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1. Introduction

Although it is usually said that the first work in Real Geometry is due to Harnack [23],
who obtained an upper bound for the number of connected components of a non-singular
real algebraic curve in terms of its genus, modern Real Algebraic Geometry was born
with Tarski’s article [36], where it is proved that the image of a semialgebraic set under a
polynomial map is a semialgebraic set. A map f := (f1,..., fn) : R™ — R"™ is polynomial
if its components fi € R[x] := R[x1,...,%x,] are polynomials. Analogously, f is regular if
its components can be represented as quotients fj, = Z—’; of two polynomials g, hy, € R[x]
such that hjy never vanishes on R". A subset 8 C R" is semialgebraic when it has a
description by a finite boolean combination of polynomial equalities and inequalities,
which we will call a semialgebraic description. Unless stated otherwise, the topology
employed in the article is the Euclidean one.

We are interested in studying what might be called the ‘inverse problem’ to Tarski’s re-
sult. In the 1990 Oberwolfach reelle algebraische Geometrie week [22] Gamboa proposed:

Problem 1.1. To characterize the (semialgebraic) subsets of R™ that are either polynomial
or reqular images of R™.

During the last decade we have attempted to understand better polynomial and reg-
ular images of R™. Our main objectives have been the following:

e To find obstructions to be either polynomial or regular images.

e To prove (constructively) that large families of semialgebraic sets with piecewise
linear boundary (convex polyhedra, their interiors, complements and the interiors of
their complements) are either polynomial or regular images of Euclidean spaces.
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In [9,10] we presented the first step to approach Problem 1.1. In [7] appears a complete
solution to Problem 1.1 for the 1-dimensional case, whereas in [18,21,12,13,16,15,37,38]
we approached constructive results concerning the representation as either polynomial
or regular images of the semialgebraic sets with piecewise linear boundary commented
above. A survey concerning this topic, which provides the reader a global idea of the
state of the art, can be found in [20]. Articles [19,14] are of different nature. In them we
find new obstructions for a semialgebraic subset of R™ to be either a polynomial or a
regular image of R™. In the first one we found some properties concerning the difference
C1(8) \ 8 for a polynomial image 8 of R” whereas in the second it is shown that the set
of points at infinite of 8 is a connected set.

The rigidity of polynomial and regular maps makes really difficult to approach Prob-
lem 1.1 in its full generality. Taking into account the flexibility of Nash maps, Gamboa
and Shiota discussed in 1990 the possibility of approaching the following variant of Prob-
lem 1.1.

Problem 1.2. To characterize the (semialgebraic) subsets of R™ that are Nash images
of R™.

A Nash function on an open semialgebraic set U C R™ is a semialgebraic smooth
function on U. Recall that a (non-necessarily continuous) map f : 8§ — T is semial-
gebraic if its graph is a semialgebraic set (in particular we assume that both 8§ and T
are semialgebraic sets). Given a semialgebraic set § C R™, a Nash function on § is the
restriction to 8 of a Nash function on an open semialgebraic neighborhood U C R™ of 8.

In 1990 Shiota outlined to Gamboa and the rest of the Real Geometry team at Madrid
a vague schedule that sustains the following conjecture (wrongly announced in [22,9] as
proved by Shiota) in order to provide a satisfactory answer to Problem 1.2.

Conjecture 1.3 (Shiota). Let 8 C R™ be a semialgebraic set of dimension d. Then 8 is a
Nash image of R? if and only if 8 is pure dimensional and there exists an analytic path
a : [0,1] — 8 whose image meets all connected components of the set of regular points

of 8.

The set of regular points of a semialgebraic set 8 C R" is defined as follows. Let X
be the Zariski closure of 8 in R™ and let X be the complexification of X, that is, the
smallest complex algebraic subset of C that contains X . Define Reg(X) := X \ Sing(X)
and let Reg(8) be the interior of 8 \ Sing(X) in Reg(X). We will explain this in more
detail in 2.A.

In 2004 we met again with Shiota and discussed about possible ways to attack his
conjecture. It was not clear how to follow certain parts of his 1990 schedule and we
have performed strong variations and substantially simplified the architecture of the
approach. However, that fruitful meeting was the starting point for the present work
and some related ones [3,17]. The latter include useful tools for this article concerning:
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(1) Extension of Nash functions on a Nash manifold H with boundary to a Nash manifold
M of its same dimension that contains H as a closed subset [17].

(2) Approximation results on a Nash manifold relative to a Nash subset with monomial
singularities [3].

(3) Equivalence of Nash classification and C? semialgebraic classification for Nash man-
ifolds with boundary [3].

