
A conformal boundary for space-times based on light-like geodesics: The 3-
dimensional case
A. Bautista, A. Ibort, J. Lafuente, and R. Low

Citation: Journal of Mathematical Physics 58, 022503 (2017); doi: 10.1063/1.4976506
View online: http://dx.doi.org/10.1063/1.4976506
View Table of Contents: http://aip.scitation.org/toc/jmp/58/2
Published by the American Institute of Physics

http://oasc12039.247realmedia.com/RealMedia/ads/click_lx.ads/www.aip.org/pt/adcenter/pdfcover_test/L-37/659683075/x01/AIP-PT/JMP_ArticleDL_0117/SearchPT_1640x440.jpg/434f71374e315a556e61414141774c75?x
http://aip.scitation.org/author/Bautista%2C+A
http://aip.scitation.org/author/Ibort%2C+A
http://aip.scitation.org/author/Lafuente%2C+J
http://aip.scitation.org/author/Low%2C+R
/loi/jmp
http://dx.doi.org/10.1063/1.4976506
http://aip.scitation.org/toc/jmp/58/2
http://aip.scitation.org/publisher/


JOURNAL OF MATHEMATICAL PHYSICS 58, 022503 (2017)

A conformal boundary for space-times based
on light-like geodesics: The 3-dimensional case

A. Bautista,1,a) A. Ibort,1,b) J. Lafuente,2,c) and R. Low3,d)
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Matemáticas, Universidad Carlos III de Madrid, Avda. de la Universidad 30, 28911 Leganés,
Madrid, Spain
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A new causal boundary, which we will term the l-boundary, inspired by the geometry
of the space of light rays and invariant by conformal diffeomorphisms for space-times
of any dimension m ≥ 3, proposed by one of the authors [R. J. Low, The Space of Null
Geodesics (and a New Causal Boundary), Lecture Notes in Physics 692 (Springer,
2006), pp. 35–50] is analyzed in detail for space-times of dimension 3. Under some
natural assumptions, it is shown that the completed space-time becomes a smooth man-
ifold with boundary and its relation with Geroch-Kronheimer-Penrose causal boundary
is discussed. A number of examples illustrating the properties of this new causal bound-
ary as well as a discussion on the obtained results will be provided. Published by AIP
Publishing. [http://dx.doi.org/10.1063/1.4976506]

I. INTRODUCTION

In order to study a space-time M at large, the attachment of a “causal” boundary can be useful.
There are several boundaries defined in the literature: Geroch’s g-boundary,8 Schmidt’s b-boundary,25

and the GKP c-boundary, called also Geroch-Kronheimer-Penrose’s boundary, causal boundary, or
just c-boundary.9 Their interest depends on the properties we want to study and their definition
being sometimes controversial, though Flores, Herrera, and Sánchez7 have provided general argu-
ments that ensure the admissibility of a proposed causal boundary at the three natural levels, i.e.,
as a point set, as a chronological space, and as a topological space with its essential uniqueness
stressed.

The development of a topological characterization of causality relations in the space of light rays
started by Low in Ref. 12 (see also Refs. 13, 14, 16, 17, and 19) led the author to a new definition of
a causal boundary for a strongly causal space-time by considering the problem of attaching a future
endpoint to a null geodesic γ in the space of light rays of the given space-time. The idea behind this is
to treat all null geodesics which focus at the same point at infinity as the light cone of the (common)
future endpoint of these null geodesics.20

The recent contributions in the dual description of causality relations in terms of the geometry and
topology of the corresponding spaces of light rays and skies (see for instance Refs. 5, 6, 1, and 2 and
references therein) make this new notion of causal boundary become more relevant as it can provide,
not only an alternative description of the c-boundary but also a more suitable way of addressing the
overall notion of causal boundary versus the (in general badly behaved) notion of conformal boundary.
Actually the first question raised in Ref. 20, regarding the proposed new notion of boundary, is if it
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agrees with the GKP c-boundary, a question that will be thoroughly addressed below. We will see that,
unfortunately, they are not necessarily the same in general, but it is easy to find examples in which
they are closely related and the set of points where they coincide will be characterized.

The construction of the new boundary involves determining the limit of the curve of tangent
spaces to the skies S(γ(s)) along the geodesic γ in the corresponding Grassmannian manifold (see
Sec. II A for definitions). Even if such a limit exists because of the compactness of the Grassman-
nian manifold, it need not be unique, which poses an additional difficulty in the construction of the
new boundary. However, in three-dimensional space-times skies are one-dimensional and the corre-
sponding Grassmannian is the projective real line, then the limit exists and is unique which allows an
unambiguous definition of the boundary points. Thus, in this work we will restrict the construction
of the new boundary to three-dimensional space-times M. Unexpectedly, it will be shown that under
some natural assumptions the boundary not only carries a natural topology but also a smooth structure
that makes the extended manifold M into a smooth manifold with boundary. As this boundary adds
endpoints to the light rays, we will call it the l-boundary.

The paper will be organized as follows: in Section II, we will accomplish the construction of
the l-boundary for dim M = 3 and then, in Section III the relation with the causal c-boundary will be
discussed; it will be checked that in some simple situations it has good properties. We will illustrate
the obtained results by collecting some relevant examples in Section IV. Finally, in Section V, the
obtained results as well as some open problems will be discussed.

II. THE l-BOUNDARY FOR 3–DIMENSIONAL SPACE-TIMES

A. Preliminaries on the spaces of light rays and skies of a space-time

Let us consider a time-oriented m-dimensional conformal Lorentz manifold (M,C) and denote
byN its space of light rays. Assuming that M is strongly causal and null pseudo–convex, we ensure
that N is a Hausdorff differentiable manifold15 (Sec. III).

As shown in Ref. 1 (Sec. 2.3), the construction of topological and differentiable structures for
the space N can be achieved by a suitable choice of coordinate charts of sub-bundles of the tangent
bundle TM. Fixing an auxiliary metric g ∈ C, the setN+ = {ξ ∈ TM : g (ξ, ξ)= 0, ξ , 0, ξ future} ⊂ TM
defines the sub-bundle of future null vectors on M and the fibre ofN+ at p ∈M will be denoted byN+p .
Null geodesics defined by two different proportional elements ξ1, ξ2∈N

+
p have the same image in M,

and then ξ1 and ξ2 define the same light ray γ in N . Since M is assumed to be strongly causal, then
for any p ∈M there exists a globally hyperbolic, causally convex, and convex normal neighbourhood
V ⊂M with differentiable spacelike Cauchy surface C such that if λ is a causal curve passing through
V, then λ ∩ C is exactly one point. Then any light ray γ passing through V can be determined by its
intersection point with C and a null direction at said point. IfN+ (C) is the restriction of the sub-bundle
N+ to the Cauchy surface C then a realization of a coordinate chart at γ ∈N can be obtained from a
coordinate chart of

Ω (C)=
{
v∈N+ (C) : g (v , T )=−1

}
,

where T ∈X (M) is a fixed global timelike vector field.
For any point x ∈M, the set of light rays passing through x is named the sky of x and it will be

denoted by S (x) or X, i.e.,
S (x)= {γ ∈N : x ∈ γ ⊂M} =X . (1)

Notice that the light rays γ ∈ S(x) are in one-to-one correspondence with the set of null lines at T xM,
hence the sky S (x) of any point x ∈M is diffeomorphic to the standard sphere Sm−2. The set of all
skies is called the space of skies and is defined as

Σ = {X ⊂N : X = S (x) for some x ∈M} (2)

and the sky map as the application S : M→ Σ that, by [Ref. 2, Cor. 17], is a diffeomorphism when
the differentiable structure compatible with the reconstructive or regular topology is provided in Σ
[Ref. 1, Def. 1], [Ref. 2, Def. 13].

An auxiliary metric g ∈ C allows to determine the geodesic parameter for the light ray γ ∈N such
that γ (0) ∈C and γ′ (0) ∈Ω (C). So, any curve Γ ⊂N corresponds to a null geodesic variation in M.
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Since tangent vectors at TγN can be defined by tangent vectors Γ′(0) of smooth curves Γ : (−ε , ε)→N
such that Γ(0)= γ, then the Jacobi field on γ of the null geodesic variation defined by Γ defines a
tangent vector in TγN . Since Γ′(0) does not depend on the parameterization of the light ray γ nor on
the auxiliary metric g, then η ∈ TγN can be identified with an equivalence class of Jacobi fields on γ
given by

[J]= J(modγ′),

where J is a Jacobi field along γ defined by a null geodesic variation corresponding to a curve
Γ : (−ε , ε)→N such that Γ (0)= γ and Γ′ (0)= η. Notice that any Jacobi vector field J defined by a
null geodesic variation of γ ∈N verifies

g
(
J (t) , γ′ (t)

)
= constant

for all t in the domain of γ. Abusing the notation, we will also denote simply by J vectors in TN .
A canonical contact structureH ⊂ TN exists inN . AlthoughH can be defined by the canonical

1–form θ on T ∗M, a description in terms of Jacobi fields can be found in Refs. 18 and 20. For any
γ ∈N , the hyperplaneHγ ⊂ TγN is given by

Hγ = {J ∈ TγN : g
(
J , γ′

)
= 0}, (3)

where g ∈ C is an auxiliary metric defining the parametrization of γ such that γ′ (0) ∈Ω (C).
Using the previous description of TγN , if x ∈M and γ ∈ X = S (x) ∈ Σ with γ (s0)= p, then

TγX = {J ∈ TγN : J (s0)= 0
(
modγ′

)
}. (4)

It can be easily seen that if J ∈ TγX , since g (J , γ′) is constant and J (s0)= 0 (modγ′), then g (J , γ′)= 0
and therefore TγX⊂Hγ. Therefore any TγX is a subspace ofHγ and since dim X =m − 2, then X is
a Legendrian manifold of the contact structure on N .

The following notation will be used in this paper: if N is a manifold, then its reduced tangent
bundle is denoted by T̂N , that is, T̂N =

⋃
x∈M T̂xN , where T̂xN =TxN\0.

As indicated in the Introduction, in Ref. 20 the following new idea for a causal boundary in M
is introduced. Given a future-directed inextensible null geodesic γ : (a, b)→M, we can consider the
curve γ̃ : (a, b)→Grm−2

(
Hγ

)
defined by

γ̃ (s)=TγS (γ (s)),

where S(γ(s)) denotes the sky of the point γ(s), that is, the congruence of light rays passing through
it. Notice that the skies S(p) are diffeomorphic to (m �2)-dimensional spheres, so TγS (γ (s)) is con-
tained in the Grassmannian manifold Grm−2

(
Hγ

)
of (m − 2)–dimensional subspaces ofHγ ⊂ TγN .

