf{f}}(\hat{\mathbf{e}}_{j})) = \hat{\mathbf{z}}_{i,j=0} (\hat{\mathbf{f}}(\hat{\mathbf{e}}_{i}) / \hat{\mathbf{f}}(\hat{\mathbf{e}}_{j})) \times_{\mathbf{i}} \times_{\mathbf{j}} = \hat{\mathbf{z}}_{i,j=0} (\hat{\mathbf{e}}_{i} / \hat{\mathbf{e}}_{j}) \times_{\mathbf{i}} \times_{\mathbf{j}} = (\hat{\mathbf{x}}/\hat{\mathbf{x}}) = \hat{\mathbf{q}}(\hat{\mathbf{x}}).$$

4.2.4 Observación

Si los espacios vectoriales métricos $\hat{E}=(\hat{E},\hat{q})$ $\hat{E}'=(\hat{E}',\hat{q}')$ tienen la misma dimensión finita y son no singulares, entonces toda aplicación lineal $\hat{f}: \hat{E} \longrightarrow \hat{E}'$ que conserve la estructura métrica (es decir $\hat{f}^{\#}(\hat{q}') = \hat{q}$) es automaticamente isometría, ya que si $\hat{f}(\hat{a})=0$, se verifica $(\hat{f}(\hat{a})/\hat{f}(\hat{x}))=(\hat{a}/\hat{x})=0$ para todo $\hat{x} \in \hat{E}$. En consecuencia $\hat{a} \in rad \hat{E}=0$.

Establezcamos por untimo el concepto de suma ortogonal de isometrías:

4.2.5 Definición (proposición)

Sean $\hat{E} = \hat{U}_1 \oplus \dots \oplus U_r$ $\hat{E}' = \hat{U}_1 \oplus \dots \oplus \hat{U}_r'$ espacios vectorials métricos descompuestos en suma ortogonal. Sea $\hat{f}_i:\hat{U}_i \longrightarrow \hat{U}_i'$ una isometría para i=l,...,r .Entonces la aplicación:

 $\hat{\mathbf{f}} = \hat{\mathbf{f}}_1 \oplus \dots \oplus \hat{\mathbf{f}}_r : \hat{\mathbf{E}} \ni \hat{\mathbf{x}}_1 + \dots + \hat{\mathbf{x}}_r \mapsto \hat{\mathbf{f}}_1 (\hat{\mathbf{x}}_1) + \dots + \hat{\mathbf{f}}_r (\hat{\mathbf{x}}_r) \in \hat{\mathbf{E}}'$ es una isometría. y se denomina suma ortogonal de las \mathbf{f}_i $(\hat{\mathbf{x}}_i \in \hat{U}_i)$

Demostración:

Si
$$\hat{\mathbf{x}} = \stackrel{\overset{\smile}{\not\sim}}{\not\sim} \hat{\mathbf{x}}_{\mathbf{i}}$$
 $\hat{\mathbf{y}} = \stackrel{\overset{\smile}{\not\sim}}{\not\sim} \hat{\mathbf{y}}_{\mathbf{i}}$ $\hat{\mathbf{x}}_{\mathbf{i}}, \hat{\mathbf{y}}_{\mathbf{i}} \in \hat{\mathbf{U}}_{\mathbf{i}}$, se tiene por 4.1.7:
$$(\hat{\mathbf{f}}(\hat{\mathbf{x}})/\hat{\mathbf{f}}(\hat{\mathbf{y}})) = (\stackrel{\overset{\smile}{\not\sim}}{\not\sim} \hat{\mathbf{f}}_{\mathbf{i}}(\hat{\mathbf{x}}_{\mathbf{i}})/\stackrel{\smile}{\not\sim} \hat{\mathbf{f}}_{\mathbf{j}}(\hat{\mathbf{x}}_{\mathbf{j}})) = \stackrel{\overset{\smile}{\not\sim}}{\not\sim} (\hat{\mathbf{f}}_{\mathbf{i}}(\hat{\mathbf{x}}_{\mathbf{i}})/\hat{\mathbf{f}}_{\mathbf{i}}(\hat{\mathbf{y}}_{\mathbf{i}})) = \stackrel{\overset{\smile}{\not\sim}}{\not\sim} (\hat{\mathbf{x}}_{\mathbf{i}}/\hat{\mathbf{y}}_{\mathbf{i}}) = (\hat{\mathbf{x}}/\hat{\mathbf{y}})$$

4.2.6 Proposicióm

La demostración es elemental.

4.3 Clasificación de espacios vectoriales métricos

La clasificación por la relación de isometría de espacios vectoriales métricos reales y complejos constituye una reinterpretación del correspondiente teorema de clasificación para formas cuadráticas dado em
3.3 y 3.2.6

4.3.1 Teorema

Sean $\hat{E}=(\hat{E},\hat{q})$ $\hat{E}'=(\hat{E}',\hat{q}')$ espacios vectoriales métricos sobre el mismo cuerpo K y con la misma dimensión n‡l:

- i) Si K=R los espacios \hat{E} y/ \hat{E} son isométricos si y solo si tienem el mismo rango e indice
- ii) Si K=C, los espacios \widehat{E} y \widehat{E} son isométricos si y solo si tienen el mismo rango.

Demostración:

i) Sea $\hat{f}: \hat{E} \longrightarrow \hat{E}'$ una isometría. Para probar que rg $\hat{E}=$ rg \hat{E}' y Ind $\hat{E}=$ Ind \hat{E}' debe observarse que \hat{f} transforma una base ortonormal bien ordenada de \hat{E} (véase 3.2.4 y 3.2.5) en una base ortonormal bien ordenada de \hat{E}' con el mismo número de vectores isotropos , y el mismo número de vectores \hat{e} con $(\hat{e}/\hat{e})=-1$.

Recíprocamente, si rg $\hat{E}=rg$, $\hat{E}'=\beta$, y Ind $\hat{E}=Ind$ $\hat{E}'=\vee$, tomando bases or tonormales bien ordenadas \hat{E} y \hat{E}' en \hat{E} y, \hat{E}' , el único isomorfismo lineal $\hat{f}:\hat{E}\longrightarrow\hat{E}'$ tal que $\hat{f}(\hat{E})=\hat{E}'$ es una isometría por 4.2.3 iii) ii) se prueba de forma análoga

Para las cuadricas proyectivas se tiene la siguiente réplica:

.3.2 Definición

Dos cuadricas q y q'definidas sobre los espacios proyectivos E y E' se dicen proyectivamente equivalentes si existe f homografía de E en E'tal que $f^{\#}(q')=q$ (vease 3.1.3 para la definiciónn de $f^{\#}$)

4.3.3 Proposicion

La relación definida en 4.3.2 es relación de equivalencia pemostración: Véase 3.1.3

4.3.4 Teorema

Sean q y q dos cuadricas definidas em los espacios proyectivos E y E sobre el mismo cuerpo K y con la misma dimensión n:

- i) Si K=R las cuadricas son proyectivamente equivalentes si y solo si q y/q tienen el mismo rango e indice
- ii) Si K=C las cuadricas son proyectivamente equivalentes si y solo si q y q' tienen el mismo rango.

Demostración:

Nótese que si $q=\{\hat{q}\}$ y $q'=\{\hat{q}'\}$ se verifca la equivalencia q proyectivamente equivalente a $q'\Rightarrow\exists\lambda\neq0$ tal que (\hat{E},\hat{q}) es isométrico a $(\hat{E}',\lambda\hat{q}')$.

La conclusión se obtiene ahora inmediatamente de 4.3.1 y de 3.4.1

4.3.5 Modelos Analiticos

Fijado el cuerpo K (de caracteristica distinta de dos) denotamos:

a)
$$K_{(\rho,\nu)}^{n+1} = (P_n(K),q_{\nu}^{\rho}), n \ge 0$$
, $0 \le \rho \le n+1$ $0 \le \nu \le \rho$ siendo

$$q = -\frac{1}{2} \times \frac{2}{1-1} + \frac{2}{2} \times \frac{2}{1-1}$$
 (véase 1.1.2, 1.1.4)

b)
$$K_{(n+1)}^{n+1} = K_{\nu}^{n+1}$$
 para $0 \le \nu \le n+1$.

