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Abstract
The causal structure of a strongly causal, null pseudo-convex, space-time M is
completely characterized in terms of a partial order on its space of skies
defined by means of a class of non-negative Legendrian isotopies called sky
isotopies. It is also shown that such partial order is determined by the class of
future causal celestial curves, that is, curves in the space of light rays which are
tangent to skies and such that they determine non-negative sky isotopies. It
will also be proved that the space of skies Σ equipped with Low’s (or
reconstructive) topology is homeomorphic and diffeomorphic to M under the
only additional assumption that M separates skies, that is, that different events
determine different skies. The sky-separating property of M is sharp and the
previous result provides an answer to the question about the class of space-
times whose causal structure, topological and differentiable structure can be
reconstructed from their spaces of light rays and skies. These results can be
understood as a Malament–Hawking-like theorem stated in terms of the partial
order defined on the space of skies.

Keywords: causality, strongly causal space-time, Legendrian isotopies, light
rays, sky-separating, refocussing

(Some figures may appear in colour only in the online journal)

1. Introduction

The celebrated Malament and Hawking–McCarthy–King (MH) theorem provides an
important relationship between the causal structure ≺ of a space-time M and its topological,
smooth and metric structures [Ha76, Ma77]: ‘if there exists a causal bijection between two n-
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dimensional ( >n 2) space-times which are both future and past distinguishing, then these
space-times are conformally isometric’.

The causal structure ≺M( , ) of a space-time M g( , ) is a derived construction which relies
on the underlying differentiable structure of M and the local lightcone structure provided by
the conformal class of its metric. The relation ≺x y, ‘y is in the causal future set of x ’, that is,
there exists a future-oriented causal curve joining x with y, is a partial order if the space-time
M is causal, i.e., there are no closed causal curves on it. A space-time is said to be future and
past distinguishing if the chronological (time-like) future and past sets are unique for every
space-time event. Thus MH theorem implies that the causal structure of future and past
distinguishing space-times characterize both its conformal geometry and topology.

MH theorem also provides a strong motivation for the ‘causal sets programme’ to
quantum gravity [Br91, Ri00], in which (locally finite) partially ordered sets replace the
space-time M. Kronheimer and Penrose started the study of abstract causal spaces, that is, sets
equipped with a partial order relation ≺ (and two additional relations ≪ and →, corre-
sponding to the chronological ordering and horisms relation in standard Lorentzian space-
time geometry) satisfying a family of axioms kept as small and ‘physically reasonable’ as
possible [Kr67].

The natural topology defined on such causal spaces, generated by the intersections of the
chronological past and future sets of events, ∩+ −I x I y( ) ( ), ∈x y M, , known as Alexandrov
topology, is equivalent to the topology defined by its smooth structure when M is a strongly
causal space-time [Pe72], i.e., a space-time M g( , ) such that given any neighborhood U of
∈p M there exists a neighborhood ⊂V U , ∈p V , such that any future-directed causal curve

γ →I M: with endpoints in V is entirely contained in U. It is equivalent to state that a space-
time is strongly causal if given any neighborhood U of p there exists a neighborhood ⊂V U ,
∈p V (which can be chosen globally hyperbolic), such that V is causally convex in M. Again

if M is strongly causal, its Alexandrov topology is Hausdorff (see for instance, theorem 3.27
[Mi08]). Strongly causal space-times provide a stronger version of MH theorem as it can be
readily proved that if there is a causal bijection between to strongly causal space-times, then
they both are homeomorphic and diffeomorphic, as well as conformally isometric, i.e., being
causally isomorphic implies that they must have the same dimension.

Once the causal partial order structure ≺ is promoted to the centre of the stage it makes
sense to consider different realizations of the abstract causal space determined by a space-
time. In physical space-times events can be determined by performing local measurements
but, dually, they are characterized by the congruence of light rays passing through them or, in
other words, by the light rays arriving (and leaving) from a given observer. Such congruence
of light rays passing through a given event ∈x M is called the sky S(x) of x and is diffeo-
morphic to a −n( 2)–dimensional sphere. It is clear that the collection of skies could offer an
alternative realization of the abstract causal space determined by the causal structure of M,
hence an alternative way of studying its properties, provided that it carries a topological and
differentiable structure that makes it homeomorphic and diffeomorphic to the original space-
time M.

R Low initiated a program to systematically explore the causality structure of a space-
time in terms of the properties of its space of skies or, more precisely, its space of light rays,
that provide the appropriate framework to study them. Such project is rooted in Penrose’s
twistor program and represents a real version of it that, contrary to the twistor transform, is
defined on any space-time regardless of its dimension and geometry. Thus to any space-time
M g( , ) we can associate its space of light rays  , i.e., the set of unparametrized oriented null
geodesics. Such space depends only on the conformal class of the metric g and inherits a
natural topology from the topology of TM.
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The family of skies Σ = ∣ ∈S x x M{ ( ) }, being submanifolds of  , inherit a topology
from the ambient space  . Thus, the sky map Σ→S M: , that maps each event ∈x M to its
sky Σ∈S x( ) , becomes a map between topological spaces. One of the basic questions raised
by Lows’s programme is the reconstruction problem for the topology and differentiable
structure of M: under what conditions the sky map S is a homeomorphism (diffeomorphism),
that is, under what conditions the space of skies Σ is homeomorphic (diffeomorphic) to M.
This is one of the problems that will be discussed along the paper.

It is clear that a positive answer to the reconstruction problem for the topology of a given
space-time would imply that the sky map is a bijection. Space-times with this property will be
called sky-separating spaces, that is, a sky-separating space-time is such that given two
different events ≠x y their skies are different ≠S x S y( ) ( ). Notice that simple examples, like
the Einstein cylinder  × −m 1 equipped with the standard product metric = − ⊕dtg h2 ,
where h is the induced Euclidean metric on  −m 1, show that even globally hyperbolic spaces
could have many-to-one sky maps, hence are not sky-separating.

It is not difficult to show that for a sky-separating strongly causal space-time the sky map
S is continuous (see for instance proposition 3, [Ba14]). Hence it would remain to show what
extra condition, if any, is needed to guarantee that its inverse map P (called the ‘parachute
map’) is continuous.

Moreover the space of light rays  of a strongly causal space-time M is a smooth
manifold of dimension −m2 3 if M has dimension m (see for instance [Lo89, proposition
2.1. and ff.]) and the skies ⊂S x( ) are immersed −m( 2)–submanifolds. Thus strongly
causal space-times are natural candidates for a reconstruction theorem of the differentiable
structure too. We may try to construct a smooth structure on the space of skies Σ induced
from the smooth structure on  and check that the sky map S is a diffeomorphism. This will
be the main contribution of the present paper and will be discussed at length on section 4.

It is relevant to point out that the topology of a space-time is assumed to be Hausdorff,
reflecting the locality of physical theories defined on it. Hence a proper reconstruction the-
orem of the topological structure would require a Hausdorff space of light rays. However it is
easy to exhibit examples, like Minkowski space with a point removed, whose space of light
rays is not Hausdorff.

It was proved by Low [Lo90a] that for a strongly causal space-time, if the space of light
rays  is not Hausdorff than M must have naked singularities, that is M must contain some
point whose past contains a future endless causal curve (actually it was proved that if the
space of causal curves is not Hausdorff the space-time must be naked singular). The lack of
such pathology is equivalent to M being globally hyperbolic [Pe78] (see also [Ge72]). Thus
we could be tempted to assume that globally hyperbolic space-times are the only good
candidates for a reconstruction theorem. However even if the absence of naked singularities
guarantees that  is Hausdorff, there are simple examples of spaces with naked singularities
whose space of light rays is Hausdorff (a strip  × − − +t x( ( 1, 1), d d )2 2 would be an
example, see also example 3.1 in [Lo90a]).

Thus we may conclude this discussion by observing that a natural condition to be added
to the sky-separating property discussed before on any reasonable reconstruction theorem is
that the space of light rays is Hausdorff. Such topological property of the space of light rays
can be characterized in terms of causal properties of M. It was proved by Low [Lo90a,
proposition 3.2 and ff.] that on a strongly causal space-time M,  is Hausdorff iff M is
causally pseudo-convex, i.e., if given any compact set ⊂K M , there is a compact set ′ ⊂K M
such that any causal geodesic segment with endpoints in K lies in K′ and the same property
holds if we restrict ourselves to consider just null geodesics. We will refer then to this
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property as null pseudo-convexity. Thus being null pseudo-convex is the required property on
M that guarantees that  is Hausdorff and conversely.

However the fundamental interest of MH theorem is that causal structures determine the
topology and geometry of the corresponding spaces, thus the question that raises naturally is
if there exists a natural partial order ≺Σ in the space of skies Σ such that an analogue to MH
theorem will hold, that is, if the sky map is a causal bijection between M and Σ then it is a
homeomorphism (and a diffeomorphism too).

An analogous reconstruction theorem for the causal relation ≺ would be provided by a
partial order relation≺Σ on the space of skies Σ that will induce it by means of the sky map S.
One fundamental advantage of considering the space of skies is that they are embodied in the
manifold  which provides an additional geometrical structure, a contact structure, not
present when considering the standalone space of events M.

