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On a global analytic Positivstellensatz

Francesca Acquistapace, Fabrizio Broglia and José F. Fernando

Abstract. We consider several modified versions of the Positivstellensatz for global analytic

functions that involve infinite sums of squares and/or positive semidefinite analytic functions. We

obtain a general local-global criterion which localizes the obstruction to have such a global result.

This criterion allows us to get completely satisfactory results for analytic curves, normal analytic

surfaces and real coherent analytic sets whose connected components are all compact.

1. Introduction and statements of the results

The Positivstellensatz appears as an algebraic certificate in the framework of
the semialgebraic geometry to determine when certain types of real sets are empty.
This kind of certificate can be formulated in general for any commutative ring A
via the real spectrum Specr(A) as follows:

Theorem 1.1. (Abstract Positivstellensatz) Let f1, ..., fs, g1, ..., gr,m1, ...,

mk∈A. The following assertions are equivalent :
(a) The set {f1=0, ..., fs=0, g1≥0, ..., gr≥0,m1 �=0, ...,mk �=0}⊂Specr(A) is

empty, where we abuse notation in an obvious way;
(b) There exists a relation in A of the form

∑

ν

aν

r∏

k=1

gνk

k +
( k∏

j=1

m
nj

j

)2

+
s∑

i=1

bifi = 0,

where each ni is a non-negative integer, ν=(ν1, ..., νr)∈{0, 1}r is a multiindex, aν is
a sum of squares in A for each ν, and bi∈A for i=1, ..., s.
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For a proof of the previous result see for instance [9, Proposition 4.4.1]. In what
follows, to simplify notation, given g1, ..., gr∈A and a multiindex ν=(ν1, ..., νr)∈
{0, 1}r, we denote by gν the product gν1

1 ...g
νr
r . For our purposes, the following

equivalent statement will be better.

Theorem 1.2. Let g1, ..., gr,m∈A. The following assertions are equivalent :
(a) {g1≥0, ..., gr≥0}\{m=0}=∅ in Specr(A);
(b) There exists an equation of the form

m2n+
∑

ν

aνg
ν = 0,

where n is a non-negative integer and aν is a sum of squares in A for each ν.

Indeed, it is obvious that Theorem 1.2 is a particular case of Theorem 1.1.
Let us see now that Theorem 1.1 follows from Theorem 1.2. Take gr+1=f1, ...,
gr+s=fs, gr+s+1=−f1, ..., gr+2s=−fs and m=m1...mr. A straightforward com-
putation shows that the subsets S1={f1=0, ..., fs=0, g1≥0, ..., gr≥0,m1 �=0, ...,
mk �=0} and S2={g1≥0, ..., gr+2s≥0}\{m=0} of Specr(A) are equal. If S2=S1=∅,
by Theorem 1.2, there exists an equation of the form

m2n+
∑

ν′
aν′(g′)ν′

= 0,(1)

where n≥0, ν′=(ν1, ..., νr, νr+1, ..., νr+s, νr+s+1, ..., νr+2s), each aν′ is a sum of
squares in A and

(g′)ν′
= gν1

1 ...g
νr
r f

νr+1
1 ...fνr+s

s (−f1)νr+s+1 ...(−fs)νr+2s .

Computing a little with the formula (1), one concludes that there exists b1, ..., bs∈A
such that

∑

ν

aνg
ν+

( k∏

j=1

m
nj

j

)2

+
s∑

i=1

bifi = 0.

This proves that (a) implies (b) in Theorem 1.1. The other implication is easier
and we here omit the details.

In what follows, whenever we refer to a Positivstellensatz we will mean an alge-
braic certificate of the kind described in Theorem 1.2. Nevertheless, a nice applica-
tion of the Positivstellensatz is related to the representation of positive semidefinite
elements over basic constructible closed subsets of the real spectrum:
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Theorem 1.3. Let g1, ..., gr, f∈A. The following assertions are equivalent :
(a) f≥0 on the basic constructible closed set {g1≥0, ..., gr≥0}⊂Specr(A);
(b) There exists an equation of the form

(∑

ν

aνg
ν

)
f = f2m+

∑

ν

a′νg
ν ,

where n is a non-negative integer and aν and a′ν are sums of squares in A for each ν.

Again, the previous result gives a reformulation of the Positivstellensatz, equiv-
alent to the previous ones. Indeed, to see that Theorem 1.3 follows from Theorem 1.2
it is enough to take g1, ..., gr, gr+1=−f and m=f and to compute a little. On the
other hand, to check that Theorem 1.2 follows from Theorem 1.3 it is enough to
take g1, ..., gr, f=−m2.

It is clear that the Positivstellensatz, in any of its multiple forms, admits an
obvious formulation, from the geometric viewpoint, for the ring of real functions of
a certain class over a real set of a certain type, without refering to the real spectrum.
Nevertheless, the most satisfactory results only appear for those situations on which
the real spectrum behaves neatly, that is, when the abstract formulation and the
geometric one coincides and we can apply Theorems 1.1, 1.2 and 1.3. The real
spectrum tool has been proved fruitful to understand and solve Positivstellensatzes
for polynomial functions, Nash functions, analytic function germs at points and
compact sets...(see [7] and [9] for more details) but it has fallen short in dealing
with global analytic functions without compactness assumptions. Maybe this lack
of a suitable machinery is the main reason why the problem for general global
analytic functions has been missing any substantial progress, even for more general
formulations than we present in this article. Recall that the most relevant result for
the analytic setting, which refers strongly to the compact case to use Theorem 1.2
in a determining way, goes back to the 1980s ([14], [7, Chapter VIII, Theorem 5.6]).
Namely, the following result.

Theorem 1.4. Let g1, ..., gr,m : R
n!R be real-analytic functions and con-

sider the sets S={g1≥0, ..., gr≥0} and Y ={m=0}. Assume that S is a compact
set. Then,

T =S\Y = ∅ ⇐⇒
∑

ν

sνg
ν+m2β = 0 for some integer β≥ 0,

where each sν is a sum of squares of analytic functions on R
n.

Note that Theorem 1.4 also holds if we only assume that S∩Y is a compact
set. This is a straightforward consequence of the fact that T=S\Y is the empty
set if and only if S=S∩Y ⊂Y .



16 Francesca Acquistapace, Fabrizio Broglia and José F. Fernando

However, in case S∩Y is not compact the situation is more delicate. In fact,
even in the simplest case (dimension n=1), it is not possible to have a similar result
to the classical Positivstellensatz stated above. To check this, we introduce the
following example strongly inspired in [6, Example 6.2]:

Example 1.5. Consider two analytic functions f, g : R!R such that their com-
mon zero set is {f=0}={g=0}={n∈Z : n>0}. Assume moreover that the germ fn

of f at n has initial form (−1)n(t−n) and that the germ gn of g at n has initial form
(−1)n(t−n)2n−1. Since {f≥0}={g≥0}, we have that {−f≥0, g≥0}\{f=0}=∅.

If the classical Positivstellensatz held for the line R, there would exist sums of
squares s0, s1, s2, s3∈O(R) and an integer α≥0 such that

s0−s1f+s2g−s3fg+f2α = 0,

or equivalently

(s1+gs3)f = s0+s2g+f2α.