4.3.6 Corolario

- i) Los distintos tipos de espacios vectoriales métricos reales de dimensión n‡l vienen dados por la familia $R_{(\rho,\nu)}^{n+1}$ con $0 \le \rho \le n+1$, $0 \le \nu \le \rho$
- ii) Los distintos tipos de espacios vectoriales métricos complejos de dimensión n‡l vienen dados por la familia $\begin{matrix} n+1 \\ (\rho,0) \end{matrix} \quad \text{con } 0 \le \rho \le n+1 \quad .$

Demostración: Véase 4.3.1 y 3.3.9

4.3.7 Definición

Algunos tipos

de espacios vectoriales métricos reales tienen denominaciones especiales, así:

- i) Los de la forma R_0^{n+1} se denominan euclideos positivos, y están caracterizados por que su forma cuadrática es definida positiva
- ii) Los del tipo R_{n+1}^{n+1} son los euclideos negativos. Su forma cudrática es definida negativa
- iii) Los de la forma R_1^{n+1} se denominan espacios de Lorentz , y tienen interés en la teoría de la relatividad.

un espacio vectorial métrico real es euclideo (positivo ó negativo) si y solo si no posee vectores isótropos no nulos.

Demostración:

Sea $\hat{E}=(\hat{E},\hat{q})$ espacio vectorial métrico real. Supongase que existen vectores $\hat{a},\hat{b}\in\hat{E}$ tales que $\hat{q}(\hat{a})>0$ y $\hat{q}(\hat{b})<0$; La ecuación de segundo grado en λ : $\hat{q}(\hat{a}+\lambda\hat{b})=\hat{q}(\hat{a})+2\lambda(\hat{a}/\hat{b})+\lambda^2\hat{q}(\hat{b})=0$ tiene discriminante $4(a/b)^2-4q(a)q(b)>0$, y esto implica la existencia de vectores isotropos no nulos. Así, si no existen tales vectores entonces \hat{E} es necesariamente euclideo.

5. GRUPO ORTOGONAL. GRUPO DE UNA CUADRICA

 $\hat{E} = (\hat{E}, \hat{q})$ denotará un espacio vectorial métrico de dimensión finita n‡l (n > 0) definido sobre un cuerpo K de caractristica distinta de dos. Cuando \hat{q} sea no nula, $q = (\hat{q})$ es la cuadrica definida por \hat{q} en $E = P(\hat{E})$.

5.1 Ideas preliminares

Estableceremos inicialmente los grupos naturales de transformaciones que inducen una forma cuadrática y una cuadrica, y estudiaremos las re-laciones entre ambos grupos en el caso real y comolejo.

5.1.1 Definición

- i) Llamamos grupo ortogonal de \hat{E} , y lo denotamos por $O(\hat{q})$, $O(\hat{E})$, $O(\hat{E}$
- ii) Se llama grupo reducido de la cuadrica q al grupo $p_0(q) = \left\{ \left[\hat{f} \right] / \hat{f} \in p_0(\hat{q}) \right\} .$
- iii) El grupo de la cuadrica q , es el grupo de las transformaciones proyectivas que dejan invariante la cuádrica, es decir:

$$O(q) = \{ f \in GP(E) / f^{\#}(q) = q \}$$

Nótese que PO(q) es subgrupo de O(q)

5.1.2 proposición

Si $f \in O(q)$ entonces $f(im \ q) = im \ q$ por tanto O(q) actua sobre $im \ q$ Demostración

Si $f=[\hat{f}]$ y $x=[\hat{x}]\in \text{im }q$ se verifica $\hat{f}^{\#}(\hat{q})=\lambda \hat{q}$ para cierto $\lambda\neq 0$, y $\hat{q}(\hat{f}(\hat{x}))=\lambda \hat{q}(\hat{x})=0$, así $f(x)=[\hat{f}(\hat{x})]\in \text{im }q$.

y complejo:

5.1.3 Teorema

Si el cuerpo K=C ó bién si K=R y 2Ind(\hat{q}) \neq rg(\hat{q}) entonces p0(q)=0(q) . Demostración

Sea $f = [\hat{f}] \neq 0$ (q). Entonces $\hat{f}^{\#}(\hat{q}) = \lambda \hat{q}$ para cierto $\lambda \neq 0$. Si existe $\mu \in K = 0$ con $\mu = \lambda$, tomando $\hat{f}_1 = \frac{1}{\mu} \hat{f}$ queda:

$$\hat{f}_{1}^{\sharp}(\hat{q}) = (\frac{1}{h} \hat{f})^{\sharp} \hat{q} = \frac{1}{h^{2}} (\hat{f}^{\sharp} \hat{q}) = \frac{1}{h} \lambda \hat{q} = \hat{q} , y \hat{f}_{1} \in O(\hat{q}). \text{ Como } \hat{f} = [\hat{f}_{1}] \text{ as } \hat{f} \in PO(\hat{q})$$

probemos pues que en las hipótesis del teorema siempre existe el escálar μ raiz cuadrada de λ :

Cuando K=C la afirmación es ciertamente válida

Cuando K=R, necesariamente $\lambda>0$ (por tanto admite raiz cuadrada) ya que si $\lambda<0$, como \hat{q} y $\lambda\hat{q}$ son linealmente equivalentes es Ind(q)=Ind(λq) y por el lema 3.4.1 es Ind($\lambda\hat{q}$)= rg \hat{q} - Ind \hat{q} . Asi es 2 Ind \hat{q} =rg \hat{q} en contradicción con la hipótesis.

Estudiemos ahora el caso : 2 Ind $\hat{q} = rg \hat{q}$

5.1.4 Lema

Demostración:

The same of the sa

Si K=R y 2 Ind \hat{q} = rg \hat{q} entonces \hat{E} se descompone en suma directa \hat{E} = \hat{U} \hat{V} \hat{V} rad \hat{E} , donde \hat{U} y \hat{V} son subespacios isótropos.

Una base ortonormal bien ordenada para E es de la forma

 $\hat{\mathcal{E}} = (\hat{\mathbf{e}}_0^-, \dots, \hat{\mathbf{e}}_{v-1}^-, \hat{\mathbf{e}}_0^+, \dots, \hat{\mathbf{e}}_v^+, \hat{\mathbf{e}}_0^0, \dots, \hat{\mathbf{e}}_r^0) \text{ com } (\hat{\mathbf{e}}_i^v/\hat{\mathbf{e}}_i^v) = \omega \text{ , } \kappa = -1, 1, 0 \text{ y}$ por 3.3.4 es rad $\hat{\mathbf{E}} = \langle \hat{\mathbf{e}}_0^0, \dots, \hat{\mathbf{e}}_r^0 \rangle$. Tomando $\hat{\mathbf{u}}_i = \hat{\mathbf{e}}_i^- + \hat{\mathbf{e}}_i^+, \hat{\mathbf{v}}_i = \hat{\mathbf{e}}_i^- - \hat{\mathbf{e}}_i^+$ $\hat{\mathbf{e}}_i^+, \hat{\mathbf{v}}_i = \hat{\mathbf{e}}_i^- - \hat{\mathbf{e}}_i^+$ $\hat{\mathbf{e}}_i^-, \hat{\mathbf{v}}_i = \hat{\mathbf{e}}_i^-, \hat{\mathbf{v}}_i^ \hat{\mathbf{e}}_i^-, \hat{\mathbf{v}}_i^-, \hat{\mathbf{v}$

5.1.5 Teorema

Supongase K=R y 2 Ind \hat{q} = rg \hat{q} . Si \hat{E} = \hat{U} \bigoplus \hat{V} \bigoplus rad \hat{E} es la descomposición del lema anterior entonces:

- i) La simetría vectorial $\hat{\sigma}$: $\hat{E} \mapsto \hat{E}$ con base en \hat{U} y dirección $\hat{V} \oplus \hat{E}$ verifica $\hat{\nabla}^{\#}(\hat{q}) = \hat{q}$.
- ii) El grupo O(q) puede escribirse como unión disjunta $O(q) = PO(q) \cup PO(q)$. Dicho de otra forma, PO(q) es subgrupo o
- $O(q) = PO(q) \cup PO(q)$. Dicho de otra forma, PO(q) es subgrupo de O(q) con indice dos.

i) Un vector $\hat{x} \in \hat{\mathbb{C}}$ se escribe de forma única como $\hat{x} = \hat{u} + \hat{v} + \hat{\omega}$ con $\hat{u} \in \hat{V}$ $\hat{v} \in \hat{V}$ $\hat{w} \in \text{rad } \hat{\mathbb{C}}$, y se tiene $\hat{q}(\hat{x}) = (\hat{x}/\hat{x}) = 2(\hat{u}/\hat{v})$. Como $\hat{\nabla}(\hat{x}) = \hat{u} - \hat{v} - \hat{\omega}$, se verifica $(\hat{\nabla}^{\#}\hat{q})(\hat{x}) = \hat{q}(\hat{u} - \hat{v} - \hat{\omega}) = -2(\hat{u}/\hat{v}) = -\hat{q}(\hat{x})$ ii) Sea $\hat{f} = \hat{f} = \hat{f} = 0$ $\hat{f} = 0$ entonces $\hat{f} = \hat{f} = 0$ para cierto $\hat{f} = 0$.

si $\lambda > 0$ por la demostración de 5.1.3 se sigue que $\hat{f} \in PO(\hat{q})$ si $\lambda < 0$ tomando $\hat{f}_1 = \hat{f} \cdot \hat{f}$ se verifica:

 $\hat{f}_{1}^{\sharp} \hat{q} = (\hat{\sigma} \cdot \hat{f})^{\sharp} \hat{q} = \hat{f}^{\sharp} (\hat{\sigma}^{\sharp} \hat{q}) = \hat{f}^{\sharp} (-q) = -\hat{f}^{\sharp} \hat{q} = (-\lambda)q. \text{ Como } -\lambda > 0, \text{ por lo anterior se concluye que } f_{1} = [\hat{f}_{1}] = \sigma \cdot f \in PO(q) \text{ y así } \sigma f_{1} = f \in PO(q).$

5.2 Teorema de Cartan-Dieudonné

Estudiaremos las simetrías vectoriales de É que son además transformaciones ortogonales (simetrías ortogonales) y probaremos que las simetrías ortogonales respecto a hiperplanos constituyen un sistema generador del grupo ortogonal (Teorema de Cartan-Dieudonné). De forma simultánea se irán analizando las incidencias de estos resultados en la geometría de una cuadrica.

5.2.1 Definición

una simetría vectorial de $\hat{\mathbf{E}}$ que es además transformación ortogonal, se denomina simetría ortogonal.

-5.2.2 Proposición

USea $\widehat{\tau}: \widehat{\mathbb{E}} \longrightarrow \widehat{\mathbb{E}}$ una simetría vectorial con base $\widehat{\mathfrak{b}}$ y dirección $\widehat{\mathfrak{D}}$. Enton-ces $\widehat{\tau}$ es simetría ortogonal si y solo si $\widehat{\mathfrak{B}} \bot \widehat{\mathfrak{D}}$ Demostración

Por hipotesis es $\hat{E}=\hat{B}$ + \hat{D} . Fijado \hat{b} $\angle \hat{B}$ y \hat{d} $\angle \hat{D}$ se tiene $\hat{\nabla}(\hat{b}+\hat{d})=\hat{b}-\hat{d}$ y por tanto $\hat{q}(\hat{\nabla}(\hat{b}+\hat{d}))=\hat{q}(\hat{b}-\hat{d})=\hat{q}(\hat{b})+\hat{q}(\hat{d})-2(\hat{b}/\hat{d})$ (1) Por otra parte: $\hat{q}(\hat{b}+\hat{d})=\hat{q}(\hat{b})+\hat{q}(\hat{d})+2(\hat{b}/\hat{d})$ (2)

Comparando (1) y (2) se concluye que $\widehat{q}(\widehat{\sigma}(\widehat{b}+\widehat{d}))=\widehat{q}(\widehat{b}+\widehat{d}) \iff \widehat{b} \perp \widehat{d}$

Esto permite concluir facilmente la demostración.

5.2.3 Observación

Notese que si \hat{E} es no singular, la base \hat{B} y la dirección \hat{D} de una simetría ortogonal son subespacios no singulares: De hecho por 5.2.2 se verifica $\hat{E}=\hat{B}$ \hat{D} \hat{D} y por 4.1.8 , $\langle 0\rangle$ = rad \hat{E} = rad \hat{D} +rad \hat{D} , es decir rad \hat{B} = rad \hat{D} = $\langle 0\rangle$

Recíprocamente, si \hat{E} es no singular, y \hat{D} es subespacio no singular de \hat{E} , entonces $\hat{E}=\hat{D} \cup \hat{D}^{\perp}$, y la simetría vectorial de base $\hat{B}=\hat{D}^{\perp}$ y dirección \hat{D} es simetría ortogonal.

5.2.4 Corolario (definición)

Si $\hat{a} \in \hat{E}$ es un vector no isotropo, entonces $\hat{E} = \langle \hat{a} \rangle + \hat{a}^{\perp} y$ la simetría vectorial $\hat{\nabla}$ con base $\hat{H} = \hat{a}^{\perp} y$ dirección $\langle \hat{a} \rangle$ es simetría ortogonal. Se le denomina simetría hiperplano.

El siguiente teorema muestra la traducción de este resultado a la geometría de una cuadrica:

5.2.5 Teorema

Sea a & E- im q:

- i) Si dim $E \geqslant 2$, la homología armónica σ de centro a y hiperplano central H= a^{\perp} está en el grupo reducido de la cuadrica PO(q)
- ii) Si E es recta proyectiva , la transformación hiperbólica armónica con puntos fijos a y a deja invariante la cuadrica. En particularsi im $q = \langle c_1, c_2 \rangle$ $c_1 \neq c_2$ es $[c_1, c_2; a, a] = -1$ para todo a $E = \langle c_1, c_2 \rangle$.

Demostración:

- i) Como a $\not\in$ im q es a $\not\in$ a $\not\in$ a $\not\in$ if $ext{in q} = ext{in q} = ext{$
- ii) La primera parte se prueba de forma análoga. para probar la última afirmación basta observar que como ∇ (im q)=im q y $\nabla \neq$ id , necesáriamente es $\nabla (c_1)=c_2$.
- El siguiente lema es crucial para la demostración del Teorema de Cartan:

5.2.6 Lema

Seam $\hat{a}, \hat{b} \in \hat{E}$ vectores no isótropos con $\hat{q}(\hat{a}) = \hat{q}(\hat{b})$. Existe entonces una transformación ortogonal \hat{f} , producto de una ó dos simetrías hiperplano, que aplica \hat{a} en \hat{b} .