Recall that an (affine) Nash manifold with or without boundary is a pure dimensional
semialgebraic subset M of some affine space R™ that is a smooth submanifold with or
without boundary of an open subset of R™. As all the Nash manifolds with or without
boundary appearing in this work are affine, we will assume this property when referring
to Nash manifolds with or without boundary. In addition when we refer to a Nash
manifold with boundary, we assume that this boundary is smooth and in fact a Nash
submanifold. The zero set of a Nash function on a Nash manifold M is called a Nash
subset of M.

1.A. Main results

The main result of this work is Theorem 1.4 that includes a positive solution to Shiota’s
Conjecture. Its statement requires some preliminary definitions. Let « : [0,1] — R™ be
a continuous semialgebraic path. Let A C (0,1) be the smallest (finite) subset of (0,1)
such that the restriction o/ 1)\ 4 is a Nash map. Denote n(a) := a(A).

A semialgebraic set § C R™ is well-welded if it is pure dimensional and for each pair
of points z,y € 8 there exists a continuous semialgebraic path « : [0,1] — 8 such that
a(0) =z, o(1) = y and n(a) C Reg(8).

Main Theorem 1.4 (Characterization of Nash images). Let § C R™ be a semialgebraic
set of dimension d. The following assertions are equivalent:

(i) 8 is a Nash image of RY.
(ii) 8 is a Nash image of R™ for some m > d.
(iii) 8 is connected by Nash paths.
(iv) 8 is connected by analytic paths.
(v) 8 is pure dimensional and there exists a Nash path « : [0,1] — 8 whose image meets
all the connected components of the set of regular points of 8.
(vi) 8 is pure dimensional and there exists an analytic path « : [0,1] — 8 whose image
meets all the connected components of the set of reqular points of 8.
(vil) 8 is well-welded.

The implications (i) = (ii) = (iii) = (iv) and (i) = (ii) = (v) = (vi) are
straightforward. Only the proof of the non-completely trivial implication (ii) = ‘8 is
pure dimensional’ requires a comment and it is shown in Corollary 6.3. We will show in
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Section 7 that a semialgebraic set 8 satisfying either condition (iii), (iv), (v) or (vi) is
well-welded. Finally, we will prove in Section 8 that (vii) = (i). An important milestone
to prove Theorem 1.4 is the following result, that will be approached in Section 6.

Theorem 1.5. Let H C R" be a connected d-dimensional Nash manifold with boundary.
Then H is a Nash image of R%.

In Section 3 we treat separately the 1-dimensional case and we characterize
1-dimensional Nash images of Euclidean spaces in terms of their irreducibility. The
ring A (8) of Nash functions on a semialgebraic set § C R™ is a noetherian ring [11,
Thm.2.9] and we say that 8 is irreducible if and only if N(8) is an integral domain [11].

Proposition 1.6 (The 1-dimensional case). Let 8 C R™ be a 1-dimensional semialgebraic
set. Then 8 is a Nash image of some R™ if and only if 8 is irreducible. In addition, if
such is the case 8 is a Nash image of R.

Compare Proposition 1.6 with the more restrictive characterization results for poly-
nomial and regular images of Euclidean spaces [7].

1.B. Two consequences
We present next two remarkable consequences of Theorem 1.4.

1.B.1. Representation of arc-symmetric semialgebraic sets

Arc-symmetric semialgebraic sets were introduced by Kurdyka in [28] and subse-
quently studied by many authors. Recall that a semialgebraic set § C R"™ is arc-symmetric
if for each analytic arc v : (—1,1) — R™ with v((—1,0)) C 8 it holds that v((—1,1)) C 8.
In particular arc-symmetric semialgebraic sets are closed subsets of R™. An arc-symmetric
semialgebraic set § C R”™ is irreducible if it cannot be written as the union of two proper
arc-symmetric semialgebraic subsets [28, §2]. Equivalently, 8 is irreducible if and only if
the ring A/(8) is an integral domain. It follows from Theorem 1.4 and [28, Cor.2.8] that
a pure dimensional irreducible arc-symmetric semialgebraic set is a Nash image of R¢
where d := dim(8). In addition, it holds:

Corollary 1.7. Let 8 C R" be a pure dimensional irreducible semialgebraic set of dimen-
sion d whose closure C1(8) is arc-symmetric. Then 8 is a Nash image of RY.

1.B.2. Elimination of inequalities

Tarski—-Seidenberg principle on elimination of quantifiers can be restated geometrically
by saying that the projection of a semialgebraic set is again semialgebraic. A converse
problem, to find an algebraic set in R"** whose projection is a given semialgebraic subset
of R™, is known as the problem of eliminating inequalities. Motzkin proved in [30] that
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this problem always has a solution for £ = 1. However, his solution is rather complicated
and is generally a reducible algebraic set. In another direction Andradas—Gamboa proved
in [1,2] that if § C R™ is a closed semialgebraic set whose Zariski closure is irreducible,
then § is the projection of an irreducible algebraic set in some R"**. In [33] Pecker
gives some improvements on both results: for the first by finding a construction of an
algebraic set in R™*! that projects onto the given semialgebraic subset of R™, far simpler
than the original construction of Motzkin; for the second by proving that if § is a locally
closed semialgebraic subset of R™ with an interior point, then 8 is the projection of an
irreducible algebraic subset of R**+1,

In this article we prove the following result that looks for a non-singular algebraic set
with the simplest possible topology that projects onto a semialgebraic set.

