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This paper is devoted to the approximation of differentiable
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Then we can obtain approximation for semialgebraic functions
and even for certain semialgebraic maps on Nash sets with
monomial singularities. As a nice consequence we show that
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1. Introduction

The importance of approximation in the Nash setting arises from the fact that this
category is highly rigid to work with; for instance, it does not admit partitions of unity,
a usual and fruitful tool when available. On the other hand, there exist finite differentiable
semialgebraic partitions of unity and therefore approximation becomes interesting as a
bridge between the differentiable semialgebraic category and the Nash one. There are
already relevant results concerning absolute approximation in the Nash setting (e.g.
Effroymson’s approximation theorem [9, §1]). An even more powerful tool is relative
approximation that allows approximation having a stronger control over certain subsets.
In the ’80s Shiota developed a thorough study of Nash manifolds and Nash sets (see
[15] for the full collected work); among other things, he devised approximation on an
affine Nash manifold relative to a Nash submanifold. Our purpose is to generalize this
type of results developing Nash approximation on an affine Nash manifold relative to
a Nash subset; of course, as one can expect we need some conditions concerning the
singularities on the Nash subset and we will focus on those whose singularities are of
monomial type. This will require a careful preliminary study of this type of singularities
in the Nash context. As an interesting application of our results, we prove that the
Nash classification of affine m-dimensional Nash manifolds with (divisorial) corners is
equivalent to the Ck semialgebraic classification for k > m2.

Recall that a set X ⊂ Rn is semialgebraic if it is a Boolean combination of sets
defined by polynomial equations and inequalities. A semialgebraic set M ⊂ Rn is called
an (affine) Nash manifold if it is moreover a smooth submanifold of (an open subset
of) Rn; as in this paper all manifolds are affine we often drop the word affine. A function
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f : U → R on an open semialgebraic subset U ⊂ M is Nash if it is smooth and
semialgebraic, i.e., its graph is semialgebraic. We denote by N(U) the ring of Nash
functions on U . Similarly, we define the ring Sν(U) of Cν semialgebraic functions on U

for ν ≥ 1. The orthogonal projection of a Nash manifold M ⊂ Rn into the tangent space
at one of its points is a local diffeomorphism at the point; as it is a semialgebraic map
we see that a semialgebraic subset M ⊂ Rn is an affine Nash manifold of dimension m

if and only if every point x ∈ M has an open neighborhood U in Rn equipped with a
Nash diffeomorphism (u1, . . . , un) : U → Rn that maps x to the origin and such that
U ∩ M = {um+1 = · · · = un = 0}. Even more, the Nash manifold M can actually be
covered with finitely many open sets of this type (see [11, 2.2] and [15, I.3.9]). This kind
of finiteness property permeates all the theory of semialgebraic sets and functions and
plays a relevant role in the present paper.

We are interested in Nash sets, that is, the zero sets of Nash functions f : M → R.
It is well known that the set Smooth(Z) of smooth points of a semialgebraic set Z, that
is, the points x ∈ Z where the germ Zx equals the germ of an affine Nash submanifold,
is a dense open semialgebraic subset of Z (see [16]). We will focus on Nash sets whose
singular points (i.e., points which are not smooth) are of a specific form.

Definition 1.1. Let X ⊂ M be a set and let x ∈ X. The germ Xx is a monomial singularity
if there is a neighborhood U of x in M equipped with a Nash diffeomorphism u : U → Rm

with u(x) = 0 that maps X∩U onto a union of coordinate linear varieties. That is, there
is a (finite) family Λ of subsets of indices λ = {�1, · · · , �r} of possibly different cardinality
r ≤ m such that

X ∩ U =
⋃

λ∈Λ
{uλ = 0}

where u = (u1, . . . , um) and {uλ = 0} denotes {u�1 = · · · = u�r = 0}. For simplicity we
assume that there are no immersed components, that is, if λ, λ′ ∈ Λ are different then
λ � λ′ and λ′ � λ. This assures that the germs {uλ = 0}x, λ ∈ Λ, are the irreducible
components of the germ Xx. We call Λ a type of the monomial singularity Xx; we also
say that X has a monomial singularity of type Λ at x.

Of course, a different Nash diffeomorphism u′ may provide a different type Λ′ and
therefore a monomial singularity has several types. Thus, two types Λ and Λ′ will be
called equivalent if the union of the coordinate linear varieties given by Λ is Nash dif-
feomorphic to the one given by Λ′ as germs in the origin. In Section 3 we show that
this equivalence is in fact global via linear isomorphisms and the resulting classes can be
characterized arithmetically (Proposition 3.12).

Nash monomial singularity germs are a generalization of Nash normal crossings germs,
that is, locally Nash diffeomorphic to a finite union of coordinate linear hyperplanes (see
also Section 3). Nash normal crossings have been studied extensively due to their rele-
vance in desingularization problems. In [11] several finiteness properties of Nash normal
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crossings were established and our first objective in Sections 3–5 is to extend them to the
much more general setting here. Specifically, in Section 3 we study in depth the concept
of type and in Section 5 we prove the following semialgebraic property of the monomial
singular locus (see Section 4.B).

Proposition 1.2. Let X ⊂ M be a Nash set. Fix a type Λ and put

T (Λ) = {x ∈ X : X has a monomial singularity of type Λ at x}.

Then, the set T (Λ) is semialgebraic.

In Section 5 we analyze the sets of interest in our discussion.

Definition 1.3. A Nash set X ⊂ M has monomial singularities in M if all germs Xx,
x ∈ X, are monomial singularities.

In fact, we will see that any closed semialgebraic set whose germs are all monomial
singularities is a coherent Nash set with monomial singularities (see Lemma 5.1). Now,
the main purpose in Section 5 is the following finiteness property (see the proof in (5.5)).

Theorem 1.4. Let X ⊂ M be a Nash set with monomial singularities. Then X can be cov-
ered with finitely many open sets U of M each one equipped with a Nash diffeomorphism
u : U → Rm that maps X ∩ U onto a union of coordinate linear varieties.

To prove the above result we will study first Nash functions on Nash sets with mono-
mial singularities.

Definition 1.5. Let Z be a semialgebraic subset of M . We say that a function f : Z → R
is a Nash function if there exists an open semialgebraic neighborhood U of Z and a Nash
extension F : U → R of f . We denote by N(Z) the ring of Nash functions of Z. If X
is a Nash set then we say that a function f : X → R is a c-Nash or cN function if its
restriction to each irreducible component is a Nash function. We denote by cN(X) the
ring of cN functions. Similarly, we define the ring Sν(X) of Cν semialgebraic functions
on X and the ring cSν(X) of cSν semialgebraic functions on X for ν ≥ 1 (cN or cSν

functions on X are clearly continuous).

We point out that if Z is a semialgebraic subset of M and f : Z → R is a function
with a Nash extension to a non-necessarily semialgebraic open neighborhood of Z (see
the definition in Section 2.A) then there is a Nash extension to a semialgebraic one [11,
1.3].

We will show in (5.2) that by means of analytic coherence of Nash sets with monomial
singularities we have the following notorious weak normality property:
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Theorem 1.6. If X is a Nash set with monomial singularities then N(X) = cN(X).

The ring N(X) has been revealed crucial to develop a satisfactory theory of irreducibil-
ity and irreducible components for the semialgebraic setting [10]; as one can expect such
theory extends Nash irreducibility and can be based as well on the ring of analytic
functions on the semialgebraic set.

Once we have presented these properties of Nash sets with monomial singularities we
approach in Sections 6, 7 and 8 the approximation problems. First the ring Sν(M) of Cν

semialgebraic functions is equipped with an Sν Whitney topology via Sν tangent fields
(see Section 2.C). The fact that we have Sν bump functions as well as finite Sν partitions
of unity makes a crucial difference between Sν and Nash functions and the existence of
these gluing functions justify our interest in approximation. In particular, given a closed
semialgebraic set Z of M we can extend any Sν function on Z to M and therefore Sν(Z)
carries the quotient topology making the restriction map ρ : Sν(M) → Sν(Z) a quotient
map. If Z is a closed semialgebraic set and T is a semialgebraic subset of Rb a map
f = (f1, . . . , fb) : Z → T ⊂ Rb is Sν if each component fi is sSν and Sν(Z, T ) inherits
the topology from the product Sν(Z,Rb) = Sν(Z) × · · · × Sν(Z).

Obviously, approximation problems focus mainly on maps f : Z → T where either Z

is not compact or T is not a Nash manifold. For, by the Stone–Weierstrass approximation
theorem [14, 1.6.2], if Z is compact any Cν map f : Z → T ⊂ Rb can be Cν approximated
by a polynomial map g : Z → Rb. Therefore, if T is a Nash manifold and g is close enough
to f then g(Z) is contained in a tubular neighborhood which retracts onto T .

In the ’80s, Shiota carried a systematic study of approximation over Nash manifolds
and showed that if Z ⊂ M is a (non-necessarily compact) closed semialgebraic set then
any function in Sν(Z) can be approximated by Nash functions (see Proposition 2.C.5).
Of course, it follows that if N is an affine Nash manifold then using a Nash tubular
neighborhood of N any map in Sν(Z,N) can be also approximated by Nash maps in
N(Z,N) (see Proposition 2.D.3). However, if the codomain is not an affine Nash manifold
then the situation gets more complicated. As we have announced before, our purpose
in this paper is to obtain this kind of approximation for Sν maps between certain Nash
sets with monomial singularities. Specifically, we say that a Nash set with monomial
singularities X is a Nash monomial crossings if in addition the irreducible components
of X are Nash manifolds. Again this mimics the concept of normal crossing divisor
[11, 1.8]. Our main result concerning approximation is the following, which is proved in
Section 8 (see (8.4)).

Theorem 1.7. Let X ⊂ M be a Nash set with monomial singularities and let Y ⊂ N

be a Nash monomial crossings. Let m = dim(M), n = dim(N) and q = m(
(

n
[n/2]

)
− 1)

where [n/2] denotes the integer part of n/2. If ν ≥ q then every Sν map f : X → Y that
preserves irreducible components can be Sν−q approximated by Nash maps g : X → Y .
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To prove this we need to rework approximation for Sν functions over Nash set with
monomial singularities. Indeed, we start in Section 6 with a result concerning extension
of Sν functions, which is well-known for Nash submanifolds (see Proposition 6.2):

If X ⊂ M is a Nash set with monomial singularities, then there are continuous
extension linear maps θ : Sν(X) → Sν(M) such that θ(h)|X = h.

This is stronger than the mere existence of extensions. This extension result will be
used to show in Section 7 that Nash functions on Nash sets with monomial singularities
can be relatively approximated (and not only absolutely, Proposition 6.2). Namely:

An Sν function F : M → R whose restriction to X is Nash can be Sν−m approximated
by Nash functions H : M → R that coincide with F on X.

Section 9 is devoted to the classification of affine Nash manifolds with corners, and
our approximation results will be crucial to compare Sν and Nash classifications. This
somehow complements Shiota’s results on Cν classification of Nash manifolds [15, VI.2.2].

An (affine) Nash manifold with corners is a semialgebraic set Q ⊂ Ra that is a
smooth submanifold with corners of (an open subset of) Ra. In [11] it is proved that any
Nash manifold with corners Q ⊂ Ra is a closed semialgebraic subset of a Nash manifold
M ⊂ Ra of the same dimension and the Nash closure X in M of the boundary ∂Q is
a Nash normal crossings. Note that we can define naturally Sν functions and maps and
their topologies via the closed inclusion of Q in M ; of course this does not depend on
the affine Nash manifold M (see Section 2.E for further details). A Nash manifold with
corners Q has divisorial corners if it is contained in a Nash manifold M as before such
that the Nash closure X of ∂Q in M is a normal crossing divisor (as one can expect this
is not always the case and a careful study can be found in [11, 1.12]).

Theorem 1.8. Let Q1 and Q2 be two m-dimensional affine Nash manifolds with diviso-
rial corners. If Q1 and Q2 are Sν diffeomorphic for some ν > m2 then they are Nash
diffeomorphic.

All the basic notions and the notation used in this paper will be explained in the fol-
lowing section. The reader can proceed directly to Section 3 and refer to the preliminaries
when needed.

2. Preliminaries

In this section we introduce the concepts and notation needed in the sequel. First,
we adopt the following conventions: M ⊂ Ra and N ⊂ Rb are affine Nash manifolds of
respective dimensions m and n; X and Y are Nash subsets of an affine Nash manifold
and their irreducible components are denoted by Xi and Yj . The semialgebraic sets will
be denoted by S, T, Z; on the other hand, Q ⊂ Ra is an affine Nash manifold with
corners, ∂Q is its boundary and Int(Q) = Q \ ∂Q is its interior. Also Sν and Nash
functions on a semialgebraic set will be denoted by f, g, h, . . . and their extensions to a
larger semialgebraic set by F,G,H, . . . Homomorphisms between rings of Nash functions,
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Sν functions, etc. are denoted using Greek letters like θ, γ, . . . but we reserve as usual ε
and δ to denote (small) positive real numbers or positive semialgebraic functions involved
in approximation of functions.

Let us recall some general properties of semialgebraic sets. Semialgebraic sets are
closed under Boolean combinations and by quantifier elimination they are also closed
under projections. In other words, any set defined by a first order formula in the language
of ordered fields is a semialgebraic set [2, pp. 28, 29]. Keeping this in mind, the basic
topological constructions as closures, interiors or borders of semialgebraic sets are again
semialgebraic. Also images and preimages of semialgebraic sets by semialgebraic maps
are again semialgebraic. The dimension dim(Z) of a semialgebraic set Z is the dimension
of its algebraic Zariski closure [2, §2.8]. The local dimension dim(Zx) of Z at a point
x ∈ Z is the dimension dim(U) of a small enough open semialgebraic neighborhood U

of x in Z. The dimension of Z coincides with the maximum of those local dimensions.
For any fixed d the set of points x ∈ Z such that dim(Zx) = d is a closed semialgebraic
subset.

An important property of compact semialgebraic sets is that they can be triangulated
[2, §9.2]. More relevant for us here is that given a Nash manifold M ⊂ Ra and some
semialgebraic subsets Z1, . . . , Zs ⊂ M , as a consequence of this triangulability property
via a one-point compactification of M , there is a stratification G of M compatible with
Z1, . . . , Zs. That is, there exists a finite collection G of disjoint semialgebraic subsets of M
called strata whose union is M and which are affine Nash manifolds Nash diffeomorphic
to some Rd with the following properties:

(1) The sets Z1 . . . , Zs are unions of strata.
(2) The closure in M of a stratum of G is a finite union of strata of G. In particular,

one deduces that if Σ,Γ are strata of G, then either Σ ⊂ Γ or Σ ∩ Γ = ∅. There-
fore, if GΣ = {Γ ∈ G : Σ ⊂ Γ}, then the semialgebraic set

⋃
Γ∈GΣ

Γ is an open
semialgebraic neighborhood of Σ in M ; this fact will be used freely along the sequel.

(3) Every stratum Γ is connected at every point x ∈ Γ , that is, x has a basis of neigh-
borhoods V in M with connected intersection V ∩ Γ . This, together with the fact
that Γ is an affine Nash manifold, implies that the analytic closure Γ an

x of the germ
Γx is an irreducible analytic germ of dimension dim(Γ ).

(4) Suppose the stratum Γ is adherent to another stratum Σ, that is, Σ ⊂ Γ . Then Σ

has a basis of neighborhoods V in M with connected intersection V ∩ Γ . Following
the terminology above, we say that Γ is connected at Σ.

We refer to [11, 2.3] for a more detailed presentation of the triangulation theorem and
the deduction of the preceding stratification.
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2.A. Basics on the Nash category

The open semialgebraic subsets of M are a base of the topology and therefore Nash
functions define a sheaf that we will denote by N. In particular, the sheaf N induces
a notion of Nash function f : U → R over an arbitrary open subset U of M possibly
not semialgebraic. In case U is an open subset of Ra, Nash means that f is smooth
and there exists a non-zero polynomial P (x, t) ∈ R[x, t] = R[x1, . . . , xa, t] such that
P (x, f(x)) = 0 for all x ∈ U . If U is semialgebraic this definition coincides with the one
in the introduction. We recall that both N(M) and Nx are Noetherian for any x ∈ M

(see [2, 8.2.11, 8.7.18]) and therefore it makes sense to consider the Nash closure globally
and locally. Moreover, Nash functions are analytic and therefore Nash manifolds and
Nash sets are analytic sets [2, 8.1.8]. The ring of germs of analytic functions Ox is always
Noetherian even thought the ring of global analytic functions O(M) is Noetherian only
in case M is compact. However, any arbitrary intersection of global analytic sets is a
global analytic set and so the local and the global analytic closure are well-defined [13,
Ch. V, Prop. 16]. We have:

Fact 2.A.1. Let Z ⊂ M be a semialgebraic set. Then:

(i) (See [10, 2.10].) The Nash and the analytic closures of Z coincide. In particular, if
Z is global analytic then it is a Nash set.

(ii) (See [11, 2.8].) If Z is a Nash set, then its Nash irreducible components are also its
global analytic irreducible components.

Since M is a semialgebraic subset of Ra and because of Definition 1.5 we apparently
have two definitions of Nash function f : M → R. Of course, both notions are equal
because every affine Nash manifold has a Nash tubular neighborhood.

Fact 2.A.2. (See [2, 8.9.5].) Let M ⊂ Ra be a Nash manifold. Then there exists an open
semialgebraic neighborhood U of M in Ra and a Nash retraction ρ : U → M .

2.B. Coherence and Nash functions

In the introduction we have provided the definition of Nash function on a semialgebraic
subset of an affine Nash manifold. Now for a Nash set X it will be useful to recover
this definition via global sections of a certain sheaf. Of course, the first choice should
be the following. Let I be the sheaf of N-ideals given by Ix = I(Xx), the germs of
Nash functions vanishing on X. The support of I is X and for any x ∈ M we have
(N/I)x = Nx/Ix = N(Xx). However, as in the analytic setting, the sheaf N/I has in
general a bad local-global behavior and the ring of global sections is not necessarily
N(X).
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Cartan showed that in the analytic context this can be solved using coherence. Let
N be an analytic manifold and O its sheaf of analytic germs. Recall that a sheaf of
O-modules F is coherent if (i) F is of finite type, i.e., for every x ∈ N there is an
open neighborhood U and a surjective morphism On|U → F|U and (ii) any morphism
Op|U → F|U has a kernel of finite type. By [3, Prop. 4] the sheaf O is coherent and
therefore a sheaf of O-ideals is coherent if and only if it is of finite type. The famous
Theorems A and B describe the local-global behavior of coherent sheaves: The stalks are
spanned by the global sections and each p-cohomology group of the sheaf with p > 0 is
trivial [3, Thm. 3]. In particular, for any coherent locally analytic set Y ⊂ N , i.e., locally
described by finitely many analytic equations and such that its sheaf IO of O-ideals of
germs of analytic functions vanishing on Y is coherent, we have the following properties.