Demostración:

Como $(\hat{a}/\hat{a}) - (\hat{b}/\hat{b}) = (\hat{a}+\hat{b}/\hat{a}-\hat{b}) = 0$, es $\hat{a}+\hat{b} \in (\hat{a}-\hat{b})^{\perp}$ y $\hat{a}-\hat{b}\in (\hat{a}+\hat{b})^{\perp}$:

- i) Si $\hat{a}-\hat{b}$ es no isótropo, la simetría hiperplano $\hat{\sigma}$ con dirección $\langle \hat{a}-\hat{b}\rangle$ transforma $\hat{a}=\frac{1}{2}(\hat{a}+\hat{b})+\frac{1}{2}(\hat{a}-\hat{b})$ en $\hat{\sigma}(\hat{a})=\frac{1}{2}(\hat{a}+\hat{b})-\frac{1}{2}(\hat{a}-\hat{b})=\hat{b}$
- ii) Si $\hat{a}+\hat{b}$ es no isotropo, analogamente la simetría hiperplano con dirección $\langle \hat{a}+\hat{b} \rangle$, $\hat{\nabla}$ transforma \hat{a} en $\hat{\nabla}$ $(\hat{a})=-\hat{b}$, y la simetría hiperplano $\hat{\tau}$ con dirección $\langle \hat{b} \rangle$ transforma $-\hat{b}$ en $\hat{\tau}$ $(-\hat{b})=\hat{b}$. Así se tiene: $\hat{\tau}.\hat{\tau}$ $(\hat{a})=\hat{\tau}$ $(-\hat{b})=\hat{b}$.

pues si así fuera, el subespacio $\langle \hat{a}+\hat{b},\hat{a}-\hat{b}\rangle$ sería isótropo y en particular $\hat{q}(\hat{a})=\hat{q}(\hat{b})=0$ en contra de la hipótesis.

5.2.7 Teorema (Cartan-Dieudonné)

Si \hat{E} es no singular, entonces el grupo $O(\hat{q})$ está generado por las simetrías hiperplano. Demostración:

Se hace por inducción sobre la dimensión n+1 de E:

- Si n=0 (dim \hat{E} =1) el resultado es trivial, ya que se prueba facilmente que en este caso $O(\hat{q})=\{id,-id\}$, y -id es simetría hiperplano en \hat{E} . Supuesto cierto el resultado para dimensión inferior a n+1, sea E de dimensión n+1 y $\hat{f} \in O(\hat{E})$:
- a) Si existe e vector no isótropo de $\hat{\mathbf{E}}$ con $\hat{\mathbf{f}}(\hat{\mathbf{e}})=\hat{\mathbf{e}}$, entonces $\hat{\mathbf{H}}=\langle\hat{\mathbf{e}}\rangle^{\perp}$ es hiperplano invariante por $\hat{\mathbf{f}}$ ($(\hat{\mathbf{x}}/\hat{\mathbf{e}})=0\Rightarrow(\hat{\mathbf{f}}(\hat{\mathbf{x}})/\hat{\mathbf{e}})=(\hat{\mathbf{f}}(\hat{\mathbf{x}})/\hat{\mathbf{f}}(\hat{\mathbf{e}}))=(\hat{\mathbf{x}}/\hat{\mathbf{e}})=0)$ Además $\hat{\mathbf{E}}=\langle\hat{\mathbf{e}}\rangle \oplus \hat{\mathbf{H}}$ y $\hat{\mathbf{H}}$ es no degenerado (por 4.1.8). Aplicando la hipótesis de inducción a $\hat{\mathbf{f}}_1=\hat{\mathbf{f}}/\hat{\mathbf{H}}\in \mathbb{O}(\hat{\mathbf{H}})$, se deduce la existencia de simetrías hiperplano $\hat{\mathbf{T}}_1,\dots,\hat{\mathbf{T}}_r$ en \mathbf{H} con bases $\hat{\mathbf{L}}_1,\dots,\hat{\mathbf{L}}_r$ tales que $\hat{\mathbf{f}}_1=\hat{\mathbf{T}}_1,\dots,\hat{\mathbf{T}}_r$. Tomando $\hat{\mathbf{T}}_1=\mathrm{id}_{\langle\hat{\mathbf{e}}\rangle} \oplus \hat{\mathbf{T}}_1$, se concluye que $\hat{\mathbf{T}}_1$ es simetría hiperplano en $\hat{\mathbf{E}}$ con base $\hat{\mathbf{H}}_1=\langle\hat{\mathbf{e}}\rangle \oplus \hat{\mathbf{L}}_1$ y por 4.2.6 es $\hat{\mathbf{T}}_1,\dots,\hat{\mathbf{T}}_r=(\mathrm{id}_{\langle\hat{\mathbf{e}}\rangle} \oplus \hat{\mathbf{T}}_1)\dots(\mathrm{id}_{\langle\hat{\mathbf{e}}\rangle} \oplus \hat{\mathbf{T}}_r)=\mathrm{id}_{\langle\hat{\mathbf{e}}\rangle} \oplus (\hat{\mathbf{T}}_1,\dots,\hat{\mathbf{T}}_r)=\mathrm{id}_{\langle\hat{\mathbf{e}}\rangle} \oplus \hat{\mathbf{T}}_1=\hat{\mathbf{f}}$.
- b) En cualquier otro caso, tomando e vector no isotropo, por el lema 5.2.6, existe $\hat{g} \in Q(\hat{q})$ producto de una ó dos simetrías hiperplano con $\hat{g}(\hat{f}(\hat{e}))=\hat{e}$, y \hat{g} . \hat{f} se descompone por a) en producto de simetrías hiperplano \hat{g} . $\hat{f}=\hat{\tau}_1\dots\hat{\tau}_r$. Si por ejemplo $g=\hat{\tau}.\hat{\tau}$ ($\hat{\tau},\hat{\tau}$ simetrías hiperplano) se verifica $f=\hat{\tau}.\hat{\tau}.\hat{\tau}.\hat{\tau}_1\dots\hat{\tau}_r$.

5.2.8 Nota

puede probarse que cada $\hat{f} \in O(\hat{q})$ puede descomponezse en producto de a lo más dim \hat{E} simetrías hiperplano. Véase [BE].

5.2.9 Corolario

El grupo reducido de la cuadrica q, PO(q) está generado por las homologías armónicas que dejan invariante la cuadrica. Demostracióh:

Si $f \in PO(q)$, existe $\hat{f} \in O(\hat{q})$ con $f = [\hat{f}]$. Por 5.2.7 es $\hat{f} = \widehat{\mathcal{T}}_1 \dots \widehat{\mathcal{T}}_r$ con $\widehat{\mathcal{T}}_i$ simetría hiperplano, así $f = [\hat{f}] = [\widehat{\mathcal{T}}_1] \dots [\widehat{\mathcal{T}}_r]$ y $[\widehat{\mathcal{T}}_i]$ es homología armónica que deja invariante la cuadrica (por 5.2.5)

Como apuntabamos en 5.1.2 el grupo O(q) actua sobre im q. Se probará que en el caso real ó complejo esta actuación es transitiva sobre el conjunto de puntos no singulares im q - rad q, y también sobre el conjunto de puntos singulares, rad q. Esto geométricamente significa que dos puntos no singulares (resp. singulares) de la cuadrica son equivalentes. Es decir, el estudio geométrico-proyectivo de la cuadrica en uno de sus puntos no singulares, puede hacerse automáticamente extensivo a los demás puntos no singulares de la misma.

5.3.1 Definición

Dos puntos a, b \in im q se dicen (proyectivamente) equivalentes, si existe $f \in O(q)$ con f(a)=b. Esta relación es obviamente de equivalencia.

probaremos que las clases de equivalencia correspondientes son exactamente imq -rad q y rad q. Se requieren algunos resultados previos:

5.3.2 Lema

Si $f \in O(q)$ y U es subespacio de E , es $f(U)^{\perp} = f(U^{\perp})$. En particular es f(rad q) = rad q y f(im q - rad q) = im q - rad q.
Demostración:

Sea $f = [\hat{f}]$. Entonces $\hat{f}^{\sharp}\hat{q} = \lambda \hat{q}$ para cierto $\lambda \neq 0$. Si $\hat{a}, \hat{b} \in \hat{E}$, y $(\hat{a}/\hat{b}) = 0$ es $(\hat{f}(\hat{a})/\hat{f}(\hat{b})) = \lambda (\hat{a}/\hat{b}) = 0$, es decir, $a \perp b \rightleftharpoons f(a) \perp f(b)$ Utilizando la biyectividad de f se verifica:

 $f(a) \in f(U^{\perp}) \implies a \in U^{\perp} \implies a \perp u$ para todo $u \in U \implies f(a) \perp f(u)$ para todo $u \in U \iff f(a) \in f(U)^{\perp}$.