Corollary 1.8. Let 8 C R™ be a semialgebraic set of dimension d. We have:

(i) If 8 is Nash path-connected, it is the projection of an irreducible non-singular al-
gebraic set X C R™F (for some k > 0) whose connected components are Nash
diffeomorphic to R®. In addition:

(1) Each connected component of X projects onto 8.
(2) Given any two of the connected components of X there exists an automorphism
of X that swaps them.

(ii) In general 8 is the projection of an algebraic set X C R™"** (for some k > 0) that is
Nash diffeomorphic to a finite pairwise disjoint union of affine subspaces of RIt1.

Even for dimension 1, it is not possible to impose the connectedness of X (see Exam-
ple 10.1 and Remark 10.2).

1.C. Structure of the article

The article is organized as follows. In Section 2 we present some basic notions and
notations used in this paper as well as some preliminary results. The reader can start
directly in Section 3 and resort to the Preliminaries only when needed. In Section 3 we
afford the 1-dimensional case. Its presentation is short and evidences strong differences
with the polynomial and regular cases [7]. In Sections 4 and 5 we analyze with care
the main properties of Nash collars, Nash doubles and the drilling blow-up, which is an
adaptation to the Nash setting of the oriented blow-up [25,6] of a real analytic space with
center a closed real analytic subspace. We refer the reader to [27, §5] for a presentation
of the oriented blow-up of a real analytic manifold M with center a closed real analytic
submanifold N whose vanishing ideal inside M is finitely generated (this happens for
instance if N is compact). In our case, we take advantage of the noetherianity of the
ring of Nash functions on a Nash manifold to develop the drilling blow-up and to obtain
stronger global properties than in the general real analytic case. The previous tools (Nash
collars, Nash doubles and drilling blow-ups) are the key to build boundaries on Nash
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manifolds in Proposition 4.1 and to modify the topology of a Nash manifold in order to
prove Theorem 1.5 in Section 6. We are convinced that the strategy followed to prove
Theorem 1.5 will have further applications. In Section 7 we study the main properties
of well-welded semialgebraic sets and we show that a semialgebraic set satisfying any
of the assertions (iii), (iv), (v) or (vi) in the statement of Theorem 1.4 is well-welded.
Next, in Section 8 we prove Theorem 1.4. In Section 9 we introduce the concept of Nash
path-connected components of a semialgebraic set and we prove that each semialgebraic
set can be (uniquely) written as the (finite) union of its Nash path-components. Finally,
in Section 10 we prove Corollaries 1.7 and 1.8. The article ends with three Appendices.
In the first one we present a miscellanea of C? semialgebraic homeomorphisms between
intervals that are used in the article whereas in the second we recall certain results
concerning strict transforms of analytic and Nash paths under finite chains of blow-ups.
The third Appendix concerns an algebrization result for a Nash normal crossing divisor
of a Nash manifold.
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2. Preliminaries on semialgebraic sets and Nash manifolds

In this section we introduce many concepts and notation needed in the article. We
establish the following conventions: M C R™ and N C R"™ are Nash manifolds. Nash
subsets of a Nash manifold or algebraic subsets of R™ are denoted with X,Y and Z.
The semialgebraic sets are denoted with 8,7, R,... On the other hand, H C R™ is a
Nash manifold of dimension d with (smooth) boundary, 0H is its boundary and Int(H) =
H\OH is its interior. In addition, C" semialgebraic and Nash functions on a semialgebraic
set are denoted with f,g,h,....

Recall some general properties of semialgebraic sets. Semialgebraic sets are closed
under Boolean combinations and by quantifier elimination they are also closed under
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projections. Any set defined by a first order formula in the language of ordered fields is
a semialgebraic set [4, pp. 28, 29]. Thus, the basic topological constructions as closures,
interiors or boundaries of semialgebraic sets are again semialgebraic. Also images and
preimages of semialgebraic sets by semialgebraic maps are again semialgebraic. The
dimension dim(8) of a semialgebraic set 8 is the dimension of its Zariski closure [4,
§2.8]. The local dimension dim(8,) of 8 at a point x € CI(8) is the dimension dim(U)
of a small enough open semialgebraic neighborhood U C CI(8) of z. The dimension of 8
coincides with the maximum of these local dimensions. For any fixed k the set of points
x € 8 such that dim(8,) = k is a semialgebraic subset of 8.