Defining
	γ = lims 7→a+ γ̃ (s) ∈Grm−2

(
Hγ

)
,

⊕γ = lims 7→b− γ̃ (s) ∈Grm−2
(
Hγ

)
,

(5)

if the previous limits exist, then it is possible to assign endpoints to γ̃. The compactness of Grm−2
(
Hγ

)
assures the existence of accumulation points when s 7→ a+, b−. If 	γ and ⊕γ exist for any γ ∈N , they
define subsets in Grm−2 (H ) but, a priori, they do not define a distribution. Low defines the points in
this new future causal boundary as the classes of equivalence of light rays that can be connected by
a curve tangent to some ⊕γ at any point.20 Analogously, the new past causal boundary is defined by
using 	γ.

Now, we will show that, in case of M being 3–dimensional, this new notion of causal boundary,
that will be referred to as the l-boundary of M in what follows, has fair topological and differentiable
structures. Observe that in such case N is also 3–dimensional since dimN = 2m − 3= 3, and the
Grassmannian manifold Grm−2 (H ) becomes Gr1 (H )=P (H ).

B. Construction of the l-boundary for three-dimensional space-times

In order to define precisely the l-boundary of a space-time, we will construct first a manifold Ñ
equipped with a regular distribution D̃ generated by the tangent spaces of the skies. The quotient
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space Σ∼ = Ñ /D̃ will be shown to be diffeomorphic to M. Then, assigning endpoints to any γ̃ ⊂ Ñ
we will get two distributions 	 and ⊕ inN whose orbits, under some conditions, will be identified to
points at the boundary of Ñ . Finally, this boundary can be propagated to M via an extension of the
diffeomorphism Σ∼ 'M. In this way, the l-boundary, as described qualitatively in the penultimate
paragraph of Sec. II A, would be seen now as the orbits of the distributions 	 and ⊕ and it will inherit
a differentiable structure.

1. Constructing Ñ

Let us consider a conformal manifold (M,C) where M is 3–dimensional, strongly causal, and
null pseudo–convex space-time. Let us recall that a space-time M is said to be null pseudo-convex15

if, given any compact set K in M, there is a compact set K ′ in M such that any null geodesic segment
with endpoints in K lies in K ′. Then it follows that M is null pseudo-convex iff N is Hausdorff (see
Prop. 3.2 and ff. in Ref. 15). Thus, the previous assumption on M being null pseudo-convex is just
to ensure that N is Hausdorff. Notice that the more conventional assumption of M possessing no
naked singularities implies thatN is Hausdorff too; however this condition becomes too strong as it
is equivalent to global hyperbolicity, in fact the compactness of the diamonds J+(p)∩ J−(q) becomes
equivalent to the absence of an inextensible causal curve which lies entirely in the causal future or
past of a point.23

In this sense, it is possible to try to place this property within the causality ladder21 where
it should go immediately below globally hyperbolic spaces. Examples of strongly causal non null
pseudo-convex space-times are provided, for instance, by Minkowski space-time with a single point
removed or Minkowski space-time where a space-like half line has been removed (see Fig. 1). Notice
that the first space is non-causally simple3,21,23 while the second is not only non-causally simple but
non-causally continuous too (the illustration displays a non-closed J+(p)) and it could be conjectured
that strongly causal null pseudoconvex space-times are causally simple.

We will restrict in what remains of this section to 3-dimensional space-times, even though many,
but not all, arguments and conclusions reached can be extended easily to higher dimensional space-
times. We will use in what follows a particular choice g ∈ C as an auxiliary metric. Notice that since
the projection π : T̂N →P (TN ), J 7→ span {J }, is a submersion, the restriction

π |
Ĥ

: Ĥ →P (H ) ,

where Ĥ denotes the intersection T̂N ∩H , also is so. Observe that for X ∈ Σ and J ∈ TγX, we have
that λJ ∈ TγX and π (λJ)= π (J) for any λ ∈R − {0}.

Let X ∈ Σ be a sky. Define the map

ρX : X→P (H ) , γ 7→TγX . (6)

Let us check that ρX is differentiable. Let U be an open neighborhood of X in the reconstructive
topology for Σ (see Ref. 1), that is, there is an open setU ⊂N such that U = {X ∈ Σ : X ⊂U}. Restrict
the canonical projection τ : TN →N to the regular submanifold T̂X ⊂H (U ), whereH (U ) denotes
the restriction of the bundle H over N to the open set U . Consider a differentiable local section

FIG. 1. Representation of non null pseudo-convex space-times. (a) Minkowski space-time with a single point removed. There
is no compact set containing the compact set K = Ūx ∪ Ūy and any null geodesic segment joining pairs of points in K. (b)
Minkowski space-time with a space-like half-line removed.
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σ : W ⊂ X→ T̂X of τ |T̂X . Since any TγX is 1–dimensional, then ρX |W = π |T̂X ◦σ (independently of
the section σ). Then, because ρX |W is the composition of differentiable maps, is differentiable.

Now, we will show that ρX is an immersion by proving that it maps regular curves into regular
curves. So, consider any regular curve Γ : I→X. The composition of Γ with the map in (6) gives
us the differentiable curve c= ρX ◦ Γ : I→P (H ) defined by c (s)=TΓ(s)X and since the base curve
Γ= π ◦ c is regular then the curve c in the fibre bundle P (H ) is also regular.

The image of ρX in P(H ) will be denoted as X∼ =
{
TγX : γ ∈ X

}
.

The next lemma shows that the union of images X∼ where X lives in any open U0 ⊂ Σ is also
open in P (H ).

Lemma 2.1. Let V0 ⊂M be an open set and U0 = S (V0) ⊂ Σ. Then U∼0 =
⋃

X∈U0
X∼ is open in

P (H ).

Proof. Given any P ∈U∼0 there exist X ∈U0 and γ ∈ X such that P=TγX. Then for this X ∈
U0, because of [Ref. 1, Thm. 1], there exists a regular open neighbourhood U ⊂U0 of X in Σ.
This means that the set of vectors Û =

⋃
X∈U T̂X is a regular submanifold in TU ⊂ TN where U ={

γ ∈N : γ ∩ S−1 (U),Ø
}

(notice that γ ∈U if γ belongs to some sky X in U, but then X ⊂U ,
thus U is the open set corresponding to U in the reconstructive topology). Also observe that, since
H (U )=H ∩ TU is a regular submanifold of TU , then Û is also a regular submanifold ofH (U ).

Because dim Û = dimH (U )= 5 andH (U ) is open in the total space of the bundleH over N
which has dimension 5 too, then Û is open in H (U ) as well as in H . Since the restriction of the
projection π :H (U )→P (H (U )) is a submersion then π (H (U )) is open in P (H (U )). Observe
that for ξ ∈ TγX we have

π (ξ)=TγX⇒ π
(
T̂X

)
=X∼⇒ π

(
Û

)
=U∼

and since Û ⊂H (U ) is open, then U∼ = π
(
Û

)
⊂ P (H (U )) is also open, therefore U∼ is open in

P (H ). This shows that U∼0 is open in P (H ). �
The next step is to define the space

Ñ =
{
TγX ∈ P (H ) : γ ∈ X ∈ Σ

}
=

⋃
X∈Σ

X∼.

Lemma 2.2. Ñ is open in P (H ).

Proof. If {Uα}α∈Ω is an open covering of Σ, then

Ñ =
⋃
X∈Σ

X∼ =
⋃

X∈
⋃

α∈ΩUα

X∼ =
⋃
α∈Ω

*.
,

⋃
X∈Uα

X∼+/
-

and, by Lemma 2.1, Ñ is an union of the open sets U∼α =
⋃

X∈Uα
X∼, then Ñ is open in P (H ). �

In order to generalize the present construction to a higher dimensional M, it is necessary that Ñ
be a regular submanifold of P (H ). This is trivially implied by Lemma 2.2 in case of a 3–dimensional
M (but not necessarily true in higher dimensions).

Corollary 2.3. In a three-dimensional strongly causal and null pseudo-convex conformal space-
time, Ñ is a regular submanifold of P (H ) that will be called the extended space of light rays of
M.

2. Identifying M inside Ñ

We will begin by expressing the manifold Ñ in a different way. Let γ : I→M be an inextensible
future-directed parametrized light ray, then we define the curve γ̃ : I→P

(
Hγ

)
given by

γ̃ (s)=TγS (γ (s)) ∈ P
(
Hγ

)
,
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and we denote its image by γ̃ =
{
TγS (γ (s)) ∈ P

(
Hγ

)
: s ∈ I

}
. Applying the previous definition of the

space Ñ , it is clear that we can express it in two different ways

Ñ =
⋃
X∈Σ

X∼ =
⋃
γ∈N

γ̃ .

It is important to observe that the curve γ̃ is locally injective. Indeed, for any s ∈ I there exists a
globally hyperbolic, causally convex, and normal convex neighbourhood V ⊂M of γ (s). This implies
that there are no conjugate points in V along γ, but this also means that for any t1, t2 ∈ I such that
γ (ti) ∈ V , i = 1,2, we have that

TγS (γ (t1)) ∩ TγS (γ (t2))= {0} .

Therefore, it is clear that TγS (γ (t1)),TγS (γ (t2)).

Definition 2.4. Given a conformal manifold (M,C), we will say that

1. M is null non–conjugate if for any x, y ∈M such that γ ∈ S (x) ∩ S (y) ⊂N then TγS (x) ∩
TγS (y)= {0}.

2. M has tangent skies if there exist skies X , Y ∈ Σ, X ,Y, and γ ∈ X∩Y ⊂N satisfying TγX =TγY.

Notice that the notion of the null non-conjugate is equivalent to the statement that there are
no conjugate points along a null geodesic because if there were a non-zero tangent vector [J] ∈
TγS (x) ∩ TγS (y) then, because of (4), there would be a representative Jacobi field J vanishing at
x and y and the points x, y would be conjugate. It is obvious that the null non–conjugate condition
automatically implies the absence of tangent skies for M of any dimension. In the 3–dimensional
case, the converse is also true, as it is shown in the following lemma.

Lemma 2.5. If M is a 3–dimensional space-time without tangent skies then it is also null non–
conjugate.

Proof. Given X ,Y ∈ Σ with γ ∈ X ∩ Y verifying T̂γX ∩ T̂γY ,Ø, since dim TγX = dim TγY = 1
then we have TγX =TγY and therefore X and Y are tangent skies at M. �

We have seen that in the 3–dimensional case, Ñ is a regular submanifold of P (H ). Then if M
does not have tangent skies, if X∼ ∩ Y∼ ,Ø then TγX =TγY for some γ, then X = Y and X∼ =Y∼,
hence Ñ is foliated by the leaves X∼ =

{
TγX : γ ∈ X

}
. It was proved in Ref. 1 that provided that the

space-time M is strongly causal and sky-separating (i.e., that the sky map S is injective), there is a
basis for the reconstructive topology made of regular open sets, in particular, made of normal open
sets where there are no tangent skies (Ref. 1, Defs. 2 and 3, Thm. 1). In Ref. 2 it was also proved that
such conditions guarantee that the space of skies with its induced smooth structure is diffeomorphic
to M, hence we may conclude these remarks by stating that if M is strongly causal and their skies
separate points, then the family of regular submanifolds X∼ provide a foliation of Ñ . Moreover, since
each X∼ is compact, the foliation D∼ whose leaves are the compact submanifolds X∼ is regular and
the space of leaves

Σ
∼ = Ñ /D∼

inherits a canonical structure of smooth manifold.
The next proposition gives us the geometric equivalence between Σ∼ and its corresponding

conformal manifold M. We present it in a general form valid for space-times of dimension higher
that 3.