Las demás afirmaciones también son inmediatas.

5.3.3 Lema

Si $\hat{a} \in \hat{E}$ es un vector isótropo no mulo, $\hat{a} \in \text{rad } \hat{E}$, entonces existe $\hat{b} \in \hat{E}$ vector isotropo con $(\hat{a}/\hat{b})=1$.

Demostración:

Como $\hat{a} \notin \text{rad } \hat{E}$, existe $\hat{e} \in \hat{E}$ con $(a/e) \neq 0$. Busquemos en el plano (\hat{a},\hat{e}) el vector $\hat{b} = \lambda \hat{a} + \mu \hat{e}$ verificando las condiciones del teorema: $(\hat{b}/\hat{b}) = \lambda \mu(\hat{a}/\hat{e}) + \mu^2(\hat{e}/\hat{e})$, $(\hat{a}/\hat{b}) = \mu(\hat{a}/\hat{e}) = 1$. se tiene así:

$$\mu = \frac{1}{(\hat{a}/\hat{a})} ; \lambda = -\mu^2 (\hat{a}/\hat{a}) .$$

5.3.4 Observación

Nótese que en el lema anterior el plano vectorial métrico $\hat{p}_{=}(\hat{a},\hat{b})$ es no singular, pues la matriz de la forma cuadrática $\hat{q}_{\hat{p}}$ respecto a la base (\hat{a},\hat{b}) es :

 $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}. \text{ por otra parte , si K=R , tomando } \hat{\mathbf{u}} = \frac{1}{2} \left(\hat{\mathbf{a}} - \hat{\mathbf{b}} \right) , \hat{\mathbf{v}} = \sqrt{\frac{1}{2}} \left(\hat{\mathbf{a}} + \hat{\mathbf{b}} \right)$ La matriz de q_i respecto a $(\hat{\mathbf{u}}, \hat{\mathbf{v}})$ es $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, y rg $\hat{\mathbf{p}}$ =2 Ind $(\hat{\mathbf{p}})$ =1

5.3.5 Lema

Si Ê ≕Û ④ V entonces:

- i) rg Ê = rg Û +rg Ŷ
- ii) Si K=R es Ind($\hat{\mathbb{C}}$)=Ind($\hat{\mathbb{U}}$)+Ind($\hat{\mathbb{V}}$)

Demostración:

- i) Por 4.1.8 es rad \hat{E} = rad \hat{V} + rad \hat{V} , asf rg(\hat{E}) = dim \hat{E} dim(rad \hat{E}) = =dim \hat{V} +dim \hat{V} dim(rad \hat{V}) dim(rad \hat{V}) = rg \hat{V} +rg \hat{V} .
- ii) Tomemos bases ortonormales bien ordenadas para Û y V :

$$(\hat{u}_{0}^{-},\ldots,\hat{u}_{r}^{-},\hat{u}_{0}^{+},\ldots,\hat{u}_{s}^{+},\hat{u}_{0}^{0},\ldots,\hat{u}_{t}^{0}),(\hat{v}_{0}^{-},\ldots,\hat{v}_{r}^{-},\hat{v}_{0}^{+},\ldots,\hat{v}_{s}^{+},\hat{v}_{0}^{0},\ldots,\hat{v}_{t}^{0})$$

com $q(\hat{\mathbf{u}}_{i}^{v})=q(\hat{\mathbf{v}}_{i}^{v})=\omega_{i}v=-1,1,0$. Entonces la base

$$(\hat{u}_0,\dots,\hat{u}_r,\hat{v}_0,\dots,\hat{v}_{r'},\hat{u}_0^\dagger,\dots,\hat{u}_s^\dagger,\hat{v}_0^\dagger,\dots,\hat{v}_s^\dagger,\hat{u}_0^\dagger,\dots,\hat{u}_t^\dagger,\hat{v}_0^\dagger,\dots,\hat{v}_t^\dagger) \quad \text{es orto}$$
 normal bien ordenada de \hat{E} , y como se vé es Ind $E=(r+1)+(r'+1)=$

= Ind $\hat{\mathbf{U}}$ +Ind $\hat{\mathbf{V}}$.

5.3.6 Teorema

Supongase K=R ó K=C . Dos puntos de im q son proyectivamente equivalentes, si ambos son no singulares ó singulares.

En particular, sobre una cuadrica q el grupo ,PO(q) actua de forma transitiva.

Demostración:

f(a)=a'

Por_el lema 5.3.2 se deduce una de las implicaciones del teorema. probemos la otra para K=R:

i) Si $a=[\hat{a}]$ $a'=[\hat{a}]$ son dos puntos de im q no singulares, entonces \hat{a} y \hat{a}' son vectores isotropos no pertenecientes a rad \hat{q} . De 5.3.3 se deduce la existencia de vectores \hat{b} y \hat{b}' de \hat{E} isotropos, tales que $(\hat{a}/\hat{b})=(\hat{a}'/\hat{b}')=1$. Así por 5.3.4 los planos $\hat{p}=\langle \hat{a},\hat{b}\rangle$ y $\hat{p}'=\langle \hat{a}',\hat{b}'\rangle$ son no singulares , y por 4.2.3 el isomorfismo lineal $\hat{c}:\hat{p}\longrightarrow\hat{p}'$ tal que $\hat{q}(\hat{a},\hat{b})=(\hat{a}',\hat{b}')$ es una isometría.

Utilizando ahora 4.1.8 se ve que $E=\hat{P} \bigoplus \hat{P}^{\perp}=\hat{P} \bigoplus \hat{P}^{\perp}$ y por 5.3.5 se deduce que rg $\hat{P}^{\perp}=$ rg \hat{P}^{\perp} , Ind $(\hat{P}^{\perp})=$ Ind (\hat{P}^{\perp}) con lo que \hat{P}^{\perp} y $\hat{P}^{\perp}=$ son isométricos. Fijada $\hat{\tau}:\hat{P}^{\perp}\longrightarrow \hat{P}^{\perp}$ isometría, por 4.2.5 es $\hat{f}=\hat{\tau}.\hat{\tau}:\hat{E}\longrightarrow \hat{E}$ isometría que verifica $\hat{f}(\hat{a})=\hat{a}$. Así si $\hat{f}=[\hat{f}]$ se tiene

La uemostracion para el caso K=C es analoga.

5.3.7 Nota

Existe un teorema debido a Witt que prueba que si \hat{U} y \hat{U} son subespacios de espacios vectoriales métricos \hat{E} y \hat{E} no singulares e isometricos, si existe una isometría $\hat{\sigma}:\hat{U} \mapsto \hat{U}$ entonces existe $\hat{f}:\hat{E} \mapsto \hat{E}$ isometría tal que $\hat{f}/\hat{U}=\hat{\tau}:\hat{U}\mapsto\hat{U}$. (véase [BE\(^1\) \tilde{\(\beta\)}\) (véase [BE\(^1\) \tilde{\(\beta\)}\) (sto permite en particular probar facilmente la validez de 5.3.6 sobre

POSICIONES RELATIVAS ENTRE CUADRICA Y SUBESPACIO Fijada la cuadrica q=[\hat{q}] y el subespacio U=P(\hat{U}) del espacio proyectivo E, si U \neq im q entonces $\hat{q}_{\hat{U}}$ es una forma cuadrática no nula. Denominare mos posición relativa de U (respecto a q) al tipo proyectivo de la cuadrica $[\hat{q}_{\hat{U}}]$. Analizaremos esta cuestión detenhendonos de forma especial

en las posiciones relativas entre hiperplano-cuadrica y recta-cuadrica

 $q=\{\hat{q}\}$ es una cuadrica definida sobre el espacio proyectivo E=P(E). Como es habitual, el cuerpo base tiene caracteristica distinta de dos $E=(\hat{E},\hat{q})$ es em espacio vectorial métrico.