If we compare orders at the point n=α+1 in the previous equation, we achieve
a contradiction. Indeed, the left-hand side has order equal to

ω1 = min{ω(s1)+1, ω(s3)+2α+2}
which is either odd, or even greater than or equal to 2α+2. On the other hand, the
right-hand side has order

ω2 = min{2α, ω(s0), ω(s2)+2α+1}= min{2α, ω(s0)}
which is an even number less than or equal to 2α, a contradiction.

Roughly speaking, the difficulty which appears in the previous example, and
in general in the noncompact analytic case, is that the vanishing multiplicity of the
function g can grow arbitrarily while the non-negative integer α is fixed. Note that
this arbitrary growth of the vanishing multiplicity cannot happen in the algebraic
case nor in the compact analytic case, where results relative to the Positivstellensatz
are already well known as we have pointed out above. Thus, the kind of statement
we can expect for the general analytic case could be the following:

PSS. Let g1, ..., gr,m : R
n!R be real-analytic functions and consider the sets

S={g1≥0, ..., gr≥0} and Y ={m=0}. Then,

T =S\Y = ∅ ⇐⇒
∑

ν

sνg
ν = 0,

where the functions sν are (finite) sums of squares of analytic functions whose zero
set is contained in Y .

Note that since the zero set of each analytic function sν must be contained
in Y , all this functions sν are nonzero whenever m �=0. Moreover, here arises the
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17th Hilbert problem for the ring of global analytic functions O(Rn) which, at
the moment, is still open for n≥3 even in a more general formulation involving
convergent sums of squares of meromorphic functions. For the sake of the reader,
we recall here the formulation of both problems and some related terminology:

H17. Every positive semidefinite analytic function f : R
n!R is a finite sum

of squares of meromorphic functions on R
n.

H17∞. Every positive semidefinite analytic function f : R
n!R is an infinite

sum of squares of meromorphic functions on R
n.

We proceed to recall what we understand as an infinite sum of squares of
meromorphic functions. First, an infinite sum of squares of analytic functions on
an open set Ω⊂R

n is a series
∑

k≥1 f
2
k where all fk∈O(Ω), such that

(i) the fk’s have holomorphic extensions Fk’s, all defined in the same neigh-
bourhood V of Ω in C

n,
(ii) for every compact set L⊂V ,

∑
k≥1 supL |Fk|2<+∞.

Under these assumptions, the infinite sum
∑

k≥1 f
2
k defines well an analytic

function f on Ω and we write f=
∑

k≥1 f
2
k∈O(Ω); of course, this trivially includes

finite sums.
Now, we say that an analytic function f : Ω!R is a (possibly infinite) sum

of squares (of meromorphic functions on Ω) if there is g∈O(Ω) such that g2f is
a (possibly infinite) sum of squares of analytic functions on Ω. The zero set {g=0}
is called the bad set of that representation as a sum of squares. As we will see later,
we will often need to have a controlled bad set, that is, a bad set contained in the
zero set {f=0}. Concerning the difference between arbitrary and controlled bad
sets, we recall the following result.

Proposition 1.6. ([4, Lemma 4.1]) Let Ω⊂R
n be open, and let f : Ω!R be

an analytic function which is a finite (resp. possibly infinite) sum of squares of
meromorphic functions. Then f is a finite (resp. possibly infinite) sum of squares
with controlled bad set.

For more details about the 17th Hilbert problem for global analytic functions,
see [4] and [12].

In what follows, we will denote by PSS∞ the property PSS when we admit in
its formulation that the coefficients sν are possible infinite sums of squares instead
of only finite sums of squares. We have the following implications:

PSS =⇒ H17,

PSS∞ =⇒ H17∞.
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Indeed, let f : R
n!R be a positive semidefinite analytic function not identi-

cally zero. Assume that PSS (resp. PSS∞) holds for R
n. Take S={g=−f≥0}=

{f=0} andm=f , hence, Y ={f=0}. Since T=S\Y =∅, there exist finite (resp. pos-
sibly infinite) sums of squares a, b∈O(Rn) whose zero set is contained in Y , such
that a−fb=0. Hence, b2f=ab and f is a finite (resp. possibly infinite) sum of
squares of meromorphic functions and H17 (resp. H17∞) holds for O(Rn).

Thus, since at the moment none of these facts is known we introduce also
a more general statement (a weak Positivstellensatz) that involves only positive
semidefinite analytic functions, which in principle might not be sums of squares:

wPSS. Let g1, ..., gr,m : R
n!R be real-analytic functions and consider the sets

S={g1≥0, ..., gr≥0} and Y ={m=0}. Then,

T =S\Y = ∅ ⇐⇒
∑

ν

aνg
ν = 0,

where the functions aν are positive semidefinite analytic functions whose zero set is
contained in Y .

One can check the following equivalences:

wPSS and H17 ⇐⇒ PSS,

wPSS and H17∞ ⇐⇒ PSS∞.

For that, it is crucial to have representations as sums of squares with controlled bad
sets of the involved positive semidefinite analytic functions (see Proposition 1.6).

Our main purpose in this work is to introduce a local-global criterion related to
wPSS of the same nature as the ones introduced in [4] to approach both formulations
of the 17th Hilbert problem. Before that we need to introduce some notation and
terminology.

Let Z⊂R
n be a closed set and let g1, ..., gr,m : Ω!R be analytic functions

defined on an open neighbourhood Ω of Z. We set S={g1≥0, ..., gr≥0} and Y =
{m=0}. We say that:

(a) The property PSS (resp. PSS∞) holds for {g1, ..., gr;m} at Z if there exists
a perhaps smaller open neighbourhood Ω′⊂Ω of Z such that

T = (S\Y )∩Ω′ = ∅ ⇐⇒
∑

ν

sνg
ν = 0,

where the functions sν∈O(Ω′) are finite (resp. possibly infinite) sums of squares of
analytic functions whose zero set is contained in Y .
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(b) The property wPSS holds for {g1, ..., gr;m} at Z if there exists a perhaps
smaller open neighbourhood Ω′⊂Ω of Z such that

T = (S\Y )∩Ω′ = ∅ ⇐⇒
∑

ν

aνg
ν = 0,

where the functions aν∈O(Ω′) are positive semidefinite analytic functions whose
zero set is contained in Y .

More generally, we say that PSS∞ or wPSS hold at a closed set Z if they
hold at Z for any family of analytic functions {g1, ..., gr;m} defined on an open
neighbourhood Ω of Z.

The main result of this work is the following local-global criterion which has
relevant applications as we will see in Corollary 1.10 and Theorem 1.11.

Theorem 1.7. Let g1, ..., gr,m : R
n!R be real-analytic functions and con-

sider the sets S={g1≥0, ..., gr≥0} and Y =
⋃

α Yα={m=0}, where the Yα’s are the
connected components of Y . Assume that wPSS holds for {g1, ..., gr;m} at Yα for
all α such that Yα∩S �=∅, then wPSS holds for {g1, ..., gr;m} (at R

n).

We can also get the following result refering the property PSS∞:

Theorem 1.8. Let g1, ..., gr,m : R
n!R be real-analytic functions and con-

sider the sets S={g1≥0, ..., gr≥0} and Y =
⋃

α Yα={m=0}, where the Yα’s are the
connected components of Y . Assume that PSS∞ holds for {g1, ..., gr;m} at Yα for
all α such that Yα∩S �=∅, then

S\Y = ∅ ⇐⇒
∑

ν

sνg
ν+a= 0,

where each sν∈O(Rn) is a (possibly infinite) sum of squares of analytic functions
on R

n with zero set contained in Y , and a∈O(Rn) is positive semidefinite and its
zero set is contained in Y .