Proposition 2.6. Let (M,C) be a m-dimensional, m ≥ 3, strongly causal, sky-separating space-
time such that the extended space Ñ is a regular submanifold of the Grassmannian bundle Grm−2(H ),
then the map S∼ : M→ Σ∼ defined by S∼ (p)= S(p)∼ is a diffeomorphism.

Proof. Given a globally hyperbolic, causally convex, and convex normal open set V ⊂M, we
consider the set of skies U = S (V ) ⊂ Σ, the set of vectors Û =

⋃
X∈U T̂X , and the set U∼ =

⋃
X∈UX∼.
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By [Ref. 1, Thm. 1] the inclusion Û ↪→TN is an embedding, and consider the submersion on its
range π :H →Grm−2 (H ). For ξ ∈ TγX ⊂ Û then we have that π (ξ)=TγX, and then

π
(
T̂X

)
=X∼ (7)

hence
π

(
Û

)
=U∼. (8)

So, since Û and U∼ are open sets inH and Ñ respectively, it is clear that the restriction π : Û→U∼

is a submersion. We also know Ref. 1 (Thm. 2), that there exists a regular distribution D̂ in Û whose
leaves are T̂X =

⋃
γ∈XTγX with X ∈U.

Equation (7) implies that there exists a bijection

π̂ : Û/D̂ → U∼/D∼

T̂X 7→ X∼

and we obtain the following diagram:

Û
π
→ U∼

p1 ↓ ↓p2

Û/D̂ →
π̂

U∼/D∼,

where p1 and p2 are the corresponding quotient maps. Since D̂ andD∼ are regular distributions there
exist differentiable structures in Û/D̂ and U∼/D∼ such that p1 and p2 are submersions. In this case,
p2 ◦ π is another submersion, then since both p1 and p2 ◦ π are open and continuous, it is clear that
the bijection π̂ is a homeomorphism.

On the other hand, since p1 is a submersion and p2 ◦ π is differentiable, by [Ref. 4, Prop. 6.1.2]
we have that π̂ is differentiable. Analogously, since p2 ◦ π is a submersion and p1 is differentiable,
then π̂−1 is differentiable, therefore π̂ is a diffeomorphism.

It is known, Ref. 1 (Thm. 2), that the quotient Û/D̂ is diffeomorphic to V ⊂M by means of the
sky map S. So, we have shown that

S∼ : V → U∼/D∼

p 7→ S∼ (p)= S (p)∼

is a diffeomorphism.
Under the hypothesis of absence of tangent skies, then given x , y ∈M and X = S (x), Y = S (y),

we have that TγX ,TγY , hence X∼ = S∼ (x), S∼ (y)=Y∼ implying the injectiveness of the map S∼ :
M→ Σ∼. The surjectiveness of S∼ is obtained by definition, hence it is also a bijection. Finally, since
S∼ is a bijection and a local difeomorphism at every point, then it is a global diffeomorphism. �

3. Ñ is a smooth manifold with boundary

For a parametrized inextensible light ray γ : (a, b)→M we define

	γ = lims 7→a+ γ̃ (s),

⊕γ = lims 7→b− γ̃ (s)
(9)

when the limits exist.
It is clear that if M is 3-dimensional without tangent skies (recall that in dimension 3 this is

equivalent to being non null-conjugate and is automatically satisfied by strongly causal sky separating
space-times) then γ̃ is injective and its range γ̃(I) ⊂ P

(
Hγ

)
'S1, I = (a,b), is an arc-interval in the

circle (see Fig. 2), hence there exist the limits in (9). (Notice that in dimension higher than 3, the
absence of tangent skies will imply the injectivity of γ̃; the compactness of Grm−2(Hγ) will guarantee
the existence of accumulation points for the set γ̃(I), however this will not suffice to prove the existence
of the limits (9).) Then under the conditions above it is possible to define the maps

	 :N → P (H )
γ 7→ 	 (γ)= 	γ

and
⊕ : N → P (H )

γ 7→ ⊕ (γ)= ⊕γ
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FIG. 2. Representation of P
(
Hγ

)
.

and the set

Ñ =
⋃
γ∈N

(
γ̃ ∪

{
	γ, ⊕γ

})
.

We will analyze now the structure of Ñ proving that, under natural conditions, it is a smooth
manifold with boundary.

First, we will construct local coordinates in H and P (H ) using the ones in TN defined by the
initial values of Jacobi fields at a local Cauchy surface.1

Indeed, given a set V ⊂M we define U = S (V ) ⊂ Σ andU =
⋃

X∈UX ⊂N . Let us assume that V is
a globally hyperbolic, causally convex, and convex normal open set in such a way that (V , ϕ= (t, x, y))
is a coordinate chart such that the local hypersurface C ⊂ V defined by t = 0 is a spacelike (local)
Cauchy surface. Let {E1, E2, E3} be an orthonormal frame in V such that E1 is a future oriented
timelike vector field in V. Normalizing the timelike component along E1, writing the tangent vectors
of null geodesics at C as γ′ (0)=E1+u2E2+u3E3, and since γ is light-like, then (u2)2 + (u3)2 = 1. So,
we can parametrize all the light rays passing through γ (0) by u2 = cos θ and u3 = sin θ. This permits
us to define local coordinates inU by

ψ :U→R3, ψ = (x, y, θ)

Moreover, in this case we have that U ⊂ Σ is a regular set in the sense of [Ref. 2, Def. 13], hence
Û =

⋃
X∈U T̂X is a regular submanifold of TU ⊂ TN and the inclusion Û ↪→TN is an embedding.

Consider γ ∈U and J ∈ TγU , since J can be identified with a Jacobi field along the stated
parametrization of γ, we can write J (0)= w1E1+w

2E2+w
3E3 and J ′ (0)= v1E1+ v

2E2+ v
3E3. Since

g (γ′, J ′)= 0 and considering the equivalence modγ′, then denoting wk = wk−w1uk and vk = vk−v1uk

we have that v2u2 + v3u3 = 0. Supposing without lack of generality that u2 , 0 since
(
u2, u3

)
, (0, 0),

we can have v = v3, w2, and w3 as coordinates in TU . So, we obtain the chart

ψ : TU→R6, ψ =
(
x, y, θ, w2, w3, v

)
Let us defineH (U )=H∩TU =

⋃
γ∈UHγ. Now we can construct coordinates inH (U ) ⊂ TU

from ψ. If J∈Hγ then g (γ′, J)= 0 and therefore

w2u2 + w3u3 = 0.

Again, since u2 , 0, we have w2 =− 1
u2 w

3u3 and we can consider w = w3 as a coordinate forH (U ),
then

ϕ :H (U )→R5 , ϕ= (x, y, θ, w, v)

is a coordinate chart.
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The projection π = πTN
P(TN )

���Ĥ : Ĥ →P (H ) allows us to define coordinates in P (H ) as follows.

From the coordinates ϕ= (x, y, θ, w, v), if we consider J∈Hγ and J = λJ for some λ ∈R, then




J (0)= λJ (0)= λw1E1 + · · · + λw
mEm

J
′
(0)= λJ ′ (0)= λv1E1 + · · · + λv

mEm

thus the coordinates w and v verify



w
(
J
)
= λw (J)

v
(
J
)
= λv (J)

then the homogeneous coordinate φ= [w : v] verifies

φ
(
J
)
=

[
w

(
J
)

: v
(
J
)]
= [w (J) : v (J)]= φ (J)

and defines the element span {J } ∈ P
(
Hγ

)
. Therefore, we obtain that

ϕ̃ :P (H (U ))→R4, ϕ̃= (x, y, θ, φ) (10)

is a coordinate chart inP (H ). Observe that, equivalently, we can also consider φ as the polar coordinate
φ= arctan(w/v).

Then we will use local coordinate charts (P (H (U )) , ϕ̃= (x, y, θ, φ)) as in (10), where U ={
γ ∈N : γ ∩ V ,Ø

}
is open in N , to describe Ñ as a manifold with boundary. In these charts, the

coordinate φ describes the entire γ̃ as well as its limit points. Also observe that a light ray γ is defined
by a fixed (x, y, θ)= (x0, y0, θ0).

Every fibre P
(
Hγ

)
can be represented by a circumference as shown in Figure 2, where γ̃ is a

connected segment of it with endpoints 	γ and ⊕γ.

Proposition 2.7. Let M be a 3–dimensional null non–conjugate space-time. Assume that 	

and ⊕ are differentiable distributions. If Q=
{
	γ, ⊕γ ∈ P (H ) : 	γ , ⊕γ

}
, then Ñ is a manifold with

boundary the closure Q.

Proof. Since 	γ and ⊕γ are defined by the limit of γ̃ (s) at the endpoints, γ̃ is locally injective and,
by Lemma 2.5, there are no tangent skies in M, then γ̃ must be a connected open set in P

(
Hγ

)
'S1

with boundary
{
	γ, ⊕γ

}
. Now, consider P ∈ P (H ) such that there exist γ ∈N verifying 	γ =P and

a coordinate chart ϕ̃= (x, y, θ, φ) at P as in (10). Since 	 is a distribution, for any γ ∈N there
exists a point 	γ ∈ P

(
Hγ

)
⊂ P (H ) which smoothly depends on the light ray γ. In this case, the

coordinates (x, y, θ) define the light rays in N , and hence the function φ ◦ 	 :N → [0, 2π)'S1

depends differentiably on the coordinates (x, y, θ). Analogously, the same rules for ⊕. Let us denote
by φ	 = φ	 (x, y, θ) and φ⊕ = φ⊕ (x, y, θ) the coordinate representation of the functions φ ◦ 	 and
φ ◦ ⊕, respectively.

Notice that ∂Ñ ⊂
{
	γ, ⊕γ : γ ∈N

}
. Consider now an open setU ⊂N . If 	γ , ⊕γ for any γ ∈U ,

by locality ofU , we can choose, without any lack of generality, a diffeomorphism [0, 2π)'S1 such
that

0 < φ	 (x, y, θ)< φ⊕ (x, y, θ)< 2π

for all (x, y, θ) (restricting the domain of φ	 and φ⊕ if needed). Then, for all γ ∈U , the points in Ũ
can be written as

Ũ ' {(x, y, θ, φ) : φ	 (x, y, θ) ≤ φ ≤ φ⊕ (x, y, θ)}

describing a manifold with boundary. Then
{
	γ, ⊕γ : γ ∈U

}
⊂ ∂Ñ

and, since 	 and ⊕ are regular distributions, the condition 	γ , ⊕γ is open in N , therefore we have
that

Q ⊂ ∂Ñ .
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On the other hand, if 	γ = ⊕γ for any γ ∈U , then we have that γ̃ ∪ {	γ} =P
(
Hγ

)
. Again, by

the locality ofU then

U ×S1 'P (H (U ))= Ũ

and all the points
{
	γ : γ ∈U

}
are in the interior of Ũ and hence, also in the interior of Ñ .