It is even of greater importance that the contact structure on the space of light rays will
allow for the construction of the partial order ≺Σ . A contact structure is the odd-dimensional
counterpart of a symplectic structure and is defined as a maximally non-integrable distribution
of hyperplanes . A contact structure  is said to be co-orientable (or exact) if there exists a
1-form α such that α =ker (notice that the maximal non-integrability of  means that αd
restricted to  is of maximal rank).

Tangent vectors to the space of light rays  at the light ray γ are defined by geodesic
variations by null geodesics of γ up to reparametrizations, that is, equivalence classes of
Jacobi fields J along the null geodesic γ (two Jacobi fields being equivalent module γ′). The
contact structure , equipping  with the structure of an odd structure phase space, is
defined as the hyperplanes of Jacobi fields along γ orthogonal to the direction defined by the
geodesic itself, i.e., such that γ′ =Jg( , ) 0.

Notice that skies are Legendrian submanifolds of  , i.e., maximally isotropic sub-
manifold of the contact structure, because the Jacobi field determined by any geodesic var-
iation defining a tangent vector to a sky S(x) will vanish at the event x defining it. Legendrian
submanifolds constitute again the contact analogue of Lagrangian submanifolds.

A co-oriented contact manifold induces a natural relation in the space of Legendrian
submanifolds. Two Legendrian submanifolds L L,0 1 are related if there exists a definite
Legendrian isotopy joining them, that is, a family of Legendrian submanifolds Ls such that
α ∂ ∂F s( * ) is definite in sign, where × →F L: [0, 1] 0 is a diffeomorphism such that

=F s L L( , ) s0 . The family of Legendrian spheres in  is very large (see for instance [El98])
containing a small subspace, the space of skies Σ, of Legendrian spheres which are skies or, in
other words determined by events (in this sense it is possible to think of arbitrary Legendrian
spheres on  as skies associated to ‘virtual events’). Hence there is a natural relation induced
from the natural relation in the space of Legendrian spheres in the space of skies. However the
corresponding induced relation in the space of skies is too coarse and we should restrict to the
relation induced by Legendrian isotopies consisting on skies that will be denoted by ≺Σ .

In section 3 it will be shown that for sky-separating strongly causal space-times the sky
map is an order preserving bijection between the space-time ≺M( , ) and the space of skies
with its natural partial order relation Σ ≺Σ( , ), hence a natural extension of MH theorem would
assert that S should be a homeomorphism (and a diffeomorphism too). However that it is not
possible to use the original MH theorem in this context because it is not known a priori that
the natural topology on Σ is the topology defined by a strongly causal structure. In spite of this
the last assertion is true and constitutes the main result of this work.

Before discussing the structure of the proof we should mention that it was conjectured by
R Low that two events in a +(2 1)-dimensional space-time are causally related iff their
corresponding skies are topologically linked [Lo88], however the conjecture fails to be true in
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higher-dimensions. Actually Low proved that if the linking number of two skies S(x), S(y) in a
globally hyperbolic +(2 1)-dimensional space-time is non-trivial, then the events x y, must
be causally related. This motivated the problem (communicated by Penrose) on Arnold’s
1998 problem list asking to apply knot theory to the study of causality.

Low’s topological linking conjecture was refined by Natario and Tod [Na04] as: ‘let
M g( , ) be a globally hyperbolic +(3 1)-space-time with Cauchy surface diffeomorphic to a
subset of 3, and let  be its manifold of light rays. Then two spacetime points are causally
related in M iff their skies either intersect or are Legendrian linked in  ’, and it is referred
now as Low’s Legendrian conjecture. Recently it was shown by Chernov and Rudyak [Ch08]
and Chernov and Nemirovski [Ch10] that Low’s Legendrian conjecture is actually true in a
globally hyperbolic space with a Cauchy surface whose universal covering is diffeomorphic
to an open domain in n. Even more, Chernov and Nemirovski [Ch14] had extended the
previous ideas to show that the causal structure of a simply connected globally hyperbolic
space-time M can be reconstructed from the partial ordering in the universal covering of
Legendrian isotopy class of the fibres of the sphere bundle of a smooth Cauchy surface.

In the previous paper by the authors [Ba14] it was shown that for a class of strongly
causal space-times their causal structures were determined by the family of causal celestial
curves. Let us recall that a celestial curve Γ is a differentiable curve in the space of light rays
which is tangent everywhere to a sky. A celestial curve is called past (future) causal if it
defines a non-negative (non-positive) Legendrian isotopy of skies. The class of causal
celestial curves emerges as the relevant geometrical structure on  characterizing the original
conformal class of the Lorentzian metric on M. However this theorem was proved under the
assumption that the space-times were non-refocussing (and non-null conjugate).

The non-refocussing property of space-times was introduced by Low in [Lo01, Lo93]
and [Lo06] to guarantee that the sky map S is open: a space-time M is refocussing at ∈x M if
there exists an open neighbourhood U of x such that for every open neighbourhood ⊂V U of
x there exists ∉y U such that every null geodesic through y enters V. This property has been
studied in depth in [Ki11] and, as it was mentioned before, it plays an important role in the
proofs given in [Ba14, proposition 3] and [Ki11, proposition 4.1] that the sky map Σ→S M:
is a homeomorphism. It is important to point out here that the notion of non-refocussing was
also used by Chernov and Rudyak [Ch08] to prove that in a non-refocussing globally
hyperbolic space-time, two events are causally unrelated iff there skies can be deformed by a
sky isotopy to two standard fibres of the sphere fibration of a Cauchy hypersurface.

In the present paper, we hope, the role of the different hypothesis used in the discussions
before are clarified. Actually we will be able to reproduce some the results already presented
in [Ba14] without recurring to the property of non-refocussing, only strongly causal sky-
separating space-times will be required, of course, and the assumption that the manifold of
light rays  is Hausdorff or, equivalently, that M is null pseudo-convex.

In section 3.4 it will be shown that the causal structure of M can be recovered from a
partial ordering introduced in the space of skies by a restricted class of non-negative
Legendrian isotopies called sky isotopies. Without entering in the analysis of Low’s
Legendrian conjecture here, it will be shown that the analysis of the causal structure of M in
terms of Σ is deeply related to the study of celestial curves. It will be shown that celestial
curves are in correspondence with a class of null curves that will be called twisted null curves.
The causal structure of the original space-time will be characterized completely at the end of
section 3 in terms of the partial order relation induced in the space of skies by future (past)
directed twisted null curves.
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Finally, the proof that the space of skies of a sky-separating space-time is homeomorphic
(and diffeomorphic) to the original space proceeds by constructing a basis for the recon-
structive (or Low’s) topology by means of regular open subsets of Σ, where ‘regular’ here
means that the corresponding tangent spaces to the skies elements of the open set ‘pile up’
nicely and define a regular submanifold in the tangent space to  . The method of the proof is
novel. The definition and discussion of the main properties of regular sets constitutes the core
of section 4, where again the properties of twisted causal null curves will be used in a
critical way.

Summarizing, we offer an answer to the question of characterizing a large class of space-
times M such that the pair  Σ( , ) is capable of reconstructing the causal, topological and
differentiable structures ofM. However the question of what is the largest class of space-times
for which Lowʼs Legendrian conjecture holds is still open.

2. The space of light rays and the space of skies

2.1. The space of light rays

Let M be a second countable paracompact m-dimensional smooth manifold ⩾m( 3) and  a
conformal class of Lorentzian metrics of signature −+ ⋯ +( ) such that M becomes a time-
orientable strongly causal space-time. We will denote by g a representative metric on  and
by T a fixed time-like vector field determining a time-orientation on M.

Let  denote the space of unparametrized inextensible future-directed null geodesics,
called in what follows light rays, i.e.,  is the space of equivalence classes of inextensible
smooth null curves γ →I M: , with I an interval in , such that  γ′ =γ′ 0, γ′ <g T( , ) 0, and
two such curves are equivalent if they are related by a reparametrization for some repre-
sentative g of the conformal class  .

We will consider in what follows the fibre bundle  over M consisting of non-zero null
vectors, and the corresponding components of future (past) null vectors ±. If we denote by
 = ∈ ∣ ≠ <+ v v g v T x{ 0, ( , ( )) 0}x x x and  = ∈ ∣ ≠ >− v v g v T x{ 0, ( , ( )) 0}x x x the
components of the fiber over ∈x M of the bundle , then  = ⋃±

∈
±

x M x and   ∪= + −.
We will denote by π → M: the restriction of the canonical tangent bundle projection
→TM M to  (and ±).
Consider now the quotient space + of + by the action of the multiplicative group of

positive real numbers + by scalar multiplication. We will denote again by π the projection of
+ onto M induced by the projection π →+ M: , that is π →+ M: , and π π=u u([ ]) ( )
where ∈ +u[ ] denotes the equivalence class λ λ∣ >u{ 0} defined by the future null vector

∈ +u .
Notice that there is a canonical surjection  σ →+: , given by σ γ=u([ ]) u[ ], where

γu[ ] (or γ[ ]u as it will be used in what follows too) denotes the unparametrized geodesic
containing the unique future-directed parametrized null geodesic γ t( )u such that γ π= u(0) ( )u ,
and γ′ = u(0)u . Moreover, because γ γ λ=λ t t( ) ( )u u , ∈ +u the previous notation is consistent.