In fact, as we have pointed out above, an affirmative solution to PSS∞ implies
an affirmative solution to H17∞. Using this, we also get Theorem 1.9, which is
a local-global criterion for the property PSS∞ and can be understood as the coun-
terpart of Theorem 1.7 for such a property. Recall that the property wPSS involves
positive semidefinite analytic functions and that PSS∞ involves (possibly infinite)
sums of squares of analytic functions.

Before stating Theorem 1.9, we recall here that a global analytic set X in
an open set Ω⊂R

n is the common zero set of a finite family of global analytic
functions on Ω. We define the ring of global analytic functions on X as the quotient
ring O(X)=O(Ω)/J (X), where J (X) is the ideal of global analytic functions of Ω
vanishing on X .
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Theorem 1.9. Let Y ⊂R
n be a global analytic set and let {Yα}α be its con-

nected components. Assume that PSS∞ holds at Yα for all α. Let g1, ..., gr,

m : R
n!R be real-analytic functions such that {m=0}=Y . Then PSS∞ holds for

{g1, ..., gr;m} (at R
n).

Proof. Indeed, since PSS∞ holds at Yα for all α, we deduce, by Theorem 1.7,
that wPSS holds for {g1, ..., gr;m}. Next, by [4, Theorem 1.5], wehave that any
positive semidefinite analytic function f : R

n!R whose zero set is Y is a (possibly
infinite) sum of squares of meromorphic functions on R

n with controlled bad set.
Finally, putting all together and clearing denominators we conclude that PSS∞
holds for {g1, ..., gr;m}, as wanted. �

Some relevant consequences of Theorems 1.7 and 1.9 are summarized in the
following result:

Corollary 1.10. Let g1, ..., gr,m : R
n!R be real-analytic functions and con-

sider the sets S={g1≥0, ..., gr≥0} and Y =
⋃

α Yα={m=0}, where the Yα’s are the
connected components of Y .

(a) If S∩Yα is a compact set for all α, then wPSS holds for {g1, ..., gr;m}.
(b) If Yα is a compact set for each α such that Yα∩S �=∅, then PSS∞ holds for

{g1, ..., gr;m}.
Notice that since there is no known bound for the least number of squares

needed to represent a sum of squares of meromorphic functions (see [4]), we cannot
state similar results to Theorems 1.7, 1.8, 1.9 and Corollary 1.10 for the property
PSS. Such a least number of squares refers to the study of the finiteness property
(that is, every sum of squares is a finite sum of squares) and the computation of
Pythagoras numbers of rings of meromorphic functions (for more details see [4]).

On the other hand, Theorems 1.7 and 1.8 and Corollary 1.10 provide, in the
same way as Theorem 1.3, but under the conditions of their statements, a nice
representation for the positive semidefinite analytic functions over a closed basic
global semianalytic set of R

n. Related to this see also [1].
Furthermore, more precise results can be given in the following cases:
(a) analytic curves;
(b) normal analytic surfaces;
(c) coherent analytic subsets of R

n whose connected components are all com-
pact.

In these cases Theorem 1.7 can be understood as a global Positivstellensatz in
the sense of PSS for (a) and (b) and in the sense of PSS∞ for (c).

Theorem 1.11. Let Ω be an open set in R
n and X⊂Ω be an analytic set

in Ω which is either a curve, a normal surface or a real coherent analytic set whose
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connected components Xi, i∈I, are all compact. Let g1, ..., gr,m : X!R be real-
analytic functions and consider S={g1≥0, ..., gr≥0} and Y ={m=0}. Then

S\Y = ∅ ⇐⇒
∑

ν

sνg
ν = 0,

where:
(A) Each sν is a sum of two squares in O(X) whose zero set is contained in Y ,

if X is an analytic curve;
(B) Each sν is a sum of five squares in O(X) whose zero set is contained in Y ,

if X is a normal analytic surface;
(C) Each sν is a (possibly infinite) sum of squares in O(X) such that sν |Xi is

a finite sum of squares in O(Xi) for all i∈I and its zero set is contained in Y , if X
is a real coherent analytic set whose connected components are all compact.

In fact, part (B) also holds true for any analytic coherent surface with isolated
singularities. Part (C), is almost straightforward:

Proof of part (C). Indeed, this part of Theorem 1.11 follows from these two
facts:

(1) O(X)=
∏

i∈I O(Xi);
(2) If Z⊂R

n is a compact analytic set and f : X!R is a positive semidefinite
analytic function on X , then PSS holds for Z ([7, Chapter VIII, Theorem 5.6]). �

The article is organized as follows. In Section 2 we introduce several tools that
will be very relevant for the proofs of Theorems 1.7, 1.8 and Corollary 1.10. These
results will be proved in Section 3. Finally, Section 4 is devoted to proving parts
(A) and (B) of Theorem 1.11.

2. Preliminary results

The purpose of this section is to introduce some preliminary results that will
be crucial when proving Theorems 1.7 and 1.8 and Corollary 1.10. Troughout
the rest of the article, Int and Cl stand for the topological interiors and closures,
respectively. If necessary, we will use a subscript to indicate where the Int and/or
Cl are considered.

Lemma 2.1. Let Y ⊂R
n be a global analytic subset and let W be an open

neighbourhood of Y in R
n. Then, there exists an analytic function g : R

n!R such
that Y ⊂{g>0}⊂{g≥0}⊂W .

Proof. First, since Y is a global analytic set, we can find a sum of squares
f∈O(Rn) whose zero set is Y . Let W1,W2 be open neighbourhoods of Y in R

n such
that ClRn(W1)⊂W2⊂ClRn(W2)⊂W . Let {σ1, σ2 : R

n!R} be a smooth partition
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of unity subordinated to the covering {Ω1=W2,Ω2=R
n\ClRn(W1)} of R

n. Recall
that 0≤σ2≤1 and that σ2|ClRn (W1)≡0 and σ2|Rn\W2≡1.

Now, consider the continuous function on R
n\Y defined by ϕ=max{1, 1/f}.

The product σ2ϕ extends to a positive semidefinite continuous function on R
n which

is identically 0 on ClRn(W1) and strictly greater than 0 on R
n\W2. Moreover, on

R
n\W2 we have σ2ϕf≥1.

Indeed, if x∈R
n\W2 we have σ2ϕf(x)=ϕf(x)=max{1, 1/f}f(x). Thus, if

f(x)≥1 it is clear that max{1, 1/f}=1 and σ2ϕf(x)≥1. On the other hand, if
f(x)<1 we have that max{1, 1/f}f(x)=(1/f)f(x)=1.

By Whitney’s approximation theorem ([13, Section 1.6]), there exists an
analytic function η : R

n!R such that |σ2ϕ+1−η|< 1
2 on R

n. Let us see that
(ηf)|Rn\W2≥1. Indeed, if x∈R

n\W2 we have

ηf(x) = (σ2ϕ+1)f(x)+(η−σ2ϕ−1)f(x)≥ (σ2ϕ+1)f(x)−|σ2ϕ+1−η|f(x)

> (σ2ϕ+1)f(x)− 1
2f(x)=

(
σ2ϕ+ 1

2

)
f(x)>σ2ϕf(x)≥ 1.