6.1 Generalidades

un cuerpo K 🕏

6.1.1 Definición

Si U=P(Û) es subespacio proyectivo de E, se denomina cuádrica sección de q por U a la cuadrica en U, q \cap U=[$\hat{q}_{\hat{U}}$], cuando $\hat{q}_{\hat{U}}$ es no nulo (es decir U \not im q).

Si además V es subespacio proyectivo de de E, se dice que la posición relativa de V (respecto a q) es la misma que la de U , si se verifica alguna de las siguientes afirmaciones:

- i) U < im q , V < im q , dim U= dim V .
- ii) $U \not = \operatorname{imq} \cdot V \not = \operatorname{im} \cdot q$, y las cuadricas $q \land U$ y $q \land V$ son proyectivamente equivalentes (ver 4.2.6), es decir, existe una homografía $f:U \longrightarrow V$ tal que $f^{\sharp}(q \land V) = q \land U$.

6.1.2 Observación

En las condiciones de la definición 6.1.1 hacemos notar que el hecho de que las cuadricas $q \wedge y$ y $q \wedge V$ sean proyectivamente equivalentes no implica en general que xista $f \in O(q)$ con f(y) = V y $(f_y)^{\#}(q \wedge V) = q \wedge V$. Esta condición daría lugar a una definición más restrictiva (ynatural) de posición relativa, que aquí no vamos a analizar.

6.1.3 Proposición

Si U es un subespacio de E, $U \not = \text{im } q$, entonces $\text{im}(q \cap U) = (\text{im } q) \cap U$, $y \text{ rad}(q \cap U) = U \cap U^{\perp} = \{u \in U \mid u \perp x \text{ para todo } x \in U \}$.

Demostración

Si U=P($\hat{\mathbf{U}}$), u=[$\hat{\mathbf{u}}$] so tions u $\in \text{im}(q \wedge U) \Leftrightarrow \hat{\mathbf{q}}_{\hat{\mathbf{U}}}(\hat{\mathbf{u}}) = 0 \Leftrightarrow \hat{\mathbf{q}}(\hat{\mathbf{u}}) =$

La segunda igualdad es consecuencia de que rad û 🕳 Û 🤈 û 🖰 🖫

6.1.4 Definición

Sea U subespacio proyectivo de E:

- i) Se dice que v es exterior a la cuadrica q, si im $q \wedge v = p$.

 Nótese que si K=C no existen subespacios exteriores (no vacíos)
- ii) Se dice que y es tangente a la cuadrica si $y \cap y \stackrel{\neq}{=} f$, es decir, ó bien $y \subset im$ q (entonces $y \cap y \stackrel{\perp}{=} (im q) \cap y = y$), ó bien $y \not\subset im$ q (entonces $q \cap y$ es cuádrica degenerada).

En cualquier caso al subespacio $\mathfrak{y} \wedge \mathfrak{y}^{\perp}$ (que está contenido en im q) se denomina subespacio de tangencia. Los puntos de $\mathfrak{y} \wedge \mathfrak{y}^{\perp}$ se denominan puntos de tangencia.

iii) Se dice que y es secante a la cuadrica si no es tangente ni exterior.

6.1.5 Ejemple

Considerese en $P_2(R)$ lacuadrica $-x_0^2 + x_1^2 + x_2^2 = 0$, y \hat{U}_{λ} : $(\lambda x_0 + x_1 = 0)$ Tomando en U_{λ} coordenadas homogéneas $\begin{bmatrix} y_0 \\ y_1 \end{bmatrix}$ correspondientes a la base $\begin{pmatrix} 1 \\ -\lambda \\ 0 \end{pmatrix}$, $\begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$ de U_{λ} la ecuación de la cuadrica $q \wedge U_{\lambda}$ es $(1 - \lambda^2)y_0^2 + y_1^2 = 0$. Así se tiene:

Para $\lambda = \pm 1$ 0 es tangente alà cuadrica en el punto $\begin{bmatrix} 1 \\ -\lambda \\ 0 \end{bmatrix}$

Si $|\lambda| > 1$, U_{λ} es exterior a la cuadrica Si $|\lambda| < 1$ U_{λ} es secante a la cuadrica

6.1.6 Observación

Si a es un punto singular para la cuadrica entonces cualquier subespacio U que contenga al punto a es tangente a la cuadrica por el punto a, ya que rad $q \in U^{\perp}$.

6.2 Posición relativa entre hiperplano y cuadrica.

Estudiemos en primer lugar el problema de la tangencia:

Dado a \in im q punto no singular para la cuádrica, existe un único hiperplano H que es tangente a la cuadrica por el punto a. Este hiperplano
es justamente el hiperplano polar a de a .

Demostración:

- a) Si H es hiperplano tangente a la cuadrica en el punto a, entoncespor definición— $a \in H \cap H^{\perp}$ y por tanto $H \subset a^{\perp}$ como a^{\perp} es hiperplano (2.3.12) se deduce la igualdad $H=a^{\perp}$.
- b) Por otra parte $H=a^{\perp}$ es hiperplano tangente a la cuadrica en a, pues como a ϵ im q , $a \in a^{\perp} = H$, y obviamente $a \in H^{\perp}$

6.2.2 Corolario

Dos hiperplanos tangentes a la cuadrica en puntos no singulares, tienen la misma posición relativa.

Demostración:

Si H_1, H_2 son hiperplanos tangentes a la cuadrica q en los puntos no singulares a_1 y a_2 , por 5.3.6 y 5.3.7 existe $f \in PO(q)$ con $f(a_1) = a_2$, y por tanto $f(a_1^{\perp}) = a_2^{\perp}$ es decir $f(H_1) = H_2$.

6,2,3 Calculo analítico del hiperplano tangente

Fijemos en E un sistema homogeneo de coordenadas $\begin{pmatrix} x_0 \\ x_n \end{pmatrix}$ y sea $\hat{q} = 0$ una ecuación para q , donde $\hat{q} = \sum_{i \neq j} q_i x_i x_j$ Fijado el punto a ϵ im q -rad q , escribamos $\hat{a} = \begin{pmatrix} a_0 \\ \vdots \\ a_n \end{pmatrix}$ para denotar

las coordenadas homogeneas de a. Entonces la ecuación de a hiperplano tangente a q por el punto a es de la forma:

 $\frac{2\hat{q}}{\partial x_i} \begin{vmatrix} \hat{a} & \hat{x}_i = 0 \end{vmatrix}$ donde $\frac{2\hat{q}}{\partial x_i}$ denota la derivada parcialde q respecto respecto a x_i .

En efecto, se verifica la identidad :

$$\begin{pmatrix} q_{m} & q_{0} & /2, \dots, q_{m} / 2 \\ q_{n} & /2 & q_{n} & /2, \dots, q_{k} / 2 \\ q_{m} & /2 & q_{n} & /2, \dots, q_{k} \end{pmatrix} \begin{pmatrix} a_{0} \\ \vdots \\ a_{n} \end{pmatrix} = \frac{1}{2} \begin{pmatrix} a_{0} \\ \vdots \\ a_{n} \\ \vdots \\ a_{n} \end{pmatrix}$$

Así el conjunto de puntos x con coordenadas homogéneas tales que x se describe por la ecuación:

$$(x_0,...x_n)\begin{pmatrix} q_{00} & ... & q_{0n}/2 \\ q_{0n}/2 & ... & q_{n} \end{pmatrix}\begin{pmatrix} q_0 \\ q_n \end{pmatrix} = \frac{1}{2} \underbrace{\sum_{i=1}^{n} \frac{q_i^2}{q_i^2}}_{2x_i} \underbrace{x_i}_{i} = 0$$

Notese que las ecuaciones de rad q son justamente $\frac{x_i}{3x_i} = 0$ $i=0,\dots,n$

5.2.4 Ejemplo En $P_3(R)$ considerese la cuadrica q de ecuación $-x_0^2 - x_1^2 + x_2^2 + x_3^2 = 0$. En a = 1 punto de im q , el hiperplano tangente es $(-x_0-x_1+x_2+x_3=0)$:H . La intersección de H con im q se obtiene resolviendo el sistema:

$$(x_2+x_0)(x_2-x_0)+(x_3-x_1)(x_3+x_1)=0 \quad \text{(Ecuación de la cuadrica)} \\ x_2-x_0=x_1-x_3 \qquad \qquad \text{(Ecuación del plano)} \\ \text{Los puntos de la recta } \Delta: \begin{cases} x_2-x_0=0 \\ x_1-x_3=0 \end{cases} \quad \text{y los de la recta } \Delta': \begin{cases} x_3-x_0=0 \\ x_1-x_2=0 \end{cases}$$

estan contenidos en im $q \cap H \cdot De$ hecho im $q \cap H = \Delta \cup \Delta'$, $rg(q \cap H) = 2$ y Ind $(q \wedge H)=1$.