2.2. The smooth structure of 

The space of light rays  can be equipped with the structure of a second countable para-
compact smooth manifold of dimension −m2 3 ( =M mdim ) such that the map σ becomes a
submersion in two different ways. We will succinctly describe them in the following
paragraphs.
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First, we can use the local structure of M. Because M is strongly causal, given any event
∈x M , there exists a globally hyperbolic neighbourhood Ux of x and a local smooth Cauchy

hypersurface ⊂C Ux x [Mi08]. We can take Ux small enough such that it is contained in a local
chart of M. Then we can define an atlas for  as follows: Select for any event ∈x M a
globally hyperbolic open neighbourhood Ux as before with Cauchy hypersurface Cx. Consider
the restriction of the projective bundle + to Cx and we denote it by + C( )x . There is a
natural embedding  →+ +i C: ( )x x . The compositions  σ◦ →+i C: ( )x x will pro-
vide the charts of the atlas we are looking for and we denote the open sets

 σ ◦ ⊂+i C( ( ))x x by x (see [Ba14, section 2.3] for more details).
Alternatively, we can induce a smooth structure on  from the smooth structure of the

bundle + by considering the foliation defined by the leaves of the integrable distribution
generated by the vector fields Xg and Δ, where Xg denotes the geodesic spray of a fixed
representative metric in the conformal class  , and Δ is the dilation or Euler field. Because

Δ =X X[ , ]g g, the distribution Δ=D Xspan{ , }g is integrable and denoting by  the corre-
sponding foliation, its space of leaves can be identified canonically with the space of light
rays,   ≅+ . If M is strongly causal it can be shown that  is a regular foliation and the
space of leaves inherits a smooth structure from +. Again, it is not hard to show that both
ways of defining smooth structures on  coincide.

2.3. The tangent bundle T and the contact structure of 

Let Γ ϵ ϵ− →: ( , ) be a differentiable curve such that Γ γ=(0) and let
χ ϵ ϵ− × →s t I M( , ): ( , ) be a geodesic variation by null geodesics of a parametrization γ t( )
of the null geodesic γ, that is, χ is a smooth function such that the curves γ χ= s( · ) ( , · )s are
null geodesics, γ t( )0 is a parametrization of γ, and γ Γ= s[ ] ( )s where γ[ ]s denotes the
unparametrized geodesic containing γs. Then the vector field along γ t( ) defined by

χ= ∂ ∂ ∣ =J t s t s( ) ( , ) s 0 is a Jacobi field. The set of Jacobi fields along γ t( ) will be denoted by
 γ( ) and they satisfy the second order differential equation:

γ γ″ = ′ ′( )J R J, , (2.1)

where J′ denotes the covariant derivative of J along γ′ t( ). Notice that since the geodesic
variation χ is by null geodesics, we have γ〈 ′〉 =J, constant. Actually from equation (2.1) we
get immediately γ γ〈 ′〉″ = 〈 ″ ′〉 =J J, , 0 and γ〈 ′〉J, is an affine function on the affine
parameter t, however because χ s t( , ) is a geodesic variation by null geodesics we have:





χ χ χ χ

χ χ χ χ

= ∂
∂

∂
∂

∂
∂

=
∂
∂
∂

∂
∂

=
∂
∂
∂

∂
∂

= ∂
∂

∂
∂

∂
∂

s t
s t

t
s t

s t
s t

t
s t

t s
s t

t
s t

t s
s t

t
s t

0 ( , ), ( , ) 2 ( , ), ( , )

2 ( , ), ( , ) 2 ( , ), ( , ) ,

but then, evaluating the previous expression at s = 0, we get:

γ′ =
t

J t t
d

d
( ), ( ) 0,

as claimed. We denote by  γ( ) the linear space of Jacobi fields satisfying this property.
Equivalence classes of curves Γ s( ) possessing a first order contact define tangent vectors

to  at γ, hence tangent vectors at γ correspond to equivalence classes of Jacobi fields with
respect to the equivalence relation defined by reparametrization of the geodesic variation χ.
Such reparametrizations will correspond to Jacobi fields of the form γ+ ′at b t( ) ( ), then there
is a canonical projection  γ → γT( ) , mapping each Jacobi field J into a tangent vector
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γ= ′J J[ ] mod whose kernel is given by Jacobi fields proportional to γ′. In what follows the
tangent vectors J[ ] will be denoted again as J unless there is risk of confusion.

There is a canonical contact structure on  defined by the maximally non-integrable
hyperplane distribution  ⊂γ γT formed by the vectors orthogonal to their supporting light
ray, i.e.,

  γ= ∈ ∣ ′ =γ γ{ }J T J, 0 . (2.2)

It is easy to show that  does not depend on the representative metric g used before to define
it, the representative J chosen for the tangent vector J[ ], or the parametrization γ t( ) we chose
for the light ray γ.

An alternative way of realizing this is by observing that the contact distribution  can be
obtained as the quotient of the canonical contact distribution  θ=+ ker g on +, where θg is

the restriction to + of the pull-back of the canonical 1-form θ on T M* by means of the
canonical bundle isomorphism →TM T Mĝ: * defined by the metric g. Notice that + just
depends on the conformal class defined by g because θ λθ=λg g. Then it is easy to check that
the distribution D is contained in + and it quotients down under the canonical projection
 →+ to the contact structure on  , i.e.,  ≅ + D.

The same argument shows that the contact structure  is co-orientable. Let us recall that
if X is a contact manifold with contact distribution a maximally non-integrable codimension
one distribution , the contact structure is said to be exact or co-orientable if there exists a
globally defined 1-form α, such that  α= ker and such 1-form is called a contact 1-form for
the contact structure . Thus the contact structure + on + is co-orientable and θg defines a
co-orientation, that, equivalenttly, determines a reduction of its principal fiber bundle of co-
orientations by selecting its positive co-orientations (positive multiples of the 1-form θg). But
then, this bundle pass to the quotient  and is trivial because its fibre is contractible.

Alternatively, we observe that the canonical contact structure  on  , equation (2.2),
can be locally defined by the family of 1-forms αx defined on the open sets x described in
section 2.2 above, that are given by explicitly as:

 α α γ→ = ′ ∀ ∈γ γ γ γT J J J T: , ( ) , , ,x x

where the parametrization γ t( ) of the light ray γ is determined by the Cauchy surface ⊂C Ux x

and the orientation provided by the temporal vector field T, γ〈 ′ 〉 = −T x( ), (0) 1. The local 1-
forms αx do not define a global 1-form, (unless M is globally hyperbolic, in which case a
global smooth Cauchy surface C can be chosen [Be05], then + C( ) and the 1-form αx above
is globally defined3). Because  is paracompact we can use a partition of the unity
ρ ρ∣ ⩽ ⩽{ 0 1}x x subordinated to a locally finite refinement of the open covering { }x of 
defined by family of globally hyperbolic open neighbourhoods ∣ ∈U x M{ }x , and paste the
local 1-forms to define a globally defined 1-form α ρ α= ∑x x

x whose kernel is .
It is remarkable that the contact structure  is co-orientable because the existence of the

decomposition   ∪= + −, that is, because M is time-orientable. Notice however that in
general the space of non-oriented unparametrized null geodesics still carries a canonical
contact structure (defined by the same formula above, equation (2.2)) which is not co-
orientable.

3 In such case + C( ) is diffeomorphic to the spheres bundle S(TC) over C and is a simple exercise to check that the
1-form α defined above agrees with the canonical 1-form defined on S(TC) by restricting the pull-back of θg to C.
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3. Reconstruction of the causal structure

3.1. The space of skies and its topology

As it was explained in the introduction, the sky of an event is the congruence of light rays
passing through it. Thus if ∈x M denotes an event, the corresponding sky will be denoted
either by S(x) or X and γ γ= ∈ ∣ ∈S x x( ) { }. Notice that there is a canonical diffeo-
morphism σ →+ S x: ( )x x , σ γ=u([ ])x u[ ], ∈ +u[ ] x . Clearly the sky S(x) as a submanifold

of  is diffeomorphic to the sphere of dimension −m 2 because the fibre +x over x of the
fibre bundle  →+ M is the sphere of dimension −m 2. The family of all skies will be
denoted by Σ, that is,

Σ = = ∣ ∈X S x x M{ ( ) },

and the canonical map Σ→S M: , ↦x S x( ), is called the sky map. The sky map is clearly
surjective, however it doesn’t have to be injective as indicated in the introduction.

We will say that M separates skies if S is injective, that is, whenever ≠x y, then
≠S x S y( ) ( ). If M separates skies, the map Σ →P M: , inverse to the sky map, is well defined

and will be called the parachute map.
The space of skies Σ carries a canonical topology, called the reconstructive topology,

defined as follows. Let  ⊂ be an open set, then consider the set of all skies X such that
⊂X . We will denote this set by Σ ( ). It is clear that the family of sets Σ ( ) satisfies

   ∩ ∩Σ Σ Σ=( ) ( ) ( ), then they constitute a basis for a topology on Σ called the
reconstructive topology.