Thus, we conclude that Q ⊂ ∂Ñ . �

A consequence of the previous proposition is that if 	 = ⊕ then Ñ is a manifold without boundary.
Notice that the previous result holds if 	 and ⊕ were just continuous distributions. In such case,

the functions φ	 and φ⊕ will depend continuously on the coordinates (x, y, θ) and the proof would
be still valid.

4. Constructing the l-boundary

Now, we will see how the l-boundary can be assigned to M. Let us now assume for the moment
that ⊕ and 	 are regular distributions. We will split the boundary ∂Ñ into the past boundary ∂−Ñ ={
	γ : γ ∈N

}
and the future boundary ∂+Ñ =

{
⊕γ : γ ∈N

}
.

Let us define the sets of orbits of 	 and ⊕ as

∂−Σ =N /	, ∂+Σ =N / ⊕ . (11)

Since 	 and ⊕ are 1–dimensional distributions, their orbits are 1–dimensional differentiable sub-
manifolds of N . So, for an orbit X+ ∈ ∂+Σ and for any γ ∈ X+ we have that TγX+ = ⊕γ ∈ P (H ), and
analogously TγX− = 	γ ∈ P (H ). This fact implies that the maps

X− → ∂−Ñ
γ 7→ TγX−

and X+ → ∂+Ñ
γ 7→ TγX+

(12)

are differentiable because they coincide with the restrictions 	|X− and ⊕|X+ , respectively.
Analogously, we can denote by(

X−
)∼
=

{
TγX− : γ ∈ X−

}
,

(
X+

)∼
=

{
TγX+ : γ ∈ X+

}
, (13)

the corresponding images of the previous maps in (12).
If

(
X−

)∼
∩

(
Y−

)∼ ,Ø then there exists γ ∈ X− ∩ Y− but since both X� and Y� are orbits of the
field of directions 	 then we have that X� = Y�. Analogously for orbits of ⊕. So, we have that the
images in P (H ) of the orbits of 	 and ⊕ are separate, this means(

X−
)∼
∩

(
Y−

)∼
,Ø ⇒ X− =Y−,(

X+
)∼
∩

(
Y+

)∼
,Ø ⇒ X+ =Y+.

This separation property permits us to define(
∂−Σ

)∼
=

{(
X−

)∼ : X− ∈ ∂−Σ
}
,(

∂+Σ
)∼
=

{(
X+

)∼ : X+ ∈ ∂+Σ
}
,

and also (
Σ
)∼
= Σ∼ ∪

(
∂−Σ

)∼
∪

(
∂+Σ

)∼.

Now, observe that the sky map S∼ : M→ Σ∼ in Prop. II.6 can be naturally extended to

S∼ : M→
(
Σ
)∼

by S∼
(
X±

)
=

(
X±

)∼, where M =M ∪ ∂−Σ ∪ ∂+Σ.

Lemma 2.8. Under the assumptions stated in this section, the maps

N → ∂−Ñ
γ 7→ 	γ

and N → ∂+Ñ
γ 7→ ⊕γ

are diffeomorphisms.
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Proof. We can see trivially that the map N → ∂−Ñ is bijective. Observe that the image of the
map 	 :N →P (H ) is ∂−Ñ . Since its expression in coordinates is

(x, y, θ) 7→ (x, y, θ, φ	 (x, y, θ))

and φ	 is differentiable, it is clear thatN is locally diffeomorphic to the graph of φ	 and moreover this
graph is locally diffeomorphic to the image of 	, that is, ∂−Ñ . So, the mapN → ∂−Ñ is a bijection
and a local diffeomorphism, therefore it is a global diffeomorphism. The proof forN → ∂+Ñ can be
done in the same way. �

If 	 and ⊕ define regular distributions in N , we can propagate them to ∂−Ñ and ∂+Ñ , respec-
tively, using the diffeomorphisms of Lemma 2.8. Then we obtain the regular distributions

(
D−

)∼ and(
D+

)∼ on ∂−Ñ and ∂+Ñ whose leaves are the elements of
(
∂−Σ

)∼ and
(
∂+Σ

)∼, respectively. We
will assume in what follows that these distributions, together with the distribution D∼, give rise to a

new distribution D∼ in Ñ . In other words, it will be assumed that the map assigning to each point ξ

in Ñ the corresponding subspace D∼ξ if ξ ∈ Ñ , or
(
D±

)∼
ξ if ξ ∈ ∂±Ñ , is smooth.

The leaves of D∼ are disjoint in Ñ and they can be seen as elements of
(
Σ
)∼

. Since all the

distributions D∼,
(
D−

)∼, and
(
D+

)∼ are regular, then D∼ is also a regular distribution. Therefore,
we can consider the quotient

Ñ /D∼ = Ñ /D∼ ∪ ∂−Ñ /
(
D−

)∼
∪ ∂+Ñ /

(
D+

)∼ (14)

as a differentiable manifold that, in virtue of Lemma 2.8,9,10 can be identified with(
Σ
)∼
= Σ∼ ∪

(
∂−Σ

)∼
∪

(
∂+Σ

)∼
' Ñ /D∼

whose boundary is ∂
(
Σ
)∼
=

(
∂−Σ

)∼
∪

(
∂+Σ

)∼.

Then we can identify
(
Σ
)∼

with M via the map S∼ : M→
(
Σ
)∼

, obtaining that M is the causal
completion we were looking for. We state that the l-boundary of M is

∂lM =M −M = ∂−Σ ∪ ∂+Σ.

In case 	 = ⊕, then ∂+Ñ = ∂−Ñ and
(
∂+Σ

)∼
=

(
∂−Σ

)∼. Hence
(
D+

)∼
=

(
D−

)∼ and ∂−Σ = ∂+Σ
and therefore, the l-boundary of M is

∂lM =M −M = ∂Σ,

where ∂Σ = ∂−Σ = ∂+Σ. Notice that in such a situation M is a manifold without boundary.
Collecting the results described in Secs. II B 1–II B 3 we may state the following proposition:

Proposition 2.9. Let M be a strongly causal, sky-separating, 3-dimensional space-time and
Ñ its extended space of light rays. Assuming that the limiting distributions ⊕, 	 are regular and
extend smoothly, the canonical distribution D∼ to the boundary of the manifold Ñ , defining in this

way a regular distribution D∼ of Ñ , then the l-boundary ∂lM of M is well defined, and M =M ∪
∂lM is a smooth manifold with boundary that can be identified naturally with the leaves of the
distribution D∼.

Notice that the strong causality and sky-separating conditions stated in the proposition imply
that the space M has no tangent skies, hence there are no null-conjugate points, then the boundary of
the extended space of light rays is well defined and is smooth. Moreover, if M is null pseudo-convex,
then the space of light rays is Hausdorff as well as its closure and; because of the assumption on the
regularity of the distributions, the quotient will be Hausdorff too.

III. COMPARISON WITH THE CAUSAL c-BOUNDARY

The classical definition of c-boundary has been redefined along the years to avoid the problems
arising in the study of its topology. For our purposes, we will recall and deal with its classical definition,
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but the reader may consult Refs. 7, 24 and the references therein to get a wider understanding on the
subject.

Definition 3.1. A set W ⊂M is said to be an indecomposable past set, or an IP, if it verifies the
following conditions:

1. Wis open and non–empty.
2. Wis a past set, that is, I− (W )=W .
3. Wcannot be expressed as the union of two proper subsets satisfying conditions 1 and 2.

We will say that an IP W is a proper IP, or PIP, if there is p ∈M such that W = I− (p). In another
case, W will be called a terminal IP or TIP. In an analogous manner, considering the chronological
future, we can define indecomposable future sets or IF, then we obtain proper IFs and terminal IFs,
that is, PIFs and TIFs.

In Figure 3, as shown in [Ref. 3, Fig. 6.4], a trivial example of the identification of IPs and
IFs with boundary points of M is offered. We consider M a cropped rectangle of the 2–dimensional
Minkowski space-time equipped with the metric g=−dy ⊗ dy + dx ⊗ dx. Points at the boundary of
M such as p are related to TIPs like A, those such as q correspond to TIFs like B and those such as r
can be related to TIPs like C as well as TIFs like D.

The following proposition provides us a characterization of all TIPs in a strongly causal space-
time.

Proposition 3.2. For any strongly causal space-time M, A ⊂M is a TIP if and only if there exists
an inextensible to the future timelike curve µ such that A= I− (µ).

Proof. See Ref. 11 [Prop. 6.8.1]. �

Light rays also define terminal ideal points as the next proposition shows.

Proposition 3.3. Let γ be a future–directed inextensible causal curve in a strongly causal
space-time M, then I− (γ) is a TIP.

Proof. See Ref. 7 [Prop. 3.32]. �

Now, we are ready for the classical definition of the GKP c-boundary.

Definition 3.4. We define the future (past) causal boundary, or future (past) c-boundary of M,
as the set of all TIPs (TIFs).

Observe that any point p ∈M can be identified with the PIP I− (p) as well as the PIF I+ (p),
moreover it is possible that there exist a TIP and TIF identified with the same point at the boundary
(as TIP C and TIF D in Figure 3). Then, in order to define the causal completion of M, a suitable
identification between sets of IPs and IFs is needed. This is beyond the scope of this work, but Ref.
7 and its references can be consulted for further information.

FIG. 3. TIPs and TIFs.



022503-13 Bautista et al. J. Math. Phys. 58, 022503 (2017)

The question arising now is if all TIPs in the future c-boundary can be defined by the chronological
past of a light ray. Unfortunately, this is not always true because there may be TIPs that can only be
defined by time-like curves as the following example shows and which implies that the c-boundary
and l-boundary are different in general. We will denote by I± (·, V ) the chronological relations I± (·)
restricted to V. It is clear that I± (·, V ) ⊂ I± (·) ∩ V , but equality does not always hold.

Example 3.5. A simple example comparing the c-boundary and the l-boundary.
LetM3 be the 3–dimensional Minkowski space-time and N its space of light rays. Let us choose

any point ω ∈M3 and consider the space-time M as the restriction of M3 to any open half K⊂M3 of
a solid cone with vertex inω such that K ⊂ I− (ω), as Figure 4 shows. Notice that M = I− (ω) can also
be considered. Observe that there exists a light ray γ arriving at points like p∗, so a point X+γ ∈ ∂

+ΣM

can be defined by γ, and notice that p∗ can be identified with the TIP I− (γ, M). But also observe that
the point ω is not accessible by any light ray in M = K so there is no point in the future l-boundary
corresponding to the TIP M = I− (µ, M) defined by the future–inextensible timelike curve µ ending
at ω shown in the picture.

However, in spite of the previous example, we can see that the l-boundary is closely related to the
GKP c-boundary when we include some topological constraints to the space-time. The considerations
to follow apply in any dimension provided that the limiting distributions ⊕, 	 exist (similarly as was
remarked previously in Sec. II B in various occasions) and unless stated explicitly we will not be
restricted to the 3-dimensional setting.