Por la transitividad del grupo O(q) (vease 5.3) se concluye que para todo punto a ∈im q , su hiperplano tangente corta a la cuadrica en un par de rectas.

6.2.5 Prepesición

Si H es un hiperplano contenido en im q, entonces el rango de q es igual a l ó 2. En el primer caso im q=H. En el segundo im q=H∪H´ siendo H'otro hipreplano distinto de H.

Demostración:

Fijemos en E un sistema de coordenadas homogéneas [x;] tal que la ecuación de H se reduzca a $x_0=0$. Como H <im q, se concluye que la ecuación de q es de la forma $x_0(\underset{i=1}{\not\sim} x_i x_i)=0$ (no todos los $\underset{i}{\bowtie}$ nulos), es decir:

$$(x_0, \dots, x_n) \begin{pmatrix} x_0, x_{1/2}, \dots, x_{1/2} \\ x_{1/2}, \dots, x_n \end{pmatrix} \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = 0$$

cuyo caso es rg q =1 y im q= H.

Estudiemos por último para K=R la posible existencia de hiperplanos exteriores. Demostraremos previamente el siguiente resultado:

3.2.6 Proposición

Toda cuadrica real sin puntos es propia y tiensindice nulo Demostración :

si im $q=\emptyset$, (\hat{E},\hat{q}) no tiene vectores isotropos, y par 4.3.8 es euclideo. Así \hat{q} es definida con lo que $q=[\hat{q}]$ verifica la tesis.

6.2.7 Teorema

Si existe un hiperplano H exterior a la cuadrica real q , entonces necasariamente Ind q es igual a cero ó la unidad. Además q \cap H es propia y Ind(q \cap H)=0 .

Demostración:

Sea H=P(\hat{H}) exterior a la cuadrica q. Entonces im(q \cap H)=Ø, y por 4.3.8 \hat{H} =(\hat{H} , \hat{q} \hat{H}) es espacio euclideo que podemos suponer positivo, es decir, Ind(\hat{H})=0. Si \hat{L} = \hat{H} $^{\perp}$, por ser H no degenerado se tiene \hat{E} = \hat{L} \hat{L} \hat{H} , y per 5.3.5 se concluye que Ind(\hat{E})=Ind(q)=Ind(\hat{L})+Ind(\hat{H}) que será por tanto igual a 0 ó la unidad. La última afirmación es consecuencia de 6.2.6

6.2.8 Corolario

 $^{\rm D}{\rm os}$ hiperplanos ${\rm H_1,H_2}$ exteriores a la cuadrica real q tienen la misma posición relativa respecto a q.

Demostración:

Por 6.2.7 es $rg(q \cap H_1) = rg(q \cap H_2) = n$, $Ind(q \cap H_1) = Ind(q \cap H_2) = 0$. Aplicando ahora el teorema de clasificación 4.3.4 se obtiene la conclusión.

6.3 Posiciones relativas entre recta y cuadrica.

El estudio de esta cuestión requiere de un análisis explicito previo del teorema de clasificación 4.3.4 aplicado a cuadricas en rectas proyectivas:

6.3.1 Teorema

Sea $q_1 = (\hat{q}_1)$ una cuadrica sobre la recta proyectiva $\triangle = P(\widehat{\triangle})$ definida sobre el cuerpo K. Caben trés posibilidades:

- a) im $q_1=\{a\}$, Entonces q_1 no es propia y rad $q_1=\{a\}$. Por otra parte, las cuadricas sobre rectas proyectivas (en el cuerpo
- K) con un solo punto, son proyectivamente equivalentes.
- b) Im $q_1 = \{a,b\}$ a to En este caso q_1 es propia. Todas las cuadricas sobre rectas preyectivas (en K) con dos puntos (distintos) son proyectivamente equivalentes.
- c) im q₁=Ø . Entences q₁ es propia.

Las cuadricas sim puntos sobre rectas proyectivas reales son proyectivamente equivalentes.

Demostración:

- El resultado se deduce a partir de las siguientes reflexiones:
- i) Si la cuadrica q100, y existe al menos un punto a=[â] ¿ im q1, enton-

ces $\triangle = (\triangle, q_1)$ es un espacio no singular y $\widehat{q}_1(\widehat{a}) = 0$; por 5.3.3 existe $\widehat{b} \in \triangle$ cen $\widehat{q}_1(\widehat{b}) = 0$ y $(\widehat{a}/\widehat{b}) = 1$. En el sistema de coordenadas $\begin{bmatrix} x_0 \\ x_1 \end{bmatrix}$ inducide por la base $(\widehat{a}, \widehat{b})$ de $\widehat{\triangle}$, la ecuación de la cuadrica es $x_0 x_1 = 0$. Por tanto a y $b = [\widehat{b}]$ son los únicos puntes de la cuadrica.

- ii) Si im q= \emptyset y K=R entonces por 6.2.6 q es cuadrica propia y tiene indice nulo. Su ecuación reducida es $x_0^2 + x_1^2 = 0$
- iii) Por último si im $q_1 = \langle a \rangle$, per i) q_1 no es propia, y rad $q_1 = \langle a \rangle$. Tomando $a = \{\hat{a}\}$ y $\hat{b} \notin \hat{\Delta}$ con $\hat{q}_1(\hat{b}) \neq 0$, podemos suponer multiplicando \hat{q}_1 per $q_1(b)^{-1}$ que $\hat{q}_1(\hat{b}) = 1$. Además $(\hat{a}/\hat{b}) = 0$ pues $\hat{a} \in \text{rad } \hat{q}_1$. Respecto al sistema de coordenadas $\begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$ inducido por la base (\hat{a},\hat{b}) , la ecuación de la cuadrica es $x_1^2 = 0$.

5.3.2 Corolario

Fijada la cuadrica $q=\{\hat{q}\}$ en el espacio proyectivo real E , las diferentes posiciones relativas de una recta proyectiva Δ en E y q (según definición 6.1.1) vienen descritas por la cardianalidad del conjunto im $q \cap \Delta$. Expicitamente, solo hay cuatro posibilidades :

- i) im q∧∆ =Ø: Recta exterior a la cuadrica
- ii) im q∩∆={a}: Recta tangente a la cuadrica (y no contenida en ella)
- iii) im q∩ 4= {a,b} (a≠b) Recta secante a la cuadrica
- iv) Im qnd= d : Recta contenida en la cuadrica

Demostración:

Cuando $\triangle \not \perp$ im q se toma $q_1 = q \cap \triangle$; basta aplicar ahora el teorema 6.3.1.

6.3.3 Observación

La aplicación literal de 6.3.1 al estudio de posiciones relativas entre recta y cuadrica, permite mantener la validez general del corolario 6.3.2 para cualquier cuerpo K, escepto en lo que respecta a las cuestiones relacionadas con rectas exteriores a la cuadrica. Concretamente:

- a) Si K es algebraicamente cerrado, no existen tectas exteriores
- b) Para cierto cuerpos K pueden encontrarse rectas exteriores a la cuadrica con distinta posición relativa.