It is easy to prove that the sky map S is continuous with respect to the reconstructive
topology. However it is not obvious if it is open or not. As it was discussed in the introduction
it is one of the objectives of this paper to determine under what conditions S is open, i.e., P
continuous.

We will end these remarks by observing that if =X S x( ) is a sky, then given γ ∈ X , a
tangent vector J to X at γ is determined by a geodesic variation such that all their geodesics
pass through the point x (at time 0 in some parametrization), then =J (0) 0. This implies that

γ〈 ′〉 =J, 0 for all ∈ γJ T X and ⊂TX . Thus skies are Legendrian spheres because
= − = − =γ γT X m m2dim 2( 2) 2 4 dim .

3.2. The partial order in the space of skies

The canonical contact structure on the space of light rays allows to define a natural partial
ordering in the space of skies.

Let us recall first that if X is a contact manifold with contact distribution , a differ-
entiable family Λs, ∈s [0, 1], of diffeomorphic embedded Legendrian submanifolds is called
a Legendrian isotopy. If Λ0 is closed there is always an ambient compactly supported contact
isotopy Ψ × →X X: [0, 1] with Ψ Λ Ψ Λ Λ= =s( ) ( , )s s0 0 (see for instance [Ge06, theorem
2.41]). Thus we will describe a Legendrian isotopy Λs via a parametrization

Λ × →F X: [0, 1]0 verifying Λ Λ Λ= = ⊂F F s X( ) ( , )s s0 0 (the map F being the restriction
of the ambient isotopy Ψ to Λ0) and the map Λ Λ→F :s s0 , given by λ λ=F F s( ) ( , )s , λ Λ∈ 0,
is a diffeomorphism for all ∈s [0, 1]. The Legendrian isotopy Λs is said to be non-negative

(non-positive) if α ∂ ∂ ⩾F s( * )( ) 0 (respect. α ∂ ∂ ⩽F s( * )( ) 0) with F a parametrization of Λs.
It is easy to check that the previous definition does not depend on the chosen parametrization.

If we consider now the class  of Legendrian spheres on the contact manifold X, we can
define a relation on  by saying that ≺S S0 1, ∈S S,0 1 , if there exists a non-negative
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Legendrian isotopy × →F S X: [0, 1]0 , joining S0 and S1, i.e., such that =F S S( )0 0 0,
=F S S( )1 0 1. Notice, however, that in general the relation ≺ fails to define a partial order

because the group of contactomorphisms of X could have non-trivial closed loops based at the
identity (see for instance [El00]).

We will apply now the previous ideas to the contact manifold  of light rays of a given
space-time M. The class  of Legendrian spheres in M contains the space of skies Σ. Then the
relation ≺ described before induces a relation in Σ. However we would like to restrict the
previous relation because it could happen that two skies =X S x( )0 0 and =X S x( )1 1 would be
related, ≺X X0 1, but the non-negative Legendrian isotopy Xs joining X0 and X1 will fall out of
Σ, that is, not all Legendrian spheres Xs will be the sky of a point ∈x Ms .

Let us remark that this is often what happens. Consider, for instance, the simple case of
Minkowski space m, whose space of light rays is contactomorphic to the bundle of spheres S
(TN) over a Cauchy surface that, in this case, can be chosen to be the standard t = 0 section,
i.e., = ∣ ∈ −N x x{(0, ) }m 1 . Now the sky ⊂S x S TN( ) ( ) of an event =x t x( , ) will project
onto the geometrical circle C(x) traced on = =N t{ 0} by the congruence of geodesics
passing through it (for instance if =x x(0, ), then =C x x( ) { }). Let x y, be two events lying
in the same geodesic γ. The projections on = =N t{ 0} of the skies γS s( ( )) of events lying in
the geodesic segment γ γ= =x y[ (0), (1)] will define an isotopy by geometrical circles

γ=C C s( ( ))s on  ≅− Nm 1 that will join the projections C(x) and C(y) of the skies S(x), S(y)
respectively. Notice that any knot L in N determines a Legendrian lifting to S(TN), thus any
deformation C̃s of the isotopy Cs will define a isotopy by Legendrian circles Ss joining S(x)
and S(y). However if the deformed submanifolds C̃s are not geometrical circles, then the
corresponding Legendrian liftings Ss will not be skies. See for instance [Na04] for an explicit
description of projections of skies on a Cauchy surface for a 3-dimensional globally hyper-
bolic space.

Thus we will weaken the relation ≺ by restricting the class of Legendrian isotopies to
those consisting of skies. Hence let × →F X: [0, 1]0 be a Legendrian isotopy such that
=X F X( )s s 0 is the sky of ∈x Ms , i.e., =X S x( )s s and defines a differentiable curve

μ → M: [0, 1] , given by μ =s x( ) s. Conversely, let ∈x M0 be an event and =X S x( )0 0 its
sky. Then any differentiable curve μ → M: [0, 1] with μ = x(0) 0 defines a Legendrian
isotopy parametrized by the function × →μF X: [0, 1]0 given by γ γ=μF s( , )u u[ ] [ ]s

, and

∈ μ
+us s( ) is the parallel transport of ∈ +u x0

along the curve μ. Notice that μF is a Legen-
drian isotopy of skies and μ=F X S s( ) ( ( ))s 0 , ∈s [0, 1].

We will call ‘sky isotopies’ the Legendrian isotopies consisting of skies and the corre-
sponding relation in the space of skies will be denoted by ≺Σ .

On the other hand there is a natural partial order relation in M defined by the conformal
class of the Lorentzian metric. Given two events ∈x y M, , we say that y is in the causal
future of x, and it will be denoted by ≺x y, if ∈ +y J x( ), i.e., y can be reached by a future-
directed causal curve starting at x.

Now it is simple to show that the curve μ → M: [0, 1] is causal past (future) iff μF is a
non-negative (respect. non-positive) sky isotopy. Hence we have the following character-
ization of causality in terms of definite sky isotopies ([Ba14, proposition 4]).

Proposition 1. Let M a strongly causal space-time, ∈x y M, and Σ∈X Y, their
corresponding skies, then ≺x y iff ≺ΣX Y .

The previous observations and results lead naturally to the following:
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Definition 2. A continuous curve χ Σ→: [0, 1] will be causal past (future) if it defines a
non-negative (respect. non-positive) Legendrian isotopy in  . Two skies Σ∈X Y, are said
to be past (future) causally related if there is a causal past (future) curve χ such that χ = X(0)
and χ = Y(1) .

Notice that the causal relation ≺ defines a partial order in M, then because of the previous
proposition, proposition 1, the relation ≺Σ defines a partial order in the space of skies Σ,
provided that M is sky-separating. Thus the sky map S becomes trivially a continuous order
preserving bijection. In order to obtain a characterization similar to that provided by MH
theorem, it would remain to show that S is a diffeomorphism. But if M is null pseudo-convex,
then as a consequence of the ‘Twisted Curve Theorem’, theorem 9, the ‘μ-Lemma’, lemma 8,
and corollary 17 below it will follow that the space-time M is diffeomorphic and order
isomorphic to the space of skies Σ equipped with the partial order ≺Σ and the natural
differentiable structure induced from the space of light rays  .

Corollary 3. Let M be a strongly causal, null pseudo-convex and sky-separating space-time,
then M is diffeomorphic and order isomorphic to its space of skies Σ.

3.3. Celestial curves and twisted null curves

As stated in the introduction the reconstruction theorem in [Ba14] asserts that the conformal
structure of M is captured by the class of causal celestial curves, i.e., by curves in  that are
everywhere tangent to skies. More formally:

Definition 4. A non-zero tangent vector4 ∈ γJ T will be called a celestial vector if there

exists a sky Σ∈S such that ∈ γJ T S. A differentiable curve Γ →I: is called a celestial
curve if Γ′ s( ) is a celestial vector for all ∈s I .

We will analyze in this section the relation existing between celestial curves and the
causality properties of M and of the space of skies Σ. To do that we will introduce first the
notion of directed (future of past) twisted null curve that will prove to be useful in the
arguments to follow.

Definition 5. A continuous curve μ →a b M: [ , ] will be called a piecewise twisted null
curve if there exists a partition = < < … < =a s s s bk0 1 such that for every i = 1,…, k:

(i) μ∣ −( )s s,i i1 is differentiable.

(ii) μ μ′ ′ =s sg( ( ), ( )) 0 for all ∈ −( )s s s,i i1 .

(iii) μ′ s( ) and μ′ s( )D

sd
are linearly independent for all ∈ −( )s s s,i i1 .

We say that μ is future-directed (past-directed) if μ ∣ −s s( , )i i1 is future-directed (respect. past-
directed) for all = …i k1, , . If k = 1 then μ will be simply called twisted null curve.