Finally, take the function g= 1
2−ηf . It is clear that

Y ⊂{g > 0}⊂ {g≥ 0}⊂ {ηf < 1}⊂W2⊂W,

and therefore g fits our situation. �

Lemma 2.2. Let f : R
n!R be an analytic function and let Ω⊂R

n be an open
neighbourhood of Y ={f=0} and t∈O(Ω). Then there exists an analytic function
a : R

n!R such that f divides a|Ω−t in O(Ω).

Proof. The function t defines a global cross section of the sheaf ORn/(f) as
{
t mod(f)ORn,x, if x∈Ω,

0, if x∈R
n\Ω.

By Cartan’s theorem B, [10], this section is just the class of an analytic function
a : R

n!R, such that f divides a|Ω−t in O(Ω). �

The purpose of the following result is to show how we can control the zero sets
of some of the involved functions of certain types of equations.

Lemma 2.3. Let X be a global analytic set in an open set Ω⊂R
n and let

g1, ..., gr, f : X!R be global analytic functions on X. Assume that we have a rela-
tion of the type

∑

ν

aνg
ν+f2 = 0,
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where each aν∈O(X) is a positive semidefinite global analytic function on X. Then,
there exist positive units u, u0∈O(X) such that

∑

ν

(aν +(fu0)4)gν +f2u= 0.

Proof. Consider the global analytic function

∆ =
f4

∑
ν g

ν

1+(f2
∑

ν g
ν)2

.

Adding and substracting ∆ to the given relation
∑

ν

aνg
ν +f2 = 0

we get that
∑

ν

(
aν +

f4

1+(f2
∑

ν g
ν)2

)
gν +f2

(
1− f2

∑
ν g

ν

1+(f2
∑

ν g
ν)2

)
= 0.

Obviously, the function u0=1/ 4
√

1+(f2
∑

ν g
ν)2 is a positive unit of the ring

O(X). Finally, the function

u= 1− ∆
f2

=
1+(f2

∑
ν g

ν)2−(f2
∑

ν g
ν)

1+(f2
∑

ν g
ν)2

=
3
4 +

(
f2

∑
ν g

ν− 1
2

)2

1+(f2
∑

ν g
ν)2

is clearly a positive unit in O(X). �

Remark 2.4. Note that for each ν, the function

Aν = aν+
f4

1+(f2
∑

ν g
ν)2

is a positive semidefinite analytic function whose zero set is {aν=0}∩{f=0}⊂Y .
Moreover, if aν is a sum of squares in O(X), then Aν =aν+(fu0)4 is also a sum of
squares in O(X).

Lemma 2.5. Let Ω⊂R
n be an open set and let g1, ..., gr∈O(Ω) be analytic

functions. Suppose that the set S={g1≥0, ..., gr≥0} is empty. Then, there exist
strictly positive analytic functions bν∈O(Ω) such that

1+
∑

ν

b2νg
ν = 0.

Proof. Indeed, by the strict Positivstellensatz (see [1, Corollary 2.6]), we find
strictly positive analytic functions c1, ..., cr∈O(Ω) such that

1+c21g1+...+c2rgr = 0.
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We define the following strictly positive analytic functions on Ω:

cν =

⎧
⎨

⎩
ci, if ν=ei=(0, ..., 0,

(i)

1 , 0, ..., 0),

1/
√

2r(1+(gν)2), otherwise.

We obtain the following identity

v+
∑

ν

c2νg
ν = 0,

where

v= 1−
∑

ν �=ei
i=1,...,r

c2νg
ν = 1−

∑

ν �=ei
i=1,...,r

gν

2r(1+(gν)2)
> 1− 2r−r

2r
=
r

2r
> 0

is a strictly positive analytic function on Ω. Finally, taking bν=cν/
√
v we are

done. �

The following result will allow us to control the behaviour of a finite family of
analytic functions outside of an open neighbourhood of a global analytic set.

Lemma 2.6. Let Y ⊂R
n be a global analytic set in R

n and let f1, ..., fs : R
n!

R be analytic functions whose zero set is Y . Let b1, ..., bs : R
n\Y!R be strictly

positive analytic functions. Then, for each open neighbourhood V of Y in R
n there

exists a strictly positive analytic function ρ : R
n!R such that 0<ρ|fj|<bj/2 on

R
n\V for j=1, ..., s.

Proof. Let U be an open neighbourhood of Y in R
n such that U⊂ClRn(U)⊂V .

Let σ1, σ2 : R
n!R be a smooth partition of unit subordinated to the open covering

{R
n\ClRn(U), V }. Recall that

(a) 0≤σ1, σ2≤1 and σ2=1−σ1,
(b) σ1|ClRn (U)≡0 and σ1|Rn\V ≡1.
Then the smooth functions b′j=bjσ1+σ2 on R

n\Y can be extended smoothly
by 1 to the whole R

n. Note that b′j=bj on R
n\V and that b′j=1 on U for j=1, ..., s.

Hence, each b′j is strictly positive on R
n.

Consider now the continuous function on R
n given by the formula

ε=
1
3

min
j

{
b′j

|fj |+1

}
,

which is also strictly positive on R
n. By Whitney’s approximation theorem [13,

Section 1.6] there exists an analytic function ρ : R
n!R such that |ε−ρ|< 1

2ε on R
n,
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or equivalently, 1
2ε<ρ<

3
2ε. Hence, ρ is strictly positive on R

n and

ρ|fj |< 3
2
ε|fj| ≤

b′j
2(|fj |+1)

|fj | ≤
b′j
2
.

Since b′j=bj on R
n\V , we deduce that ρ|fj |<bj/2 on R

n\V , as wanted. �

Lemma 2.7. Let r, η, δ∈R be real numbers such that 0<δ<1 and |r−η|<
δ/(1+2|η|). Then |r2−η2|<δ.

Proof. First, note that

|r|−|η| ≤ ∣∣|r|−|η|∣∣≤ |r−η|< δ

1+2|η| < 1,

hence |r|<1+|η|. Thus, we get that

|r2−η2|= |r−η||r+η| ≤ |r−η| ∣∣|r|+|η|∣∣< δ

1+2|η|(1+2|η|)= δ,

as wanted. �

The following result is a slight generalization of [5, theorem on p. 454] that will
be useful for the proof of Theorem 1.7.

Lemma 2.8. Let Z⊂R
n be a global analytic set and A be a global semianalytic

set in Z. Let a1, ..., as∈O(Z) be global analytic functions and Y ⊂Z be a global
analytic set such that

{ai = 0}∩ClZ(A)⊂Y ⊂{ai = 0}

for each i=1, ..., s. Then, there exists a positive semidefinite analytic equation λ

of Y in Z such that λ<|ai| on ClZ(A)\Y for all i=1, ..., s and λ<1 on Z.

Proof. First, by [5, theorem on p. 454], for each i=1, ..., s there exists a pos-
itive semidefinite analytic equation λi of Y in Z such that λi<|ai| on ClZ(A)\Y .
Substituting λi by λi/(1+λ2

i ) we may assume that λi<1 on Z.
Now, we take λ=

∏r
i=1 λi and we have

λ<min
i
{λi}<min

i
{|ai|}

on ClZ(A)\Y , that is, λ<|ai| on ClZ(A)\Y for all i=1, ..., s. Finally, since each
λi<1 on Z, we conclude that λ<1 on Z. �
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3. Proofs of the main results

The purpose of this section is to prove Theorems 1.7 and 1.8 and Corol-
lary 1.10.