As a first step, it is possible to study the l-boundary corresponding to the restriction of a space-
time M to a suitable open set V ⊂M. The aim of it is to know how to identify ∂Σ under naı̈ve
conditions. The study of the future l-boundary ∂+Σ is enough for this purpose because the past one
is analogous.

Consider V ⊂M a relatively compact, globally hyperbolic, causally convex, and convex normal
open set and U =

{
γ ∈N : γ ∩ V ,Ø

}
. We denote by ⊕V the field of limiting subspaces tangent to

the skies of points in a future-directed light ray when they tend to the future boundary of V that, as
indicated before, will be assumed to exist (later on we will discuss a situation where the existence of
the limit will be guaranteed). So, given γ ∈U ⊂N we can give a future–directed parameterization
of the segment of γ in V by γ : (a, b)→V . Then

⊕V
γ = ⊕

V (γ)= lim
s 7→b−

TγS (γ (s)).

Observe that a curve c : I→U is the integral curve of ⊕V passing through γ at τ = 0 if{
c′ (τ) ∈ ⊕V (c (τ))
c (0)= γ

.

FIG. 4. The l-boundary is not GKP.
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Now, consider x ∈ ∂V ⊂M such that lims 7→b− γ (s)= x and let Γ : I→X ∩U be a curve travelling
along the light rays of the sky X = S (x) inU such that Γ (τ)= γτ with γ0 = γ and γτ ∩V has a future
endpoint at x for all τ ∈ I . Then it is possible to construct a variation of light rays f : I× [0, 1]→V ⊂M
such that f (τ, ·) ⊂ γτ ∈ X ∩U and f (τ, 1)= x for all τ ∈ I . It is clear that for all τ ∈ I we have

Γ
′ (τ) ∈ Tγτ X

and using the definition of ⊕V , then

⊕V
Γ(τ) = ⊕

V
γτ
= lim

s 7→1−
Tγτ S (γτ (s))=Tγτ S (γτ (1))=Tγτ S (f (τ, 1))=Tγτ X

and therefore, for all τ ∈ I
Γ
′ (τ) ∈ ⊕V

Γ(τ) .

This implies that the orbit X+ ∈ ∂+ΣV of ⊕V going across γ is just the set of light rays of the sky X
coming out of V. So, for any of such extendible space-time V, the l-boundary is made up of skies of
points at the boundary of V.

Let us denote by γV = γ ∩ V the segment of the light ray γ contained in V. Consider any γ, µ ∈
X+ ∈ ∂+ΣV and any q ∈ I− (γV , V ). Since x ∈ I+ (q) then µV ∩ I+ (q),Ø and hence there is a timelike
curve λ : [0, 1]→M such that λ (0)= q ∈ V and λ (1) ∈ µV ⊂ V . But this implies that λ ⊂ V because
its endpoints are in a causally convex open set, therefore q ∈ I− (µV , V ). This shows that I− (γV , V )=
I− (µV , V ) for any γ, µ ∈ X+ and therefore there is a well defined map between the future GKP
c-boundary and the future l-boundary of V given by

X+ 7→ I− (γV , V )

because it is independent of the chosen light ray γ ∈ X+.
Since there are no imprisoned causal curves in V, every light ray γV ⊂ V has endpoints in the

boundary ∂V ⊂M, it follows that
Ũ ⊂ Ñ ⊂ P (H )

is an open manifold with boundary and therefore

∂+Ũ ↪→Ñ

is a homeomorphism onto its image.
We have proven above that any orbit X+ of ⊕V is contained in the sky X = S (x) where x ∈ ∂V ,

then the set of leaves in the foliation
(
D+V

)∼
of tangent spaces to the orbits coincide with the set of

leaves in the foliation (D)∼ of tangent spaces to the skies of points of M restricted to ∂+Ũ . Thus
using Equation (14) we get(

∂+ΣV
)∼
' ∂+Ũ/

(
D+V

)∼
= ∂+Ũ/D∼ ⊂ Ñ /D∼ = Σ∼ .

Using now the inverse of the diffeomorphism S∼ : M→ Σ∼ of Lemma 2.6, we obtain that
(S∼)−1

(
∂+Ũ/D∼

)
is contained in ∂V , then the topology of

(
∂+ΣV

)∼
' (S∼)−1

(
∂+Ũ/D∼

)
, and there-

fore also of ∂+ΣV , is induced by the ambient manifold M. Moreover, observe that (S∼)−1
(
∂+Ũ/D∼

)
is formed by all points in ∂V accessible by a light ray.

We consider now the case where no open segment of any light ray passing through V is contained
in ∂V , that is, we have the following definition.

Definition 3.6. We will say that p ∈ ∂V ⊂M is light-transverse if any segment of light ray
γ : [a, b]→M with p ∈ γ and such that γ (a) ∈ V and γ (b) <V satisfies that γ∩ ∂V = {p}. We will say
that V is light-transverse if every p ∈ ∂V is light-transverse.

This is clearly satisfied for V = I+ (x)∩ I− (y) such that J+ (x)∩ J− (y) is closed. Notice that if M
is a causally simple space-time then J± (x) is closed, then the previous set V will be light-transverse.
Then, it is easy to show that for any p ∈ ∂V accessible by light rays in V there is a neighbourhood
W ⊂ ∂V such that any q ∈W is accessible by light rays in V.

So, let us assume that there is a light ray γ passing through a given p ∈ ∂V . We can take a relatively
compact, differentiable, space-like local hypersurface C such that p ∈C − ∂C. If γ is parametrized as
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the future–directed null geodesic verifying γ (0)= p, then we can construct a non–zero differentiable
null vector field Z̃ ∈XC on C such that Z̃p = γ

′ (0). Under these conditions, we will apply the following
result.

Lemma 3.7. Let C̃ be a differentiable, local space-like hypersurface and Z̃ ∈X(C̃) a non-zero
differentiable vector field defined on C̃ and transverse to C̃, then for any differentiable spacelike
surface C ⊂ C̃ such that C is relatively compact in C̃, there exists ε > 0 such that

F : C × (−ε , ε)→ M,
(p, s) 7→ F (p, s)= expp

(
sZ̃p

)
is a diffeomorphism onto its image.

Proof. For every p ∈ C̃ there are a neighbourhood Up ⊂ C̃ and δp > 0 such that for all x ∈Up the
geodesic γx (s)≡ expx

(
sZ̃x

)
is defined for all s < ���δp

��� without conjugate points. Since C is relatively

compact in C̃, there exists a finite subcovering {Upi } of C.
Fixing δ =min

{
δpi

}
then for all p ∈C the null geodesic γp (s) is defined for s < |δ |. Then we can

define

F : C × (−δ, δ)→ M,
(p, s) 7→ F (p, s)= expp(sZ̃p) ,

and if q=F (p, s)= γp (s) then Zq ≡ γ
′
p (s) is an extension of Z̃ to the open neighbourhood of C

given by W =F (C × (−δ, δ)) ⊂M. By the locality of C, we can choose an orthonormal frame
{
Ẽj

}

on C and propagate it to the whole W by parallel transport along every γp for all p ∈C. For every
(p, 0) ∈C × (−δ, δ) we have

dF(p,0)

((
0p, ∂

∂s
���0
))
= Z̃p ∈ TpM,

dF(p,0)

(
((Ẽj)p, 00)

)
= (Ẽj)p ∈ TpM,

where ∂
∂s is the tangent vector field of the curves αq (s)= (q, s) ∈C × (−δ, δ). Since dF(p,0) maps a

basis of T(p,0) (C × R)≈TpC × T0R into a basis of TpM, then it is an isomorphism and hence F is a
local diffeomorphism. So, there exists a neighbourhood Hp ×

(
−εp, εp

)
of (p, 0) ∈C × (−δ, δ) with

0 < εp < δ such that the restriction of F is a diffeomorphism. Again, since C is relatively compact,
then from the covering {Hp} we can extract a finite subcovering

{
Hk

}
of C, then taking ε =min {εk }

we have
C × (−ε , ε)=

⋃
k

Hk × (−ε , ε) .

Calling W =F (C × (−ε , ε)) then for any (p, s) ∈C × (−ε , ε), the map F : C × (−ε , ε)→W is a local
diffeomorphism. By construction, this restriction of F is surjective, and since there are no conjugated
points in the null geodesics γq, then we get the injectivity. Therefore we conclude that F : C×(−ε , ε)→
W is a global diffeomorphism. �

If we apply now Lemma 3.7 to the proposed hypersurface C, then the image of the map F is
an open neighbourhood of p ∈M. We can take a nested sequence {Cn} ⊂C of neighbourhoods of p
in C converging to {p} and restrict F to Cn × (−ε , ε). Let us assume that for every Cn there exists
a null geodesic segment γn =F (qn, (0, ε)) fully contained in V, then for any 0 < s < ε the sequence
F (qn, s) 7→ γ (s) as n increases. Hence γ ((0, ε)) ⊂ ∂V since γ ((0, ε)) ∩ V =Ø, therefore γ |(0,ε ) is
contained in ∂V contradicting that there is no segment of a light ray contained in ∂V .

On the other hand, if for every Cn there is a null geodesic segment γn =F (qn, (−ε , 0)) without
points in V, then as done before, we have that γ ((−ε , 0)) ⊂ ∂V but this contradicts that γ ((−ε , 0)) ⊂ V .

Therefore, there exist Ck ⊂C such that for all q ∈Ck the null geodesic segment γq =F (q, ·) has
endpoints γq (s1) ∈ V and γq (s2) ∈M − V with −ε < s1 < s2 < ε . Since ∂V is a topological hypersur-
face then B=F (Ck , (−ε , ε)) ∩ ∂V is an open set of ∂V such that all points in B are accessible by
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future–directed null geodesic. Hence, we conclude that the set of light-transverse points in ∂V is an
open set relative to ∂V with the induced topology from M.

Then we may consider the open subset ∂Vr of the future l-boundary ∂+ΣV consisting of light-
transverse accessible by null geodesic points in ∂V . It is also known that the future c-boundary of
V is also topologically equivalent to ∂V ⊂M, so the future l-boundary is equivalent to the future
c-boundary in the set ∂Vr . Thus we have proved the following lemma.

Proposition 3.8. Let V ⊂M be a light-transverse, globally hyperbolic, causally convex, convex
normal neighbourhood of M. Then the l-boundary, c-boundary, and topological boundary ∂V of V
coincide in the set of light-transverse points in ∂V which are accessible by null geodesics in V.

The previous procedure can be carried out for more general space-times V. The only condition
needed is light-transversality at points in the boundary, meaning by that that any null geodesic γq

defined by the diffeomorphism F intersects ∂V “transversally” even if ∂V is not smooth (that is,
crossing ∂V and not remaining in ∂V for any interval of the parameter of γq). Clearly, if ∂V is a
smooth submanifold this notion becomes just an ordinary transversality.