Fact 2.B.1. (See [3, Prop. 14, 15].) Every coherent locally analytic set Y of an analytic
manifold N is (global) analytic. Moreover, if Y is irreducible then it has pure dimension.

Back to the Nash setting, even for sheaves of N-ideals, coherence is not enough (see
the introduction of [5]) because semialgebraicity involves a finiteness phenomenon that
mere coherence does not capture. Thus we say that a sheaf F of N-ideals is finite if there
is a finite open semialgebraic covering {Ui} of M such that each F|Ui is generated by
finitely many Nash functions over Ui. Since N is coherent as a sheaf of N-ideals [15, I.6.6]
it follows that a finite sheaf of N-ideals is coherent. In [7] and [4] the authors prove that
this is the correct notion for sheaves of N-ideals (we remark that in general for N-modules
the right notion is strong coherence [5]). We suggest the survey [6] as a general reference.

Fact 2.B.2. Let F be a finite sheaf of N-ideals and x ∈ M . Then (A) the stalk Fx is
generated by global sections, and (B) every global section σ of N/F is represented by a
global Nash function.

This result assures that if X is a Nash subset of M and I(X) stands for its (finitely
generated) ideal {f ∈ N(M) : f(X) = 0}, then the sheaf of N-ideals given by Jx =
I(X)Nx is the biggest finite sheaf of ideals whose support is X (in fact, as we will see
later, is the biggest coherent one). Moreover, let us see that there is a natural isomorphism
between the ring N(X) and the ring of global sections of N/J.

Indeed, by [15, I.6.5] we have Γ (U, J) = I(X)N(U) for any open semialgebraic sub-
set U of M . Then by Fact 2.B.2(B) we deduce Γ (U,N/J) = N(U)/I(X)N(U). On
the other hand, the support of N/J is X and therefore for any open semialgebraic
set U containing X we have Γ (X,N/J) ≡ Γ (U,N/J) ≡ Γ (M,N/J). The fact that
N(M)/I(X) ≡ Γ (M,N/J) ≡ Γ (U,N/J) ≡ N(U)/I(X)N(U) means that for every Nash
function g : U → R there is a Nash function h : M → R such that g − h|U ∈ I(X)N(U)
and therefore g = h on X. In particular, every function f ∈ N(X) has a Nash extension
to M , so that the restriction homomorphism
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N(M) → N(X)

f 	→ f |X (2.1)

is surjective and hence N(X) = N(M)/I(X) ≡ Γ (X,N/J), as required.
On the other hand, we also need to describe cN(X) as a ring of sections of a sheaf. Let

X1, . . . , Xs be the irreducible components of X and for every 1 ≤ i, j ≤ s let Ji and Jij be
respectively the sheaves of N-ideals given by Ji,x = I(Xi)Nx and Jij,x = I(Xi ∩Xj)Nx.
We define the morphism

φ : N/J1 × . . .×N/Js →
∏
i<j

N/Jij

induced by

(f1, . . . , fs) 	→ (fi − fj)i<j .

Consider the kernel sheaf ker(φ). Using Eq. (2.1) we define a multiple restriction map

cN(X) → N(M)/I(X1) × · · · ×N(M)/I(Xs) : f 	→ (f |X1 , . . . , f |Xs
)

that provides an isomorphism between cN(X) and the global sections

Γ
(
M, ker(φ)

)
⊂ N(M)/I(X1) × · · · ×N(M)/I(Xs).

Indeed, any global section of ker(φ) ⊂ N/J1 × . . .×N/Js is represented by global Nash
functions (g1, . . . , gs). Since (gi − gj)x ∈ I(Xi ∩Xj)Nx for any x ∈ Xi ∩Xj we deduce
that gi = gj on Xi ∩Xj and therefore the function defined by g(x) = gi(x) if x ∈ Xi is
c-Nash on X, as required.

Roughly speaking, the coherent sheaf N/J captures the global notions concerning
Nash functions and N/I the local ones. Hence it is natural to ask when I = J and for
the answer we look at the analytic functions. Consider the ideal IO(X) of all analytic
functions vanishing in X. Now, if X is coherent as an analytic set then by Theorem A
of Cartan the stalks IO,x are generated by the global sections Γ (M, IO) = IO(X). Since
IO(X) is generated by I(X) (see [11, 2.8]) it follows that JxOx = I(X)Ox = IO(X)Ox =
IO,x ⊃ IxOx and therefore JxOx = IxOx. The monomorphism Nx ↪→ Ox is faithful flat [2,
8.3.2], so that Jx = Ix. Then I = J and therefore (N/J)x = (N/I)x = Nx/Ix = N(Xx). In
particular, since by definition J is coherent as N-sheaf we have that X is also coherent as
a Nash set. Moreover, since IO,x = IxOx [2, 8.6.9] it is easy to prove that Nash coherence
implies analytic coherence. Summarizing we have:

Proposition 2.B.3. A Nash set X is coherent as an analytic set if and only if it so as a
Nash set.
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Furthermore, if X is coherent then for any semialgebraic open subset U of M we have

I(X)N(U) = I(X ∩ U) (2.2)

where I(X ∩ U) = {f ∈ N(U) : f |X∩U = 0}. Indeed, let J′ be the sheaf of N|U -ideals
given by J′x = I(X∩U)Nx. Since X∩U is a Nash subset of U , we know that N(X∩U) =
Γ (X ∩ U,N|U/J′) = N(U)/I(X ∩ U). Moreover, X ∩ U is also coherent in U and hence
J′ = I|U , so that N|U/J′ = (N/I)|U = (N/J)|U . Thus N(X ∩ U) = Γ (X ∩ U,N|U/J′) =
Γ (U,N/J) = N(U)/I(X)N(U).

We finish this discussion with a well-known fact included for the sake of completeness.

Proposition 2.B.4. Let X be a coherent Nash set and let X1, . . . , Xs be its Nash irreducible
components. Then, for every x ∈ X, each germ Xi,x is the union of some Nash irreducible
components of the germ Xx. In particular, the irreducible components X1, . . . , Xs are also
coherent.

Proof. By Fact 2.A.1 the Nash irreducible components X1, . . . , Xs are also the irre-
ducible components in the analytic sense. Since X is a (global) analytic set we can
consider its complexification X̃ whose irreducible components are X̃1, . . . , X̃r (see [13,
Ch. V, Prop. 15,17]). The irreducibility of each Xi implies that each germ X̃i,x is pure
dimensional [13, Ch. IV, Cor. 4]. The pure dimensionality of the sets X̃i implies, by the
Identity Principle, that no irreducible component of the germ X̃i,x is contained in X̃j,x if
i �= j. This shows that the decompositions into irreducible components of X̃1,x, . . . , X̃s,x

provide the decomposition of X̃x into irreducible components. On the other hand, fix a
point x ∈ M and consider the Nash irreducible components Y1, . . . , Yr of the germ Xx.
These are also the analytic irreducible components [2, 8.3.2] and therefore they are co-
herent [13, Ch. V, Prop. 6]. Furthermore, their complexifications Ỹi are the irreducible
components of the complexification X̃x (see [13, Ch. V, Prop. 2]). Now, it follows from
the coherence of X that the germ X̃x of the complexification X̃ is the complexification
X̃x of the germ Xx (see [3, Prop. 12]). Therefore each X̃i,x is the union of some Ỹj ;
hence, each Xi,x is the union of some Yj . Thus, Xi,x is coherent because it is a finite
union of coherent germs [3, Prop. 13]. �
2.C. Spaces of differentiable semialgebraic functions

Let M ⊂ Ra be an affine Nash manifold. Recall that for every integer ν ≥ 1 we
denote by Sν(M) the set of all semialgebraic functions f : M → R that are differentiable
of class ν.

We equip Sν(M) with the following Sν semialgebraic Whitney topology [15, II.1,
pp. 79–80]. Let ξ1, . . . , ξr be semialgebraic Sν−1 tangent fields on M that span the tan-
gent bundle of M . For every continuous semialgebraic function ε : M → R+ we denote
by Uε the set of all functions g ∈ Sν(M) such that
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|g| < ε and |ξi1 · · · ξiμ(g)| < ε for 1 ≤ i1, . . . , iμ ≤ r, 1 ≤ μ ≤ ν.

These sets Uε form a basis of neighborhoods of the zero function for a topology in Sν(M)
that does not depend on the choice of the tangent fields. It is well-known that each Sν(M)
is a Hausdorff topological ring [15, II.1.6], but neither a topological vector space nor a
Fréchet space. Note that the obvious inclusions Sν(M) ⊂ Sμ(M), ν > μ, are continuous.
Moreover, since semialgebraic smooth functions on M are Nash by definition, we have
N(M) =

⋂
ν S

ν(M). The first important result is that the inclusion N(M) ⊂ Sν(M) is
dense.

Fact 2.C.1. (See [15, II.4.1, p. 123].) Every semialgebraic Sν function on M can be
approximated in the Sν topology by Nash functions.

It is clear that given a semialgebraic set Z ⊂ M the zero-ideal Iν(Z) = {f ∈ Sν(M) :
f |Z ≡ 0} is closed. Indeed, if f(z) �= 0 for some z ∈ Z, no function vanishing on
Z can be closer than the constant semialgebraic function ε = |f(z)| > 0 to f . The
closedness of Iν(Z) in Sν(M) is the standard assumption to equip Sν(M)/Iν(Z) with
the quotient topology. Furthermore, with this topology the continuous quotient map
Sν(M) → Sν(M)/Iν(Z) is also open: if U is an open set in Sν(M), its saturation

UZ =
⋃
f∈U

(
f + Iν(Z)

)
=

⋃
h∈Iν(Z)

(U + h)

is open as translations are homeomorphism of the ring Sν(M).
Now, if the semialgebraic set Z is closed in M we can identify Sν(Z) with the quotient

Sν(M)/Iν(Z). Indeed, every function in Sν(Z) can be extended to M : we can use bump
Sν functions to see that a semialgebraic Sν function f : U → R defined on an open
semialgebraic neighborhood U of Z coincides on a perhaps smaller neighborhood with a
semialgebraic Sν function F : M → R. Therefore, we have a topology on Sν(Z) such that
the restriction map ρ : Sν(M) → Sν(Z) is an open quotient homomorphism. In general,
for any two semialgebraic sets Z ⊂ Z ′ the composition of the restrictions Sν(M) → Sν(Z)
and Sν(Z) → Sν(Z ′) coincide with the restriction Sν(M) → Sν(Z ′), so that:

(2.C.2). Given two closed semialgebraic sets Z ′ ⊂ Z the restriction map Sν(Z) → Sν(Z ′)
is an open quotient map.

In several situations we have to work with a semialgebraic set N of M which is in
turn a closed affine Nash submanifold of M . We already pointed out that the intrinsic
notion of semialgebraic Sν map on N as manifold equals the one coming from M as
semialgebraic set because of the existence of Nash tubular neighborhoods. Furthermore,
the topology in Sν(N) coming from the tangent fields of N and the one as a closed
semialgebraic subset of M are equal:
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Proposition 2.C.3. Let N ⊂ M be affine Nash manifolds with N closed in M . Then the
restriction homomorphism Sν(M) → Sν(N) is open when the Sν topologies are defined
through tangent fields.

Proof. Consider Sν(M) and Sν(N) endowed with the topologies defined through tangent
fields. It is known that then the restriction is continuous [15, II.1.5, p. 83], and we are to
see it is open. The key fact is that there is a continuous linear map θ : Sν(N) → Sν(M)
with θ(h)|N = h (see [15, II.2.14, p. 107]). Let F be a semialgebraic Sν function on M

and let f = F |N . We must see that if g ∈ Sν(N) is close enough to f , then there is a
semialgebraic Sν extension G of g to M arbitrarily close to F . But given a θ as above,
the function G = F + θ(g) − θ(f) is close to F when g is close to f . �

Note that in the preceding result we are using the existence of a continuous extension
linear map Sν(N) → Sν(M) when N is a closed Nash submanifold of M . This property
is stronger than mere extension. In Proposition 6.2 we will prove that such extension
linear maps exist for Nash sets with monomial singularities.

Remark 2.C.4. Observe that all we put so far can be done for Sν manifolds, that is,
semialgebraic sets which are differentiable submanifolds of class ν (see [15, I.3.11(i),
p. 30]). Instead of Nash tubular neighborhood we have to use bent tubular neighborhoods
[15, II.6.1, p. 135].

In the case of a Nash set X ⊂ M it is also natural to consider the ring cSν(X): if
X1, . . . , Xs are the irreducible components of X then f ∈ cSν(X) means f |Xi

∈ Sν(Xi)
for 1 ≤ i ≤ s. The multiple restriction homomorphism cSν(X) → Sν(X1)×· · ·×Sν(Xs) is
injective and therefore we consider in cSν(X) the topology induced by the product topology
of Sν(X1) × · · · × Sν(Xs). Note that the image of cSν(X) in Sν(X1) × · · · × Sν(Xs) is
closed. Indeed, this image is the kernel of the homomorphism

Sν(X1) × · · · × Sν(Xs) →
∏
i<j

Sν(Xi ∩Xj) : (f1, . . . , fs) 	→ (fi|Xi∩Xj
− fj |Xi∩Xj

)i<j .

This homomorphism is continuous because Sν(M) is a topological ring and therefore its
kernel is closed.

Moreover, the inclusion

γ : Sν(X) ↪→ cSν(X) : f 	→ f

is continuous, but one cannot expect it to be surjective in general. Since the embedded
image of cSν(X) in Sν(X1) × · · · × Sν(Xs) is closed, if γ is a homeomorphism then
the multiple restriction homomorphism Sν(X) → Sν(X1) × · · · × Sν(Xs) is a closed
embedding. As we will see in Proposition 6.2 this happens whenever X is a Nash set
with monomial singularities.
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Finally, we point out that Shiota’s approximation for affine Nash manifolds implies
readily a rather general absolute approximation result. Indeed, since the restriction ho-
momorphism Sν(M) → Sν(Z) is onto and continuous, from Fact 2.C.1 we obtain:

Proposition 2.C.5. If Z is a closed semialgebraic set of M then every Sν function f :
Z → R can be Sν approximated by Nash functions.

2.D. Spaces of differentiable semialgebraic maps

Let M ⊂ Ra be a Nash manifold. Let Z ⊂ M and T ⊂ Rb be semialgebraic sets.
A semialgebraic map f : Z → T is Sν when so are its components: we write f =
(f1, . . . , fb) : Z → T ⊂ Rb and then check if the functions fk : Z → R are Sν . We denote
Sν(Z, T ) the set of all Sν maps Z → T . We suppose henceforth that Z is closed in M in
order to endow Sν(Z, T ) with a topology. We use the canonical inclusions

Sν(Z, T ) ⊂ Sν
(
Z,Rb

)
= Sν(Z,R)× b· · · ×Sν(Z,R) : f 	→ (f1, . . . , fb).

The product has of course the product topology, and then Sν(Z, T ) is equipped with the
subspace topology. Roughly speaking, g is close to f when its components gk are close
to the components fk of f . This definition is the one used in the case of semialgebraic
Sν manifolds [15, II.1.3, p. 80]. If T is contained in another semialgebraic subset T ′, the
inclusion Sν(Z, T ) ⊂ Sν(Z, T ′) is an embedding. If X is a Nash set, we say again that
a semialgebraic map f = (f1, . . . , fb) : X → T is cSν when so are its components fk
and we denote by cSν(X,T ) the set of all such maps. If X1, . . . , Xs are the irreducible
components of X then the multiple restriction homomorphism cSν(X,T ) → Sν(X1, T )×
· · · × Sν(Xs, T ) is injective and therefore we consider in cSν(X,T ) the topology induced
by the product topology of Sν(X1, T ) × · · · × Sν(Xs, T ). Again, the image of cSν(X,T )
in Sν(X1, T ) × · · · × Sν(Xs, T ) is closed.

Some basics on spaces of functions pass immediately to spaces of maps. For instance,
given two closed semialgebraic sets Z ′ ⊂ Z ⊂ M , the restriction map

Sν(Z, T ) → Sν
(
Z ′, T

)
: f 	→ f ′ = f |Z′

is continuous. On the other hand, we know that if T = R this restriction is an open
quotient, from which the same follows for T open in Rb (as then Sν(Z, T ) is open in
Sν(Z,Rb)). It is well-known that already for topological reasons surjectivity fails in gen-
eral: for instance, the identity S1 → S1 has no continuous extension R2 → S1. We want
to study in which situations the restriction map is at least open. A useful fact will be
that composite on the left is continuous.

Proposition 2.D.1. Let Z ⊂ M be a closed semialgebraic set and let T ⊂ Rb be a locally
compact semialgebraic set. Let h : T → T ′ ⊂ Rc be an Sν map of semialgebraic sets.
Then the map
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h∗ : Sν(Z, T ) → Sν
(
Z, T ′) : f 	→ h ◦ f

is continuous for the Sν topologies.

Proof. Since T is locally compact, it is closed in some open semialgebraic set U ⊂ Rb,
and there is a semialgebraic Sν map H : U → Rc that extends h. We have the following
commutative diagram:

Sν(Z, T )
h∗

j

Sν(Z, T ′)

j′

Sν(Z,U)
H∗

Sν(Z,Rc)

Sν(M,U)

ρ

H∗
Sν(M,Rc)

ρ

where j and j′ stand for the canonical embeddings and ρ for the restriction quotients.
First we explore the lower square. Here we know that the lower H∗ is continuous (the

Nash manifolds case [15, II.1.5, p. 83]), hence the composition ρ ◦H∗ is continuous too.
The latter map coincides with H∗ ◦ ρ, which is thus continuous. But ρ is a quotient map
(the target is open in an affine space), hence the middle H∗ is continuous. Now we turn
to the upper square. As we have just seen that H∗ is continuous, the composite H∗ ◦ j
is continuous. But this map coincides with j′ ◦ h∗, which is consequently continuous. As
j′ is an embedding, h∗ is continuous. �

Back to restrictions we deduce the following (the same result is true if we have a Sν

manifold instead of a Nash manifold).