Proof of Theorem 1.7. It is clear that it is enough to check that if S\Y =∅,
there exist positive semidefinite analytic functions sν∈O(Rn) whose zero sets are
contained in Y such that

∑
ν sνg

ν =0. The proof of this fact runs in several steps:

Step 1. Initial preparation. We denote by Y0 the union of the connected com-
ponents Yα of Y such that Yα∩S �=∅. Since S\Y0=S\Y =∅ and wPSS holds for
{g1, ..., gr;m} at Yα for each α such that Yα∩S �=∅, there exists an open neighbour-
hood Ω of Y0 in R

n, whose closure ClRn(Ω) is contained in the open set R
n\(Y \Y0),

such that
∑

ν tνg
ν=0, where each tν∈O(Ω) is a positive semidefinite analytic func-

tion whose zero set is contained in Y0. Multiplying the previous equation by m2

we may assume that {tν=0}=Y0 for each ν. This fact will be useful later to apply
Lemma 2.8.

Step 2. Local equation around Y0 involving global analytic functions. We will
find an open global semianalytic neighbourhood Ω of Y0 in R

n and a local equation
of the type

∑

ν

aνg
ν +h2+hu2 = 0,(2)

where aν , h∈O(Rn), u2∈O(Ω) is a positive analytic unit, h is a positive semidefinite
analytic equation of Y0 in R

n and each aν is positive semidefinite on Ω.
Indeed, we write

∑
ν,ν �=0 tνg

ν+ 1
2 t0+ 1

2 t0=0. Multiplying the previous equation
by 1

2 t0 we get

∑

ν,ν �=0

(
tν
t0
2

)
gν +

(
t0
2

)2

+
(
t0
2

)2

= 0.

Thus, we may assume from the beginning that we have an equality of the type
∑

ν

tνg
ν+f2 = 0,

where tν , f∈O(Ω) are positive semidefinite analytic functions whose zero set is Y0.
Now, by Lemma 2.3, there exist units u, u0∈O(Ω) such that

∑

ν

(tν +(fu0)4)gν +f2u= 0.
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Next, consider the coherent sheaf of ideals J given by

Jx =

⎧
⎨

⎩
fORn,x, if x∈Y0,

ORn,x, if x∈R
n\Y0.

Since locally principal ideal subsheafs of ORn are principal, J is generated by some
f0∈O(Rn). Take h=f2

0 ; we have that the zero set of h is Y0 and that u1=h/f2

defines a positive unit of the ring O(Ω).
Next, by Lemma 2.2, for each tν +(fu0)4 there exists an analytic extension

aν : R
n!R such that the analytic function tν +(fu0)4−aν is divisible by h3 in O(Ω).

In fact, we may assume, after shrinking Ω if necessary, that each aν is positive
semidefinite on Ω.

Indeed, note that

aν |Ω = tν+(fu0)4+h3ζν = tν+(fu0)4(1+(fu0)2θν)

for some ζν , θν∈O(Ω). Since the function fu0 vanishes at Y0, we have that 1+
(fu0)2θν is strictly positive in a suitable neighbourhood of Y0. After shrinking Ω, if
necessary, we conclude that aν |Ω is positive semidefinite and that its zero set is Y0.

Next, consider the analytic function u2=u−1
1 (u−f2u2

1−f4u3
1

∑
ν ζνg

ν)∈O(Ω).
In Ω we have

∑

ν

aνg
ν+h2+hu2 =

∑

ν

(tν +(fu0)4+(f2u1)3ζν)gν

+f4u2
1+f2

(
u−f2u2

1−f4u3
1

∑

ν

ζνg
ν

)

=
∑

ν

(tν +(fu0)4)gν +f2u

= 0.

Now, shrinking again Ω and using the fact that f vanishes on Y0 we may assume
that u2 is a positive unit in O(Ω). Moreover, by Lemma 2.1, we may also assume
that Ω is a global semianalytic set.

Step 3. Global equation outside Y0 and control of the behaviour of the functions
aν outside of an open neighbourhood W of Y0. First, since S∩(Rn\Y0)=S\Y0=∅,
by Lemma 2.5, there exists strictly positive analytic functions bν∈O(Rn\Y0) such
that

1+
∑

ν

b2νg
ν = 0.
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Let W be an open neighbourhood of Y0 on R
n such that ClRn(W )⊂Ω. By

Lemma 2.6, there exists a positive unit ρ∈O(Rn) such that ρh2< 1
2 and ρ|aν |<b2ν

on R
n\W . Multiplying the equation (2) above by ρ we get the following identity

on Ω:
∑

ν

(ρaν)gν +(
√
ρh)2+(

√
ρh)(

√
ρu2)= 0.

Note that except for
√
ρu2 (which is only defined in Ω) all the involved functions

are globally analytic on R
n. To simplify notation we denote ρaν ,

√
ρh and

√
ρu2

again by aν , h and u2, respectively. The new functions h and aν satisfy also the
inequalities h2< 1

2 and |aν |<b2ν on R
n\W .

Furthermore, we have the following identity, where all the involved functions
are analytic on the open set R

n\Y0:
∑

ν

b2νg
ν +h2+w2 = 0,(3)

and w=
√

1−h2 is a positive unit in O(Rn).

Step 4. Glueing the local and the global equations. Consider the analytic func-
tion

q=−h2−
∑

ν

aνg
ν ∈O(Rn)

which is equal to hu2 in Ω (see the identity (2)). Hence, q is positive semidefinite
in Ω and {q=0}∩Ω=Y0.

Since Ω is a global semianalytic subset of R
n, by Lemma 2.8, there exists

a positive semidefinite analytic equation λ : R
n!R of Y0 such that λ<|q|, |aν | on

Ω\Y0 for all ν and λ<1 on R
n.

Consider a smooth function σ1 : R
n!R with σ−1

1 (1)=R
n\Ω and σ−1

1 (0)=
ClRn(W ). Taking 2σ2

1/(1+σ4
1) instead of σ1 we may assume that σ1 is the square

of a smooth function and less than or equal to 1. We take also σ2=1−σ1, which is
also the square of a smooth function.

Now, consider the smooth functions

ψν = σ1b
2
ν +σ2aν and p=−h2−

∑

ν

ψνg
ν ,

which satisfy the equation

h2+
∑

ν

ψνg
ν+p= 0.(4)
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Let us see that the functions ψν and p are positive semidefinite. Indeed, the posi-
tiveness of the functions ψν follows straightforwardly from their definitions. Next,
we proceed with p. Using (2) and (3), we rewrite p as

p= σ1

(
−h2−

∑

ν

bν
2gν

)
+σ2

(
−h2−

∑

ν

aνg
ν

)
= σ1w

2+σ2q= σ1w
2+σ2hu2.

From this expression it is clear that p is positive semidefinite on R
n. Notice also

that the zero sets of ψν and p are equal to Y0. Hence, (4) is the kind of equation we
are looking for except for the important fact that the involved functions ψν and p

are not analytic.
Thus, our purpose now should be to modify the functions ψν and p to obtain

an analogous equation to (4), but involving in this case analytic functions whose
zero sets are again Y0. For that aim, we also introduce the continuous functions ην

on R
n given by

ην(x)=

⎧
⎪⎨

⎪⎩

√
(ψν(x)−aν(x))/λ2(x), if x∈R

n\W ,

0, if x∈W .