Now it is clear that if we are given a parametrized null geodesic γ → M: [0, 1] , a curve
λ ϵ ϵ− → M: ( , ) verifying that λ γ=(0) (0), and W s( ) a null vector field along λ such that

γ= ′W (0) (0), the family of curves:

4 In what follows we will use the notation T N to indicate the bundle TN –or its fibres– with the zero-section
removed, that is, in the present situation  = −γ γT T 0{ }.
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= λs t tW sf( , ) exp ( ( )) (3.1)s( )

is a geodesic variation of γ t( ) formed by null geodesics with γ=t tf(0, ) ( ) and
= ∂
∂J t t( ) (0, )
s

f .
If μ is a null curve then we may use μ= ′W s s( ) ( ) and obtain a geodesic variation of γ

that, in addition, defines a celestial curve in  . Actually more is true as it is shown by the
following:

Proposition 6. [Ba14] If the curve Γ →: [0, 1] with Γ γ= ∈s( ) s is celestial then
there exists a differentiable null curve μ → M: [0, 1] such that γ τ τσ= μ s( ) exp ( ( ))s s( ) where

σ ∈ μ
+s( ) s( ) is a differentiable curve proportional to μ′ s( ) wherever μ is regular.

In fact, by construction, the curve μ in proposition 6 runs the points in M such that the
celestial curve Γ is tangent to their skies, in other words, Γ μ′ ∈s T S s( ) ( ( )) for all ∈s [0, 1].

As a consequence of the previous result, we have the following corollary.

Corollary 7. Given a celestial curve Γ →: [0, 1] such that Γ′ ∈ ( )( )s T S p0 0 ,
⩽ ⩽s0 10 , then the curve μ → M: [0, 1] of the previous Proposition, proposition 6, is

unique verifying μ = ∈( )s p M0 0 .

Proof. Consider that there exists μ μ → M, : [0, 1]1 2 associated to Γ in the sense of
proposition 6 and verifying μ μ= =( ) ( )s s p1 0 2 0 0 for ∈s [0, 1]0 . Let us define the set

μ μ= ∈ ={ }A s s s[0, 1]: ( ) ( )1 2 . Clearly, A is not empty and closed in [0, 1]. Consider a
causally convex and normal neighbourhood ⊂U M of p0. Since U is open, then there exist
δ > 0 such that μ δ δ− + ⊂( )( )s s U,i 0 0 for i = 1, 2 (eventually if =s 00 then we consider

μ δ ⊂ U([0, ))i and analogously for =s 10 ). Let us suppose that for δ δ∈ − +( )s s s,0 0 we
have that μ μ≠s s( ) ( )1 2 and since U is causally convex, then the segment of the light ray

Γ γ= ∈s( ) s connecting μ s( )1 and μ s( )2 is totally contained in U and, moreover since
 ∩Γ μ μ′ ∈ ( ) ( )s T S s T S s( ) ( ) ( )1 2 , then the points μ s( )1 and μ s( )2 are mutually conjugated

along γs but, in virtue of [On83, proposition 10.10], this is not possible in a normal
neighbourhood contradicting U is normal. Then we have that μ μ=s s( ) ( )1 2 and hence the set
A is also open in [0, 1]. Since A is open, closed and not empty in [0, 1] then =A [0, 1] and
we conclude that μ μ=1 2. □

Given a celestial curve Γ the unique curve μ associated to it in the sense of proposition 6
passing by ∈ −p S X( )0

1
0 will be called the ‘dust’ of Γ by X0 and denoted by μ Γ

X0
. The

previous arguments can be made more precise by proving that the dust of a celestial curve is a
twisted null curve. This is the content of the next lemma.

Lemma 8 (μ-Lemma). Let Γ →: [0, 1] be a celestial curve such that Γ′ ∈ T X(0) 0 with
Σ∈X0 . Then there exists a unique curve χ Σ→Γ : [0, 1]X0

such that it is continuous in Low’s

topology and verifies χ =Γ X(0)X 0
0

and Γ χ′ ∈ Γs T s( ) ( )X0
. Moreover, the dust curve μ Γ

X0
is a

piecewise twisted null curve in M running along the image of χ◦ Γ−S X
1

0
.

Conversely, given a regular twisted null curve μ → M: [0, 1] such that
μ = = − ( )x S X(0) 0

1
0 , μ μ′ ≠ ≠ ′(0) 0 (1), then the curve Γ →μ: [0, 1] defined by the

variation of null geodesics × →I Mx: [0, 1] such that
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μ Γ= ′ =μ
μs t t s sx( , ) exp ( ( )) ( )s t( )

is celestial with Γ′ ∈ T X(0) 0 and χ μ=Γ s S s( ) ( ( ))X0
.

Proof. Let Γ →: [0, 1] be a celestial curve such that Γ γ= ∈s( ) s and Γ′ ∈ T X(0) 0

with Σ= ∈( )X S x0 0 . By corollary 7, there exists a unique differentiable curve
μ → M: [0, 1] and a partition

= ⩽ < ⩽ < ⋯ < ⩽ < ⩽ = ⊂− −{ }a b a b a b a b0 1 [0, 1]n n n n1 1 2 2 1 1

such that

γ τ σ= μ t s( ) exp ( ( )), (3.2)s s( )

where σ →: [0, 1] is a differentiable curve verifying σ λ μ= ′s s s( ) ( ) ( )k for ∈ +( )s b a,k k 1

and λk differentiable with = … −k n1, , 1. This curve μ also verifies μ = ∈s p M( ) k for all
∈ [ ]s a b,k k .

Now, we can define the curve χ μ Σ= ◦ →Γ S : [0, 1]X0
. Recall that for an open set

 ⊂ containing a sky Σ∈X , the set of all skies contained in  is denoted as Σ ( ). By
the definition of the Low’s topology, the set Σ ( ) is open in Σ and these collection of open
sets forms a basis at X.

In order to show that χ Γ
X0

is continuous, we will show that, given any  ⊂ containing

a sky μ Σ∈S s( ( )) then χ ΣΓ −( ) ( ( ))X

1

0
is open in [0, 1] is verified. So, take any ∈s [0, 1]

and consider an open set  ⊂ such that χ ⊂Γ s( )X0
and then χ Σ∈Γ s( ) ( )X0

. Choose a

collection of nested intervals ⊂In
s such that = ⋂s I{ } n n

s. Let us suppose that there exists
∈s In n

s such that χ Σ∉Γ ( )s ( )X n
0

. Then there is a light ray γ χ Σ∈ ∈Γ ( )sn X n
0

such that
γ ∉n . Recall that a light ray is fully determined by a point ∈p M and a direction
∈ +v[ ] p, so γn can be defined by μ γ∈ ⊂( )s Mn n and a null direction ∈ μ

+v[ ] ( )n sn
. Since

μ μ=( )s slim ( )n and due to the compactness of the fibres μ
+

( )sn
, then with no lack of

generality taking a subsequence of v[ ]n if necessary, there exists a direction ∈ μ
+v[ ] s( )

defining, together with μ s( ), the light ray γ such that γ γ χ= ∈ ⊂Γ slim ( )n X0
.

But since  is open, there exists an integer K such that for every >n K we have that
γ ∈n contradicting that χ Σ∉Γ ( )s ( )X n

0
. Therefore there exist In

s such that

χ Σ∈Γ ( )s ( )X n
0

and hence χ ΣΓ −( ) ( ( ))X

1

0
is open in [0, 1].

To obtain the dust μ Γ
X0
, we will cut off the segments μ∣( )a b,k k

from μ and glue together the
segments μ∣ +⎡⎣ ⎤⎦b a,k k 1 . We call =c 01 and for every = … −k n1, , 1, let us define

= − ∑ − ∈+ + = ( )c a b a [0, 1]k k i
k

i i1 1 1 and consider the change of parameter

→+ +⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦h c c b a: , ,k k k k k1 1 defined by τ τ= + −+ +h a c( )k k k1 1. Since μ is differentiable
and hk is a diffeomorphism for every = … −k n1, , 1 then μ τ μ τ= ◦ h( ) ( )k k is

differentiable for τ ∈ +( )c c,k k 1 . Moreover, since μ τ μ τ′ = ′( )h( ) ( )k k then

μ τ μ τ μ τ μ τ′ ′ = ′ ′ =( ) ( )( ) ( )h hg g( ), ( ) ( ) , ( ) 0k k k k k k
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for τ ∈ +( )c c,k k 1 . Also, the covariant derivatives verify

μ τ
τ

τ μ τ τ
μ τ μ τ′

= ″ ′ + ′
′

=
′

( ) ( )
( ) ( )D

h h h
D h

s

D h

s

( )

d
( ) ( ) ( )

( )

d

( )

d
k

k k k
k k2

then denoting Js as the Jacobi field along γs defined by the variation 3.2, we have
μ= ′J s(0) ( )s and

σ λ μ
λ μ λ μ′ = =

′
= ′ ′ + ′( )

J
D s

s

D s s

s
s s s

D s

s
(0)

( )

d

( ) ( )

d
( ) ( ) ( )

( )

ds
k

k k

for ∈ +( )s b a,k k 1 . Since Γ is celestial, then γ≠ ′( )J 0 mods s and so, μ ′D s

s

( )

d
is not proportional

to μ′ s( ) for ∈ +( )s b a,k k 1 , therefore
μ τ

τ
′D ( )

d
k and μ τ′( )k are linearly independent for

τ ∈ +( )c c,k k 1 . We have shown that for any = … −k n1, , 1 the curves μk are twisted

null curves. Since =−
+ +

−
+( ) ( )h a h bk k k k

1
1 1

1
1 then all the segments μk glue together

continuously. Therefore we can define, with no ambiguity, the curve μ →Γ a M: [0, ]X0
such

that μ τ μ τ=Γ ( ) ( )X k0
if τ ∈ +⎡⎣ ⎤⎦c c,k k 1 for = −k n1 ,..., 1 and ∪= =

−
+⎡⎣ ⎤⎦a c c[0, ] ,k

n
k k1

1
1 . This

curve μ Γ
X0

is then a piecewise twisted null curve associated to the partition

= < < ⋯ < = ⊂{ }c c c a a0 [0, ]n1 2 and it is unique except by reparametrization.
Conversely, let us consider a twisted null curve μ → M: [0, 1] such that