Proposition 2.D.2. Let Z ′ ⊂ Z be two closed semialgebraic sets, and let N ⊂ Rb be a
Nash manifold. Then the restriction Sν(Z,N) → Sν(Z ′, N) : f 	→ f |Z′ is an open map.

Proof. Let U be an open semialgebraic tubular neighborhood of N equipped with a
Nash retraction η : U → N (that is η(y) = y for y ∈ N). We must see that for any
open neighborhood V of a function f ∈ Sν(Z,N), every close enough approximation
g′ ∈ Sν(Z ′, N) of f |Z ′ has an extension g ∈ V. By definition, g′ is close to f |Z ′ if and
only if the components g′k of g′ are close to those fk|Z ′ of f |Z ′. But since the restriction
of functions is open, if g′k is close enough to fk|Z ′, then it has an extension gk to Z close
to fk. Thus the gk’s are the components of an extension g : Z → Rb of g′ which is close
to f , and we can take it close enough for its image to be contained in U . To obtain a
map into N we take h = η ◦ g : Z → N . This settles the matter because composition on
the left is continuous (Proposition 2.D.1), and so, h(= η ◦ g) is close to f(= η ◦ f), as
wanted. �
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Nash tubular neighborhoods also help to get absolute approximation for maps into
Nash manifolds.

Proposition 2.D.3. Let Z ⊂ M be a closed semialgebraic set and let N ⊂ Rb be a Nash
manifold. Every Sν map f : Z → N can be Sν approximated by Nash maps.

Proof. Pick first a Nash retraction η : W → N defined on an open semialgebraic tubular
neighborhood W ⊂ Rb of N . Let us write f = (f1, . . . , fb) : Z → N ⊂ Rb. By Propo-
sition 2.C.5 every component fk : Z → R can be Sν approximated by a Nash function
gk : Z → R. Thus the Sν map g = (g1, . . . , gk) : Z → Rb approximates f , and for a closed
enough approximation, we have g(Z) ⊂ W . By Proposition 2.D.1, η ◦ g approximates
f(= η ◦ f). �
2.E. Nash manifolds with corners

As in the case of Nash manifolds, a semialgebraic set Q ⊂ Ra is an m-dimensional
Nash manifold with corners if every point x ∈ Q has an open neighborhood U of Ra

equipped with a Nash diffeomorphism (u1, . . . , un) : U → Ra that maps x to the origin
and with U ∩ Q = {u1 ≥ 0, . . . , ur ≥ 0, um+1 = 0, . . . , un = 0} for some 0 ≤ r ≤ m. In
[11] several properties of affine Nash manifolds with corners are established: for instance,
and as in the case of Nash manifolds, that Q can be covered with finitely many open sets
of this type. The most relevant property for our purposes here is the following. Recall
that the boundary of Q is ∂Q = Q \ Smooth(Q), where Smooth(Q) is the set of smooth
points of Q.

Fact 2.E.1. (See [11, 1.12, 6.5].) Let Q ⊂ Ra be a Nash manifold of dimension m with
corners. Then there exists a Nash manifold M ⊂ Ra of the same dimension m such that
Q is a closed semialgebraic subset of M and the boundary ∂Q is a closed semialgebraic
set whose Nash closure X in M is a normal crossings at every point and satisfies X∩Q =
∂Q.

We will call such an M a Nash envelope of Q. Note that the boundary ∂Q defined
above coincides with the topological boundary of Q in M and that the interior as manifold
Int(Q) = Q\∂Q coincides with the topological interior of Q in M . Moreover, if M ′ ⊂ M

is an open subset that contains Q, then M ′ is also a Nash envelope of Q. This is the
usual procedure to obtain a Nash envelope with additional properties: to drop the closed
semialgebraic set C = M \M ′. Thus, replacing M by M ′ or making M smaller amounts
to drop a closed semialgebraic set C ⊂ M disjoint from Q. All in all, we see that the
concept of Nash envelope works as a germ at Q.

The proof of the preceding fact uses the following result, which we will also need in
the sequel:
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Fact 2.E.2. (See [11, 1.2].) Let Z ⊂ Ra be a locally compact semialgebraic set such that for
each x ∈ Z the analytic closure Zan

x of the germ Zx is smooth of constant dimension m.
Then Z is a closed subset of a Nash manifold M ⊂ Ra of dimension m.

Now we want to define Sν functions for affine Nash manifolds with corners. Since an
affine Nash manifold with corners Q ⊂ Ra is locally compact, Q is closed in the open
semialgebraic subset V = Ra \ (Q \ Q) of Ra. Consequently, we define Sν(Q) and its
topology using the closed inclusion of Q in V , as we did in Section 2.C. Let us see that
this topology does not depend on the neighborhood (notice that the argument for maps
into Rb is similar).

Indeed, let W ⊂ V be another open semialgebraic neighborhood of Q and consider an
Sν partition of unity ϕ1, ϕ2 : V → R subordinated to the covering {V \Q,W}. Then the
maps ΨVW : Sν(V ) → Sν(W ) : f 	→ ϕ2f and ΨWV : Sν(W ) → Sν(V ) : g 	→ ϕ1 + ϕ2g are
continuous; moreover, ϕ2f = f and ϕ1 + ϕ2g = g on Q. Thus, we have the commuting
diagram

Sν(V )

ρV

ΨV W

Sν(W )
ΨWV

ρW

Sν(Q)
Id

Sν(Q)
Id

where ρV : Sν(V ) → Sν(Q) and ρW : Sν(W ) → Sν(Q) are the open quotient homo-
morphisms. The identity map from left to right is continuous if and only if Id ◦ ρV is
continuous if and only if ρW ◦ ΨVW is continuous, which is true. The continuity of the
identity map from right to left is similar and hence the topology does not depend on the
neighborhood.

On the other hand, we could define Sν(Q) and its topology via the closed inclusion
of Q into any Nash envelope M . Using a Nash retraction ρ : V → M of M it follows
that both definitions coincide (note that M is closed in V and therefore we can apply
Proposition 2.C.3).

In general, if Q ⊂ Ra is a Nash manifold with corners and M ⊂ Ra a Nash envelope
of Q, then the Nash closure X of the boundary ∂Q is not a Nash normal crossing divisor,
i.e., its irreducible components need not to be Nash manifolds. In [11, 1.12] there is a
full characterization of Nash manifolds with corners for which this is true for M small
enough: such a Q is called here a Nash manifold with divisorial corners.

To progress further we introduce the following notion: a face of a Nash manifold with
corners Q ⊂ Ra is the (topological) closure of a connected component of Smooth(∂Q);
of course, ∂Q is the union of all the faces. This notion of faces are used to characterize
divisorial corners. We state that characterization as it is more convenient here:



76 E. Baro et al. / Advances in Mathematics 262 (2014) 59–114
Fact 2.E.3. (See [11, 1.12, 6.4, 6.5].) Let Q ⊂ Ra be a Nash manifold with divisorial
corners and let M ⊂ Ra be a Nash envelope of Q. Let X be the Nash closure of ∂Q

in M . Then, if we make M small enough, we have:

(1) X is a normal crossing divisor in M .
(2) Let D1, . . . , Dr be the distinct faces of Q and let X1, . . . , Xr be their Nash closure

in M . Then the distinct irreducible components of X are X1, . . . , Xr.
(3) All faces Di are again Nash manifolds with divisorial corners.
(4) Xi is a Nash envelope of Di satisfying Xi ∩Q = Di for 1 ≤ i ≤ r.
(5) The number of faces of Q that contain a given point x ∈ ∂Q coincides with the

number of connected components of the germ Smooth(∂Qx).

Note that (3) and (5) are intrinsic and do not depend on M . We finish this section
with an iterated construction of faces that fits properly in the framework of this paper.

2.F. Iterated faces of Nash manifolds with divisorial corners

Let Q be a connected Nash manifold with divisorial corners. By Fact 2.E.3(3) the
iterated faces are manifolds with divisorial corners.

We start with one single m-face: Q itself. Then by descending induction, for d < m a
d-face is a face of a (d + 1)-face. Clearly, a d-face has dimension d. The induction ends
at some d = m0 ≥ 0. In particular, the m0-faces are Nash manifolds. These data are the
same for all Nash envelopes M .

Next, for a given Nash envelope M of Q, we will consider the Nash closures of the
iterated faces. Notice how these Nash closures vary when shrinking M to M ′ ⊂ M

containing Q: if Z is the Nash closure in M of a d-face D then the Nash closure Z ′ of D
in M ′ is the irreducible component of Z ∩M ′ containing D.

Moreover, we can apply Fact 2.E.3 in each step of the construction and therefore:

Lemma 2.F.1. For M small enough we can assume that if D is a d-face then its Nash
closure Z in M is a Nash envelope of D such that the Nash closure of ∂D is a normal
crossing divisor in Z and Z ∩Q = D.

Proof. Indeed, note first that if it holds for some d-face D and we shrink M to M ′ ⊃ Q

then D retains the property. This is a consequence of the way Nash closures vary when
we shrink M .

Now we argue by descending induction on d. For d = m the statement reduces to
Fact 2.E.3(1). Now, let D be a d-face, d < m, which is a face of a (d + 1)-face D′. By
induction the Nash closure Z ′ of D′ in M ′ is a Nash envelope of D′ satisfying Z ′∩Q = D′.

We apply again Fact 2.E.3(4) to D′ ⊂ Z ′ and find a closed semialgebraic set C ′ ⊂
Z ′ \ D′ such that the Nash closure Z of D in Z ′ \ C ′ is a Nash envelope of D with
Z ∩ D′ = D. Moreover, since Z ′ ∩ Q = D′ we have that C ′ ∩ Q = ∅ and therefore
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we can replace M by M ′ = M \ C ′. The Nash closure of D in M ′ is the same Z and
D ⊂ Z ∩Q ⊂ Z ∩ Z ′ ∩Q ⊂ Z ∩D′ = D, so that Z ∩Q = D.

Finally, we apply Fact 2.E.3(1) to D ⊂ Z and we get a closed semialgebraic set
C ⊂ Z \D such that the Nash closure of ∂D in Z \C is a normal crossing divisor. Since
Z∩Q = D we have that C∩Q = ∅ and therefore we can replace M ′ by M ′′ = M ′\C. �

Let us look at this construction locally, that is,

M = Rm and Q = {x1 ≥ 0, . . . , xs ≥ 0} with 0 ≤ s ≤ m−m0.

In this case the d-faces are {xi1 = . . . = xim−d
= 0}∩Q for 1 ≤ i1, . . . , im−d ≤ s and the

Nash closures of such a face is {xi1 = · · · = xim−d
= 0}. We see that any intersection of

Nash closures of faces is again the Nash closure of a face.
Again in the general setting Q ⊂ M , let us fix x ∈ Q. We can make the same

construction of iterated faces for the germ Qx, which can be clearly described in the
local model. More relevant is the following:

Lemma 2.F.2. The distinct (Nash closures of the) d-faces of the germ Qx are the germs
at x of the (resp. Nash closures of the) d-faces of Q.

Proof. We argue by descending induction on d. For d = m it is obvious, so suppose
d < m. By induction the (d+ 1)-faces of Qx are the germs D′

x of the (d+ 1)-faces D′ of
Q and consequently the d-faces of Qx are the faces of those D′

x. Let D1, . . . , Ds be the
faces of a fixed (d + 1)-face D′. We claim that the germs D1,x, . . . , Ds,x are the faces of
the germ D′

x. It is clear that each Di,x is a union of faces of D′
x, hence what we claim is

that D′
x has exactly s faces. This is Fact 2.E.3(5), and we are done.

Finally, let Z be the Nash closure of a d-face D. The Nash closure Yx of the germ Dx

is included in Zx and since by Lemma 2.F.1 both are smooth of the same dimension,
Yx = Zx. �
Proposition 2.F.3. In the setting above, if M is small enough then for any two Nash
closures Z1 and Z2 of iterated faces we have that Z1 ∩ Z2 is a Nash manifold and any
irreducible component of Z1 ∩ Z2 meeting Q is again the Nash closure of some iterated
face.

Proof. Consider Nash closures Z1 and Z2 of iterated faces D1 and D2. By Lemma 2.F.2,
for every x ∈ Q we have that Z1,x and Z2,x are Nash closures of iterated faces of Qx

and therefore their intersection Z1,x ∩ Z2,x = (Z1 ∩ Z2)x is the Nash closure of a face
of Qx. In particular, for every x ∈ Q we have that (Z1 ∩ Z2)x is smooth. Thus, the
closed semialgebraic set C = (Z1∩Z2)\Smooth(Z1∩Z2) does not meet Q and we shrink
M to M ′ = M \ C. Let Z ′

1 and Z ′
2 be the Nash closures of D1 and D2 in M ′. For all

x ∈ Z ′
1 ∩ Z ′

2, the germ Z ′
1,x ∩ Z ′

2,x = Z1,x ∩ Z2,x = (Z1 ∩ Z2)x is smooth.
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Now, let Y be a connected component of Z1 ∩ Z2 such that there is x ∈ Y ∩ Q.
Since (Z1 ∩ Z2)x is smooth we have that Yx = (Z1 ∩ Z2)x. As before, Z1,x ∩ Z2,x =
(Z1 ∩ Z2)x is the Nash closure of a face of Qx and therefore, by Lemma 2.F.2, we have
that (Z1 ∩ Z2)x = Zx where Z is the Nash closure of an iterated face. In particular,
since Yx = (Z1 ∩Z2)x = Zx and both Y and Z are connected Nash manifolds we deduce
Y = Z. �
3. Monomial singularity types

As said in the introduction a set X ⊂ M has a monomial singularity at x ∈ X

if the point has a neighborhood U in M equipped with a Nash diffeomorphism u =
(u1, . . . , um) : U → Rm such that u(x) = 0 and

X ∩ U =
⋃

λ∈Λ
{uλ = 0}, where {uλ = 0} = {u�1 = · · · = u�r = 0},

for a certain type Λ (see Definition 1.1), that is, the germ Xx is a monomial singularity
of type Λ. Note that any u as above maps each irreducible component Xi of Xx onto
some coordinate linear variety Lλ(i) = {uλ(i) = 0}, and so each Xi is non-singular, as
well as any intersection Xi1 ∩ · · · ∩Xip . Furthermore, the derivative dxu : TxM → Rm

maps the tangent space TxXi onto that of Lλ(i), which is the same Lλ(i). Thus, v =
(dxu)−1 ◦ u : U → Ra is a diffeomorphism onto its image that maps Xx onto its tangent
cone, that is, the union of the tangent spaces of its irreducible components; henceforth,
by abuse of notation, tangent cone will also mean the collection of those tangent spaces.

In case X ∩ U = {u�1 = 0} ∪ · · · ∪ {u�r = 0}, 1 ≤ �1, . . . , �r ≤ m, we have a Nash
normal crossings [11]. After the obvious linear change of coordinates we can assume that
X ∩ U = {u1 = 0} ∪ · · · ∪ {ur = 0}. That is, in the context of Nash normal crossings,
the number of hyperplanes determines the type up to linear isomorphism. For monomial
singularities the characterization of the type is far more involved. Our first aim will be
to understand when a family of linear varieties of Rm is linearly isomorphic to a family
of coordinate linear varieties.

To that end, let L = {L1, . . . , Ls} be a family of linear varieties of Rm. Henceforth,
every time we consider a family of linear varieties we assume there are no immersions.

For each subset I ⊂ {1, . . . , s} and each 1 ≤ p ≤ s we denote

LI =
⋂
j∈I

Lj and L(p) =
∑

#I=p

LI .

We set L(s+1) = {0}. For each I ⊂ {1, . . . , s} with #I = p we also define

VI = L(p+1) ∩ LI

and we denote with WI any supplement of VI in LI . We will use this notation consistently
in all what follows. The following equations hold:
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L(p) = L(p+1) +
∑

#I=p

WI =
s∑

k=p

∑
#J=k

WJ , (3.1)

∑
#J=p, J �=I

LJ ∩ LI ⊂ VI and LI ⊃
∑
J⊃I

WJ , (3.2)

dim(WI) = dim(LI) − dim(VI) ≤ dim(LI) − dim
( ∑

#J=p
J �=I

LJ ∩ LI

)
, (3.3)

dim
(
L(p)) ≤ dim

(
L(p+1)) +

∑
#I=p

(
dim(LI) − dim

( ∑
#J=p
J �=I

LJ ∩ LI

))
. (3.4)

Indeed, (3.2) and (3.3) are obvious. To prove (3.1) we pick u ∈ L(p) and write u =∑
#I=p uI where uI ∈ LI . Next, write uI = vI + wI where vI ∈ VI and wI ∈ WI . Since∑
#I=p VI ⊂ L(p+1) we have

u =
∑

#I=p

vI +
∑

#I=p

wI ∈ L(p+1) +
∑

#I=p

WI

and so L(p) = L(p+1)+
∑

#I=p WI , as required. Finally (3.4) follows from (3.2) and (3.3).
The last inequality (3.4) gives way to the following notion.

Definition 3.5. We say that L is an extremal family if the inequality (3.4) is an equality
for all p = 1, . . . , s.

Clearly, this notion does not depend on the ordering the varieties are listed in the
family L.

Lemma 3.6. Suppose L extremal. Then for p = 1, . . . , s and I ⊂ {1, . . . , s} with #I = p

we have:

(1) L(p) = L(p+1) ⊕
⊕

#I=p WI =
⊕s

k=p

⊕
#J=k WJ .

(2) VI =
∑

#J=p
J �=I

LJ ∩ LI .

(3) LI =
⊕

J⊃I WJ .

In particular, L(1) =
⊕

J WJ and if we choose a basis BJ for each WJ , then any
extension of the union of the BJ ’s to a basis B of Rm satisfies that B ∩ LI is a basis of
LI for every I.

Proof. (1) By (3.1) we have L(p) = L(p+1) +
∑

#I=p WI and therefore it is enough to
check that dim(L(p)) = dim(L(p+1)) +

∑
#I=p dim(WI). Now, by (3.2) and (3.3) and

since the family is extremal we have
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dim
(
L(p)) ≤ dim

(
L(p+1)) +

∑
#I=p

dim(WI) ≤ dim
(
L(p+1))

+
∑

#I=p

(
dim(LI) − dim

( ∑
#J=p, J �=I

LJ ∩ LI

))
= dim

(
L(p)),

so that all the inequalities are equalities, as required.
(2) Since

∑
#J=p,J �=I LJ ∩ LI ⊂ VI it is enough to check dimensions coincide. By

(3.1) and the last equation in the proof of (1) we deduce dim(WI) = dim(LI) −
dim(

∑
#J=p
J �=I

LJ ∩ LI) and so

dim(VI) = dim(LI) − dim(WI) = dim
( ∑

#J=p, J �=I

LJ ∩ LI

)
.