2.A. Set of reqular points of a semialgebraic set

Let Z C C™ be a complex algebraic set and let I¢(Z) be the ideal of all polynomials
F € C[x] such that F'(z) = 0 for each z € Z. A point z € Z is regular if the localization of
the polynomial ring C[x]/Ic(Z) at the maximal ideal 9T, associated to z is a regular local
ring. In this complex setting the Jacobian criterion and Hilbert’s Nullstellensatz imply
that z € Z is regular if and only if there exists an open neighborhood U C C” of z such
that U N Z is an analytic manifold. We denote Reg(Z) the set of regular points of Z and
it is an open dense subset of Z. If Z is irreducible, it is pure dimensional and Reg(Z) is a
connected analytic manifold. In case Z is not irreducible, then the connected components
of Reg(Z) are finitely many analytic manifolds (possibly of different dimensions). We
denote Sing(Z) := Z \ Reg(Z) the set of singular points of Z.

Let X C R™ be a (real) algebraic set and let Ix(X) be the ideal of all polynomials
f € R[] such that f(z) =0 for each x € X. A point z € X is regular if the localization
of R[x]/Ir(X) at the maximal ideal m, associated to z is a regular local ring [4, §3.3].
Let X C C" be the complex algebraic set that is the zero set of the extended ideal
Ig(X)C[x]. We call X the complezification of X. The ideal Ic(X) coincides with the
tensorized ideal Igx(X) ®gr C, so X is the smallest complex algebraic subset of C™ that
contains X and

Clx]/Ic(X) = (R[x]/Ir(X)) ®= C.

The localization (R[x]/Ir(X))m, is a regular local ring if and only if so is its complexi-

x

fication
(R[x]/12(X))m, ®r C = (Cx]/Ic(X))m, .

Thus, the set of regular points of X is Reg(X) = Reg()N() N X and its set of singular
points is Sing(X) := X \ Reg(X) = Sing(X) N X. The connected components of the
open semialgebraic subset Reg(X) of X is a finite union of Nash manifolds (possibly of
different dimensions).

Let 8§ C R™ be a semialgebraic set of dimension d. The Zariski closure $™ of $ in R™

is the smallest algebraic subset of R™ that contains 8. We define
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Fig. 1. X : (22 4 z¢%)z —y* = 0.
Reg(8) = Intp,, g« (S \ Sing(S")) and Sing(8) := 8\ Reg(8).

The connected components of the open subset Reg(8) of §” is a finite union of Nash
manifolds (possibly of different dimensions) and Sing(8) is a semialgebraic set of dimen-
sion < d, which is closed in 8. The set Reg,(8) of points of dimension k of Reg(8) is
either the empty-set or a Nash manifold of dimension k for each £ = 0,1,...,d. If 8§ is
pure dimensional, Reg(8) is a dense subset of 8. A point = € 8 is smooth if there exists
an open neighborhood U C R™ of z such that U N8 is a Nash manifold. It holds that
each regular point is a smooth point, but the converse is not always true even if § = X
is a real algebraic set, as it shows the following example.

Example 2.1. Consider the algebraic set X := {(2? + 23%)z — y* = 0} C R3. The set of
regular points of X is the difference X \ {x = 0,y = 0}, whereas the set of smooth points
of X is the difference X \ {z =0,y =0,z < 0} (see Fig. 1).

To prove that the points of the open half-line {x = 0,y = 0,z < 0} are non-smooth
we proceed by contradiction. Pick a point p := (0,0, —a?) € {z = 0,y = 0,z < 0} and
assume that it is smooth. As the line {x = 0,y = 0} C X, the vector (0,0,1) would
be tangent to X at p, so the plane z = —a? would be transversal to X at p. Thus,
the intersection X N {z = —a?} should be a curve that is smooth at p, but this is a
contradiction because such curve {(z? — (ay)?)z — y* = 0,2 = —a?} has three tangent
lines at p, which are those lines of equations {z — ay = 0}, {z 4+ ay = 0} and {z = 0}
inside the plane {z = —a?}. The origin cannot be a smooth point of X because the set of
smooth points of X is an open subset of X. Consequently, the set of non-smooth points
of X contains the closed half-line {x = 0,y = 0,z < 0}. To finish we prove that the
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points of the open half-line {z =0,y = 0,z > 0} are smooth. To that end, observe that
the map ¢ : {(t,5) € R? : t > 0} — R3,(s,t) = ((s +t2)s?, (s® + t?)s,t?) is a Nash
embedding whose image is X N {z > 0}.