Since ψν =aν on W , the differences ψν−aν are flat on W . Thus, to see that the
previous functions ην are well defined and continuous, it is enough to check that
the functions ψν−aν are positive semidefinite on R

n\W . We have

ψν−aν = σ1b
2
ν +σ2aν−aν = σ1b

2
ν+(σ2−1)aν = σ1(b2ν−aν),

which is positive semidefinite on R
n\W because b2ν−|aν |>0 on R

n\W (see Step 3).
Next, we are going to approximate the functions ην , using again Whitney’s

approximation theorem, by suitable analytic functions which will fit our situation.
For that, we need to construct a strictly positive continuous function on R

n which
controls the approximation properly.

We extend the functions ψν |Rn\W and p|Rn\W to strictly positive smooth func-
tions φν and φ on R

n. Such functions can be constructed (using a suitable partition
of unit) because the zero sets of ψν and p are equal to Y0 which lies inside W . Next,
consider the strictly positive continuous functions

δ=
1
2

min
ν

{
1, φν ,

min{φ, 1}
2r(1+(gν)2)

}
and ε=

δ

1+2 maxν |ην | .

Let rν : R
n!R be analytic approximations of ην such that |ην−rν |<ε on R

n. By
Lemma 2.7, we have that |η2

ν−r2ν |<δ for each ν.
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We claim the following facts:
(a) The global analytic functions aν +λ2r2ν are positive semidefinite on R

n and
their zero sets are equal to Y0;

(b) The global analytic function Q=−h2−∑
ν(aν +λ2r2ν)gν is positive semidef-

inite on R
n and its zero set is Y0.

We begin by proving (a). First, we have that aν +λ2rν is strictly positive
outside W because if x∈R

n\W we get

|ψν(x)−(aν +λ2r2ν)(x)|=λ2(x)|(η2
ν−r2ν)(x)|

< |(η2
ν−r2ν)(x)|<δ(x)< φν

2
(x)=

ψν

2
(x);

hence, 0<(ψν/2)(x)<(aν+λ2r2ν)(x).
Next, we check that aν+λ2r2ν is strictly positive on W \Y0. By construction,

ην≡0 on W ; hence, for each x∈W we have that |rν(x)2|<δ<1. Thus, if x∈W \Y0

we get

(aν +λ2r2ν)(x)≥ aν(x)−λ2(x)|rν (x)2| ≥λ(x)−λ2(x)> 0,

because λ<|aν |=aν on Ω\Y0 and λ<1 on R
n. Finally, since aν and λ vanish on Y0

we conclude that aν +λ2r2ν is positive semidefinite on R
n and that its zero set is Y0.

Next, we check (b). We begin by proving that Q is strictly positive on R
n\W .

Indeed,

|p(x)−Q(x)| ≤λ2(x)
∣∣∣∣
∑

ν

(η2
ν−r2ν)(x)gν(x)

∣∣∣∣<
∑

ν

|(η2
ν−r2ν)(x)| |gν(x)|

<
∑

ν

δ(x)|gν(x)|<
∑

ν

φ(x)
2r+1(1+(gν)2(x))

|gν(x)|< φ(x)
2

=
p(x)

2
;

hence, 0<p(x)/2<Q(x) for all x∈R
n\W . Now we check that Q(x)>0 on W \Y0.

Since ην =0 on W , for each x∈W we have

|r2ν(x)|<δ(x)≤ 1
2r+1(1+(gν)2(x))

,

(recall the formula for δ above). Thus, if x∈W \Y0 we deduce

Q(x)= q(x)−λ2(x)
(∑

ν

r2ν(x)gν(x)
)

≥ q(x)−λ2(x)
∣∣∣∣
∑

ν

r2ν(x)gν(x)
∣∣∣∣

≥ q(x)−λ2(x)
∑

ν

|r2ν(x)| |gν(x)|
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>q(x)−λ2(x)
2r+1

∑

ν

1
1+(gν)2(x)

|gν(x)|

>λ(x)−λ2(x)

> 0,

because λ<|q|=q on Ω\Y0 and λ<1 on R
n. Finally, since Q vanishes on Y0, we

conclude that Q is positive semidefinite on R
n and that its zero set is Y0.

Thus, if we take

sν = aν+λ2r2ν , if ν �= 0,

s0 =Q+(a0+λ2r20)+h
2,

we achieve the equation
∑

ν

sνg
ν = 0,

where each sν is a positive semidefinite analytic function on R
n whose zero set is Y0,

as wanted. �

Remark 3.1. Note that the zero set of each sν is Y0, which is the union of the
connected components Yα of Y such that Yα∩S �=∅.

Next, we show how we should modify the proof of Theorem 1.7 to get The-
orem 1.8.

Proof of Theorem 1.8. The only difference to the proof of Theorem 1.7 appears
in the Step 2 when we extend, modulo h3O(Ω), the positive semidefinite functions
tν∈O(Ω) to analytic functions aν∈O(Rn). At that point, for this proof we use the
following fact: If tν is a (possibly infinite) sum of squares in O(Ω), we may assume
that aν is a (possibly infinite) sum of squares in O(Rn) (see [4, Proposition 2.3]).

At the end, we take

sν = aν+λ2r2ν , and a=Q+h2,

and we are done. �

Remarks 3.2. (a) It seems difficult to get, following the arguments above, a sim-
ilar statement to Theorem 1.8 but which does not involve the positive semidefinite
analytic function a. As can be checked following the proofs of Theorems 1.7 and 1.8,
their developments need certain mobility to glue analytically the local equation
around Y0 with the global one outside Y0 to get the global equation on R

n.
(b) Moreover, if a in the statement of Theorem 1.8 was a sum of squares, we

would obtain a local-global criterion for the PSS∞ property.
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Now, we are ready to prove Corollary 1.10.

Proof of Corollary 1.10. First, we prove (a). Since Yα∩S is a compact set,
we have, by [7, Chapter VIII, Theorem 5.6], Lemma 2.3 and Remark 2.4, that PSS
holds for {g1, ..., gr;m} at Yα for all α. Then, by Theorem 1.7, wPSS holds for
{g1, ..., gr;m}.

Next, we prove (b). Since Yα is a compact set for each α such that S∩Yα �=∅,
we have, by [7, Chapter VIII, Theorem 5.6], Lemma 2.3 and Remark 2.4, that
PSS holds for {g1, ..., gr;m} at Yα for such α’s. Then, by Theorem 1.7, wPSS
holds for {g1, ..., gr;m}. In fact, by Remark 3.1, if S\Y =∅, there exist positive
semidefinite analytic functions sν∈O(Rn) such that

∑
ν sνg

ν=0 and {sν=0}=Y0,
where Y0 is the union of the connected components of Y whose intersections with
S are nonempty. By [4, 1.7], the functions sν are (possibly infinite) sums of squares
of meromorphic functions with controlled bad set. Denote by hν the denominators
of such expressions as sums of squares. Multiplying the equation

∑
ν sνg

ν =0 by
h2=

∏
ν h

2
ν we conclude that PSS∞ holds for {g1, ..., gr;m}. �

Notice that the properties PSS, PSS∞ and wPSS can be generalized in the
natural way either from the global or the local viewpoint to any real global analytic
set X in an open set Ω of R

n. More precisely, we define J (X) as the set of the
analytic functions on Ω which vanish on X . Then, we can state the following result
for the ring O(Ω)/J (X) which is analogous to Theorem 1.7 and Corollary 1.10
for R

n.