(3) In view of (1) it suffices to show that LI =
∑

J⊃I WJ . We proceed by descending
induction on #I, being the first step I = {1, . . . , s} obvious. Assume the result true for
#I > p and let us check it for #I = p. By definition LI = VI ⊕WI and by (2) we have

VI =
∑

#J=p, J �=I

LJ ∩ LI .

For each J �= I with #J = p we have #(J ∪ I) > p and by induction hypothesis
LJ ∩ LI = LJ∪I =

∑
K⊃J∪I WK and so

LI = WI + VI = WI +
∑

#J=p, J �=I

LJ ∩ LI = WI +
∑

#J=p, J �=I

∑
K⊃J∪I

WK =
∑
J ′⊃I

WJ ′ ,

as claimed.
For the final assertion of the statement, note that L(1) =

⊕
J WJ follows straightfor-

ward from (1), and hence we can indeed obtain B as explained. Furthermore, by (3),
B ∩ LI is the union of all BJ with J ⊃ I and a basis of LI . �

We will prove that extremal families are linear isomorphic to families of coordinate
linear varieties. To that aim we introduce the following definition.

Definition 3.7. Let L = {L1, . . . , Ls} be a family of linear varieties of Rm. We say that
a basis B of Rm is adapted to L if for all i = 1, . . . , s the intersection B ∩ Li is a basis
of Li.

For example, for any family of coordinate linear varieties of Rm, the standard basis E of
Rm is an adapted basis of the family. Moreover, note that if a family L = {L1, . . . , Ls}
admits an adapted basis B then any bijection B ↔ E induces a linear isomorphism
f : Rm → Rm such that f(Li) is a coordinate linear variety of Rm. Thus, the following
is the result we were interested in:
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Proposition 3.8. Let L be a family of linear varieties of Rm. Then L is a extremal family
of Rm if and only if it there is a basis of Rm adapted to L.

Remark 3.9. If B is an adapted basis of L = {L1, . . . , Ls} then (i) B∩LI is a basis of LI

for all I ⊂ {1, . . . , s}, and (ii) (
∑�

i=1 LJi
) ∩ LI =

∑�
i=1(LJi

∩ LI) for all J1, . . . , J�, I ⊂
{1, . . . , s}. Indeed, it is enough to notice that if G1,G2 ⊂ B then L[G1]∩L[G2] = L[G1∩G2]
and L[G1] + L[G2] = L[G1 ∪ G2].

Proof of Proposition 3.8. We proved one direction in Lemma 3.6. Now, assume that L
admits an adapted basis B and denote Bi = B ∩ Li the basis of Li for i = 1, . . . , s. Let
us check that L is extremal. Recall that L(p) = L(p+1) +

∑
#I=p WI (see (3.1)) and let

us check that the previous sum is direct. It is enough to see that vector 0 only admits
the trivial representation as a sum of vectors of the linear varieties L(p+1) and WI where
#I = p. Indeed, write

0 = up+1 +
∑

#I=p

wI with up+1 ∈ L(p+1), wI ∈ WI .

Then for any I with #I = p we have

−wI = up+1 +
∑

#J=p, J �=I

wJ ∈
(
L(p+1) +

∑
#J=p, J �=I

WJ

)
∩WI .

By Remark 3.9,
(
L(p+1) +

∑
#J=p, J �=I

WJ

)
∩WI ⊂

(
L(p+1) +

∑
#J=p, J �=I

LJ

)
∩ LI

= L(p+1) ∩ LI +
∑

#J=p, J �=I

LJ ∩ LI ⊂ L(p+1) ∩ LI

so that −wI ∈ (L(p+1) ∩ LI) ∩WI = VI ∩WI = {0} and so also up+1 = 0, as required.
In particular, we deduce that

dim
(
L(p)) = dim

(
L(p+1)) +

∑
#I=p

dim(WI).

Thus, since dim(WI) = dim(LI) − dim(VI), to prove that L is extremal it is enough to
show that

dim(VI) = dim
( ∑

#J=p, J �=I

LJ ∩ LI

)
.

But since L admits an adapted basis we have (see Remark 3.9)
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VI = L(p+1) ∩ LI =
( ∑

#K=p+1
LK

)
∩ LI

=
∑

#K=p+1
LK ∩ LI ⊂

∑
#J=p, J �=I

LJ ∩ LI ⊂ L(p+1) ∩ LI = VI ,

as required. �
Remark 3.10. Let L be an extremal family of linear varieties (without immersions). Once
we know it is, up to linear isomorphism, a family of coordinate linear varieties, we can
bound the number of varieties in L. Indeed, by associating to every coordinate variety
L ⊂ Rm the set {xi1 , . . . , xir} of the variables appearing in the equations of L we define a
bijection from the set of all coordinate linear varieties in Rm onto the set of all subsets of
{x1, . . . , xm}. Clearly, this bijection reverses inclusions, hence transforms L in an Sperner
family of a finite set of m elements. Now, it is a beautiful result, the Sperner Theorem
[12], that such a family has at most

(
m

[m/2]
)

elements. Thus

#(L) ≤
(

m

[m/2]

)
.

This is behind the value q in Theorem 1.7 (see the final step in its proof (8.4)).

Now, we need to determine whether two extremal families are linearly isomorphic. We
introduce the following general definition.

Definition 3.11. Let L = {L1, . . . , Ls} be a family of linear varieties of Rm. As before,
we denote for each subset I ⊂ {1, . . . , s} the intersection LI =

⋂
j∈I Lj . Next, to each

family of different non-empty subsets I1, . . . , Ir ⊂ {1, . . . , s}, r ≥ 1, we associate the
number

dim(LI1 + · · · + LIr ).

The collection of all the previous dimensions will be called the load of L.

Note that this notion of load does depend on the ordering the varieties are listed in
the family L. Also note that the combinatorial information to determine if a family L is
extremal is contained in the load of L.

Proposition 3.12. Let L = {L1, . . . , Ls} and L′ = {L′
1, . . . , L

′
s} be two extremal families

of Rm. Then, there is a linear isomorphism f of Rm such that f(Li) = L′
i for all i if

and only if the loads of L and L′ coincide. If this is the case, we say that the families L
and L′ are equivalent.

Proof. Assume that the loads of L and L′ coincide. By Lemma 3.6 we have that L(1) =⊕
J WJ and that to construct a basis B of Rm adapted to L it is enough to choose a basis
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BI of WI for each I ⊂ {1, . . . , s} and then to extend the union of all BI ’s to obtain B.
Similarly, we construct a basis B′ of Rm adapted to L′ that extends a union of the bases
B′

I ’s of the W ′
I ’s. Since the loads of L and L′ coincide, BI and B′

I have the same number
of elements for each I ⊂ {1, . . . , s}. Thus, bijections BI ↔ B′

I induce another B ↔ B′.
Hence, there is a linear isomorphism f of Rm that maps WI onto W ′

I for all I. Since
again by Lemma 3.6 we know that Li =

⊕
i∈I WI and L′

i =
⊕

i∈I W
′
I , we are done. The

converse implication is clear since isomorphisms preserve dimensions. �
Remarks 3.13. (1) We have a necessary condition for a union of non-singular germs to be
a monomial singularity: its tangent cone must be extremal (for a full characterization,
just involving arithmetic conditions, see Corollary 5.6). Note that given a collection of
linear varieties, the mere list of their dimensions and the dimensions of their intersections
is not enough to determine if they are a monomial singularity: for instance, three lines
through the origin in R3 are a monomial singularity if and only if they generate R3,
hence we cannot drop the dimension of the sum of the lines.

(2) Since the equivalence of extremal families of linear varieties is determined by their
loads, it is an arithmetic relation as mentioned in the introduction.

(3) Let Xx and X ′
x be two monomial singularities. Then, Xx and X ′

x are Nash iso-
morphic if and only if their types Λ and Λ′ are equivalent if and only if their tangent
cones have up to reordering the same load. Thus, in the end, the type of a monomial
singularity is characterized arithmetically by the load of the tangent cone.

4. Nash monomial singularity germs

Here we will prove the semialgebraicity result stated in Proposition 1.2. But previously
we must analyze the ideals of monomial singularities.

4.A. Square-free monomial ideals

In this section D will either denote one of the domains: (i) N(Rm) of global Nash
functions on Rm, (ii) Nm of Nash function germs at the origin in Rm and (iii) Om of
analytic function germs at the origin in Rm. A square-free monomial ideal of D is an
ideal generated by monomials xσ = xσ1

1 · · ·xσm
m with exponents σi = 0 or 1. Our aim

here is to show that: the ideals of unions of coordinate linear varieties are exactly the
square-free monomial ideals. To that end, it will be useful the following lemma.

Lemma 4.A.1. Let I ⊂ D be a proper ideal that admits a system of generators f1, . . . , f�
that do not depend on x1. Then, x1 is a non-zero divisor mod I.

Proof. We have to show that if x1g ∈ I for some g ∈ D, then g ∈ I. But, if

x1g = h1f1 + · · · + h�f� for some hi ∈ D,
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we can write hi = x1qi + ri, where ri = hi(0, x2, . . . , xm) does not depend on x1, and

qi = hi − ri
x1

∈ D.

Therefore,

x1g = x1(q1f1 + . . . + q�f�) + (r1f1 + . . . + r�f�).

If we make x1 = 0, and since ri, fi do not depend on x1, we deduce that

r1f1 + . . . + r�f� = 0

and hence x1g = x1(q1f1 + . . . + q�f�). As D is a domain we conclude that g = q1f1 +
. . . + q�f� ∈ I, as desired. �
Definition 4.A.2. Let X = L1 ∪ · · · ∪ Ls be a union of coordinate linear varieties of Rm.
We say that a xi is a variable of Lj if xi = 0 is one of the equations of Lj . Now, we
first consider the collection of all monomials xj1 · · ·xjs such that xji is a variable of Li

for each i ∈ {1, . . . , s}; then, if a variable of xj1 · · ·xjs appears several times (because it
comes from several Li’s) we just take it once. The resulting monomials are the associated
square-free monomials of X.

Proposition 4.A.3. Let X = L1∪· · ·∪Ls be a union of coordinate linear varieties of Rm.
Then its associated square-free monomials generate: (i) the ideal I(X) of global Nash
functions vanishing in X, (ii) the ideal I(X0) of Nash function germs vanishing on the
germ at the origin X0 and (iii) the ideal IO(X0) of analytic function germs vanishing
on X0.

Proof. All cases are the same, so we write down (i). We first show that X is the zero set
of the system defined by its associated square-free monomials. Indeed, if Li has equations
xi1 = · · · = xir = 0 we can use instead x2

i1
+ · · · + x2

ir
= 0, so that X is given by

0 =
∏

i

(
x2
i1 + · · · + x2

ir

)
=

∑
�

(∏
i
xi�

)2
,

and so the equations
∏

ixi� = 0 define X. Of course, we can eliminate repetitions of
variables in

∏
i xi� to get the equations given by the associated square-free monomials.

By the real Nullstellensatz it remains to show that every square-free monomial ideal
I is real. To that end, it is enough to prove that:

A square-free monomial ideal I is an intersection of prime ideals generated by subsets
of variables appearing in the given generators of I.

We argue by induction on the total number of times the variables occur in the given
generators following [8]. For instance, in (x1x2, x1x3) there are 4 occurrences. In the
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induction step we will use Lemma 4.A.1. For one occurrence there is nothing to prove, and
the same happens for the more general case when each generator is one single variable.
Suppose now some variable appears in all monomials, say I = (x1f1, . . . , x1fp) where the
fk’s are square-free monomials without x1. For the induction we only need to show I =
(x1)∩ (f1, . . . , fp). Here, the inclusion left to right is clear. For the other suppose x1h ∈
(f1, . . . , fp). By Lemma 4.A.1, the variable x1 is not a zero-divisor mod (f1, . . . , fp),
hence this ideal contains h and consequently x1h ∈ I. Thus we can assume that some
generator has at least two variables and that no variable appears in all of them; say
I = (x1f1, . . . , x1fp, g1, . . . , gq), f1 �= 1 and no gj contains x1. We claim that

I = (x1, g1, . . . , gq) ∩ (f1, f2, . . . , fp, g1, . . . , gq),

which gives way to induction again. The inclusion to prove is right to left, which re-
duces to: if x1h ∈ (f1, f2, . . . , fp, g1, . . . , gq) then x1h ∈ I. But, by Lemma 4.A.1, x1 is
not a zero-divisor mod (f1, f2, . . . , fp, g1, . . . , gq), and consequently h ∈ (f1, f2, . . . , fp,

g1, . . . , gq) so that x1h ∈ I, as claimed. �
From this result we directly obtain:

Corollary 4.A.4. A Nash germ Xx is a monomial singularity if and only if the ideal
I(Xx) ⊂ NM,x is generated by square-free monomials on some local coordinates at x.

After this discussion of square-free monomials ideals we can turn to:

4.B. Semialgebraicity of monomial singularities loci

We know this to be true for normal crossings [11, 1.5], and we are to generalize the
argument there. But we give full details because of its technical nature.

Proof of Proposition 1.2. We will prove the semialgebraicity of T (Λ) for any fixed type Λ.
Consider the Nash ideal I = I(X) of X, which is finitely generated by some f1, . . . , fp ∈
N(M). By Corollary 4.A.4 there are square-free monomials m

(Λ)
1 (x), . . . ,m(Λ)

r (x) ∈
Z[x1, . . . , xm] depending only on Λ such that x ∈ T (Λ) if and only if

(4.B.1). There is a regular system of parameters u = (u1, . . . , um) of the local regular
ring NM,x such that Xx = {f1 = 0, . . . , fp = 0}x = {m(Λ)

1 (u) = · · · = m
(Λ)
r (u) = 0}x.

We must show that this condition is semialgebraic. Before proceeding, we apply the
Artin–Mazur Theorem [2, 8.4.4] to assume that M is an open subset of a non-singular
algebraic set V ⊂ Rn and f1, . . . , fp are the restrictions to M of some polynomial func-
tions that we denote by the same letters. Let J be the ideal of V in the polynomial
ring R[x] = R[x1, . . . , xn], and let b1, . . . , bq be generators of J . By [2, 8.7.15] the stalk
NM,x at a point x ∈ M is the henselization of the localization of R[x]/J at the ideal
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(x−x) = (x1−x1, . . . , xn−xn). The henselization of the local ring R[x](x−x) is R�x−x�alg
and so NM,x = R�x − x�alg/Jx where Jx = JR�x − x�alg. Therefore, the parameters ui

are the classes modulo Jx of some hi ∈ R�x−x�alg; let Bkx, Hix stand for the derivatives
at x of the bk, hi.

Suppose that condition (4.B.1) holds for a point x ∈ M . We deduce that all fj ’s
belong to the ideal of NM,x generated by m

(Λ)
1 (u), . . . ,m(Λ)

r (u); hence

(1) There are Nash function germs gej , ajk ∈ R�x− x�alg such that

fj =
∑
e

m(Λ)
e (h1, . . . , hm)gej +

∑
k

ajkbk. (4.1)

On the other hand, that the ui’s form a regular system of parameters of NM,x just means
that

(2) The hi’s vanish at x, and the linear forms Hix are linearly independent over R
modulo the linear forms Bkx.

Let us now see how these new two conditions are semialgebraic. We look at Eq. (4.1) as
a system of polynomial equations in the unknowns hi, gej , ajk. Then we recall M. Artin’s
approximation theorem with bounds [1, 6.1]:

(4.B.2). For any integer α there exists another integer β which only depends on n, α, the
degrees of the fj’s, the degrees of the m

(Λ)
e ’s, the degrees of the bk’s and the number of

variables hi, gej , aij, such that the polynomial equations

fj =
∑
e

m(Λ)
e (h1, . . . , hm)gej +

∑
k

ajkbk

have an exact solution in the local ring R�x− x�alg if they have an approximate solution
modulo (x−x)β; furthermore that exact solution coincides with the approximate solution
till order α.

Now, fix α = 2, so that the exact solution coincides with the approximate one till
order 2, and define S as the set of points x ∈ M such that:

(1*) There are polynomials hi, gej , ajk ∈ R[x] of degree ≤ β such that

fj ≡
∑
e

m(Λ)
e (h1, . . . ,hm)gej +

∑
k

ajkbk mod (x− x)β . (4.2)

(2*) The polynomials hi vanish at x and their derivatives Hi,x at x are linearly indepen-
dent modulo the linear forms Bkx.
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Notice that if the approximate solution hi verifies (2*) then the exact one hi verifies
(2). Thus, if Eq. (4.2) has an approximate solution hi, gej , ajk ∈ R[x] of degree ≤ β mod-
ulo (x−x)β satisfying (2*), then Eq. (4.1) has an exact solution hi, gej , ajk ∈ R�x−x�alg
satisfying (2). Since the converse implication is trivial, both assertions are equivalent.
Now, the existence of approximate solutions of fixed order β (described by conditions
(1*) and (2*) above) is a first order sentence, and we conclude that the set S of points
x ∈ M for which conditions (1) and (2) hold true (or equivalently conditions (1*) and
(2*) hold) is a semialgebraic set.

Next we analyze the exact meaning of (1) and (2); let x ∈ S. From (1) we get that

{
m

(Λ)
1 (u) = · · · = m(Λ)

r (u) = 0
}
x
∩Mx ⊂ {f1 = 0, . . . , fp = 0}x ∩Mx

and therefore

Xx = {f1 = 0, . . . , fp = 0}x ∩Mx

=
({

m
(Λ)
1 (u) = · · · = m(Λ)

r (u) = 0
}
x
∩Mx

)
∪ (Y1,x ∪ · · · ∪ Ys,x), (4.3)

where the Y�,x’s are the irreducible Nash components of Xx on which some m
(Λ)
i (u) does

not vanish identically. Thus we must get rid of those Y�,x’s. To that end we use the
topology of the germ Xx.

Let us denote X ′
x =

⋃
λ∈Λ{uλ = 0}x∩Mx. Recall that by definition of the monomials

m
(Λ)
1 (x), . . . ,m(Λ)

r (x) we also have

X ′
x =

{
m

(Λ)
1 (u) = · · · = m(Λ)

r (u) = 0
}
x
∩Mx.