The set Sth(8) of smooth points of a semialgebraic set § C R™ is by [35] a semialgebraic
subset of R (and consequently a Nash submanifold of R™), which contains Reg(8)
(maybe as a proper subset as it happens in Example 2.1), and it is open in 8. The set
Sthy(8) of points of dimension k of Sth(8) is either the empty-set or a Nash manifold of
dimension k for each k = 0,1, ...,d. Denote NSth(8) := 8\ Sth(§) the set of non-smooth
points of 8. If X is an algebraic set, Sing(X) is always an algebraic subset of X whereas
NSth(X) is in general only a semialgebraic subset of X, see Example 2.1.

Remark 2.2. Let § C R™ be a pure dimensional semialgebraic set such that S
is a non-singular real algebraic set. Then Reg(8) = Intgz:(8) = Sth(8) and Sing(8) =
NSth(S).

As 8% is a non-singular real algebraic set, Reg(gzar) =8 and Sing(gwr) = g.
Thus, as 8 is pure dimensional, Intgz:(8) = Sth(8) and

Reg(8) = Inty, ger) (S \ Sing(8™")) = Intigear (8) = Sth(8),
Sing(8) = 8 \ Reg(8) = 8 \ Sth(8) = NSth(8).

Using the definition of smooth point one proves readily the following result.

Lemma 2.3. Let M C R™ and N C R" be Nash manifolds and let f: M — N be a Nash
diffeomorphism. Let 8 C M be a semialgebraic set. Then f(Sth(8)) = Sth(f(8)) and
F(NSth(8)) = NSth(f(S)).

The previous result is no longer true if we consider the set Reg(8) of regular points
of 8 instead of Sth(8).

Example 2.4. Consider the semialgebraic set § := {2? +y? —y®> = 0} C R? and the Nash
diffeomorphism

[:R? = R2 (z,y) = (x(x® +1),2° + 1 +y).

Denote T := {(0, —1)} U{y = 0} and observe that f(T) =8, Sing(T) = @ and Sing(§) =
{(0,0)}. Consequently, f(Reg(T)) = f(T) = 8 # Reg(8).

The previous example shows that the sets Reg(8) and Sing(8) depend on how 8§ is
immersed in an affine space, whereas Lemma 2.3 points out that the sets Sth(8) and
NSth(8) are subsets of 8 of intrinsic nature. As we will use in the sequel resolution of
singularities, we will need to employ the sets Reg(8) and Sing(§) instead of the sets Sth(8)
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and NSth(8) in a large part of the article. However, in the proof of implication (vii) = (i)
of Theorem 1.4 we will take advantage of the intrinsic nature of the sets Sth(§) and
NSth(8). This justifies the introduction of both pairs of concepts: ‘regular /singular’ points
and ‘smooth/non-smooth’ points. In Lemma 8.3 we show that under certain conditions
we may embed § in some affine space in order to have Reg(8) = Sth(8) and Sing(8) =
NSth(8).

2.B. Desingularization of algebraic sets

Let X C Y C R” be algebraic sets such that Y is non-singular. Recall that X is a
normal-crossings divisor of Y if for each point x € Y there exists a regular system of
parameters x1,...,xq for Y at x such that X is given on an open Zariski neighborhood
of z in Y by the equation x;---zr = 0 for some k < d. In particular, the irreducible
components of X are non-singular and have codimension 1 in Y.

A rational map f := (f1,...,fn) : Z — R™ on an algebraic set Z C R™ is reqular if
its components are quotients of polynomials fj := i—i such that Z N {h =0} = @.

Hironaka’s desingularization results [24] are powerful tools that we will use fruitfully
in Sections 7 and 8. We recall here the two results we need.

Theorem 2.5 (Desingularization). Let X C R™ be an algebraic set. Then there exist a
non-singular algebraic set X' C R™ and a proper reqular map f: X' — X such that

Flxng—1(sig(x)) : X\ f71(Sing(X)) — X \ Sing X
s a diffeomorphism whose inverse map is also reqular.

Remark 2.6. If X is pure dimensional, X \ Sing X is dense in X. As f is proper, it is
surjective.

Theorem 2.7. Let X C Y C R" be algebraic sets such that Y is non-singular. Then
there exists a mon-singular algebraic set Y/ C R™ and a proper surjective regular map
g:Y' =Y such that g1 (X) is a normal-crossings divisor of Y' and the restriction

glyng-1x) Y\ g HX) = Y\ X
s a diffeomorphism whose inverse map is also regular.
2.C. Nash manifolds and Nash normal-crossings divisors

The open semialgebraic subsets of a Nash manifold M C R are a base of the topology
and therefore Nash functions define a sheaf that we denote with A. In particular, the
sheaf N induces a notion of Nash function f : U — R over an arbitrary open subset U of
M possibly not semialgebraic. In case U is an open subset of R™, Nash means that f is
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smooth and there exists a nonzero polynomial P(x,t) € R[x,t] = R[x1,...,%Xm,t] such
that P(z, f(x)) = 0 for all x € U. If U is semialgebraic this definition is equivalent to
the one in the Introduction [4, Prop.8.1.8]. We apparently have two definitions of Nash
function f : M — R. Both notions are equal because every Nash manifold has a Nash
tubular neighborhood.