μ = = − ( )x S X(0) 0
1

0 . Then, we can define the variation of null geodesics
× →I Mx: [0, 1] such that

μ γ= ′ =μs t t s tx( , ) exp ( ( )) ( )s s( )

which verifies γ μ′ = ′ s(0) ( )s . Now, define the curve Γ γ= ∈μ s( ) s for every ∈s [0, 1].
The Jacobi field Js of the variation x along γs verifies μ γ= ′ = ′J s(0) ( ) (0)s s and

′ = μ′J s(0) ( )s
D

sd
and, since μ is twisted null then μ′D

sd
is not proportional to γ′s . Therefore

Γ γ γ′ = ′ ≠ ′μ ( ) ( )( ) s J( ) mod 0 mods s s and hence

 Γ γ μ′ ∈ =μ ( )( ) s T S T S s( ) (0) ( ( ))s

then Γ μ is celestial. □

3.4. Celestial curves and the partial order in the space of skies

We have already pointed it out that if ≺x y, then their corresponding skies are related
≺ΣS x S y( ) ( ). The discussion to follow will show that such relation can actually be refined

by proving that in case of ∈ +y I x( )5, there exists a directed piecewise twisted null curve
joining x and y, hence relating the causal properties of Σ to the existence of appropriate
celestial curves.

Theorem 9 (Twisted null curve theorem). Let ∈p q M, such that ∈ +q I p( ), then there
exists a future-directed piecewise twisted null curve μ joining p to q.

To prove the previous theorem we will need some lemmas.

5 Recall that ∈ +y I x( ) means that there exists a future-directed time-like curve from x to y.
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Lemma 10. Let M be a 3-dimensional space-time and γ →I M: be a future-directed time-
like geodesic. Then there exists δ > 0 such that for any δ∈ +t t t( , ]0 0 , there exists a future-
directed twisted null curve μ joining γ t( )0 to γ t( ).

Proof. Given the future-directed time-like geodesic γ →I M: and ∈t I0 , it is known, e.g.
by [La03, section 97] and [Pe72, definiton 7.13], that there exists a synchronous coordinate
system ϕ =U t x y( , ( , , )) with γ ⊂( )t U0 in which the metric g of M can be written as

=
−⎛

⎝
⎜⎜⎜

⎞

⎠
⎟⎟⎟( )g g g

g g

1 0 0
0

0
,ij 11 12

12 22

where ≡g g t x y( , , )ij ij for i, j = 1, 2, U is causally convex and the expression of the geodesic γ

in these coordinates is ϕ γ = ∈s s( ( )) ( , 0, 0) 3. For a point γ ∈( )t U , it is possible to find
>R 0 such that the compact set

= + ⩽ ⩽ ⩽{ }U t x y x y R t t t( , , ): ,0
2 2

0

is contained in U.
As candidates for the required twisted null curve, we will study curves μr such that

ϕ μ = −( ) ( )s f s r s r s( ) ( ), (1 cos ), sin ,r r

where ⩽ ⩽r R0 2 and =f f s( )r r is a function. If μr is a null curve, then μ μ′ ′ =( )g , 0r r and
therefore

− ′ + + + =( )f s r g s r g s s r g s( ) sin 2 sin cos cos 0,r

2 2
11

2 2
12

2
22

2

where ϕ μ= ( )( )g g s( )ij ij r . Thus, we have a first order ordinary differential equation which

describes a null curve passing through γ ( )t0

′ = + +
=

⎪
⎪

⎧
⎨
⎩

f s r g s g s s g s

f t

( ) sin 2 sin cos cos

(0) .
(3.3)r

r

11
2

12 22
2

0

Since the metric in the hypersurfaces =t c{ } with ⩽ ⩽t c t0 is positive definite, then the term
under the square root in (3.3) is always positive. Moreover, since ′ >f 0r then μr is future.

Let us show that we can find >r 0 such that μr is twisted. A simple calculation gives

ϕ
μ

φ φ φ
′

= ″ + + − +μ
⎛
⎝⎜

⎞
⎠⎟ ( )

D

s
s f r r s r s r r s r s r r s(d )

d
( ) ( , ), cos ( , ), sin ( , ) ,s

r
r( )

2
0

2
1

2
2r

where φ φ= r s( , )i i , =i 0, 1, 2, are continuous functions in U depending on the Christoffel

symbols and the components of μ′r . In order to show that
μ′D

sd
r and μ′r are linearly independent, it

is enough to see that the determinant of their components x, y does not cancel out, so

φ

φ
φ φ

+

− +
= + +( )( )

r s r r s r s

r s r r s r s
r r r s s r s s

cos ( , ) sin

sin ( , ) cos
1 ( , ) cos ( , ) sin

2
1

2
2

2
1 2

hence, since φ1 and φ2 are continuous in U, they are also bounded in the compact set U0 and
there exists ⩽r R 20 such that
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φ φ+ + ≠( )r r s s r s s1 ( , ) cos ( , ) sin 01 2

for all ∈ ](r r0, 0 , and in this case,
μ′D

sd
r and μ′r are linearly independent.

At this moment, we have seen that μr is a twisted null curve passing through γ ( )t0 for
< ⩽r r0 0, and it remains to show that there exists δ > 0 such that μr also passes through γ t( )

for every δ∈ + ](t t t,0 0 .
Now, we want to prove that for every ∈ ](r r0, 0 there exists >s 0r such that =f s t( )r r .

Given ∈ ](r r0, 0 , we define ω = { }s f ssup : ( )existsr r . Let us assume that

= ⩽ω↦ f s c tlim ( )s rr . In case of ω < +∞r , the solution fr of equation (3.3) verifying the
initial condition ω =f c( )r r would coincide with =f f s( )r r for ω<s r contradicting the
maximality of fr up to ωr because in that case fr could be extended beyond ω=s r . On the
other hand, if ω =+∞r , the derivability of fr would imply that ′ =↦+∞f slim ( ) 0s r and hence
the curve solution μr would approximate to the curve βr verifying

β = − ∈s c r s r s U( ) ( , (1 cos ), sin )r 0

in TM, i.e. for every ∈s0 the sequence


π= + ∈{ }s s n2n n0 would verify

μ β μ β= ′ = ′
↦+∞ ↦+∞

s s s slim ( ) ( )and lim ( ) ( ).
s

r n r
s

r n r0 0

By the continuity of the metric g then we have

μ μ β β′ ′ = ′ ′ ≠
↦+∞

( ) ( )s s s sg glim ( ), ( ) ( ), ( ) 0
s

r n r n r r0 0

since βr is contained in the space-like hypersurface =t c{ }, but this contradicts that

μ μ′ ′ =( )g , 0r r . Therefore, independently from ωr , for every ∈ ](r r0, 0 we have that

>ω↦ f s tlim ( )s rr and hence, for every ∈ ](r r0, 0 there exists ω∈ ( )s 0,r r such that
=f s t( )r r .

Since the functions gij are continuous in U for i, j = 1, 2, then their restrictions to the
compact set U0 reach their maximum, therefore there exists >M 0ij such that

⩽g t x y M( , , )ij ij for ∈t x y U( , , ) 0. Then,

< ′ = + + ⩽

⩽ + + ⩽

⩽ + + =

f s r g s g s s g s

r g s g s s g s

r M M M rM

0 ( ) sin 2 sin cos cos

sin 2 sin cos cos

2 ,

r 11
2

12 22
2

11
2

12 22
2

11 12 22

where = + + ∈M M M M211 12 22 is independent from r and s. So integrating, we have
that ⩽ ⩽ +t f s rMs t( )r0 0 and therefore

= ⩽ + ⇒
−

⩽t f s rMs t
t t

rM
s( )r r r r0

0

then there exists ρ ∈ ]( r0, 0 small enough such that π⩾s 2r for all ρ∈r (0, ] and hence the
parameter s of fr can be extended beyond π=s 2 . Since ′ >ρf s( ) 0 then >ρf s t( ) 0 for all
>s 0, therefore there exists δ > 0 such that π δ= +ρf t(2 ) 0 . So, by the inequality

π π⩽ ⩽ +t f rM t(2 ) 2r0 0 we have that π =↦ f tlim (2 )r r0 0 and for every δ∈ + ](t t t,0 0 there
exists ρ∈r (0, ] such that

μ ϕ γ= =( ) ( )t t(0) , 0, 0 ( )r 0 0
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μ π π ϕ γ= = =( )f t t(2 ) (2 ), 0, 0 ( , 0, 0) ( ( ))r r

therefore we have shown that there exists δ > 0 such that for every δ∈ + ](t t t,0 0 the points
γ ( )t0 and γ t( ) can be connected by some future-directed twisted null curve μr. Analogously,
this construction can be done to obtain a future-directed twisted null curve joining γ t( ) to
γ ( )t0 for all δ∈ −[ )t t t,0 0 . □

Lemma 11. The statement of lemma 10 is true in a m-dimensional spacetime M.