For every integer d denote cd the number of connected components of dimension d

of the smooth locus of X ′
x; this number only depends on Λ and d. Now consider the

semialgebraic set

Smoothd(X) = {x ∈ X : the germ Xx is smooth of dimension d}.

We know that the set

Cd =
{
x ∈ X : the germ Smoothd(X)x has cd connected components

}
is semialgebraic [11, 4.2], and so is the intersection C =

⋂
d Cd. To conclude, we see that

S ∩ C = T (Λ).
Clearly S ∩ C contains T (Λ). For the other inclusion, pick x ∈ S ∩ C. We must see

that the Y�,x’s in Eq. (4.3) are redundant. Otherwise, let d be the biggest dimension of
the non-redundant ones. We can write

Smoothd(X)x =
(
Smoothd

(
X ′

x

)
\
⋃

Y�,x

)
∪
(
Smoothd

(⋃
Y�,x

)
\X ′

x

)
,

� �
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where only non-redundant Y�,x’s are considered. As x ∈ Cd, in the left hand side we have
exactly cd connected components. In the right hand side, we have at least cd coming from
the first bracket. This is so because we have cd connected components from Smoothd(X ′

x)
by definition of cd, and none of them can be lost inside

⋃
� Y�,x. Indeed, if one of these

connected components, say E, was contained in the union
⋃

� Y�,x, it would be contained
in some of the Y�,x of dimension d (dimension cannot be bigger by construction). The
connected component E is an open subset of {uλ = 0}x∩Mx for some λ ∈ Λ and therefore
{uλ = 0}x ∩ Mx = Y�,x because both are irreducible and have the same dimension. In
particular Y�,x is redundant, a contradiction. Now, looking at the second bracket, if Y�,x

is not redundant of dimension d, the germ

Smoothd(Y�,x) \X ′
x

is not empty, and adds some connected component, which is impossible. This contradic-
tion completes the argument. �
4.C. Nash functions on Nash monomial singularity germs

In Definition 1.5 we introduced Nash and c-Nash functions. We now prove that both
concepts coincide for Nash monomial singularity germs. This will allow in the next
section to show the corresponding result for Nash sets with monomial singularities (see
Theorem 1.6).

Proposition 4.C.1. Let X = L1∪· · ·∪Ls be a union of coordinate linear varieties in Rm,
and let h : X → R be a semialgebraic cSν (resp. cN) function. For every non-empty
set of indices I we consider the intersection LI =

⋂
i∈I Li and the orthogonal projection

πI : Rm → LI . Then the function

H =
∑
I

(−1)#I+1h ◦ πI ,

is a well defined Sν (resp. Nash) extension of h to Rm.
In particular, Sν(X) ≡ cSν(X) and N(X) ≡ cN(X).

Proof. We write the proof for the differentiable case, as the Nash one is a copy. First
note that every LI is contained in some Li, hence h ◦ πI = (h|Li) ◦ πI is a composition
of semialgebraic Sν functions, hence a semialgebraic Sν function. Consequently, H is a
sum of semialgebraic Sν functions, and so a semialgebraic Sν function. Thus the thing
to check is that H extends h, which we prove by induction on s.

For s = 1, we just have H = h ◦ π1, where π1 is the orthogonal projection onto
X = L1. Thus, π1|X = IdX and H|X = h. Now suppose s > 1 and the result true for
s− 1 coordinate linear varieties. Denote Y = L1 ∪ · · · ∪ Ls−1, and
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G =
∑
s/∈J

(−1)#(J)+1h ◦ πJ ,

that is, J runs among the non-empty sets of indices that do not contain s. The induction
hypothesis says that G|Y = h|Y , that is, h−G vanishes on Y . Let us deduce from this
that H|X = h.

Denote πs : Rm → Ls the orthogonal projection onto Ls. Since the Li’s are coordinate
linear varieties, πs(Li) = Li∩Ls ⊂ Li, which implies that πs(Y ) ⊂ Y and that (h−G)◦πs

vanishes on Y as h−G does. On the other hand, (h−G) ◦ πs and h−G coincide on Ls,
because πs is the identity on Ls. Thus (h−G) − (h−G) ◦ πs vanishes on X, that is,

h = G + (h−G) ◦ πs on X.

But:

(h−G) ◦ πs = h ◦ πs −
∑
s/∈J

(−1)#(J)+1h ◦ πJ ◦ πs

= h ◦ πs −
∑
s/∈J

(−1)#(J)+1h ◦ πJ∪{s} = h ◦ πs +
∑
s/∈J

(−1)#(J)+2h ◦ πJ∪{s}

=
∑
s∈K

(−1)#(K)+1h ◦ πK ,

that is, K runs among the non-empty subsets of indices that do include s. Hence on X

we have that

h =
∑
s/∈J

(−1)#(J)+1h ◦ πJ +
∑
s∈K

(−1)#(K)+1h ◦ πK =
∑
I

(−1)#(I)+1h ◦ πI = H,

as required. �
We remark that Proposition 4.C.1 defines a extension linear map h 	→ H

Sν(X) ≡ cSν(X) → Sν
(
Rm

)
, N(X) ≡ cN(X) → N

(
Rm

)
for the local models X = L1∪· · ·∪Ls. Note however that the above extensions disregard
topologies and therefore we must return to this identification later (see Lemma 6.1). In
any case, we deduce the following.

Proposition 4.C.2. Let X ⊂ M be a set such that Xx is a Nash monomial singularity
germ. Then the inclusions N(Xx) → cN(Xx) and S(Xx) → cS(Xx) are bijective.

Proof. We prove the Nash case, the Sν one is similar. It is enough to prove that the
inclusion is surjective. Fix a semialgebraic open neighborhood U of x ∈ X and u : U →
Rm a Nash diffeomorphism such that u(X ∩U) is a union of coordinates linear varieties
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L1, . . . , Ls. Any fx ∈ cN(Xx) is represented by a semialgebraic map f : V ∩X → R where
V is an open semialgebraic subset of U such that u(V ) is a ball B = B(0, ε) centered
at the origin. Consider the Nash diffeomorphism ψ : B → Rm, x 	→ x√

ε2−‖x‖2 , which
satisfies ψ(Li ∩B) = Li. The map f ◦u−1 ◦ψ−1 : L1 ∪ · · · ∪Ls → R is a c-Nash function
and by Proposition 4.C.1 it has a Nash extension H : Rm → R. Hence H ◦ψ ◦u : V → R
is a Nash extension of f . �

Even though we will not use it until Section 9 let us write down here the following
consequence of Proposition 4.C.1.

Corollary 4.C.3. Let X = {x1 · · ·xs = 0} ⊂ Rm and Q = {x1 ≥ 0, . . . , xs ≥ 0} ⊂ Rm

with 1 ≤ s ≤ m. Let f : Q → R and let g : X → R be Sν functions that coincide
on Q ∩ X. Then, they define a Sν function on Q ∪ X, that is, there is an Sν function
ζ : Rm → R such that ζ|Q = f and ζ|X = g.

Proof. Consider Sν extensions F,G : Rm → R of f, g. Then h = F − G|X vanishes on
Q ∩X. Let H : Rm → R be the Sν extension of h given by Proposition 4.C.1. If x ∈ Q

and I ⊂ {1, . . . , s} is non-empty then πI(x) ∈ Q ∩X. Thus, by definition H|Q = 0 and
ζ = F −H solves the problem. �
Remark 4.C.4. Observe that for the Nash case, the previous result is trivially true.
Given f and g Nash, the unique Nash extension F to Rm of f coincides, by the Identity
Principle, with g on X.

5. Nash sets with monomial singularities

Recall from the introduction that a Nash set X of M is a Nash set with monomial
singularities if Xx is a monomial singularity for every x ∈ X (Definition 1.3). In this
section we prove the finiteness and weak normality (Theorems 1.4 and 1.6). First let us
state a fundamental fact concerning Nash sets with monomial singularities.

Lemma 5.1. Let X ⊂ M be a closed semialgebraic set whose germs Xx, x ∈ X, are
all monomial singularities. Then X is a coherent Nash set. In particular, its irreducible
components X1, . . . , Xs are pure dimensional and any union of intersections of them is
also a Nash set with monomial singularities.

Proof. By definition X is locally the zero set of analytic functions. It is coherent in the
analytic sense because it is locally a finite union of analytic manifolds [3, Prop. 13].
Therefore by Fact 2.B.1 it is a global analytic set, hence a Nash set by Fact 2.A.1. Fur-
thermore, by Proposition 2.B.3 it follows that X is also coherent in the Nash sense. Let
X1, . . . , Xs be its irreducible components. By Fact 2.B.1 and Proposition 2.B.4 they are
coherent and pure dimensional. Moreover, Xi,x is the union of some irreducible com-
ponents of Xx for any x ∈ Xi ⊂ X (Proposition 2.B.4). Therefore each Xi is a Nash
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set with monomial singularities. Finally, that any union of intersections of irreducible
components is a Nash set with monomial singularities is a local problem, hence reduces
to observe that any intersection of coordinate linear varieties is again a coordinate lin-
ear variety and any union of coordinate linear varieties is a Nash set with monomial
singularities. �

We now prove weak normality making use of the notation and concepts introduced
in Section 2.B. The corresponding result for Sν and cSν functions is also true with the
corresponding topologies (Proposition 6.2), but we must postpone it until finiteness has
been proved.

(5.2). Proof of Theorem 1.6. Let J be the sheaf of N-ideals given by Jx = I(X)Nx. Let
X1, . . . , Xs be the irreducible components of X. For 1 ≤ i, j ≤ s denote Xij = Xi ∩Xj

and let Ji and Jij be respectively the sheaves of N-ideals given by Ji,x = I(Xi)Nx and
Jij,x = I(Xij)Nx. By Lemma 5.1 all the Nash sets X, Xi and Xij are coherent and
therefore we have that (N/J)x = Nx/I(Xx) = N(Xx), (N/Ji)x = Nx/I(Xi,x) = N(Xi,x)
and (N/Jij)x = Nx/I(Xij,x) = N(Xij,x). In 2.B we showed that N(X) can be naturally
identified with the global sections of N/J and cN(X) with the global sections of the
kernel of the sheaf morphism φ : N/J1 × · · · × N/Js →

∏
i<j N/Jij which by coherence

at each stalk is

φx : N(X1,x) × · · · ×N(Xs,x) →
∏
i<j

N(Xij,x) : (f1, . . . , fs) 	→ (fi|Xij
− fj |Xij

)i<j

for every x ∈ M . In particular, ker(φ)x = ker(φx) = {(f1, . . . , fs) : fi|Xij
− fj |Xij

= 0,
i < j}.

Consider the multiple restriction monomorphism i : N/J → ker(φ) ⊂ N/J1×· · ·×N/Js
given at the level of stalks by

ix : N(Xx) → ker(φ)x ⊂ N(X1,x) × · · · ×N(Xs,x) : f 	→ (f |X1,x , . . . , f |Xs,x
).

We prove that each ix is actually surjective and therefore i : N/J → ker(φ) induces a
surjection on global sections N(X) → cN(X), as required. To prove the surjectivity of
ix consider the commutative diagram

N(Xx)
ix ker(φ)x

cN(Xx)

where the vertical arrow is the inclusion and ker(φ)x → cN(Xx) is the injective mor-
phism that maps (f1, · · · , fs) to the function germ in cN(Xx) that equals fi on Xi,x.
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By Proposition 4.C.2 the vertical arrow is an isomorphism and therefore all maps are
isomorphisms, and we are done. �

We will need the following notion in the proof of the finiteness property (Theorem 1.4).

Definition 5.3. Let X ⊂ M be a Nash set with monomial singularities of pure dimension d.
Then the type Λ of X at any point x ∈ X must consist of sets λ = {�1, . . . , �r} of cardinal
r = dim(M)−d; the number of those sets is the multiplicity of X at x and will be denoted
mult(X,x).

Note this coincides with the usual multiplicity of the local ring O/IO(Xx). For, IO(Xx)
is clearly the intersection of mult(X,x) prime ideals of height dim(M) − d and multi-
plicity 1.

We start the proof of Theorem 1.4 with a geometric preamble.

Proposition 5.4. Let X ⊂ M be a Nash set with monomial singularities. Then X is the
union of finitely many connected Nash manifolds Σ on which the type of X is constant
and each is contained in an open semialgebraic set U such that

X ∩ U = Y1 ∪ · · · ∪ Ys,

where the Yi’s are closed Nash manifolds in U . Furthermore, Σ ⊂ Y1 ∩ · · · ∩ Ys and for
each x ∈ Σ the germs Y1,x, . . . , Ys,x are the irreducible components of Xx.

Proof. Let X1, . . . , Xs be the irreducible components of X, of dimensions d1 ≤ · · · ≤
ds = dim(X); the Xi’s are also Nash sets with monomial singularities, and have pure
dimension. Now, we choose a finite semialgebraic stratification G of M compatible with
X and the Xi’s. This can be done so that each stratum is locally connected at every
adherent point in M of it (see preliminaries). Furthermore, by Proposition 1.2 we can
suppose that the types of X and all Xi’s are constant on every stratum. For, G can be
chosen compatible with the semialgebraic sets defined by all types Λ of the singularities
of X and the Xi’s.

(5.4.1). Let Γ ∈ G be a stratum of dimension di contained in Xi. Then for each point
x ∈ Γ ⊂ Xi the Nash closure Γ an

x of the germ Γx is non-singular of dimension di; in
fact, it is an irreducible component of Xi,x.

Indeed, given x ∈ Γ and since Xi is a Nash set with monomial singularities of pure
dimension di at x, there exist non-singular germs Y1,x, . . . , Yri,x, all of dimension di, such
that

Γ an
x ⊂ Xi,x = Y1,x ∪ · · · ∪ Yri,x.
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Since all germs Y1,x, . . . , Yri,x, Γ an
x are irreducible of the same dimension, there exists an

index k = 1, . . . , ri such that Γ an
x = Yk,x, which implies (5.4.1).

Let us fix a stratum Σ ∈ G contained in X and let us fix an irreducible component Xi

with Σ ⊂ Xi (note here that Xi contains Σ if Xi ∩Σ �= ∅). Since the type of each Xi is
constant on Σ we have that mult(Xi, x) is a constant ri independent of x ∈ Σ. Consider

GΣ,i = {Γ ∈ G : Σ ⊂ Γ ⊂ Xi}.

We claim that

(5.4.2). There exist strata Γi1, . . . , Γiri ∈ GΣ,i such that for every x ∈ Σ ⊂ Xi

Xi,x = Γ an
i1,x ∪ · · · ∪ Γ an

iri,x

is the decomposition of the analytic germ Xix into irreducible components.

Indeed, the union Δ =
⋃

Γ∈GΣ,i
Γ is a neighborhood of Σ in Xi, so that Δx = Xi,x

for every x ∈ Σ. Now, fix a point x0 ∈ Σ. We have

⋃
Γ∈GΣ,i

Γ an
x0

= Δan
x0

= Xi,x0 = A1,x0 ∪ · · · ∪Ari,x0 ,

where A1,x0 , . . . , Ari,x0 are distinct, non-singular germs at x0 of dimension di. By (5.4.1),
Ak,x0 = Γ an

ik,x0
for some Γik ∈ GΣ,i of dimension di. As far, the strata Γi1, . . . , Γiri work

only for the chosen point x0, but we see readily that they work for all points in Σ.
Indeed, for any other point x ∈ Σ ⊂ Xi we have

Γ an
i�,x ⊂ Xi,x = Y1,x ∪ · · · ∪ Yri,x,

where Y1,x, . . . , Yri,x are distinct, non-singular germs of dimension di at x. Thus, every
Γ an

i�,x coincides with one of the Yk,x’s, and what we must see is that Γ an
i�,x �= Γ an

i�′,x for
� �= �′. Consider the set E defined as follows in two different ways:

{
x ∈ Σ : Γ an

i�,x �= Γ an
i�′,x

}
=

{
x ∈ Σ : dim

(
Γ an

i�,x ∩ Γ an
i�′,x

)
< di

}
.

Let us show that the first description implies that E is closed in Σ, while the second
implies that E is open in Σ (there is a subtlety here since we first consider germs and
then analytic closures).

Consider x ∈ Σ. Since Γ an
i�,x is non-singular of dimension di, it is the germ at x of a

affine Nash manifold D of dimension di, hence the point x has a neighborhood V x such
that Γi� ∩ V x ⊂ D, and so Γ an

i�,y ⊂ Dy for y ∈ Σ ∩ V x. But Γ an
i�,y has dimension di, and

Dy is irreducible of that dimension, hence Γ an
i�,y = Dy. Similarly, shrinking V x we find a

affine Nash manifold D′ of dimension di such that Γ an
i�′,y = D′

y for y ∈ Σ ∩ V x. Thus
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E ∩ V x =
{
y ∈ Σ ∩ V x : Dy �= D′

y

}
=

{
y ∈ Σ ∩ V x : dim

(
Dy ∩D′

y

)
< di

}
.

Now the fact that E is closed and open in Σ is clearer.
Finally, since x0 ∈ E, the semialgebraic set E is not empty, and since Σ is connected,

we conclude that E = Σ, as desired. The claim (5.4.2) is proved.
To complete the argument, consider the locally compact semialgebraic set Tik = Γ ik ⊃

Σ for k = 1, . . . , ri. Since T an
ik,x = Γ an

ik,x for each x ∈ Tik, condition (5.4.1) implies that
there exists a connected affine Nash manifold Sik ⊂ M of dimension di, containing Tik,
hence Σ, with Sik,x = T an

ik,x for x ∈ Σ (see Fact 2.E.2).
Thus:

Xi,x = Γ an
i1,x ∪ · · · ∪ Γ an

iri,x = T an
i1,x ∪ · · · ∪ T an

iri,x = Si1,x ∪ · · · ∪ Siri,x,

and

Xx =
⋃

i
Xi,x =

⋃
i
(Si1,x ∪ · · · ∪ Siri,x) (5.1)

for all x ∈ Σ. It follows that Σ is contained in IntX(
⋃

i(Si1∪· · ·∪Siri)), which is an open
semialgebraic subset of X. Therefore, there exists an open semialgebraic neighborhood
U of Σ in M such that

X ∩ U =
⋃

i
(Si1 ∪ · · · ∪ Siri) ∩ U.