Corollary 3.3. Let X be a real global analytic set in an open set Ω of R
n and

let g1, ..., gr, m : Ω!R be real-analytic functions. Consider the sets

S= {g1 ≥ 0, ..., gr ≥ 0}∩X and Y =
⋃

α

Yα = {m= 0}∩X,

where the Yα’s are the connected components of Y .
(a) If wPSS holds for {g1, ..., gr;m} at Yα for all α such that Yα∩S �=∅, then

wPSS holds for {g1, ..., gr;m} (at X).
(b) If S∩Yα is a compact set for all α, then wPSS holds for {g1, ..., gr;m}.
(c) If Yα is a compact set for each α such that Yα∩S �=∅, then PSS∞ holds

for {g1, ..., gr;m}.
Proof. First, by Grauert’s embedding theorem, we may assume that Ω=R

n.
Let gr+1 : R

n!R be a global equation of X in R
n which is strictly negative

on R
n\X . The result follows straightforwardly from Theorem 1.7 and Corol-

lary 1.10 applied to the analytic functions g1, ..., gr, gr+1;m and setting, afterwards,
gr+1=0. �
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Remarks 3.4. (a) In the same way, a similar result to Theorem 1.8 can be
stated for a real global analytic set X .

(b) Note that for a coherent X the ring O(Ω)/J (X) is precisely the ring O(X)
of analytic functions on X . Recall also that analytic curves and normal analytic
surfaces are coherent analytic spaces.

4. Consequences for low dimension

The purpose of this section is to prove parts (A) and (B) of Theorem 1.11.

Proof of part (A) of Theorem 1.11. Let {Xi}i∈I be the irreducible components
of X and let

I1 = {i∈ I :Xi∩{m= 0}∩S is either empty or a discrete set}
and I2=I\I1. Note that for each i∈I2 the Zariski closure of Xi∩{m=0}∩S is equal
to Xi and that m is identically zero over the analytic curve X2=

⋃
i∈I2

Xi.
Let X1=

⋃
i∈I1

Xi. Note that the set D={m|X1=0}∩{g1|X1≥0, ..., gr|X1≥0}
is a discrete set. By Corollary 3.3 (b), there exist positive semidefinite analytic
functions σν : X1!R such that {σν =0}=D and

∑

ν

σνg
ν |X1 = 0.(5)

Next, recall that for each singular point p of an analytic curve X there exists
an integer mp only depending on p such that for each positive semidefinite analytic
germ ξp∈OX1,p we have that (‖x−p‖2)2mpξp is a square in O(X1,p) (see [15, Sec-
tion III.3]). By Cartan’s theorem B, there exists an analytic function λ on X such
that{λ=0}=D∩Sing(X1) and

λp ≡ (‖x−p‖2)2mp mod m4mp+1
p

for all p∈D∩Sing(X1). Thus, λ2
pσν,p is a square in O(X1,p) for all p∈D∩Sing(X1).

In view of the proof of [3, Theorem 1.2], each λ2σν∈O(X1) is a sum of two squares
in O(X1) whose zero set is contained in D.

Now, let h2 : X!R be a positive semidefinite equation of X2 in X . We extend
by 0 all the functions sν =h2

2λ
2σν outside X1. Thus, we get on X the equation

∑

ν

sνg
ν = 0,

where each sν∈O(X) is a sum of two squares of analytic functions in O(X) whose
zero set is contained in D∪X2. �
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Remark 4.1. In the statement of part (A) of Theorem 1.11 we may ask that
the zero set of each sν is contained in D∪X2, which is the Zariski closure of S∩Y .

Before proving part (B) of Theorem 1.11 we need a preliminary result that
will give us a square-free representation of the set S={g1≥0, ..., gr≥0} for a normal
analytic surface X . The following proofs are strongly inspired by [8, Theorem 2,
Section 2].

Lemma 4.2. Let X be a normal analytic surface and let Y =
⋃

i∈I Yi⊂X be an
analytic curve in X, where the Yi’s are the irreducible components of Y . Let a : X!
R be a nonzero analytic function. Then, there exist analytic functions ã,∆, b : X!R

such that :
(i) b is a sum of squares in O(X) with zero set {b=0}⊂Y ;
(ii) If ã vanishes along some Yi, it does it with multiplicity 1;
(iii) ∆ is a sum of squares in O(X) with discrete zero set contained in {b=0};
(iv) ∆2a=ãb.

Proof. For each i∈I the ideal pi⊂O(X) of all analytic functions vanishing on Yi

is a prime ideal of height 1, and, O(X) being normal, the localization Vi=O(X)pi

is a discrete valuation ring. We will use freely the so-called multiplicity along
Yi, which is the real valuation mYi associated with the discrete valuation ring Vi

(see [8, Sections 1 and 2] for full details). Pick any uniformizer gi∈pi of Vi, so that
mYi(gi)=1. Write mYi(a)=2mi+εi, where mi≥0 is an integer and εi=0 or εi=1.
Since the valuation is real, we have that a/g2mi

i is a unit in Vi or it is a meromorphic
uniformizer of Vi, so that mYi(a/g

2mi

i )=1. From this it follows that at all points of
Yi off a discrete set the following properties hold true:

(1) a/g2mi

i is analytic;
(2) mYi(a/g

2mi

i ) is 0 or 1;
(3) gi generates the ideal of Yi.
Choose for each i∈I a sum of squares θi which is an equation for Yi. Consider

the sheaf of ideals given by

Ix =

⎧
⎪⎨

⎪⎩

( ∏

i|x∈Yi

gmi

i ,
∏

i|x∈Yi

θmi

i

)
OX,x, for x∈Y ,

OX,x, otherwise.

To see that this sheaf is well defined and coherent, one takes a neighbourhood U

of x∈X such that all the Yi’s that intersect U pass through x and checks that I
is generated in U by the functions

∏
i|x∈Yi

gmi

i and
∏

i|x∈Yi
θmi

i . By [11], since I is
locally generated by at most two analytic germs, I is globally generated by finitely
many sections b1, ..., bl∈O(X). Consider b=b21+...+b

2
l so that {b=0}=

⋃
mi>0 Yi.
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In this situation, on Yi off a discrete set, I=(b1, ..., bl)OX is generated by gmi

i ,
which readily implies that all the quotients bj/gmi

i are analytic there and at least
one is a unit. Then

a

b21+...+b2l
=

a

g2mi

/
b21+...+b2l
g2mi

.

Since a/g2mi

i is analytic and has mYi(a/g
2mi

i ) is 0 or 1 off another discrete set, we
deduce that

a

b21+...+b2l
=

a

g2mi

/
b21+...+b2l
g2mi

is analytic on Yi off a discrete set and one has that mYi(a/b) is 0 or 1 off a (bigger)
discrete set Di⊂

⋃
mi>0 Yi⊂Y . As the Yi’s form a locally finite family, we conclude

that a/b is a meromorphic function whose zero set is contained in Y and whose
poles form a discrete subset D of Y .

We are left to construct an analytic function ∆ with discrete zero set D in
order to cancel the poles of a/b. To do this, consider the coherent sheaf (b:a)OX .
Recall that for each point x∈X we have

(b : a)OX,x = {fx ∈OX,x : fxax ∈ bOX,x}.
Thus, the support of the coherent sheaf (b:a)OX is {x∈X :bx �ax}, that is, the set
D of poles of a/b.