Proof. We can find a synchronous coordinate system ϕU( , ) with ϕ = … −( )t x x, , , m1 1 (as
done previously) such that the expression of the geodesic γ in these coordinates is

ϕ γ = … ∈s s( ( )) ( , 0, , 0) m, so this chart is adapted to γ. Consider the restriction

ϕ= … = = … − ⊂−{ }V t x x x i m U( , , , ): 0, 3, , 1 ( )m i1 1

then ϕ= ⊂−N V M( )1 is a 3-dimensional manifold embedded in M. Moreover, by [On83,
lemma 4.3] we have that Levi-Civita connection in N coincides with the orthogonal projection
over N of the Levi-Civita connection in M, hence we have = ( )tanD

s

D

sd d

N

where D

sd

N
and D

sd
denote the covariant derivatives in N and M respectively. So the geodesics in M contained in
N are also geodesics in N and the restriction ϕ ∣ =( )N t x x, ( , , )N 1 2 of the synchronous
coordinate system is still a synchronous coordinate system for N. Then, since γ is a geodesic
contained in N, by step 10, there exists δ > 0 and a future-directed twisted null curve μ ⊂ N
such that μ joins γ ( )t0 to γ δ+( )t0 . Since the metric in N is the restriction of the metric in M,

then μ as curve in M is also null. Finally, since μ′ and =μ μ′ ′( )tanD

s

D

sd d

N

are lineally

independent in μT Ns( ) then is animmediate consequence that μ′ and μ′D

sd
are lineally

independent in μT Ms( ) . Therefore, we have shown that there exists δ > 0 and μ a future-
directed twisted null curve in M joining γ ( )t0 to γ δ+( )t0 .

We can now prove as a direct consequence of lemmas 10 and 11 the following:

Proposition 12. Let γ →I M: be a future-directed timelike geodesic. Then, for any
∈t t I,0 1 , there exists a future-directed piecewise twisted null curve μ joining γ ( )t0 to γ t( )1 .

Proof. By lemma 11, for all ∈ [ ]t t t,0 1 there exists an open interval
δ δ= − + ⊂ [ ][ ]I t t t t, ,t t t 0 1 relative to [ ]t t,0 1 such that γ t( ) can be joined to γ u( ) with

∈u It by means of a piecewise twisted null curve. By the compactness of [ ]t t,0 1 , we can
extract a finite covering = …{ }In n N1, ,

such that, with no lack of generality, verifies

∩ ≠ ∅ ⇔ = ±I I k i 1i k . We can choose a partition

= < < ⋯ < < < =− −{ }t a b a b a tN N N0 1 1 1 1 1

such that ∈a Ii i and ∩∈ +b I Ii i i 1 and therefore there exists future-directed twisted null
curves joining γ ( )ai to γ ( )bi and γ ( )bi to γ +( )ai 1 for = … −i N1, , 1. The union of these
curves forms a future-directed piecewise twisted null curve connecting γ ( )t0 to γ t( )1 . □

Now we can proceed with the proof of theorem 9.
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Proof. Theorem 9: consider ∈p q M, such that ∈ +q I p( ), then there exists a continuous
future-directed time-like curve λ connecting p and q. By compactness of λ between p and q,
there exists a finite covering = …{ }Wk k K1, ,

of globally hyperbolic and causally convex open
sets, then it is possible to built a continuous curve γ joining p and q formed by segments
γ ⊂ Wk k of future-directed time-like geodesics with endpoints at λ. So γ becomes a future-
directed piecewise time-like geodesic.

By proposition 12, the endpoints of the time-like geodesic segments γk of γ can be
connected by a future-directed piecewise twisted null curve μk. Since γ is continuous, we can
glue together all μk to obtain another piecewise twisted null curve μ joining p and q. □

Notice that if M is globally hyperbolic, the proof simplifies greatly. In fact if M is
globally hyperbolic, then it is also causally convex and the curve γ can be considered as a
time-like geodesic and applying proposition 12, the result follows.

4. The smooth structure of the space of skies and the non-refocussing property

4.1. Regular sets

The smooth structure on the space of skies will be obtained by selecting a family of
neighbourhoods possessing the properties that will make obvious the construction of an atlas
on Σ. We will call such neighbourhoods regular neighbourhoods and they refine the notion of
regular set already introduced in [Ba14, definiton 3].

From now on, let M be a strongly causal, null pseudo-convex, sky-separating space-time.
Let Σ⊂W be a non-empty set satisfying the conditions:

(i)  ∩ = ∅T X T Y for all ≠ ∈X Y W .
(ii) The union

  = ⋃ ⊂
∈

W T X T
X W

is a regular −m(3 4)–dimensional submanifold of T .

(iii) Let  be the distribution in W whose leaves are =X͠ T X . Then the space of leaves
 = ∈ =͠͠ { }W X X W W: is a differentiable quotient manifold.

It is clear that in this case, W͠ can be identified with W via the bijective map

Θ →
↦ ͠
͠W W

X X
:

(4.1)

and hence W inherits the quotient topology such that ⊂U W is open  ⇔ = ⋃ ⊂∈U T X WX U

is open, and also a differentiable structure from W͠ . So, we will denote W equipped with the
previous structure as ≃ ͠∼W W( ) .

(iv) For every ∈X W0 and every celestial curve Γ ϵI: → such that Γ′(0) ∈T X0,
(a) there exists δ< ∈ ϵI0 such that Γ′ →δI W: with δ δ= −δI ( , ),
(b) the curve χ →Γ

δ
∼I W:X

( )
0

defined in lemma 8 is differentiable.

(v) Given ∈͠ ∼ ͠X Y W, , for any causal curve χ Σ→a b: [ , ] , joining X and Y, then χ ∈s W( )
for all ∈s a b[ , ].

Now we are ready to state the next definition.
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Definition 13. A not–empty subset Σ⊂W is said to be a regular subset, and denoted as
Σ⊂W reg , if it verifies conditions (i)–(v) above.

Observe that both, the definition of regular subset and the differentiable structure of
≃ ͠∼W W( ) , depend only on  and Σ.

4.2. The topology of the space of skies and regular sets

We will show next that the class of regular subsets is not empty.
We will say that ⊂V M is an open normal set if V is globally hyperbolic, causally

convex, relatively compact, open set of M. A classical theorem due to Whitehead guarantees
the existence of convex normal neighbourhoods V at any point ∈x M , (see [On83, chapter 5]
and [Mi08, theorem 2.1 and definition 3.22] for a treatment of this result in Lorentz mani-
folds). Thus for a strongly causal space-time M there exists a basis of neighbourhoods at any
∈p M formed by normal open sets.

Proposition 14. Let ⊂V M be a normal open set, then Σ= ⊂U S V( ) reg is regular.

Moreover, → ∼S V U: ( ) is a diffeomorphism.

Proof. Let ⊂V M be a normal open set, then condition (i) is verified since V is causally
convex. By [Ba14, theorem 1], condition (ii) is verified. The condition (iii) and the fact of

→ ∼S V U: ( ) being a diffeomorphism are consequences of [Ba14, theorem 2]. Lemma 8
trivially implies ((iv)a) and permits to construct the curve χ Γ

X0
as the following composition of

differentiable maps




Γ π Θ

Γ χ χ
⟶ ⟶ ⟶
↦ ′ ↦ ↦

͠δ
Γ Γ

−

∼I U U U

s s T s s( ) ( ) ( )X X

1

( )

0 0

then ((iv)b) is verified. Finally, in order to verify (v), we know that Γ′ ∈a T X( ) , Γ′ ∈b T Y( )
and ∈X Y U, , by lemma 8, there exists a piecewise twisted null curve μ →a b M: [ , ] such
that μ = ∈a x V( ) and μ = ∈b y V( ) . Since V is causally convex, then μ is fully contained in
V and therefore χ μ= ◦S is fully contained in =U S V( ). So, we conclude that Σ⊂U reg .

We may call the regular sets =U S V( ) with V open normal, elementary regular sets in Σ.
Using now the technical lemma:

Lemma 15. Given Σ⊂W reg a regular set and = ∈( )X S x W0 0 , then for any twisted null

curve μ →ϵI M: such that μ = x(0) 0 there exists δ > 0 verifying that μ δ δ− ⊂ −S W(( , )) ( )1 .

Proof. Consider Σ= ∈ ⊂( )X S x W0 0 reg , then by lemma 8, there exists a celestial curve

Γ →ϵI: and a continuous curve χ Σ→Γ
ϵI:X0

such that χ μ= ◦Γ SX0
. Since W is regular,

then there exists δ > 0 such that χ δ δ− ⊂ →Γ
ϵ

∼I W: ( , )X
( )

0
is differentiable. Then we have

μ δ δ χ δ δ− = ◦ − ⊂ =Γ− − ∼ −( )S S W S W(( , )) (( , )) ( ).X
1 1 ( ) 1

0

□

It is easy to prove the following:
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Theorem 16. Let Σ⊂W reg be a regular set, then −S W( )1 is open in M.