Moreover, since each Sik is locally closed we can assume that Sik is closed in U . Finally
note that

Σ ⊂
⋂
i

(Si1 ∩ · · · ∩ Siri).

Thus, we end by renaming the Sik∩U ’s as the Yj ’s of the statement. Concerning the last
assertion there, we only need to remark that no irreducible component of a germ Xi,x is
contained in one of Xj,x, because Xi and Xj are irreducible of pure dimension. �
(5.5). Proof of Theorem 1.4. By Proposition 5.4 we are reduced to the following claim.

(5.5.1). Let X ⊂ M be a Nash set with monomial singularities that is a union of closed
Nash manifolds Y1, . . . , Ys. Let Σ ⊂ Y1 ∩ · · · ∩ Ys be a connected Nash manifold such
that: (i) the type of X is constant on Σ and (ii) Y1,x, . . . , Ys,x are the distinct irreducible
components of the germ Xx for every x ∈ Σ. Then Σ can be covered by finitely many
open semialgebraic sets U equipped with Nash diffeomorphisms u : U → Rm such that
u(X ∩ U) is a union of coordinate linear varieties.

To start with, we refine the fact that the type Λ is constant on Σ. We show that the
load of {TxY1, . . . , TxYs} is the same for all x ∈ Σ. Since Σ is connected it is enough
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to show that the load is locally constant. Fix x ∈ Σ and let u : U 	→ Rm be a local
Nash diffeomorphism with u(x) = 0 and u(X ∩ U) =

⋃
λ∈Λ{uλ = 0}. By (ii), for U

small enough, the irreducible components of X ∩U are Y1 ∩U, . . . , Ys ∩U and we denote
Li = u(Yi∩U). For any point y ∈ Σ∩U ⊂ (Y1∩· · ·∩Ys)∩U = u−1(L1∩· · ·∩Ls) we have
dy(TyYi) = Li, and consequently the loads of {TyY1, . . . , TyYs} and {TxY1, . . . , TxYs} are
the same. Thus, the load is locally constant in Σ and therefore constant.

After this, fix any family L = {L1, . . . , Ls} whose type is Λ and whose load is that of
{TxY1, . . . , TxYs} for all x ∈ Σ.

Now, X being a Nash set with monomial singularities, we can assume that every
intersection Yi1 ∩ · · · ∩ Yir is an affine Nash manifold, and at every x ∈ Y1 ∩ · · · ∩ Ys we
have

Tx(Yi1 ∩ · · · ∩ Yir) = TxYi1 ∩ · · · ∩ TxYir ,

or equivalently dimx(Yi1 ∩ · · · ∩Yir) = dim(Li1 ∩ · · · ∩Lir ). Indeed, since Σ is connected
we can assume that Y1, . . . , Ys are connected. Then, by the Identity Principle Y1, . . . , Ys

are the irreducible components of X because by hypothesis their germs at any point
x ∈ Σ are the distinct irreducible components of Xx. Moreover, again by the Identity
Principle, for any x ∈ X the irreducible components of Xx are the Yi,x with x ∈ Yi. Thus,
and since X has monomial singularities, for any x ∈ X the germ Yi1,x∪· · ·∪Yir,x is Nash
diffeomorphic to a union of germs of coordinate varieties. In particular, Yi1,x ∩ · · · ∩Yir,x

is Nash diffeomorphic to a germ of a coordinate variety and the equality of dimensions
above is straightforward.

After this preparation, the union
⋃

i Li is the model to which X =
⋃

i Yi must be
diffeomorphic near Σ in the local semialgebraic sense. To confirm this, we work up the
levels

L(p) =
{
LI =

⋂
i∈I

Li : #I = p

}

and the corresponding levels

Y(p) =
{
YI =

⋂
i∈I

Yi : #I = p

}

for p = 1, . . . , s. For the moment being we do not look for Nash diffeomorphisms whose
images are Rm, they will be just open semialgebraic subsets of Rm. We will fix this later.

Step 1. At bottom level p = s we have one single intersection Y1 ∩ · · · ∩ Ys which is
a Nash manifold of the same dimension that the linear coordinate variety L1 ∩ · · · ∩ Ls.
Thus, Y1 ∩ · · · ∩ Ys, hence Σ, can be covered by finitely many open semialgebraic sets
W such that the intersection Us = W ∩ Y1 ∩ · · · ∩ Ys is Nash diffeomorphic to an
open semialgebraic set Ωs of L1 ∩ · · · ∩ Ls. Since there are finitely many W ’s, we can
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suppose simply that Σ ⊂ Us and we have a Nash diffeomorphism ϕs : Ωs → Us. Denote
S = ϕ−1

s (Σ).
Step 2. Now we formulate carefully the recursion procedure. Suppose we have, at

level p, open semialgebraic subsets Ωp and Up of
⋃

#I=p LI and
⋃

#I=p YI respectively,
with Σ ⊂ Up, and a continuous semialgebraic map ϕp : Ωp → Up which restricts to Nash
diffeomorphisms LK ∩ Ωp → YK ∩ Up; here K stands for any subset of {1, . . . , s} with
at least p indices. We also assume that Ωk ⊂ Ωp and ϕp|Ωk

= ϕk for k = p + 1, . . . , s.
We want an extension to a similar map ϕp−1 at level p − 1, after some suitable finite
semialgebraic partition of Σ. We proceed as follows.

Step 3. Let YJ be an intersection of Yi’s at level p − 1 and consider the continuous
semialgebraic restriction φJ of ϕp to LJ ∩ Ωp. Moreover, for any set I of p indices the
restriction induces a Nash diffeomorphism LJ ∩LI ∩Ωp → YJ ∩YI ∩Up (note that every
intersection of YJ with another YJ ′ at the same level p−1 is included in some intersection
YI at level p). By considering a finite open semialgebraic covering of YJ we can suppose
it is Nash diffeomorphic to an affine space, and we pick any identification YJ ≡ Ra. Of
course a = dim(LJ).

Now, for any subset I of p indices the tangent bundle of the affine Nash manifold
YJ ∩ YI ⊂ Ra is generated by its global Nash sections [2, 12.7.10]. Since Us is contained
in all those YJ ∩ YI ’s, the sums

∑
#I=p

Tx(YJ ∩ YI) ⊂ Ra ≡ LJ for x ∈ Us

are the fibers of a Nash vector bundle T on Us also generated by its global Nash sections.
The same is true for the orthogonal bundle T⊥, say it is generated by finitely many
global Nash sections ζi : Us → Ra. For every x ∈ Σ the codimension c of

∑
#I=p Tx(YJ ∩

YI) in TxYJ is that of
∑

#I=p LJ ∩ LI in LJ (since the load of L = {L1, . . . , Ls} and
{TxY1, . . . , TxYs} are the same). Therefore, for every x ∈ Σ, we have that c of the
ζi(x)’s are independent. After considering once again a finite open covering of Σ, we can
assume we have exactly c independent Nash maps ζ1, . . . , ζc : Us → Ra ≡ YJ such that
ζ1(x), . . . , ζc(x) span T⊥

x for every x ∈ Σ. In other words,

Ra =
∑

#I=p

Tx(YJ ∩ YI) + L
[
ζ1(x), . . . , ζc(x)

]
,

for x ∈ Σ.
Next consider VJ =

∑
#I=p LJ ∩LI and notice that the orthogonal supplement WJ of

VJ in LJ ⊂ Rm is a coordinate linear variety of dimension c generated by suitable vectors
e�1 , . . . , e�c of the canonical basis. Let Ω′ = Ωs ⊕ WJ which is an open semialgebraic
subset of the coordinate linear variety L′ = (L1∩· · ·∩Ls)⊕WJ . We extend ϕs as follows:

ϕ∗
s(v + α1e�1 + · · · + αce�c) = ϕs(v) + α1ζ1

(
ϕs(v)

)
+ · · · + αcζc

(
ϕs(v)

)
.
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This extension ϕ∗
s is defined on Ω′. Since Ω′ ∩ (LJ ∩ Ωp) = Ωs and φJ |Ωs

= ϕs, the
maps ϕ∗

s and φJ glue into a continuous semialgebraic map φ′
J : Ω′ ∪ (LJ ∩ Ωp) →

Ra ≡ YJ . Clearly, the components of φ′
J are c-Nash functions on the Nash sets with

monomial singularities Ω′∪(LJ∩Ωp). Consequently, they are Nash functions, and φ′
J has

a Nash extension φJ : ΩJ → Ra ≡ YJ to some open semialgebraic neighborhood ΩJ of
Ω′∪(LJ∩Ωp) in LJ . We claim that φJ is a local diffeomorphism at every v ∈ S = ϕ−1

s (Σ).
Indeed, fix such a v ∈ S and put x = ϕs(v). Since φJ is a diffeomorphism on every

LJ ∩LI ∩Ωp with #I = p we have dvφJ(LJ ∩LI) = Tx(YJ ∩YI) and so dvφJ(LJ) ⊂ Ra

contains the sum
∑

#I=p Tx(YJ ∩ YI). Moreover, for every e�k we have

φJ(v + te�k) = x + tζk(x), t ∈ R.

Hence, dvφJ(e�k) = ζk(x). Consequently,

Ra =
∑

#I=p

Tx(YJ ∩ YI) + L
[
ζ1(x), . . . , ζc(x)

]
⊂ dvφJ(LJ),

and dvφJ : LJ → Ra ≡ YJ is onto, hence a linear isomorphism (as a = dim(LJ)). Our
claim is proved.

Consequently, shrinking ΩJ , φJ is a local Nash diffeomorphism onto an open semial-
gebraic neighborhood UJ of Σ in YJ . In this situation there is a finite open semialgebraic
covering {ΩJk} of ΩJ such that every restriction φJ |ΩJk

is a Nash diffeomorphism onto
an open semialgebraic set UJk of YJ (see [2, 9.3.9, p. 226]). As usual, this means that we
can suppose φJ : ΩJ → UJ is a diffeomorphism.

By construction, the semialgebraic set
⋃

J ΩJ is a neighborhood of S in
⋃

J LJ , hence
it contains an open semialgebraic neighborhood Ωp−1. Notice that the diffeomorphisms
φJ glue together to give a continuous semialgebraic extension ϕp−1 : Ωp−1 → Up−1 of ϕp

that verifies all conditions required.
Step 4. Thus climbing from level to level, we get a continuous semialgebraic map ϕ1 :

Ω1 → U1 from an open semialgebraic neighborhood Ω1 of S in L1 ∪ · · ·∪Ls into another
U1 of Σ in X = Y1 ∪ · · · ∪ Ys, which induces Nash diffeomorphisms Li ∩Ω1 → Yi ∩W1.
Then we apply again the same argument above to extend ϕ1 to a Nash diffeomorphism
ϕ : Ω → U from an open semialgebraic neighborhood Ω of S in Rm onto one U of
Σ in M . (Of course in climbing we have used many finite semialgebraic coverings and
shrunk the neighborhood of Σ, so that what we really have is a finite collection of such
maps whose images U cover Σ.)

Final arrangement. In this situation, ϕ−1 : U → Ω is the diffeomorphism we were
looking for, except that Ω need not be Rm. To amend this, notice that S = ϕ−1(Σ) ⊂
L1 ∪ · · · ∪ Ls is contained in the intersection L1 ∩ · · · ∩ Ls. Now this intersection can be
written as the intersection Hj1 ∩ · · ·∩Hjq of the coordinate hyperplanes Hj that contain
some Li (that is, we just collect the equations xj� = 0 of all Li’s). This said, we know
that Ω contains a smaller neighborhood of S, which is a finite union of open semialge-
braic sets Nash diffeomorphic to Rm, by diffeomorphisms that preserve the coordinate
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hyperplanes Hj� , hence the coordinate linear varieties Li (see [11, 4.4.5]). Composing
ϕ−1 with the latter we obtain the diffeomorphism u we sought. �

The preceding construction gives a characterization of monomial singularities as an-
nounced before.

Corollary 5.6. Let Xx be a Nash germ whose irreducible components X1,x, . . . , Xs,x

are non-singular. Then Xx is a monomial singularity if and only if the tangent cone
{TxX1, . . . , TxXs} is a extremal family and

dim(Xi1,x ∩ · · · ∩Xir,x) = dim(TxXi1 ∩ · · · ∩ TxXir )

for 1 ≤ i1 < · · · < ir ≤ s.

Proof. The only if part is clear. For the converse implication, we have to prove first that
each intersection Xi1,x ∩ · · · ∩Xir,x is non-singular. Once this is done, by hypothesis

Tx(Xi1,x ∩ · · · ∩Xir,x) = TxXi1 ∩ · · · ∩ TxXir

which enables us to repeat the preceding proof (5.5).
Using the obvious induction argument, to show that each intersection Xi1,x∩· · ·∩Xir,x

is non-singular, we are reduced to prove that: If X1,x, X2,x ⊂ Ra
x are two non-singular

germs such that dim(X1,x ∩ X2,x) = dim(TxX1,x ∩ TxX2,x), then X1,x ∩ X2,x is non-
singular.

Indeed, as it is well-known, the orthogonal projection πj : Ra → Lj induces a Nash
diffeomorphism between Xj,x and Lj,x. Consider next the orthogonal projections π :
Ra → L = L1 +L2 and ρj : L → Lj . Since πj = ρj ◦π it holds that X ′

j,x = π(Xj,x) ⊂ Lx

is Nash diffeomorphic to Xj,x and in particular π(X1,x ∩X2,x) is a Nash subset germ of
each Xj,x Nash diffeomorphic to X1,x∩X2,x; hence, dim(π(X1,x∩X2,x)) = dim(L1∩L2).
On the other hand, since X ′

1,x and X ′
2,x in Lx are transversal, X ′

1,x ∩X ′
2,x is the germ

of a Nash manifold of dimension dim(L1 ∩L2). As π(X1,x ∩X2,x) is a Nash subset germ
of X ′

1,x ∩X ′
2,x of its same dimension, and the latter is irreducible, we deduce that they

are equal and therefore X1,x ∩X2,x is non-singular, as required. �
We cannot drop the condition on the dimension of the intersections and the tangent

spaces. In R4, let X1 = {x3 = x4 = 0}, X2 = {x2 = 0, x4 = x2
1} and let X be their

union. The tangent cone of X at the origin is {x3 = 0, x4 = 0}, {x2 = 0, x4 = 0} and
therefore it is extremal. However, the intersection X1 ∩X2 is the origin.

6. Extension linear maps for Nash sets with monomial singularities

This section is preliminary for Nash approximation. As explained in Section 2.C,
for any Nash set X the ring Sν(X) of Sν-functions is equipped with the topology as the
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quotient Sν(X) = Sν(M)/Iν(X). If X1, . . . , Xs are the irreducible components of X then
cSν(X) is equipped with the topology induced by the inclusion cSν(X) → Sν(X1)×· · ·×
Sν(Xs) given by the multiple restriction f 	→ (f |X1 , . . . , f |Xs

). Moreover, the inclusion
γ : Sν(X) → cSν(X) is always continuous. Here our purpose is to prove that if X is a
Nash set with monomial singularities then there exist a continuous extension linear map
θ : Sν(X) → Sν(M) and that γ is a homeomorphism (Proposition 6.2). Both statements
will be deduced from the existence of a continuous extension linear map cθ : cSν(X) →
Sν(M). Recall that in Proposition 4.C.1 we already found such an extension for unions of
coordinate linear varieties. However the continuity of the extension trick there may fail
because composition on the right with the orthogonal projections need not be continuous
[15, II.1.5, p. 83]. Our purpose now is to amend this.

Lemma 6.1. Let X = L1 ∪ · · · ∪Ls be a union of coordinate linear varieties in Rm. Then
there is a continuous extension linear map cθ : cSν(X) → Sν(Rm).

Proof. Fix a non-empty set of indices I = {i1, . . . , ir} ⊂ {1, . . . , s} and set LI =
⋂

i∈I Li

and XI =
⋃

i∈I Li. By Proposition 4.C.1 every cSν function h : XI → R has the following
Sν extension to Rm

HI =
∑

∅�=J⊂I

(−1)#(I)+1h ◦ πJ .

Now consider the open semialgebraic set

ΩI =
{
x ∈ Rm : dist(x, LI) < 1

}
\
⋃
j /∈I

Lj ,

which satisfies XI ∩ΩI = X ∩ΩI . We claim that the extension linear map

cθI : cSν
(
XI

)
→ Sν(ΩI) : h 	→ HI |ΩI

is continuous. Note that this is our previous extension linear map followed by a restriction
that makes it continuous.

Indeed, it is enough to show that h 	→ h ◦ πJ |ΩI
is continuous. Here we consider the

topology defined in cSν(XI) as subset of Sν(Li1) × · · · × Sν(Lir ) (this is the reason to
keep referring to semialgebraic cSν functions, although we already know they are all Sν
functions). Clearly, it is enough to see that if all restrictions h|Li

, i ∈ I, are close enough
to zero, then h ◦ πJ |ΩI

is arbitrarily close to zero. Thus, pick any positive continuous
semialgebraic function ε : ΩI → R. We know from Łojasiewicz’s inequality [2, 2.6.2] that
there are a constant C > 0 and an integer p large enough so that

1
2 p

< ε(x) for every x ∈ ΩI .
(C + ‖x‖ )
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Let x ∈ ΩI and J ⊂ I; in particular, LI ⊂ LJ . Then for the orthogonal projection
πJ : Rm → LJ we have

‖x‖2 = dist(x, LJ)2 +
∥∥πJ(x)

∥∥2 ≤ dist(x, LI)2 +
∥∥πJ(x)

∥∥2
< 1 +

∥∥πJ(x)
∥∥2

and so

1
(C + 1 + ‖πJ(x)‖2)p <

1
(C + ‖x‖2)p < ε(x).