2.C.1. [4, Cor.8.9.5] Let M C R™ be a Nash manifold. Then there exists an open
semialgebraic neighborhood U of M in R™ and a Nash retraction p: U — M.

Recall the existence of finite atlas for M with domains Nash diffeomorphic to R4m(M);

2.C.2. [17, Lem.2.2] A Nash manifold M C R™ of dimension d admits a finite open
(semialgebraic) covering M = J;_, M; by Nash manifolds M; C M each of them Nash
diffeomorphic to R?.

Let N C M be a closed Nash submanifold of dimension e. By [34, Cor.I1.5.4] N is a
non-singular Nash subset of M and by [3, Thm.1.4] we have:

2.C.3. The Nash submanifold N can be covered by finitely many open semialgebraic
subsets U of M equipped with Nash diffeomorphisms u = (u1,...,uq) : U — R? such
that UNN ={u; =0,...,uq—. = 0}.

It is also possible to construct tubular neighborhoods of N inside M. A Nash (vector)
bundle over M is a (vector) bundle (&, 6, M) such that & is an (affine) Nash manifold
and the projection 8 : & — M is a Nash map. Examples of Nash bundles are: the trivial
bundle of M, the tangent bundle of M, the normal bundle of M, etc.

2.C.4. [34, Lem.I1.6.2] There exists a Nash subbundle (&,0,N) of the trivial Nash
bundle (N x R™,n,N), a (strictly) positive Nash function § on N and a Nash diffeo-
morphism ¢ from a semialgebraic neighborhood V' of N in M onto

& ={(z,y) € & lyll <o(2)}

such that o|n = (idn,0). The tuple (V, ¢, &, 0, N,0) is a Nash tubular neighborhood of
N in M and the composition # o ¢ : V — N is a Nash retraction.

As an application of 2.C.3 it follows a counterpart of 2.C.2 for Nash manifolds with
boundary:

2.C.5. Let H C R™ be a d-dimensional Nash manifold with boundary. By [17,
Thm.1.11] H s a closed subset of a Nash manifold M C R™ of dimension d in such a
way that:

(i) OH is a closed Nash submanifold of M and so a Nash non-singular subset of M.
(ii) M can be covered with finitely many open semialgebraic subsets U equipped with
Nash diffeomorphisms (uy,...,uq) : U — R? such that



J.F. Fernando / Advances in Mathematics 331 (2018) 627-719 639

UCHorUNH=2 if Udoes not meet OH,
UnNH={u >0} if Umeets OH.

A Nash normal-crossings divisor of M is a Nash subset X C M whose irreducible
components are non-singular Nash hypersurfaces Xi,..., X, of M in general position.
x ¢ X, for i # iy,...,4,, the tangent
hyperplanes T, X;,,...,T,X;, are linearly independent in the tangent space T, M. In

This means that at every point z € X;,,..., X,

[17, Thm.1.6] we prove the following:

2.C.6. Let X be a Nash normal-crossings divisor of M. Then X can be covered by
finitely many open semialgebraic subsets U of M equipped with Nash diffeomorphisms
(U1, ... uq) : U — R% such that UN X = {uy ---u, = 0}, where r depends on U.

Both Nash submanifolds and Nash normal-crossings divisors are particular cases of
coherent Nash subsets X of M (see [3, §2.B, Lem.5.1]). We can say by [3, §2.B] and [4,
Prop.8.6.9] that a Nash set X C M is coherent if the N-sheaf of ideals J, = I(X,) for
x € M is of finite type, that is, for every x € M there exists an open neighborhood U
and a surjective morphism N*¥|y — J|u. By [3, Eq. (2.2)] it holds that if X C M is a
coherent Nash subset, then for any semialgebraic open subset U of M we have

IX)N(U) =I(XNU) (2.1)

where I(X NU) :={f €e N(U) : flxnv =0} and I(X) := I(X N M). Consequently, if
x € X, the ideal I(X,) = I(X)N(M,). Conversely, we have [34, (1.6.5)]:

2.C.7. If fi,..., fr € N(M) generate I(X,) for allz € X, then fi,..., f, generate
also I(X). In particular, if f € N (M) satisfies f, € I(X,) for all x € X, then f € I(X).