Proof. Given Σ⊂W reg and consider ∈X W0 such that = ∈− ( )x S X M0
1

0 . Take a future-
directed twisted null curve μ →ϵI M: with μ = x(0) 0 , then by lemma 15, there exists δ > 0
verifying that μ δ δ− ⊂ −S W(( , )) ( )1 . Without any lack of generality, we can assume that δ is
small enough for ∩μ δ μ δ= −+ −V I I( ( )) ( ( )) being globally hyperbolic and causally convex.
Observe that ∈x V0 and for any ∈p V , we have that μ δ∈ −+p I ( ( )), then by theorem 9, for
any ∈p V there exists a future-directed piecewise twisted null curve μp connecting μ δ−( )
and μ δ( ) passing through p (see figure 1). Now, since W is regular, then by property (v), the
curve χ μ= ◦Sp p is fully contained in W, therefore ∈ −p S W( )1 and hence ⊂ −V S W( )1 and
−S W( )1 is open in M. □

It is interesting to point out that whenever M is globally hyperbolic, then any non-empty
∩μ δ μ δ= −+ −V I I( ( )) ( ( )) is automatically globally hyperbolic and the conclusion of the

theorem is reached easily without referring to the previous lemmas.
In virtue of proposition 14 and theorem 16, since the sky map S is an homeomorphism

with the reconstructive topology in Σ, it is clear that this topology coincides with the topology
generated by regular sets in Σ. So, by [Ba14, corollary 1,theorem 2 and corollary 2], we get
the following corollary.

Corollary 17. The family of regular sets Σ∣ ⊂{ }W W reg is a basis for the reconstructive
topology of Σ. Moreover, there exists a unique differentiable structure in Σ compatible with
the manifolds Σ⊂∼W ( ) that makes of Σ→S M: a diffeomorphism.

Figure 1. For any point ∈ −x S W( )0
1 there is a diamond-shaped set V such that

∈ ⊂ −x V S W( )0
1 (any point ∈p V can be joined to its end-points by piecewise

twisted null curves), hence −S W( )1 is open.
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The following lemma corroborates the relation between neighbourhood basis ofM and its
space of skies Σ and will be used to establish the conclusion that for strongly causal and null
pseudo-convex space-times, sky-separating implies non-refocussing.

Lemma 18. Let  x( ) be a neighbourhood basis consisting on globally hyperbolic, normal
and causally convex open sets. For any ∈U x( ), denote by   ∩γ γ= ∈ ∣ ≠ ∅U{ }.
Then  Σ ∣ ∈U x{ ( ) ( )} is a neighbourhood basis of Σ∈S x( ) .

Proof. Because the bundle  →M M( ) is locally trivial, let us take a neighbourhood
⊂V M of ∈x M such that there is a diffeomorphism  φ × →−V V: ( )m 2 with

 φ × =−( )y{ } m
y

2 for all ∈y V .

Consider the map   σ → ⊂V: ( ) defined by σ γ=v([ ]) v[ ]. It is clear that σ is

continuous and hence  σ σ φ= ◦ × →−V: m 2 is also so. Observe that

σ= × −( )S x x( ) { } ,m 2

and  σ × =−V( )m 2 .
Now, take any open  ⊂ containing the sky S x( ), then

 σ σ× ⊂ ⊂− − −x S x{ } ( ( )) ( )m 2 1 1

Since σ is continuous then σ− ( )1 is open in × −V m 2.
For any ∈ × −y q V( , ) m 2 there exists a neighbourhood basis whose elements are
= ×U K Hy q y q( , ) where ⊂K Vy and ⊂ −H q m 2 are open neighbourhoods of ∈y V and

∈ −q m 2 respectively. Then for any ∈ × −x q x( , ) { } m 2, there exist U y q( , ) with
σ∈ ⊂ −x q U W( , ) ( )y q( , ) 1 . Since × −x{ } m 2 is compact, then there exists a finite sub-

covering σ= × ⊂
= …

−{ }U K H ( )j j j
j n1, ,

1 . Then

 σ× ⊂ ⋃ ⊂−

=

−x U{ } ( ).m

j

n

j
2

1

1

Observe that = ⋂ =K Kj
n

j0 1 is an open neighbourhood of x and ⋃ ==
−Hj

n
j

m
1

2.
Since  x( ) is a neighbourhood basis of ∈x M , there exists ∈U x( ) such that U⊂K0.
For any ∈ × −y q U( , ) m 2, we have that

∈ × ⋃
=

y q U H( , )
j

n

j
1

therefore there exists j such that ∈q Hj and since ∈ ⊂y K K j0 , then σ∈ ⊂ −y q U W( , ) ( )j
1 .

This implies that

  σ× ⊂ × ⊂− − −x U{ } ( ).m m2 2 1

and hence

 σ⊂ × ⊂−( )S x U( ) m 2

and since  σ= × −( )U m 2 then

 Σ Σ∈ ⊂S x( ) ( ) ( )

is verified. Then  Σ ∈U x{ ( ): ( )} is a neighbourhood basis of Σ∈S x( ) as we
claimed. □

A direct consequence of the previous results is the following:
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Theorem 19. Let M be a strongly causal null pseudo-convex, space-time separating skies
such that it is refocussing at x, then the sky map Σ→S M: is not open.

Proof. We will show that there exists a sequence x{ }n in M that does not converge to x and
such that S x( )n converges to S(x) in Σ does contradicting the statement that S is open.

Because M is refocussing at x there exists an open neighbourhood ⊂W M of x such that
for every open neighbourhood ⊂V W of x there is ∉y W such that every light ray passing
through y enters V. Let us choose a sequence of globally hyperbolic neighbourhoods ⊂V Wn

x

of x such that ∩ =V x{ }n n
x . More specifically, let σ t( ) be a time-like curve contained on a

causally convex, globally hyperbolic neighbourhood ⊂U W of x and let an (respect. bn) be a
sequence of points on σ, in the past (future) of x, such that →a xn (respect. →b xn ). Now we
choose the sequence of open neighbourhoods as ∩= + −V I a I b( ) ( )n

x
n n .

Then for any Vn
x in the previous sequence there exists ∉x Wn such that ∩γ ≠ ∅Vn

x and
γ∈ ∈xn . Hence, since ∉x Wn for all n, then xn cannot converge to x.

On the other hand, considering the open subsets   ∩γ γ= ∈ ∣ ≠ ∅V{ }n n
x , and

because of lemma 18, it is clear that Σ ( )n define a neighbourhood basis at S(x) in Σ, and
because Σ∈S x( ) ( )n n then we conclude that →S x S x( ) ( )n . □

Then we get as a corollary of theorem 19:

Corollary 20. If M is a strongly causal, null pseudo-convex, space-time such that the skies of
M separate events, then M is non-refocussing.

Remark 21. As it was indicated before, section 2.3, if M is globally hyperbolic, the space of
light rays  can be identified with the bundle of spheres over C where C is a space-like
smooth Cauchy surface [Be05]. Now, lemma 18 can be slightly reformulated saying that if
 x( )C is any neighbourhood basis at x in C, then Σ ∣ ∈S TU U x{ ( ( )) ( )}C is a
neighbourhood basis of Σ∈S x( ) , and theorem 19 follows again from it.

5. Conclusions and discussion

We have reached the main conclusion that the topological, differentiable and causal structures
of sky-separating strongly causal space-times can be reconstructed from the corresponding
ones in their spaces of light rays and skies provided that they are null pseudo-convex. It is
also important to point out that because of lemma 18 any strongly causal space-time is locally
sky-separating, thus the property of being sky-separating has a global character. Moreover
under being sky-separating implies that the space-time is non-refocussing.

The description of the causal structure of a space-time in terms of the partial order
defined in the space of skies by non-negative Legendrian isotopies, provides a new inter-
pretation to the Malament–Hawking theorem, [Ha76, Ma77], in the sense that such partial
order on the space of skies characterizes the conformal structure of the original space-time.
Actually, suppose that  Φ →: 1 2 is a sky preserving diffeomorphism between the spaces
of light rays of two strongly causal sky-separating space-times M1 and M2. If the map Φ
preserves the partial orders ≺a, =a 1, 2 defined in the spaces of skies Σ1 and Σ, i.e., if ≺X Y1

then Φ Φ≺X Y( ) ( )2 , for any Σ∈X Y, 1, then because of corollary 3, we have that Φ induces a
causal diffeomorphism φ →M M: 1 2, hence a conformal diffeomorphism.

The characterization of causal relations in terms of sky isotopies opens a new direction in
the foundations of the causal sets programme of quantum gravity [Br91, Ri00], as it shows
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that the contact structure in the space of light rays is needed for the description of causal
structures.

It is also worth pointing out here that the causal completion of a given spacetime is just
continuous and often fails to be smooth space. According to the reconstruction theorems
discussed in this paper, a similar analysis could be performed directly on the space of light
rays and skies. In this setting a concrete proposal of a new causal boundary construction was
proposed by R Low [Lo06] but has not been discussed in detail so far.

A particularly interesting situation happens for three dimensional space-times that will be
discussed in a forthcoming paper. In such case the space of light rays happens to be three
dimensional too as well as the space of skies. Low’s causal boundary can be constructed
explicitly and their topology can then be compared with that of the original space-time.
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