Denote δ(x) = 1
(C+1+‖x‖2)p and suppose that all restrictions h|Li

, i ∈ I, are δ close to
zero in the Sν topology. Let us check that h ◦ πJ is ε close to zero. Look at any partial
derivative

∂|α|(h ◦ πJ)
∂xα1

1 · · · ∂xαm
m

(x), where |α| = α1 + · · · + αm ≤ ν,

at a point x ∈ ΩI . Since composition with πJ is substituting zero for the coordinates
in LJ , we see that h ◦ πJ does not depend on those coordinates, which implies that the
above partial derivative is zero whenever such a coordinate appears in the derivative.
Thus we look at derivatives that do not include them. But for those, we have

∣∣∣∣ ∂|α|(h ◦ πJ)
∂xα1

1 · · · ∂xαm
m

(x)
∣∣∣∣ =

∣∣∣∣ ∂|α|h

∂xα1
1 · · · ∂xαm

m

(
πJ(x)

)∣∣∣∣ < δ
(
πJ(x)

)
< ε(x)

because πJ(x) ∈ LJ ⊂ Li for some i ∈ I. Hence cθI is continuous, as required.
Finally, we glue the cθI ’s. Consider a semialgebraic Sν partition of unity {φ, φI : I}

subordinated to {Rm \X,ΩI : I}, which is an open semialgebraic covering of Rm. Define

cθ : cSν(X) → Sν
(
Rm

)
: h 	→

∑
I

φI · cθI(h|XI )

where each φI · cθI(h|XI ) extends by zero off ΩI . Since φ vanishes on X,
∑

I φI ≡ 1
on X; hence, cθ(h) is a semialgebraic Sν extension of h. Finally, cθ is continuous because
so are all cθI ’s, as required. �

The preceding construction can be extended by finiteness to an arbitrary Nash set
with monomial singularities.

Proposition 6.2. Let X ⊂ M be a Nash set with monomial singularities. Then there
are continuous linear maps θ : Sν(X) → Sν(M) such that θ(h)|X = h. Moreover, if
X1, . . . , Xs are the irreducible components of X, then the multiple restriction homomor-
phism Sν(X) → Sν(X1) × · · · × Sν(Xs) is a closed embedding.



E. Baro et al. / Advances in Mathematics 262 (2014) 59–114 101
Proof. Using a partition of unity and the preceding local result we obtain a continuous
extension linear map cθ : cSν(X) → Sν(M). Consider the commutative diagram

Sν(X)
γ

θ

cSν(X)

cθ

Sν(X1) × · · · × Sν(Xs)

Sν(M)

ρ

where θ = cθ ◦ γ and ρ : Sν(M) → Sν(X) is the continuous restriction epimorphism. All
maps here are continuous and therefore θ = cθ ◦ γ is a continuous extension linear map.
On the other hand, γ−1 = ρ ◦ cθ and so it is continuous, that is, γ is a homeomorphism.
In Section 2.C we proved that the inclusion of Sν(X) in Sν(X1)× · · · × Sν(Xs) is closed
and therefore the multiple restriction is a closed embedding. �
7. Approximation for functions

We now discuss approximation for Nash sets with monomial singularities. By Propo-
sition 2.C.5 absolute approximation is possible in a general situation. However, we are
interested for the applications in a stronger relative version which in Proposition 7.6 we
prove for Nash sets with monomial singularities. Let us see first some useful facts that
relate the zero-ideal of a Nash set and this relative approximation.

Lemma 7.1. Let X be a Nash set of a Nash manifold M ⊂ Ra of dimension m and let
ν ≥ m. If Iν(X) ⊂ I(X)Sν−m(M) then every semialgebraic Sν function F : M → R
whose restriction to X is Nash can be Sν−m approximated by Nash functions H : M → R
that coincide with F on X.

Proof. Suppose that Iν(X) ⊂ I(X)Sν−m(M). Since F |X is Nash there is some Nash
function G : M → R with G|X = F |X . Therefore F − G is a semialgebraic Sν function
vanishing on X, so that F − G =

∑
ψifi for some Nash functions fi ∈ I(X) and some

Sν−m functions ψi. But by absolute approximation (Fact 2.C.1), we find Nash functions
ϕi that are Sν−m close to ψi, and then H = G +

∑
ϕifi is a Nash function Sν−m close

to F such that H|X = F |X . �
Under coherence, it is enough to control ideals for a finite covering.

Lemma 7.2. Let X ⊂ M be a coherent Nash set. Suppose there is a finite semialgebraic
open covering X ⊂ U1∪· · ·∪Us such that Iν(X∩Ui) ⊂ I(X∩Ui)Sν−m(Ui) for 1 ≤ i ≤ s.
Then Iν(X) ⊂ I(X)Sν−m(M).

Proof. Adding M \ X to the covering we can assume M =
⋃

i Ui. Let {ϕi}i be an
Sν partition of unity subordinated to the Ui’s; recall that {ϕi > 0} ⊂ Ui. Since X is



102 E. Baro et al. / Advances in Mathematics 262 (2014) 59–114
coherent, I(X) generates I(Ui ∩X) (see Eq. (2.2) after Fact 2.B.3). We also know that
I(X) is finitely generated, say by f1, . . . , fp. Now let f ∈ Sν(M) vanish on X. It follows
that f |Ui

vanishes on Ui∩X and, by hypothesis, there are Nash functions gik ∈ Sν−m(Ui)
such that

f |Ui
=

∑
k

gik(fk|Ui
).

Now consider the functions ϕigik. Although defined on Ui, they vanish off {ϕi > 0} ⊂ Ui,
hence can be extended by zero off Ui. Thus we have in fact ϕigik ∈ Sν−m(M). Finally
one readily checks that

f =
∑
k

(∑
i

ϕigik

)
fk ∈ I(X)Sν−m(M),

which concludes the proof. �
These lemmas reduce the relative approximation problem for Nash sets with monomial

singularities to the study of the zero-ideal of a union of coordinate linear varieties.

Proposition 7.3. Let X ⊂ Rm be a union of coordinate linear varieties L1, . . . , Ls and
let I(X) be the ideal of Nash functions vanishing on X. Denote by xσ the square-free
monomials associated to X (see Definition 4.A.2) and let #(xσ) be the number of vari-
ables in xσ. Let ν ≥ maxσ #(xσ) and let f : Rm → R be an Sν function vanishing on X.
Then

f =
∑
σ

fσx
σ,

where fσ is an Sν−#(xσ) function for each σ.

Remarks 7.4. Note that, since the monomials xσ are square-free, none has more than m

variables, that is #(xσ) ≤ m. Consequently, Iν(X) ⊂ I(X)Sν−m(M).

The proof of Proposition 7.3 consists of a double induction on the dimension m and
the number of linear varieties involved. We will use the following lemma:

Lemma 7.5. Let f be an Sν function on Rm. Write x = (x1, x
′) the variables in Rm.

Then there is an expansion

f(x) = f1(x)x1 + f
(
0, x′),

where f1 is an Sν−1 function.
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Proof. We know this from elementary Analysis with

f1(x) =
1∫

0

∂

∂x1
f
(
tx1, x

′)dt,
but an integral can well not be semialgebraic; however, this particular one is semialge-
braic. Indeed, the function g(x) = (f(x) − f(0, x′))/x1 is semialgebraic in x1 �= 0, and
the graph of f1 is the closure of the graph of g. Hence f1 is in fact semialgebraic. �
Proof of Proposition 7.3. We argue by induction on the dimension. If m = 1 then X = R
or X = {0}; in the first case it is obvious and in the second one it follows from Lemma 7.5
with m = 1 and f(0) = 0. Hence we assume m > 1 and the result proved for dimension
m− 1. Let X ⊂ Rm be a union of coordinate linear varieties L1, . . . , Ls of Rm and let f

be an Sν function vanishing on X. We argue again by induction, now on the number s

of Li’s.
The case s = 1. We have X = L1 and can suppose the equations of L1 are x1 = · · · =

xr = 0. Lemma 7.5 gives f = f1x1 + g1, where f1 is Sν−1 and g1 is Sν and does not
depend on x1. Again by the lemma, g1 = f2x2 + g2, where f2 is Sν−1 and g2 is Sν and
does not depend on either x1 or x2. And so on, till we have:

f = f1x1 + · · · + frxr + g,

where all fk’s are Sν−1 and g does not depend on either of x1, . . . , xr. Thus, substituting
0 for these variables does not affect g, and since f vanishes on x1 = · · · = xr = 0 we get
g ≡ 0. In other words, f = f1x1 + · · · + frxr and we are done.

Let now s > 1 and assume the result known for less than s linear varieties in Rm.
We can suppose that x1 is a variable of L1 (see Definition 4.A.2 for the precise ter-

minology). Denote as usual x = (x1, x
′) the variables in Rm. By Lemma 7.5 once again

we have an Sν−1 function f1 such that

f(x) = f1(x)x1 + g
(
x′).

We claim that g vanishes on the Li’s that do not contain the variable x1. Indeed for
such a coordinate linear variety Li, z = (z1, z

′) ∈ Li if and only if (0, z′) ∈ Li. Since f

vanishes on Li we have

0 = f
(
0, z′

)
= f1

(
0, z′

)
0 + g

(
z′
)

= g
(
z′
)

= g(z),

which implies that f(x) = f1(x)x1 on Li. Consequently, since f |Li
= 0, f1 vanishes on

Li ∩ {x1 �= 0}, which is dense in Li, and so f1 vanishes on Li. Thus f1 vanishes on the
union E of all Li that do not have the variable x1. This excludes L1, hence E is a union
of less than s coordinate linear varieties, and we can apply the induction hypothesis on
the number of coordinate varieties to the Sν−1 function f1 to get an expression
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f1(x) =
∑
τ

f1τx
τ ,

for some Sν−1−#(xτ ) functions f1τ . Here we have ν − 1 ≥ #(xτ ). To check that, notice
that in this sum, each monomial xτ contains one variable from each Li in E and all
the others Li have the variable x1, so that xτx1 is one of our generators of I(X). Since
#(xτx1) = 1 + #(xτ ), we have

ν − 1 ≥ max
σ

#
(
xσ

)
− 1 ≥ #

(
xτ

)
.

Next we turn to the other summand g(x′). If some Li is the hyperplane x1 = 0, then f

vanishes on that hyperplane, and so

0 = f
(
0, x′) = f1(x)0 + g

(
x′).

We conclude

f(x) = f1(x)x1 =
∑
τ

f1τx
τx1

and the argument is complete. Hence, suppose that all Li have some variable other
than x1.

We consider x′ as coordinates in Rm−1 and denote L′
i ⊂ Rm−1 the coordinate linear

variety with the same equations that Li, x1 excluded in case it is in Li, that is, L′
i

corresponds to Li∩({0}×Rm−1) after erasing the first coordinate, which is 0. Now, g(x′),
as a function on Rm−1, vanishes on L′

1 ∪ · · ·∪L′
s. Indeed, if z′ ∈ L′

i, then z = (0, z′) ∈ Li

and since f vanishes on Li,

0 = f(z) = f
(
0, z′

)
= f1(z)0 + g

(
z′
)
,

as claimed.
Thus, we can apply to g(x′), which is Sν , the induction hypothesis on the dimension

to get:

g
(
x′) =

∑
σ

gσ
(
x′)x′ σ,

where the gσ’s are Sν−#(xσ). Here each monomial x′σ has one variable from each L′
i,

hence from each Li, and so it is in fact one generator of I(X).
All in all the expression

f(x) = f1(x)x1 + g
(
x′) =

∑
τ

f1τx
τx1 +

∑
σ

gσx
′σ

verifies all conditions required, and the proof is complete. �
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As remarked before, this settles approximation for Nash sets with monomial singu-
larities, with some restriction on differentiability classes. We state that solution in full
below.

Proposition 7.6. Let X be a Nash set with monomial singularities in a Nash manifold
M ⊂ Ra of dimension m. Let ν ≥ m and let F : M → R be an Sν function. Then every
Nash function h : X → R which is Sν close enough to f = F |X has a Nash extension
H : M → R which is Sν−m close to F . In particular, an Sν function F whose restriction
to X is Nash can be Sν−m approximated by Nash functions H that coincide with F on X.

Proof. First we prove the particular case when F |X is Nash. By Theorem 1.4, X can
be covered by finitely many open semialgebraic sets Ui each equipped with a Nash
diffeomorphism ui : Ui → Rm that maps X∩Ui onto a union of coordinate linear varieties.
Hence by Lemmas 7.1 and 7.2 it is enough to prove Iν(X ∩ Ui) ⊂ I(X ∩ Ui)Sν−m(Ui)
for all i, but this follows from Proposition 7.3. Now we deduce the general case. Let
U ⊂ Sν−m(M) be an open Sν−m neighborhood of F . Then U ′ = U ∩ Sν(M) is open in
Sν(M), and since the restriction ρ : Sν(M) → Sν(X) is an open homomorphism, ρ(U ′)
is an open Sν neighborhood of f in Sν(X). Thus, if our Nash function h is in ρ(U ′), it
has a semialgebraic Sν extension G ∈ U ′ ⊂ U . By the particular case, there are Nash
functions H : M → R arbitrarily Sν−m close to G with H|X = h. Since U is Sν−m open,
we can choose H ∈ U . �
8. Approximation for maps

The aim of this section is to prove approximation for maps instead of functions (The-
orem 1.7). In Section 2.D we defined and equipped with a topology the spaces of Sν and
cSν maps from a Nash set into a semialgebraic set. We apply extension for functions
(Proposition 6.2) to prove that Sν and cSν maps coincide for Nash sets with monomial
singularities.

Proposition 8.1. Let X ⊂ M be a Nash set with monomial singularities whose irreducible
components are X1, . . . , Xs and let T ⊂ Rb be a semialgebraic set. The multiple restric-
tion homomorphism Sν(X,T ) → Sν(X1, T ) × · · · × Sν(Xs, T ) is a closed embedding that
provides a topological identification Sν(X,T ) ≡ cSν(X,T ).

Proof. Indeed, since cSν(X,Rb) = cSν(X,R)b, Proposition 6.2 gives the result for
T = Rb. Then, for arbitrary T ⊂ Rb, we have the commutative diagram

Sν(X,T ) cSν(X,T ) Sν(X1, T ) × · · ·× Sν(Xs, T )

Sν(X,Rb) cSν(X,Rb) Sν(X1,Rb)× · · ·×Sν(Xs,Rb)
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As the result is true for the lower row and the vertical arrows are continuous, it follows
for the upper one. �

Relative approximation extends straightforwardly to maps into Rb. Moreover, we can
use Nash tubular neighborhoods to show the following.

Proposition 8.2. Let M ⊂ Ra and N ⊂ Rb be Nash manifolds of dimensions m and n

respectively and let X ⊂ M be a Nash set with monomial singularities. Let ν ≥ m and
let F : M → N be an Sν map. Then every Nash map h : X → N which is Sν close
enough to f = F |X has a Nash extension H : M → N which is Sν−m close to F .

Proof. Consider a Nash retraction η : W → N of N in Rb (see Fact 2.A.2). By Propo-
sition 7.6 there is a Nash extension G : M → Rb of h which is Sν−m close to F as a
map into Rb. Since F (X) ⊂ N ⊂ W we can choose the approximation close enough
so that G(X) ⊂ W , and then H = η ◦ G : M → N is a well defined Nash map that
extends h. But composition on the left is continuous (Proposition 2.D.1) and therefore
the composite H = η ◦G is close to the composite η ◦F = F , provided G is close enough
to F . �

The preceding extension is the key fact to obtain an approximation result for maps into
Nash sets with monomial singularities. What we want is to approximate differentiable
semialgebraic maps f : X → Y of Nash sets. The first restriction is that f must preserve
irreducible components, that is, it must map each irreducible component Xi of X into
one Yk of Y . Indeed, suppose that for each k the component Xi contains a point xk

with f(xk) /∈ Yk and pick ε > 0 smaller than all distances dist(f(xk), Yk). If f can be
approximated by Nash maps, pick one g : X → Y that is ε close. Since g is Nash, the
inverse images g−1(Yk) are Nash sets and therefore, since the irreducible Xi is contained
in their union, we deduce that g(Xi) ⊂ Yk for some k. Thus g(xk) ∈ Yk and we get

dist
(
f(xk), Yk

)
≤ dist

(
f(xk), g(xk)

)
< ε,

a contradiction.
To progress further we pause to look at Nash sets with monomial singularities from a

global viewpoint. We recall that among local normal crossings one distinguishes the so-
called normal crossing divisors by asking their irreducible components to be non-singular
[11, 1.8]. This is a global condition that can be applied to monomial singularities. We call
a Nash set with monomial singularities X a Nash monomial crossings if its irreducible
components X1, . . . , Xs are all non-singular; in other words, X1, . . . , Xs are Nash mani-
folds.

Proposition 8.3. Let X be a Nash monomial crossings whose irreducible components we
denote X1, . . . , Xs. Then all intersections Xi1 ∩ · · · ∩Xir are Nash manifolds, and any
union of them is a Nash monomial crossings.
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Proof. By Lemma 5.1 it is enough to show that every intersection XI = Xi1 ∩ · · · ∩Xir

is an affine Nash manifold. Fix a point x ∈ XI . The distinct irreducible components of
the germ Xx are the germs Xi,x such that x ∈ Xi. Indeed, if, say, Xi,x ⊂ Xj,x, then
dim(Xi) = dim(Xi ∩ Xj) and since Xi is irreducible, Xi ⊂ Xj , a contradiction. Now
pick any Nash coordinates u of M at x such that u(x) = 0 and Xx =

⋃
λ∈Λ{uλ = 0}x.

Observe that u maps each irreducible component Xi,x of Xx onto a coordinate linear
variety Li ⊂ Rm. In particular this happens for i = i1, . . . , ir, and we deduce

u(XI,x) = u(Xi1,x ∩ · · · ∩Xir,x) = Li1,0 ∩ · · · ∩ Lir,0.

Since any intersection of linear varieties is a linear variety, the germ XI,x is non-singular,
and we are done. �

After this remark we can prove approximation for Nash maps between Nash set with
monomial singularities.

(8.4). Proof of Theorem 1.7. By hypothesis, f maps each irreducible component Xi of X
into some irreducible component of Y ; we choose one and denote it by Yk(i). As usual, we
classify the intersections Yi’s into levels: at level p we have the intersections YI =

⋂
i∈I Yi

with #I = p. At bottom level s we have the intersection Y1 ∩ · · · ∩ Ys of all irreducible
components. In general, at level p we have the union Y (p) =

⋃
#I=p YI of intersections

YI at level p. Now, we denote XI the intersection of all Xi’s with k(i) ∈ I, and say
this is an intersection of Xi’s at level p. Quite naturally, we denote X(p) the union of
all these XI . We keep in mind this leveled collection of XI ’s as an inverse image of the
leveled collection of YI ’s.

Observe that in this construction there may be empty intersections. Thus, we stop at
the last non-empty X(r) =

⋃
I XI , which implies that all XI ’s at this level are disjoint.