Now, how can we deal with a general case in order to calculate points in the l-boundary when there
is not any larger space-time containing M? We can use the previous calculations. Consider any light
ray γ ∈N , then we can parametrize an inextensible future–directed segment of it by γ : [0, b)→M.
We can cover this segment by means of a countable collection {Vn} formed by relatively compact
globally hyperbolic, causally convex, and convex normal neighbourhoods Vn. Without any lack of
generality, we can assume that Vn ∩ Vk ,Ø if and only if n= k ± 1 and n increases when γ (s) moves
to the future. If we denote by xn ∈ ∂Vn the future endpoint of γ ∩ Vn, then the orbit of ⊕Vn passing
through γ is Xn∩Un ⊂N , or in other words, it is defined by Xn ∈ Σ. In this way, the orbit X+ ∈ ∂+Σ
of ⊕ :N →P (H ) can be constructed by the limit in N of the sequence {Xn} if such limit exists,
something that automatically happens in dimension three as we saw in Section II.

We may summarize the previous discussion in the following proposition.

Proposition 3.9. Let (M,C) be a strongly causal sky-separating conformal space-time such that
the future limit distribution ⊕ exists and such that there is an extension of the conformal structure to
the future l-boundary ∂+Σ of M (similarly for the past l-boundary ∂−Σ). The future l-boundary is
equivalent to the future c-boundary in the set of light-transverse points in ∂M =M\M accessible by
future-directed null geodesics in M.

IV. SOME EXAMPLES

In the present section, we offer some examples in which the previously studied structures will be
discussed explicitly. Although we will focus on 3–dimensional space-times, we will also deal with
4–dimensional Minkowski space-time that will turn out to be useful in the study of two embedded 3–
dimensional examples: Minkowski and de Sitter space-times. In these two examples, we will proceed
restricting them from the 4–dimensional Minkowski example as Section IV A suggests.

A. Embedded spaces of light rays

Now, we will deal with some particular cases of embedded space-times. Let M be a (m + 1)–
dimensional, strongly causal, and null pseudo–convex space-time with metric g where m ≥ 3. We will
denote overlined its structures N , H , etc. Consider M ⊂M an embedded m–dimensional, strongly
causal, and null pseudo–convex space-time equipped with the metric g= g��M such that any maximal
null geodesic in M is a maximal null geodesic in M. Since M is embedded in M, then trivially TM is
embedded in TM.

Given a globally hyperbolic, causally convex, and convex normal open set V ⊂M such that C ⊂ V
is a smooth space-like Cauchy surface, then clearly V =V ∩M is causally convex and contained in
a convex normal neighbourhood. Moreover, if λ ⊂ V is an inextensible time-like curve, since λ ⊂ V
then λ intersects exactly once to C, hence the intersection point must be in C =C ∩M and therefore
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C ⊂ V is a smooth space-like Cauchy surface in V. This implies that V is also a globally hyperbolic
open set in M.

Since the inclusion TV ↪→TV is an embedding, its restriction N (C) ↪→N
(
C
)

is also an embed-

ding. Given a fixed timelike vector field Z ∈X (V ), since V is an arbitrary globally hyperbolic, causally
convex, and convex normal open set, without any lack of generality, we can choose any time-like
extension Z ∈X

(
V
)

of Z, that is, Z = Z ���V . For all v ∈N (C) ⊂N
(
C
)

we have

g (v , Z)= g
(
v , Z

)
.

Then the map

Ω
Z (C)= {v ∈N (C) : g (v , Z)=−1} ↪→Ω

Z
(
C
)
=

{
v ∈N

(
C
)

: g
(
v , Z

)
=−1

}

is an embedding. Again, sinceU 'ΩZ (C) andU 'ΩZ
(
C
)
, then we have that the inclusion

N ⊃U ↪→U ⊂N

is an embedding. Since N ↪→N is an inclusion, then it is injective and thus a global embedding.
Therefore also

TN ↪→TN

is another global embedding.
Given a point x ∈M ⊂M, its sky X ∈ Σ is the set of all light rays contained inN passing through

x, but since every light ray in N is a light ray in N , then calling X ∈ Σ the sky of x relative to N we
have

X =X ∩ N .

Since the metric in M is just the restriction to TM of the metric in M, then the contact structure
H of N is the restriction of the contact structureH of N to the tangent bundle TN , that is,

Hγ =Hγ ∩ TγN

for all γ ∈N . So, for any γ ∈ X ⊂N , it is now clear that

TγX =TγX ∩ TγN =TγX∩Hγ

due to TγX⊂Hγ. For a regular parametrization γ : (a, b)→M, we can write

TγS (γ (s))=TγS (γ (s))∩Hγ

and hence, the future limit distribution ⊕ is given as

⊕γ = lim
s 7→b−

TγS (γ (s))= lim
s 7→b−

TγS (γ (s))∩Hγ = ⊕γ∩Hγ .

If the distribution defined by ⊕ in N is integrable, then the orbits of ⊕ become the orbits of ⊕
restricted to N , that is,

X+ =X
+
∩ N .

After the previous considerations, we can use the contents of the current section to study 3–
dimensional Minkowski and de Sitter space-times as embedded in a 4–dimensional Minkowski space-
time.

B. 4–dimensional Minkowski space-time

Consider the 4-dimensional Minkowski space-time given by M4 =
(
R4, g

)
where the metric is

given by g=−dt ⊗ dt + dx ⊗ dx + dy ⊗ dy + dz ⊗ dz in the standard coordinate system ϕ= (t, x, y, z).
We will use the notation N ,H , etc., for the structures related toM4.

It is known that the hypersurface C ≡ {t = 0} is a global Cauchy surface thenN is diffeomorphic to
C ×S2 [Ref. 6, Sec. 4]. We can describe points at the sphere S2 using spherical coordinates θ, φ. Then,
we can use ψ = (x, y, z, θ, φ) as a system of coordinates in N , where ψ−1 (x0, y0, z0, θ0, φ0)= γ ∈N
corresponds to the light ray given by

γ (s)= (s, x0 + s · cos θ0 sin φ0, y0 + s · sin θ0 sin φ0, z0 + s · cos φ0)

with s ∈R.
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In general, it is possible to calculate the contact hyperplane at γ ∈N as the vector subspace
in TγN generated by tangent spaces to the skies at two different non–conjugate points in γ, or in
other words, if γ (s1) and γ (s2) are not conjugate along γ then TγS (γ (s1)) ∩ TγS (γ (s2))= {0} and
by dimension counting we see that

Hγ =TγS (γ (s1)) ⊕ TγS (γ (s2)).

In case of Minkowski space-time there are no conjugate points along any geodesics, so we will use
for this purpose the points γ (0) and any γ (s). Thus fixed s, for any (θ, φ), the curve

µ(θ,φ) (τ)= γ (s) + τ (1, cos θ sin φ, sin θ sin φ, cos φ),

describes a null geodesic passing by γ (s) that cut C at τ =−s. So, the sky of γ (s) can be written in
coordinates by

ψ (S (γ (s)))≡




x (θ, φ)= x0 + s (cos θ0 sin φ0 − cos θ sin φ)

y (θ, φ)= y0 + s (sin θ0 sin φ0 − sin θ sin φ)

z (θ, φ)= z0 + s (cos φ0 − cos φ)

θ (θ, φ)= θ

φ (θ, φ)= φ

,

and the derivatives of these expressions with respect to θ and φ at (θ, φ)= (θ0, φ0) give us the generators
of the tangent space of the sky S (γ (s)) at γ, so

TγS (γ (s))= span



s *
,
sin θ0 sin φ0

(
∂

∂x

)
γ

− cos θ0 sin φ0

(
∂

∂y

)
γ

+
-
+

(
∂

∂θ

)
γ

,

s *
,
− cos θ0 cos φ0

(
∂

∂x

)
γ

− sin θ0 cos φ0

(
∂

∂y

)
γ

+ sin φ0

(
∂

∂z

)
γ

+
-
+

(
∂

∂φ

)
γ




and trivially

TγS (γ (0))= span



(
∂

∂θ

)
γ

,

(
∂

∂φ

)
γ




.

Therefore the contact hyperplane at γ is

Hγ = span



(
∂

∂θ

)
γ

,

(
∂

∂φ

)
γ

, sin θ0

(
∂

∂x

)
γ

− cos θ0

(
∂

∂y

)
γ

,

cos θ0 cos φ0

(
∂

∂x

)
γ

+ sin θ0 cos φ0

(
∂

∂y

)
γ

− sin φ0

(
∂

∂z

)
γ




and a contact form is given by

α = cos θ sin φ · dx + sin θ sin φ · dy + cos φ · dz .

For this space-time it is easy to calculate the limit distributions ⊕ and 	. We will proceed only
for ⊕ because the case of 	 is analogous. Using definition (5), we have

⊕γ = lim
s 7→+∞

TγS (γ (s))=

= span



sin θ0 sin φ0

(
∂

∂x

)
γ

− cos θ0 sin φ0

(
∂

∂y

)
γ

,

− cos θ0 cos φ0

(
∂

∂x

)
γ

− sin θ0 cos φ0

(
∂

∂y

)
γ

+ sin φ0

(
∂

∂z

)
γ




,
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and therefore ⊕ defines an integrable distribution whose partial differential equations are




∂x
∂α

(α, β)= sin θ sin φ
∂y
∂α

(α, β)=− cos θ sin φ
∂z
∂α (α, β)= 0
∂θ

∂α
(α, β)= 0

∂φ

∂α
(α, β)= 0,




∂x
∂ β

(α, β)=− cos θ cos φ

∂y
∂ β

(α, β)=− sin θ cos φ

∂z
∂ β

(α, β)= sin φ

∂θ

∂ β
(α, β)= 0

∂φ

∂ β
(α, β)= 0,

and its solution with initial values (x0, y0, z0, θ0, φ0) is given by




x (α, β)= x0 + α sin θ0 sin φ0 − β cos θ0 cos φ0

y (α, β)= y0 − α cos θ0 sin φ0 − β sin θ0 cos φ0

z (α, β)= z0 + β sin φ0

θ (α, β)= θ0

φ (α, β)= φ0

. (15)

This solution corresponds to the 2–plane

cos θ0 sin φ0 · (x − x0) + sin θ0 sin φ0 · (y − y0) + cos φ0 · (z − z0)= 0 (16)

in the Cauchy surface C and it defines the orbit X
+

γ of ⊕ passing through γ. The image in M4 of all

the light rays in X
+

γ is precisely the 3–plane inM4 given by

cos θ0 sin φ0 · (x − x0) + sin θ0 sin φ0 · (y − y0) + cos φ0 · (z − z0) − t = 0

and it is easy to show, using straightforward calculations, that any light ray µ ∈ X
+

γ in the same orbit
of ⊕ than γ determines the TIP

I− (µ)= I− (γ)= {t < cos θ0 sin φ0 · (x − x0) + sin θ0 sin φ0 · (y − y0) + cos φ0 · (z − z0)} ,

so the future l-boundary coincides with c-boundary except for the TIP I− (λ)=M4 defined by any
time-like geodesic λ, because it cannot be defined by light rays.