2.D. Approximation of differentiable semialgebraic maps by Nash maps

Let M C R™ be a Nash manifold of dimension d. Denote the set of all continuous
semialgebraic functions on M with S°(M). For every integer r > 1 we denote the set
of all semialgebraic functions f : M — R that are differentiable of class r with S"(M).
We equip 8"(M) with the 8" semialgebraic Whitney topology [34, §I1.1, pp. 79-80]. If
r > 1, let &,...,& be semialgebraic S"~! tangent fields on M that span the tangent
bundle of M. For every strictly positive continuous semialgebraic function ¢ : M — R
we denote the set of all functions g € §"(M) such that

lg| < e ifr=0,
gl <e and &, - &, (9)l<e for 1 <iy,...,ip<s,1<l<pr ifr>1

with U.. These sets U, form a basis of neighborhoods of the zero function for a topology
in S"(M) that does not depend on the choice of the tangent fields if » > 1. The first
important result is that the inclusion N (M) C 8" (M) is dense.
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2.D.1. [34, Thm.11.4.1] Every semialgebraic 8" function on M can be approzimated
in the 8™ topology by Nash functions.

Let N C R™ be a Nash manifold. A semialgebraic map f := (f1,...,fn) : M —
N C R™ is 87 if each component fr, : M — R is §". We denote the set of all 8™ maps
M — N with §"(M, N). We consider in S"(M, N) the subspace topology given by the
canonical inclusion in the following product space endowed with the product topology
[34, Rmk.I1.1.3]:

S"(M,N) C 8" (M,R") =S8"(M,R) x -"- x S"(M,R) : f = (f1,..., [n)-

Roughly speaking, g is close to f when its components gi are close to the components
fx of f. The previous topologies can be extended to the set S"(8,7) of 8" semialgebraic
maps between two semialgebraic sets § and T if § C M is closed [3, §2.D-E]. This allows
for instance to provide a topology on the set of " maps between two Nash manifolds
with boundary.

A map h:8 — Tis an 8" diffeomorphism if it is a bijection and both h and h~!
are 8" maps. Diffeomorphisms between Nash manifolds behave well with respect to
approximation if r > 1.

2.D.2. [34, Lem.II.1.7] Let h : M — N be an 8" diffeomorphism of Nash manifolds.
If an 8" map g: M — N is 8" close enough to h, then g is also an 8" diffeomorphism,
and g—' is S” close to h™1.

From this and the existence of Nash tubular neighborhoods (2.C.1) we deduce that
for all * > 1 every 8" diffeomorphism f : M — N can be approximated by Nash diffeo-
morphisms, hence S and Nash classifications coincide for Nash manifolds. In the case of
Nash manifolds with boundary we proved in [3, Rmk.9.6] that S? and Nash classifications
coincide.

2.D.3. Two Nash manifolds with boundary that are S? diffeomorphic are Nash dif-
feomorphic.

2.D.4. 1In addition, if f : Hy — Ho is an S? diffeomorphism between two Nash
manifolds with boundary and flom, : 0H1 — OHs is a Nash diffeomorphism, then there
exists a Nash diffeomorphism g : Hy — Hs close to f such that glog, = flon, -

We will deal in addition with S homeomorphisms between Nash manifolds. In this
case it is not possible to approximate them by Nash diffeomorphisms, but the following
result allows us to approximate them by Nash surjective maps.

Lemma 2.8. Let M C R™ and N C R™ be Nash manifolds and let f : M — N be a
semialgebraic homeomorphism. Let g : M — N be a semialgebraic map close to f in the
SO topology. Then g is surjective.
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Proof. We adapt the proof of [26, Thm.2.1.8]. By [34, Rmk.II.1.15] the map
ft i SY(M,N) — S° (M, M), h— f'oh

is continuous. Thus, if g is close to f, then f~!o g is close to idys. If we prove that each
g' € S°(M, M) close to the identity is surjective, then each g close to f will satisfy that
f~1o g is surjective, so g is surjective.

By [34, Thm.VI.2.1] there exist a compact affine non-singular algebraic set X, a non-
singular algebraic subset Y of X that either has codimension 1 if M is non-compact
or is empty if M is compact and a union M’ of some connected components of X \ YV’
such that M is Nash diffeomorphic to M’ and Cl(M’) is a compact Nash manifold with
boundary Y. Let € be a non-negative Nash equation of Y in X and let h € S°(M’, M’) be
such that ||h —idps || < €|pr. We claim: h extends continuously to X \ M’ as the identity
map id x\ar - It is enough to check: if {zx}x>1 C M’ tends toy € Y, then {h(zx)}x tends
to y.

Indeed, ||h(zx) — zk]| < e(zk) for each k > 1. As {z;}; tends to y € Y, we have that
{e(zk) }r tends to 0, so {h(zk)}« tends to y, as claimed.

Consider next the continuous semialgebraic map

hz) ifze M,

H:X—>X, z—
x ifee X\ M.

It satisfies

: /

(@) - idx (o)] {< o) e At
=0 ifre X\ M.