The sheaf is generated in a neighbourhood of each pole x of a/b by finitely
many sections δ1, ..., δr. We write δ=

∑r
k=1 δ

2
k and we deduce that

axδx = ax

r∑

k=1

δ2k,x = bxγx

for some γx∈OX,x, that is, ax/bx=γx/δx.
Furthermore, x is an isolated zero of δ. For that, suppose that there is y �=x

arbitrarily close to x with δ(y)=0. Then, all δk’s vanish at y, and since the ideal
(b:a)OX,y is generated by them, we deduce that y is in the support of (b:a)OX,x.
This means that a/b is not analytic at y, a contradiction.

Adding the square of an equation of X in R
n, we extend δ to a sum of squares δ̃

of analytic functions in a neigborhood of x in R
n that vanishes only at x; set

Ix=δ̃OX,x. These ideals Ix glue to define a locally principal sheaf of ideals I
on R

n, whose zero set consists of the poles of a/b. Since H1(Rn,Z2)=0, all locally
principal sheaves are globally principal, and I has a global generator ∆. This ∆ is
a non-negative analytic function on R

n whose zeros are the poles x of a/b, hence
a discrete subset of {b=0}.
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By construction ∆a/b is an analytic function and ã=∆2a/b vanishes with
multiplicity 1 along all Yi’s such that mYi(a) is odd and does not vanish along
any of the Yi’s such that mYi(a) is even. �

Now, we are ready to prove part (B) of Theorem 1.11.

Proof of part (B) of Theorem 1.11. First, note that we may assume that X is
irreducible. Recall that X being a normal surface, its irreducible components and
its connected components coincide. We have to prove that: If S\Y =∅, then there
exist sums of five squares of analytic functions sν∈O(X) such that {sν=0}⊂Y and∑

ν sνg
ν=0.

We assume that m �=0 because otherwise there is nothing to prove. We write
the Zariski closure of {g1≥0, ..., gr≥0}∩{m=0} as the union of a discrete set D and
a disjoint curve Y0=

⋃
i∈I Yi⊂Y , where the Yi’s denote the irreducible components

of Y0.
Let g0=m2. Note that the set {g0>0, g1>0, ..., gr>0}=∅ because S\Y =∅

implies that {g1≥0, ..., gr≥0}⊂{g0=0}.
For each 0≤i<j≤r write gij =gigj and apply Lemma 4.2 to g0, ..., gr, gij for

0≤i<j≤r. We find analytic functions ∆i,∆ij , bi, bij , g̃i, g̃ij∈O(X) such that
(i) bi and bij are sums of squares in O(X) with zero set contained in Y0;
(ii) if g̃i or g̃ij vanish along some Yi, they do it with multiplicity 1;
(iii) ∆i and ∆ij are sums of squares in O(X) with discrete zero sets contained

in {bi=0} and {bij=0}, respectively;
(iv) ∆2

i gi=g̃ibi and ∆2
ijgij =g̃ijbij .

We claim that:
(∗) The closed semianalytic set Z={g̃k≥0, g̃ij≥0:0≤i, j, k≤rand i<j} is a dis-

crete set which is contained in D∪Y0.
Indeed, we first note that the set S̃={g̃0>0, g̃1>0, ..., g̃r>0} must be empty.

If x∈S̃ then there exists 0≤i≤r such that gi(x)≤0, otherwise, x∈{g0>0, g1>0,
..., gr>0} which is empty. For such i, we have

0≤ g̃i(x)bi(x)= ∆2
i (x)gi(x)≤ 0,

hence bi(x)=0. This means that x∈Y0, and therefore S̃⊂Y0. But this is impossible
because the set S̃ is open. Thus, S̃=∅.

On the other hand, Z is a set contained in

{∆0g0 ≥ 0,∆1g1 ≥ 0, ...,∆rgr ≥ 0,∆ijgigj ≥ 0}
⊂ {∆0g0 ≥ 0,∆1g1 ≥ 0, ...,∆rgr ≥ 0}
= {∆0g0 = 0,∆1g1 ≥ 0, ...,∆rgr ≥ 0}
⊂D∪

⋃

i∈I

Yi.
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Here we point out the reason to consider the g̃ij ’s: if both gi and gj change sign
along an irreducible curve Yi, then so do g̃i and g̃j , but not their product, so that
g̃ij =g̃ig̃j does not vanish on Y0.

Now suppose that Z has dimension 1. Then, moving along a 1-dimensional
branch of Z, we can find an open set W such that

(a) W is contained in the regular locus of X ;
(b) W ∩Z is a smooth connected curve that decomposes W into two connected

components U and V ;
(c) for each a=g̃i or g̃ij , the open set W ∩{a=0} is either the smooth curve

W ∩Z or empty.
After this preparation, we proceed as follows. Let x∈W∩Z. Since the set

S̃={g̃0>0, ..., g̃r>0} is empty, there must be some g̃i such that g̃i(x)=0. Hence,
by (c), g̃i vanishes exactly on W ∩Z. Since Z⊂D∪Y0 and g̃i vanishes along each Yi

with multiplicity 0 or 1, we deduce that g̃i changes sign along W ∩Z, say it is >0
on U and <0 on V . But then since Z⊂D∪Y0, some other g̃j must vanish on W ∩Z
and be <0 on U and >0 on V . Hence g̃ij does not vanish on W∩Z, and is <0 on W
minus possibly a discrete set where it is 0. But g̃ij is ≥0 on Z, a contradiction.
Thus, Z must be a discrete set. This completes the proof of the claim.

Next, the set Z being discrete we can apply Corollary 3.3 (b). Thus, if we
write

g̃= (g̃0, g̃1, ..., g̃r, g̃0,1, ..., g̃r−1,r)

there exist positive semidefinite analytic functions σµ : X!R whose zero set is
contained in Z, where µ∈{0, 1}m and m=1+r+

(
r+1
2

)
, such that

∑

µ

σµg̃
µ = 0.(6)

Next, consider b=
∏r

k=0 bi ·
∏

i<j bij (whose zero set is contained in Y0) and
multiply the equation (6) by b. Since ∆2

i gi=g̃ibi and ∆2
ijgigj=g̃ijbij , each factor

bg̃µ is a positive semidefinite analytic function times the corresponding product gν

for a certain ν∈{0, 1}r.
Thus, the equation (6) becomes

∑

ν

σ′
νg

ν = 0,(7)

where ν∈{0, 1}r, each σ′
ν is a positive semidefinite analytic function on X and

{σ′
0=0}⊂D∪Y0. Let

aν =

⎧
⎪⎨

⎪⎩

(σ′
0

2

)2
, if ν=0,

σ′
ν

σ′
0

2
, otherwise,
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and f=a0. Multiplying (7) by σ′
0/2 and computing a little we get that
∑

ν

aνg
ν+f2 = 0.

By Lemma 2.3 and Remark 2.4, we may assume that the zero set of each aν is
contained in D∪Y0. Replacing a0 by a0+f2 we achieve a formula of the type

∑

ν

aνg
ν = 0,

where each aν is a positive semidefinite analytic function on X whose zero set is
contained in D∪Y0.

Now, by [2, Theorem 1.4], there exists a sum of squares of analytic functions
Λ: X!R with {Λ=0}⊂Z⊂D∪Y0, such that after multiplying the equation (7) by
Λ2, we have

∑

ν

sνg
ν = 0,

where each sν =Λ2aν is a sum of five squares of analytic functions on X with zero
set contained in D∪Y0, as wanted. �

Remark 4.3. In the statement of part (B) of Theorem 1.11 we may ask that
the zero set of each sν is contained in D∪Y0, which is the Zariski closure of S∩Y .
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