After this organization of data, note that every X(p) is a Nash set with monomial
singularities and the corresponding Y (p) is a Nash monomial crossings (Lemma 5.1 and
Proposition 8.3). To complete the setting, note that f restricts to an Sν map f (p) :
X(p) → Y (p). We are to approximate every f (p) starting at the bottom level p = r and
climbing to level p = 1. In each jump of level we will use Proposition 8.2 and therefore
there will be a loss of differentiability. As f = f (1) this will complete the proof. The
proof runs in several steps.

Step 1. We start at level p = r. Since X(r) �= ∅, we have the map f (r) : X(r) → Y (r)

and also Y (r) �= ∅. Since the union X(r) =
⋃

I XI is disjoint and f (r) maps XI into
the corresponding YI we only have to approximate the restriction f (r)|XI

: XI → YI for
XI �= ∅ (and so also YI �= ∅). But YI is one single intersection, hence an affine Nash
manifold (Proposition 8.3). By Proposition 2.D.3 there are Nash maps gI : XI → YI

arbitrarily Sν close to f (r)|XI
. These gI ’s glue into the desired approximation g(r) of f (r).

The construction itself guarantees that g(r) maps each intersection XI at level r into the
corresponding YI .
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Step 2. Now suppose we are at level p ≥ r (hence X(p) �= ∅), and we have Nash
maps g(p) : X(p) → Y (p) arbitrarily Sν−mj close to f (p) : X(p) → Y (p) where j(= r − p)
is the number of levels already done. Moreover, we have that both f (p) and g(p) map
each non-empty intersection XI at level p into YI . The argument that follows only needs
these non-empty intersections. In view of our discussion of topologies and irreducible
components (Proposition 6.2), the restrictions gI = g(p)|XI

: XI → YI (I with p indices
and XI �= ∅) are Nash approximations of the restrictions fI = f (p)|XI

: XI → YI . Let
us now approximate f (p−1) : X(p−1) → Y (p−1).

Step 3. Let XJ be an intersection of Xi’s at level p − 1. Every intersection of XJ

with another XJ ′ at the same level p− 1 is included in some intersection XI at level p,
hence consider the restrictions to XJ ∩X(p) of f (p) and of g(p); let ϕ stand for the first
and ψ for the second one. Of course, we only care for the non-empty intersections of
that type. The intersection XJ ∩X(p) is a Nash set with monomial singularities, and the
restrictions are maps into YJ , which is a Nash manifold because Y is a Nash monomial
crossings (Proposition 8.3 again). By Proposition 8.2 if ψ is Sμ close enough to ϕ, it
has an extension ψJ : XJ → YJ arbitrarily Sμ−m close to fJ (in fact, that proposition
gives an extension to M that we restrict to XJ ). In our case we take μ = ν −mj, hence
μ − m = ν − m(j + 1). The ψJ ’s glue together into a c-Nash map g(p−1) : X(p−1) →
Y (p−1) arbitrarily Sν−m(j+1) close to f (p−1) : X(p−1) → Y (p−1). Notice that g(p−1) maps
each non-empty intersection XJ at level p − 1 into YJ . By Proposition 8.1 the c-Nash
maps are Nash, also concerning topologies of maps, and we have obtained the desired
approximation of f (p−1).

Final arrangement. In the process above the differential class loses m units at every
level jump. As we start at level r with an Sν approximation, in the end have an Sν−m(r−1)

approximation. Now it remains to prove that r ≤
(

n
[n/2]

)
. Thus pick any point x ∈ XI

with XI �= ∅ at level r. Since f(XI) ⊂ YI , the point y = f(x) is in YI = Yk1 ∩ · · · ∩ Ykr
,

and the r germs Yk1,y, . . . , Ykr,y are irreducible components of Yy. Since Y ⊂ N has a
monomial singularity at y, its tangent cone is an extremal family, and by Remark 3.10
it has at most

(
n

[n/2]
)

elements. This gives the required bound for r. �

Remark 8.5. Note that the bound
(

n
[n/2]

)
is sharp: we could have all the coordinates vari-

eties of dimension [n/2]. The loss of differentiability class in the approximation obtained
above has been formulated to show that it only depends on dimensions. A different ob-
vious bound for r is the number of irreducible components Yk(i) of Y we had chosen to
start with, and that number can certainly be smaller than

(
n

[n/2]
)
. For instance, if Y ⊂ N

is a normal crossing divisor, i.e., codim(Y ) = 1, then r ≤ n and so Theorem 1.7 holds
for q = m(n− 1). However, in general it is difficult to get a better estimation of its size
if we do not know a priori the dimensions of the Yi’s. �
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9. Classification of affine Nash manifolds with corners

In this section we use our approximation results to deduce Theorem 1.8 concerning the
classification of affine Nash manifolds with corners. First, recall that a map h : Z → T is
an Sν diffeomorphism if it is a bijection and both h and h−1 are Sν maps. With respect
to approximation, diffeomorphisms of affine Nash manifolds behave well.

Fact 9.1. (See [15, II.1.7, p. 86].) Let h : M → N be an Sν diffeomorphism of affine
Nash manifolds. If an Sν map g : M → N is Sν close enough to h, then g is also an Sν

diffeomorphism, and g−1 is Sν close to h−1.

In particular, from this and Proposition 2.D.3 we deduce that for all ν ≥ 1 every
Sν diffeomorphism f : M → N can be approximated by Nash diffeomorphisms, hence
the Sν classification and the Nash classification coincide for affine Nash manifolds. Our
Theorem 1.8 says this is true for manifolds with corners (for suitable ν).

For the proof of Theorem 1.8 we need some results that can be of interest by them-
selves.

Lemma 9.2. Let f : T → T ′ be a semialgebraic local homeomorphism of locally compact
semialgebraic sets which restricts to a homeomorphism from a closed semialgebraic subset
S of T onto another S′ of T ′. Then f restricts to a homeomorphism from an open
semialgebraic neighborhood W of S in T onto another W ′ of S′ in T ′.

Proof. We are to prove first that we may assume f−1(S′) = S. Consider the semialge-
braic set

C =
{
x ∈ T \ S : there is some y ∈ S such that f(y) = f(x)

}
.

We claim that no point in S is adherent to C. For, suppose there are sequences {xk}k
off S converging to x ∈ S and {yk}k in S such that f(yk) = f(xk). Then

limkf(yk) = limkf(xk) = f(x) ∈ S′

and since f |S : S → S′ is a homeomorphism, {yk}k must converge to x. But f is injective
near x, hence xk = yk ∈ S for k large, a contradiction. Thus replacing T by T \C and T ′

by its open image (since f is a local homeomorphism it is an open map) we can assume
that f−1(S′) = S.

Now, since f is a local homeomorphism, there is a finite open semialgebraic covering
U1, . . . , Ur of T such that all restrictions f |Ui

: Ui → f(Ui) are homeomorphisms [2,
9.3.9]. Since f is open, we can also suppose that the f(Ui)’s form a cover of T ′. If r = 1
we are done, so let us see that when r > 1 we can modify the covering to reduce the
number r of open sets, which will give the result.
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First of all we consider the open semialgebraic set Δ = f(U1) ∪ f(U2) and find
a semialgebraic shrinking of the covering {f(U1), f(U2)}, i.e., open semialgebraic sets
Δ1, Δ2 that still cover Δ and such that Δ∩Δi ⊂ f(Ui) (for instance, take a continuous
semialgebraic function δ on Δ with δ|Δ\f(U1) = −1 and δ|Δ\f(U2) = 1 using [2, 2.6.9]
and set Δ1 = {δ > −1

2} and Δ2 = {δ < 1
2}).

Next, consider the open semialgebraic sets Vi = Ui ∩ f−1(Δi). We claim that

S ∩ (V1 ∪ V2) = S ∩ (U1 ∪ U2). (9.1)

Indeed, for the relevant inclusion right to left, let us consider x ∈ S ∩ (U1 ∪U2). Then
f(x) ∈ S′ ∩ (f(U1) ∪ f(U2)) = S′ ∩Δ. We can assume that f(x) ∈ Δ1 ⊂ f(U1), so that
f(x) = f(y) for some y ∈ U1. Thus y ∈ f−1(S′) = S and, since f is injective on S, we
deduce that x = y ∈ U1 ∩ f−1(Δ1) = V1.

Now we show that no x ∈ S ∩ (U1 ∪ U2) is adherent to the semialgebraic set

C ′ =
{
x ∈ V1 \ V2 : there is some y ∈ V2 such that f(y) = f(x)

}
.

Indeed, suppose there are sequences {xk}k in V1 \ V2 converging to x ∈ S ∩ (U1 ∪ U2)
and {yk}k in V2 with f(yk) = f(xk). Since f(x) ∈ f(U1) ∪ f(U2) = Δ we have

f(x) = limkf(xk) = limkf(yk) ∈ Δ ∩ f(V2) ⊂ Δ ∩Δ2 ⊂ f(U2),

and since f |U2 : U2 → f(U2) is a homeomorphism, there exists y ∈ U2 with y = limk yk.
Consequently, f(y) = f(x) ∈ S′. As f−1(S′) = S, we have y ∈ S and since f |S is
injective, y = x. Thus the two sequences {xk}k and {yk}k converge to x and f being
locally injective, xk = yk for k large, a contradiction. We have so proved that

S ∩ (U1 ∪ U2) ∩ C ′ = ∅. (9.2)

Now set W2 = (V1 ∪ V2) \ C ′, which is an open semialgebraic neighborhood of

S ∩W2 = S ∩ (V1 ∪ V2) = S ∩ (U1 ∪ U2)

the first equality by Eq. (9.2) and the second one by Eq. (9.1).
Finally, by definition of C ′, f is injective on W2, and so f restricts to a homeomorphism

W2 → f(W2). All in all we can replace the two open sets U1 and U2 of the initial covering
U1, . . . , Ur by the single open set W2 so getting a new covering of S by r − 1 open sets,
as desired. �
Lemma 9.3. Let Q ⊂ Ra be a Nash manifold with corners. Let M ⊂ Ra be a Nash envelope
of Q such that the Nash closure X of ∂Q in M is a normal crossings. Let N ⊂ Rb be a
Nash manifold and f : Q → N , g : X → N be Sν maps such that g|∂Q = f |∂Q. Then for
M small enough there exists an Sν map H : M → N such that H|Q = f and H|X = g.
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Proof. Let m = dim(M) = dim(Q). By Theorem [11, Thm. 1.11] there is a finite open
covering U1, . . . , U� of ∂Q equipped with Nash diffeomorphisms (ui1, . . . , uim) : Ui → Rm

with Ui ∩ X = {ui1 · · ·uiki
= 0} and Ui ∩ Q = {ui1 ≥ 0, . . . , uiki

≥ 0} for some
1 ≤ ki ≤ m. By Corollary 4.C.3 for each Ui there is an Sν map ζi : Ui → Rb such that
ζi = f on Ui∩Q and ζi = g on Ui∩X. Set U0 = Int(Q) and ζ0 = f |U0 . Let σ0, σ1, . . . , σ�

be an Sν partition of unity subordinated to {U0, U1, . . . , U�}. Consider U =
⋃�

i=0 Ui and
the Sν map H =

∑�
i=0 σiζi : U → Rb which coincides with f on Q and with g on X.

This map H solves the problem except that its image is not contained in N . To amend
this, pick a Nash retraction ρ : V → N of N in Rb and replace M by H−1(V ) and H by
ρ ◦H. �
Proposition 9.4. Let Q ⊂ Ra be a Nash manifold with divisorial corners. Let M ⊂ Ra

be a Nash envelope of Q such that the Nash closure X of ∂Q in M is a Nash normal
crossing divisor. Let X1, . . . , Xs be the irreducible components of X and let Y be a Nash
monomial crossings in a Nash affine manifold N ⊂ Rb. Let f : Q → N be an Sν map
such that each f(∂Q∩Xi) is contained in an irreducible component Yk(i) of Y . Then for
M small enough there exists an Sν extension F : M → N of f such that F (Xi) ⊂ Yk(i)
for i = 1, . . . , s.

Proof. We will use the notion of iterated faces introduced in Section 2.F. Recall that Q

is the unique m-face and for d < m a d-face is a face of a (d+ 1)-face. This construction
ends at some d = m0 ≥ 0, so that the m0-faces are affine Nash manifolds. For M small
enough we can assume the properties of Proposition 2.F.3.

Now, to prove the statement it is enough to construct, for each Nash closure Z of an
iterated face, an Sν map FZ : Z → N such that

(i) FZ |Z∩Q = f |Z∩Q,
(ii) if Z ′ is the Nash closure of an iterated face with Z ′ ⊂ Z then FZ′ = FZ |Z′ ,
(iii) if Z ⊂ Xi then im(FZ) ⊂ Yk(i).

We proceed by ascending induction on the dimension d of the faces. For d = m0,
every m0-face is an affine Nash manifold contained in Q and therefore it coincides with
its Nash closure, so that we can just take the restriction of f to that m0-face. Now, fix
the Nash closure Z of a d-face D, d > m0, for which we know Z ∩Q = D. Let Z1, . . . , Z�

be the irreducible components of the Nash closure of ∂D in Z. Note that each Zj is the
Nash closure of a face Dj of D, which is a (d− 1)-face. By induction, properties (i)–(iii)
hold for the Zj ’s. Let I = {i : Z ⊂ Xi} and consider YI =

⋂
i∈I Yk(i), which is an affine

Nash manifold by Proposition 8.3.
Let FZj : Zj → YI be the Sν maps provided by the induction hypothesis for

j = 1, . . . , �, which are well defined by property (iii). By Proposition 2.F.3(3), the con-
nected components of Zj ∩Zj′ meeting Q are Nash closures of iterated faces (of smaller
dimensions) and therefore, by (ii), FZj and FZj′ coincide on those connected compo-
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nents. Let C be the union of the connected components of all intersections Zj ∩Zj′ that
do not intersect Q. Since C is a closed semialgebraic set disjoint from Q, we can shrink
M to M \ C. In particular, we can assume that the map

G :
�⋃

j=1
Zj → YI where G = FZj

on Zj

is a well-defined cSν function. But that union
⋃

j Zj is a normal crossings in Z, hence G

is Sν by Proposition 8.1.
Finally, by (i), G|∂D = f |∂D and we can apply Lemma 9.3 to find an Sν map FZ :

Z → YI such that FZ |D = f |D and FZ |∂D = G|∂D. This as usual after shrinking Z to
Z \C for some closed semialgebraic set C ⊂ Z, that is, after shrinking M to M \C. �
(9.5). Proof of Theorem 1.8. We can suppose Q1 and Q2, hence their interiors, connected.
Let h : Q1 → Q2 be an Sν diffeomorphism. Let M ⊂ Ra and N ⊂ Rb be Nash envelopes of
Q1 and Q2. Let X and Y be the Nash closures of ∂Q1 and ∂Q2 in M and N . By hypothesis
both X and Y are Nash normal crossing divisors. Now, since h is an Sν diffeomorphism,
we show that it maps the intersection of ∂Q with each irreducible component of X into
some irreducible component of Y . For, let X ′ be an irreducible component of ∂X, that
is, the Nash closure of a face D of ∂Q1. By definition, D is the topological closure of a
connected component C of Smooth(∂Q1) and we can assume that X ′∩∂Q1 = D. Clearly,
h(C) is an Sν manifold open in ∂Q2 and therefore h(C) ⊂ Smooth(∂Q2) (just note that in
∂Q2 being a smooth point in the Nash or Sν sense coincide). Then, h(C) is contained in a
connected component of Smooth(∂Q2) and therefore h(C) ⊂ Y ′ where Y ′ is an irreducible
component of Y . In particular, h(∂Q1 ∩ X ′) = h(D) = h(C) = h(C) ⊂ Y ′ = Y ′, as
required.

Now, by Proposition 9.4 we can assume there is an Sν extension H : M → N of h
such that H(X) ⊂ Y . This extension is a local diffeomorphism at every point of Q1,
hence shrinking M and N we may assume that H is a local diffeomorphism. But it is a
homeomorphism from Q1 onto Q2 and hence by Lemma 9.2 after a new shrinking H is
a diffeomorphism.

After this preparation, we use Theorem 1.7 and Remark 8.5 to obtain a semialgebraic
Sν−q approximation of g = H|X : X → Y by a Nash map f : X → Y , where q =
m(m − 1). Then, by Proposition 8.2, f has a Nash extension F : M → N which is
Sν−q−m close to H. Note that

ν − q −m = ν −m(m− 1) −m = ν −m2 ≥ 1.

Since H is a diffeomorphism, a close enough approximation F is also a diffeomorphism
(Fact 9.1). In particular, X is Nash equivalent to Y .

Let us check that F (Q1) = Q2. Since the manifolds are the closures of their interiors,
it is enough to see that F maps Int(Q1) onto Int(Q2). We know that F (X) = f(X) = Y ,
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and consequently F (M \ X) = N \ Y . Since Q1 ∩ X = ∂Q1, the interior Int(Q1) is a
connected component of M \X, hence F maps it onto one of N \Y . Among these latter
is Int(Q2) (also Q2∩Y = ∂Q2), and we know that H(Int(Q1)) = Int(Q2). Pick any point
x ∈ Int(Q1). Since Int(Q2) is open in N , we have dist(H(x), N \ Int(R)) > 0 and for F

close to H we conclude F (x) /∈ N \ Int(Q2). Consequently F (Int(Q1)) ∩ Int(Q2) �= ∅
and so F (Int(Q1)) = Int(Q2). �
Remark 9.6. Let us review the preceding proof for two Nash manifolds Q1, Q2 with
boundary without corners. Notice that their boundaries ∂Q1, ∂Q2 are Nash smooth hy-
persurfaces of the Nash envelopes.

First of all, the boundaries are their own Nash closures, that is, X = ∂Q1 and Y =
∂Q2. Hence, Proposition 9.4 is not needed. On the other hand, Theorem 1.7 can be
replaced by Fact 2.D.3 and this approximation does not lower the differentiability class.
Thus, we have a Nash map f : X → Y which is an Sν approximation of g = H|X .

Next, the Nash extension F of f provided by Proposition 8.2 is an Sν−1 approximation
of H. Indeed, this proposition comes from:

(i) Lemma 7.2 and Proposition 7.3, here needed for one coordinate hyperplane only,
and therefore giving Iν(X) ⊂ I(X)Sν−1(M), and

(ii) Proposition 7.6, which for a Nash smooth hypersurface X of M gives by (i) a Nash
extension that is an Sν−1 approximation.

This leads to an Sν−1 approximation F of H, as claimed.
All in all, we conclude: Two m-dimensional affine Nash manifolds with boundary

without corners which are S2 diffeomorphic are Nash diffeomorphic.
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