5.3.4 Calcules analíticos

Fijado en E un sistema $\{x_i\}$ de coordenadas homogeneas la ecuación de la cuadrica es de la forma:

$$(x_0, \dots, x_n) \land \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} = 0 \text{ objen } \hat{x}^t \land \hat{x} = 0 \text{ con } \hat{x} = \begin{pmatrix} x_0 \\ \vdots \\ x_n \end{pmatrix} \land A = \begin{pmatrix} a_{00}, \dots & a_{0n} \\ \vdots \\ a_{k0} & \vdots \\ a_{k0} & \vdots \\ a_{k0} & \vdots \end{pmatrix}$$

$$A \text{ matrix similar.}$$

una recta proyectiva $\angle I$ en E queda definida por dos puntos a y b distintos. Tomando $\hat{a} = \begin{pmatrix} a_0 \\ a_n \end{pmatrix} \hat{b} = \begin{pmatrix} b_0 \\ b_n \end{pmatrix}$ los vectores que definen las coordenadas homogeneas de a y b respecto a $[x_i]$, las ecuaciones paramétricas de \hat{A} (y de \hat{A}) pueden escribirse: $\hat{x} = \hat{\lambda} \hat{a} + \hat{\mu} \hat{b}$, $\hat{y} = \hat{\lambda} \hat{a} \hat{b}$ constituye una sistema de coordenadas homogéneas respecto al cual la ecuación de la cuadrica $\hat{q} \cap \hat{A}$ es $(\hat{\lambda} \hat{a} + \hat{\mu} \hat{b}) \hat{b} = 0$. Haciendo operaciones queda: $(\hat{a}^{\dagger} \hat{A} \hat{a}) \hat{\lambda}^2 + 2(\hat{a}^{\dagger} \hat{A} \hat{b}) \hat{\lambda} \hat{\lambda} + (\hat{b}^{\dagger} \hat{A} \hat{b}) \hat{\mu}^2 = 0$, es decir $(\hat{\lambda}, \hat{\mu}) \hat{\lambda} = 0$ siendo $\hat{A} = \begin{pmatrix} \hat{a}^{\dagger} \hat{A} \hat{a} & \hat{a}^{\dagger} \hat{A} \hat{b} & \hat{b}^{\dagger} \hat{A} \hat{b} \end{pmatrix}$. Tememos así:

- i) $\Delta \subset \operatorname{im} \operatorname{q} \Leftrightarrow \Lambda = 0$
- ii) \triangle tangente a la cuadrica q \Rightarrow det \triangle = $(a^t A \ a)(b^t A \ b)$ $(a^t A \ b)^2 = 0$
- iii) △ secante a la cuadrica q → det △ ∠ o
- iv) \triangle exterior a la cuadrica q \Leftrightarrow det \triangle > 0

La justificación de iii) y iv) está en el siguiente Lema:

5.3.5 Lema

Sea (x_0,x_1) $\bigwedge_{x_1}^{x_0} = 0$ la ecuacion de la cuadrica q_1 respecto a cierte sistema de coordenadas homogeneas en la recta proyectiva real \bigtriangleup Entonces el signo de det \bigtriangleup (=0,1,-1) sole depende de la cuadrica q_1 , y no del sistema de coordenadas.

En particular: det $A < 0 \iff$ la cuadrica tiene dos puntos , det $A > 0 \iff$ la cuadrica no tiene puntos

Demostración:

Mediante un cambio de coordenadas $\begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = P \begin{pmatrix} x_0 \\ x_1 \end{pmatrix}$, la nueva ecuación de la cuadrica es $(x_0, x_1) \land \begin{pmatrix} x_0 \\ x_1 \end{pmatrix} = 0$ con $A = P^t \land P$, y

Signo $(\det(\Lambda'))=$ Signo $((\det P)^2 \det \Lambda)=$ signo $(\det \Lambda)$

Notese además que para $\lambda \in \mathbb{R} - \{0\}$ es $\det(\lambda A) = \lambda^2 \det(A)$ y ambos detetminantes tienen el mismo signo.

Si det $\Lambda \neq 0$ enconces la ecuación reducida de q_1 es de la forma $x_0^2 + x_1^2 = 0$ (cuadrica sin puntos) ó bien- $x_0^2 + x_1^2 = 0$ (cuadrica con dos puntos) dependiendo de que det $\Lambda > 0$ ó det $\Lambda < 0$ respectivamente.

6.3 Cone tangente

Fijado un punto a E no singular para q , cabe considerar el conjunto

nión de dichas rectas- cuando existe alguna- veremos que constituye el conjunto de puntos de una cuadrica que denominamos cono tangente a q en el punto a.

-6-33-1 Proposición (Definición)

Fijado a= $[\hat{a}]_{\ell}$ E-rd q, la aplicación $\hat{q}_{\hat{a}}: \hat{E} \to x \mapsto \hat{q}(\hat{a})\hat{q}(\hat{x}) - (\hat{a}/\hat{x})^2 \in K$ define una forma cuadratica no nula, y la cuadrica $q_{\hat{a}} = [\hat{q}_{\hat{a}}]$ no depende del representante \hat{a} elegido para a. Se denomina a $q_{\hat{a}}$ cono tangente a la cuádrica por el punto a.

Demostración:

La aplicación $\hat{p}: \hat{E} \ni \hat{x} \longrightarrow (\hat{a}/\hat{x})^2 \in K$ es una forma cuadrática con forma polar $\hat{P}(\hat{x},\hat{y})=(\hat{a}/\hat{x})(\hat{a}/\hat{y})$, y se tiene $\hat{q}_{\hat{a}}=\hat{q}(\hat{a})q-\hat{p}$ que es diferencia de dos formas cuadráticas.

Por otra parte se ve que $\hat{q}_{\hat{a}} = \lambda^2 \hat{q}_{\hat{a}}$ para $\lambda \neq 0$. Esto concluye la demostración.

6.3.2 Teorema

Si $a \notin E$ es un punto no singular , entonces im $q_a = \langle x \notin E - \langle a' / \langle a, x \rangle$ es tangente a $q \not\sim \langle a \not\rangle$. Por otra parte el punto a es punto singular de q_a y se verifica (im q_a) (im q) = a^{\perp} im q. Demostración:

Supongase $a=(\hat{a})$. La condición necesaria y suficiente para que $b=(\hat{b})$ determina con a una recta tangente a q es que $\langle \hat{a}, \hat{b} \rangle$ sea un plano vectorial degenerado (respecto a \hat{q}) es decir: $\hat{q}(\hat{a})\hat{q}(\hat{b}) - (\hat{a}/\hat{b})^2=0$, así $\langle a,b \rangle$ es tangente a $q \Longrightarrow b \in \text{im } q_a$

Para ver que a es punto singular para q_a basta observar que la forma polar $\hat{Q}_{\widehat{a}}$ de la forma cuadrática $\hat{q}_{\widehat{a}}$ de $6\overset{-}{.}3\overset{-}{.}1$ es

 $\widehat{Q}_{\widehat{a}}(\widehat{x},\widehat{y}) = \widehat{q}(\widehat{a})\widehat{Q}(\widehat{x},\widehat{y}) - \widehat{Q}(\widehat{a},\widehat{x})\widehat{Q}(\widehat{a},\widehat{y}) , y \widehat{Q}_{\widehat{a}}(\widehat{a},\widehat{x}) = 0 \text{ para todo } \widehat{x} \in \widehat{E}.$ Probemos per último la igualdad (im q) \bigcap (im q_a) = $a \not \rightarrow$ im q:

- i) Si a \leq im q entonces se ve facilmenté que im $q = \langle a \rangle$ y la igualdad es trivial.
- ii) Si a \not im q , para $x \in (\text{im q}) \cap (\text{im q}_a)$ se verifica por lo anterior que la recta $\langle a, x \rangle$ es tangente a la cuadrica, y por 6.2.2 es $\langle a, x \rangle \cap (\text{im q}_a) \times \langle a, x \rangle$; el punto x de tangencia es por 6.3.1 conjugado con tedo punto de $\langle a, x \rangle$. En particular $x \in a \cap (\text{im q}_a)$. La otra inclusión se prueba de forma análoga , y queda como ejercicio.