Moreover [Ref. 7, Thm. 4.16] ensures that, for this space-time, the c–boundary is the same as
the conformal boundary. The l-boundary corresponds to the set of all orbits of ⊕, that is, all 2-planes
(16). Observe that the map

R3 ×S2 'N → ∂+Σ'R1 ×S2,

γ 7→ X
+

γ

(17)

such that every light ray γ ∈N is mapped to the point of the l-boundary corresponding to the orbit
of ⊕ passing through γ can be written in coordinates by

(x, y, z, θ, φ) 7→ (cos θ sin φ · x + sin θ sin φ · y + cos φ · z, θ, φ) ,

therefore the future l-boundary is ∂+Σ'R1 ×S2.

C. 3–dimensional Minkowski space-time

Let us proceed now with 3–dimensional Minkowski space-time given by M3 =
(
R3, g

)
with

metric g=−dt ⊗ dt + dx ⊗ dx + dy ⊗ dy in coordinates ϕ= (t, x, y). We will use the notation N ,H ,
etc., for the structures related toM3.

It is possible to seeM3 as the restriction ofM4 to its hyperplane z = 0. So, in order to obtain the
description of the space of light rays ofM3, we can restrict the results obtained in Section IV B to z
= 0 and therefore, with φ= π/2.

Then, C ≡ {t = 0} is still a Cauchy surface andN 'C ×S1 and we can useψ = (x, y, θ) as a system
of coordinates in N , where ψ−1 (x0, y0, θ0)= γ ∈N describes the light ray given by

γ (s)= (s , x0 + s · cos θ0 , y0 + s · sin θ0)
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with s ∈R.
So, the tangent space of the skies S (γ (s)) and S (γ (0)) at γ can be written as

TγS (γ (s))= span



s *
,
sin θ0

(
∂

∂x

)
γ

− cos θ0

(
∂

∂y

)
γ

+
-
+

(
∂

∂θ

)
γ




(18)

and

TγS (γ (0))= span



(
∂

∂θ

)
γ




.

Therefore the contact hyperplane at γ is

Hγ = span



sin θ0

(
∂

∂x

)
γ

− cos θ0

(
∂

∂y

)
γ

,

(
∂

∂θ

)
γ




and any contact form will be proportional to

α = cos θ · dx + sin θ · dy .

Using (18) it is possible to calculate easily the point in the l-boundary passing by γ, then

⊕γ = lim
s 7→+∞

TγS (γ (s))= span



sin θ0

(
∂

∂x

)
γ

− cos θ0

(
∂

∂y

)
γ




and therefore we can obtain the integral curve c (τ)= (x (τ) , y (τ) , θ (τ)) defining the orbit X+γ ⊂N
of ⊕ containing γ solving the initial value problem




x′ (τ)= sin θ

y′ (τ)=−cos θ

θ ′ (τ)= 0

c (0)= (x0, y0, θ0)

.

Its solution is c (τ)= (x0 + τ sin θ0 , y0 − τ cos θ0 , θ0) and corresponds to the family of null geodesics
with tangent vector v = (1, cos θ0, sin θ0) and initial value in the straight line contained in C is given
by {

cos θ0 (x − x0) + sin θ0 (y − y0)= 0
t = 0

.

Again, by straightforward calculations, it is possible to show that given µ1, µ2 ∈ X+γ then I− (µ1)=
I− (µ2), therefore any light ray in X+γ defines the same TIP,

I− (γ)=
{
(t, x, y) ∈M3 : t < cos θ0 (x − x0) + sin θ0 (y − y0)

}
.

then, again the future l-boundary coincides with the future part of the c-boundary accessible by light
rays.

In an analogous way, the orbit X−γ of 	 verifies X−γ =X+γ and thus it corresponds to the TIF I+ (γ).
The restriction of map (17) to N'R2 ×S1 results in

R2 ×S1 'N → ∂+Σ'R1 ×S1

γ 7→ X+γ

that, in coordinates, can be written by

(x, y, θ) 7→ (cos θ · x + sin θ · y, θ)

therefore, ∂+Σ'R1 ×S1.
We can use the previous calculations to describe a globally hyperbolic block embedded in M3.

Let us call M∗ =
{
(t, x, y) ∈M3 : t >−1

}
with the same metric g restricted to M∗, and denote by N∗,

H∗, etc., the corresponding structures for M∗. Since M∗⊂M3 is open and they share the same Cauchy
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surface C ≡ {t = 0}, then trivially N∗ 'N andH∗ 'H . To calculate 	∗, we can consider the limit of
the expression (18) when s tends to �1, then

(	∗)γ = lim
s 7→−1

TγS (γ (s))= span


− sin θ0

(
∂

∂x

)
γ

+ cos θ0

(
∂

∂y

)
γ

+

(
∂

∂θ

)
γ




.

Thus, the orbit X−γ ⊂N ∗ of 	∗ passing by γ is the solution c (τ)= (x (τ) , y (τ) , θ (τ)) of




x′ (τ)=− sin θ

y′ (τ)= cos θ

θ ′ (τ)= 1

c (0)= (x0, y0, θ0)

and it is given by c (τ)= (x0 + cos (τ + θ0) , y0 + sin θ0 (τ + θ0) , τ + θ0). The light ray in X−γ defined
by c (τ) can be parametrized (as a null geodesic) by

γτ (s)= (s , x (τ) + s cos θ (τ) , y (τ) + s sin θ (τ))=

= (s , x0 + (s + 1) cos (τ + θ0) , y0 + (s + 1) sin (τ + θ0)),

verifying lims 7→−1 γτ (s)= (−1, x0, y0) for all τ. This clearly shows that X−γ ⊂N ∗ can be identified with
S ((−1, x0, y0)) ⊂N and therefore the past l-boundary completed space M∗ ∪ ∂−Σ∗ can be identified
diffeomorphically with

{
(t, x, y) ∈M3 : t ≥ −1

}
.

D. 3–dimensional de Sitter space-time

Using the notation of Section IV B, we can define the de Sitter space-time S3
1 as the set in M4

verifying
−t2 + x2 + y2 + z2 = 1 . (19)

We will denote the structures related to S3
1 byNS ,HS , etc. Because of [Ref. 22, Prop. 4.28] light rays

in NS are straight lines inM4 contained in S3
1 , that is, light rays inM4 too.

Let us consider the Cauchy surface in S3
1 given by CS =C ∩ S3

1 , that is, the 2-surface satisfying{
t = 0
x2 + y2 + z2 = 1

so we can parametrize CS by



x = cos u sin w
y= sin u sin w
z= cos w

. (20)

Obviously, the null geodesic γ ∈N will entirely lie in S3
1 if it satisfies Equation (19), so for every

s we have
−s2 + (x + s cos θ sin φ)2 + (y + s sin θ sin φ)2 + (z + s cos φ)2 = 1,

which can be simplified into

2s ((x cos θ + y sin θ) sin φ + z cos φ)= 0 ,

therefore
(x cos θ + y sin θ) sin φ + z cos φ= 0 , (21)

and hence, we solve

cot φ=−
x cos θ + y sin θ

z
.

By relation (20) we can write
cot φ=− cos (θ − u) tan w

so φ only depends on the variables u, w, θ. We will abbreviate it as

cot φ= f (u, w, θ) .
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Let us restrict the contact form α to NS using




x = cos u sin w
y= sin u sin w
z= cos w
θ = θ
φ= arccotf (u, w, θ)

. (22)

Substituting the differentials




dx =− sin u sin wdu + cos u cos wdw
dy= cos u sin wdu + sin u cos wdw
dz=− sin w dw

into α, we get

αS = α |NS
=
− cos w sin w sin (θ − u)√
cos2(θ − u) sin2w+ cos2w

du −
cos (θ − u)√

cos2(θ − u) sin2w+ cos2w

dw, (23)

where we have used the relations, obtained from (21), given by

sin φ=
− cos w√

cos2(θ − u) sin2w+ cos2w

, cos φ=
sin w cos (θ − u)√

cos2(θ − u) sin2w+ cos2w

. (24)

Then we can choose the following contact form in NS:

αS = cos w sin w sin (θ − u) du + cos (θ − u) dw ,

and the 2-plane that annihilates αS is

(HS)γ = span
{
− cos (θ − u)

(
∂
∂u

)
γ
+ cos w sin w sin (θ − u)

(
∂
∂w

)
γ

,
(
∂
∂θ

)
γ

}
.

In order to find the future l-boundary of 3–dimensional de Sitter space-time, in virtue of Section
IV A, we will just restrict the results obtained in Section IV B forM4 to the embedded S3

1 . So, using
the expression (22) for the values (u0, w0, θ0) we get

(x0, y0, z0, θ0, φ0)= (cos u0 sin w0, sin u0 sin w0, cos w0, θ0, arccotf (u0, w0, θ0))

and substituting it, together with (24), into Equation (16), we obtain the equation of the orbit
(
X+S

)
γ
=

X
+

γ∩N S of ⊕S through γ as a curve in the Cauchy surface CS given by

cos (θ0 − u) tan w = cos (θ0 − u0) tan w0 (25)

or equivalently
f (u, w, θ0)= f (u0, w0, θ0) . (26)

If we consider the inclusion in coordinates

i :N S 'S
2 ×S1→N'R3 ×S2

(u, w, θ) 7→ (cos u sin w, sin u sin w, cos w, θ, arccotf (u, w, θ))
(27)

then its composition with the map (17) is

NS 'S
2 ×S1 → ∂+ΣS⊂R

1 ×S2,
(u, w, θ) 7→ (0, θ, arccotf (u, w, θ)) .

(28)

For a fixed θ = θ0, because of (26), every level set Uk = {(u, w) ∈CS : f (u, w, θ0)= k} corresponds to
an orbit of ⊕S . Since the image of

F (u, w)= f (u, w, θ0)=− cos (θ0 − u) tan w

is (−∞,∞) then the image of
G (u, w)= arccotf (u, w, θ0)

is (0, π), therefore the image of map (28) is ∂+ΣS = {0} ×S2 'S2.



022503-23 Bautista et al. J. Math. Phys. 58, 022503 (2017)

By [Ref. 22, Prop. 4.28] it can be easily observed that I− (p)∩ S3
1 = I−

(
p, S3

1

)
and hence, for any

light ray γ∈N S ,

I− (γ) ∩ S3
1 = I−

(
γ, S3

1

)
.

Thus, the restriction of TIPs of M4 to de Sitter space-time are TIPs of S3
1 , and therefore the future

l-boundary of de Sitter space-time coincides again with the part of the future c-boundary accessible
by null geodesics.

E. A family of 3–dimensional space-times

In this section we will study the family of space-times given by Mα =
{
(t, x, y) ∈R3 : t > 0

}
with

metric tensor gα =−t2αdt ⊗ dt + dx ⊗ dx + dy ⊗ dy.
It is trivial to see that the transformations given by

For α <−1: For α =−1: For α >−1:




t =
tα+1

α + 1
x = x
y= y




t = log t
x = x
y= y




t =
tα+1

α + 1
− 1

x = x
y= y

(29)

are conformal diffeomorphisms such that

For α < −1: For α =−1: For α > − 1:

Mα'M
3 M−1'M

3 Mα 'M∗,

where the last space-time M∗ denotes the 3–dimensional Minkowski block studied in Section IV C.
So, the space of light rays, its contact structure, and the l-boundary of these space-times are already
calculated in Section IV C.

We will now examine the l-boundary for α >−1.
Observe that the null vectors in TpMα are proportional to v = (1, tα cos θ, tα sin θ) for θ ∈ [0, 2π]

at p= (t, x, y), and the only non–zero Christoffel symbol is Γ0
00 = αt−1. Hence, since the equations of

geodesics are




t ′′ + α
t (t ′)2 = 0

x′′ = 0
y′′ = 0

,

then the null geodesic γ such that γ (0)= (t0, x0, y0) and γ′ (0)=
(
1, tα0 cos θ0, tα0 sin θ0

)
for a given

θ0 ∈ [0, 2π] for α >−1 can be written as

γ (s)=
((

(α + 1) tα0 s + tα+1
0

)1/(α+1)
, x0 + stα0 cos θ0 , y0 + stα0 sin θ0

)
defined for s ∈

(
−

t0
α+1 ,∞

)
.

Observe that, when −1< α < 0, light cones open wider as t approac to 0, becoming a plane at
the limit t = 0. On the other hand, when α > 0, they close up when t gets close to 0, degenerating into
a line when t = 0. The case α = 0 corresponds to a Minkowski block isometric to M∗.

Let us consider C ≡ {t = 1} as the global Cauchy surface we will use as the origin of any given
null geodesic

γ (s)=
(
((α + 1) s + 1)1/(α+1) , x0 + s cos θ0 , y0 + s sin θ0

)
= (ts, xs, ys) .

Then the curve

µθ (τ)=
((

(α + 1) tαs τ + tα+1
s

)1/(α+1)
, xs + τtαs cos θ , ys + τtαs sin θ

)
describes a null geodesic starting at γ (s). So, for τ = −s

tαs
, we have

µθ
(
−s/tαs

)
= (0, x0 + s (cos θ0 − cos θ) , y0 + s (sin θ0 − sin θ)) ∈C.
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Therefore, the coordinates of the sky of γ (s) can be written by

ψ (S (γ (s)))≡



x (θ)= x0 + s (cos θ0 − cos θ)
y (θ)= y0 + s (sin θ0 − sin θ)
θ (θ)= θ

.

Deriving with respect to θ at θ = θ0, we obtain a generator of the tangent space of the sky S (γ (s)) at
γ, so

TγS (γ (s))= span
{
s
(
sin θ0

(
∂
∂x

)
γ
− cos θ0

(
∂
∂y

)
γ

)
+

(
∂
∂θ

)
γ

}
and then

(	α)γ = lim
s 7→ −1

α+1

TγS (γ (s))= span


− sin θ0

(
∂

∂x

)
γ

+ cos θ0

(
∂

∂y

)
γ

+ (α + 1)

(
∂

∂θ

)
γ




.

The solution c (τ)= (x (τ), y (τ), θ (τ)) of the initial value problem




x′ (τ)=− sin θ
y′ (τ)= cos θ
θ ′ (τ)= α + 1
c (0)= (x0, y0, θ0)

describes the orbit X−γ ⊂Nα of 	α passing by γ. Then

c (τ)=

(
x0 +

cos ((α + 1) τ + θ0) − cos θ0

α + 1
, y0 +

sin ((α + 1) τ + θ0) − sin θ0

α + 1
, (α + 1) τ + θ0

)
.

It is easy to realize that the points in Mα in the orbit X−γ verify

t2α+2 = (α + 1)2


(
x −

(
x0 −

cos θ0

α + 1

))2

+

(
y −

(
y0 −

sin θ0

α + 1

))2
. (30)

A schematic picture of X−γ can be seen in Figure 5.
Observe that each orbit X−γ is determined by the vertex of the surface (30), therefore the past

l-boundary can be identified with R2 such that any (u, v) ∈R2 corresponds to the orbit of 	α whose
light rays emerge from the point (t, x, y)= (0, u, v).

The differentiable structure of Mα =Mα ∪ ∂
−Σα cannot be the standard one induced from M∗ =

M∗ ∪ ∂−Σ∗ =
{
(t, x, y) ∈R3 : t ≥ −1

}
by the corresponding conformal mapping (29), because it would

be needed that

Mα→M∗ , (t, x, y) 7→

(
tα+1

α + 1
− 1, x, y

)
were differentiable, but it is not the case with the standard differentiable structure when −1< α < 0.

FIG. 5. The α-family of space-times.
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V. CONCLUSIONS AND DISCUSSION

The notion of a new causal boundary proposed by Low20 and called l-boundary in this paper,
which is based on the idea of determining all light rays which focus at the same point at infinity and
treating this set as the “sky” of the common future endpoint of all of them, has been made precise
and discussed carefully in the particular instance of three-dimensional space-times.

It has been shown that under mild conditions, i.e., that the space M does not have tangent skies, the
regularity of the asymptotic distributions ⊕ and 	, and the smooth extension of the natural distribution
D̃ on Ñ to its boundary, that such boundary ∂Σ is well defined and makes the completed space M
into a smooth manifold with boundary. Let us point out here that the former condition can be removed
as it will be shown elsewhere. Space-times such that the l-boundary ∂Σ exists and the completed
space-time M =M

⋃
∂Σ is a smooth manifold with boundary could be called l-extendible.

The l-boundary of a three-dimensional space-time has been compared with the GKP c-boundary
and it has been found that, even if in general the l-boundary is smaller, in the case that the conformal
structure can be extended to the l-boundary the l-boundary and c-boundary are equivalent in the set
where light rays are transversal.

Hence, a natural question emerges from the previous considerations: suppose that M is a three-
dimensional l-extendible space-time, can the conformal structure C on M be smoothly extended to
M?

The answer to this question could seem to be negative. Consider, for instance, the example Mα,
α =−1/2, discussed in Sec. IV E with representative metric g=− 1

t dt ⊗ dt + dx ⊗ dx + dy ⊗ dy.
The space-time M

�1/2 is conformally isometric to the block Minkowski space M∗ discussed in the
second part of Section IV C, and we conclude that is l-extensible. However it does not seem to be
conformally extensible to the l-completed space M−1/2. This apparent contradiction can be solved
by noticing that the induced smooth structure on the l-completed space is not the one induced by the
ambient smooth structure on M3. It can be seen, the details will be discussed elsewhere, that there
is a canonical projective conformal parameter on light rays such that the induced smooth structure
on the boundary can be suitably described and the existence, or not, of a conformal extension to the
l-boundary remains unanswered.

ACKNOWLEDGMENTS

The authors would like to thank the referee’s comments and suggestions as well as the financial
support provided by Ministry of Economy and Competitivity of Spain under Grant No. MTM2014-
54692-P and Community of Madrid research Project QUITEMAD+, No. S2013/ICE-2801.

1 Bautista, A., Ibort, A., and Lafuente, J., “On the space of light rays of a space-time and a reconstruction theorem by Low,”
Classical Quantum Gravity 31, 075020 (2014).

2 Bautista, A., Ibort, A., and Lafuente, J., “Causality and skies: Is refocussing necessary?,” Classical Quantum Gravity 32,
105002 (2015).

3 Beem, J. K., Ehrlich, P. E., and Easley, K. L., Global Lorentzian Geometry (Marcel Dekker, New York, 1996).
4 Brickell, F. and Clark, R. S., Differentiable Manifolds. An Introduction (Van Nostrand Reinhold, London, 1970).
5 Chernov, V. and Rudyak, Yu., “Linking and causality in globally hyperbolic space-times,” Commun. Math. Phys. 279,

309–354 (2008).
6 Chernov, V. and Nemirovski, S., “Legendrian links, causality, and the low conjecture,” Geom. Funct. Anal. 19, 1320–1333

(2010).
7 Flores, J. L., Herrera, J., and Sánchez, M., “On the final definition of the causal boundary and its relation with the conformal

boundary,” Adv. Theor. Math. Phys. 15, 991–1057 (2011).
8 Geroch, R. P., “Local characterization of singularities in general relativity,” J. Math. Phys. 9, 450–465 (1968).
9 Geroch, R. P., Kronheimer, E. H., and Penrose, R., “Ideal points in space–time,” Proc. R. Soc. A 327, 545–567 (1968).

10 Harris, S. G., “The method of timelike 2–surfaces,” Contemp. Math. 170, 125–134 (1994).
11 Hawking, S. W. and Ellis, G. F. R., The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge,

1973).
12 Low, R. J., “Causal relations and spaces of null geodesics,” Ph.D. thesis, Oxford University, 1988.
13 Low, R. J., “The geometry of the space of null geodesics,” J. Math. Phys. 30, 809–811 (1989).
14 Low, R. J., “Twistor linking and causal relations,” Classical Quantum Gravity 7, 177–187 (1990).
15 Low, R. J., “Spaces of causal paths and naked singularities,” Classical Quantum Gravity 7, 943–954 (1990).
16 Low, R. J., “Celestial spheres, light cones, and cuts,” J. Math. Phys. 34, 315 (1993).

http://dx.doi.org/10.1088/0264-9381/31/7/075020
http://dx.doi.org/10.1088/0264-9381/32/10/105002
http://dx.doi.org/10.1007/s00220-008-0414-8
http://dx.doi.org/10.1007/s00039-009-0039-x
http://dx.doi.org/10.4310/atmp.2011.v15.n4.a3
http://dx.doi.org/10.1063/1.1664599
http://dx.doi.org/10.1098/rspa.1972.0062
http://dx.doi.org/10.1090/conm/170/01747
http://dx.doi.org/10.1063/1.528401
http://dx.doi.org/10.1088/0264-9381/7/2/011
http://dx.doi.org/10.1088/0264-9381/7/6/004
http://dx.doi.org/10.1063/1.530424


022503-26 Bautista et al. J. Math. Phys. 58, 022503 (2017)

17 Low, R. J., “Twistor linking and causal relations in exterior Schwarzschild space,” Classical Quantum Gravity 11, 453–456
(1994).

18 Low, R. J., “Stable singularities of wave-fronts in general relativity,” J. Math. Phys. 39, 3332–3335 (1998).
19 Low, R. J., “The space of null geodesics,” in Proceedings of the Third World Congress of Nonlinear Analysts, Part 5,

Catania, 2000 [Nonlinear Anal.: Theory, Methods Appl. 47, 3005–3017 (2001)].
20 Low, R. J., The Space of Null Geodesics (and a New Causal Boundary), Lecture Notes in Physics 692 (Springer, Berlin

Heidelberg, New York, 2006), pp. 35–50.
21 Minguzzi, E. and Sánchez, M., “The causal hierarchy of space-times,” in Recent Developments in Pseudo-Riemannian

Geometry, ESI Lectures in Mathematics and Physics (European Mathematical Society, Zürich, 2008), pp. 299–358.
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