As X is compact, we know by [26, Thm.2.1.8] that there exists § > 0 such that if
¢ : X — X is a continuous map and [|{ —idx || < J, then ¢ is surjective. Consequently,
if h € SO%(M’,M’) satisfies ||h — idps || < min{e,d}, then H : X — X is surjective.
Let us check that also h € S%(M’, M) is surjective. Pick a point y € M’. Then there
exists © € X, such that H(z) = y. If z € X \ M’, then H(z) =z € X \ M’, which is a
contradiction. So € M’ and h(z) = H(z) = y, that is, h is surjective, as required. 0O

2.E. Modification of analytic arcs by Nash arcs

The handling of well-welded semialgebraic sets in Section 7 requires the modification
of analytic arcs by Nash arcs that avoid certain algebraic sets. To that end we will use
the following result:

Lemma 2.9. Let M C R™ be a connected Nash manifold and let Y C R™ be an algebraic
set. Let My, My be open semialgebraic subsets of M and let o : (—1,1) — My UMy U {0}
be an analytic arc such that a(0) =0, «((0,1)) C My and a((—1,0)) C Ms. Assume that
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M ¢ Y. Then for every integer v > 1 there exist € > 0 and a Nash arc 8 : (—¢,e) —
My U My U {0} such that:

(i) 8
(i) 8
(it}) A

(0) =0, a(t) — B(t) € ()" R{t}™,
((7535)) ny c {0}7
((0,¢)) € My and 5((—e,0)) C M,.

Proof. For simplicity we can assume My N My = &, 0 ¢ M; UMy and 0 € Y. Let
V C M be an open semialgebraic neighborhood of the origin equipped with a Nash
diffeomorphism ¢ : V' — R? such that (0) = 0. Shrinking the domain of «, we may
assume Im(a) C V. Denote @ := poa : (—6,8) — R? where § > 0 is small enough.

Shrinking M;, V and the domain of &, we may assume that 0 ¢ o(M; NV) and
o(M; N V) ={g1; >0,...,ge > 0} for some polynomials g;; € R[x|. There exists s > v
large enough such that if v € R{t}? and v —a € (t)*R{t}%, we have (g;1 0v)(t) > 0 and
(gj207)(=t) > 0 for t > 0 small enough and j = 1,..., £ Let v € R[t]¢ be a polynomial
tuple such that v — & € (t)*R{t}".

As Y NV has dimension < d, also the algebraic set Y’ := p(Y N V)Zar has dimension
< d. Let h € R[x] be a polynomial equation of Y’. Consider the surjective polynomial
map

R x RY - R?, (t,y) = () + 5Ly,

Let yo € R? be such that the univariate polynomial h(y(t) + t*Tlyy) € R[t] is not
identically zero. Let € > 0 be such that vo(t) := v(t) + t¥F1yo € R[t]? satisfies

gir(n0(t)) >0,  gj2(v(=t)) >0, h(y(t)) #0 and h(y(-t)) #0

for 0 < t < . The Nash arc 8 := ¢~ Loy : (—¢,€) — My UMoU{0} satisfies the required
properties. 0O

3. A light start-up: the 1-dimensional case

In this short section we prove Proposition 1.6 and present some enlightening examples.
Nash images of Euclidean spaces contained in the real line are its intervals and all of
them are Nash images of R. To be convinced of this fact it is enough to have a look at
the following examples.

Examples 3.1. (i) The interval (0,1) is Nash diffeomorphic to R. Consider the Nash
diffeomorphism (together with its inverse):

t 1 2t — 1
————+ - and f':(0,1) =R, trr ——e.
2V1+t2 2 f 0 2,/t(1 —1t)

In addition f((0,400)) = (%7 1) and f([0,+00)) = [%7 1).

f:R—=(0,1), t—
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(ii) The interval [0,1) is the image of the Nash map

42
hi :R—=>R, t—~ ——
1 ) t2+17

whereas [0, 1] is the image of the Nash map

t 1
ho :R—=R, t = ——F+ .
? e T
Nash images of Euclidean spaces contained in a circumference are its connected subsets
and all of them are Nash images of R.

Examples 3.2. (i) The circumference S' : 2 + 32 = 1 is a Nash image of R. Consider
the inverse of the stereographic projection from the point (1,0), which is the map

1—¢t2 2t )

fR-)Sl\{(].,O)}, t— (1—|——t2,1—|——t2

Next, we identify R? with C and the coordinates (z,y) with z + /—1y. Consider the
map

g:C—=C, z:=0+vV—1yw 22 = (2% — ) + V-1(2xy).

The image of R under g o f is S'.
(ii) Any connected proper subset § of S! is a Nash image of R because it is Nash
diffeomorphic to either (0, 1), [0,1) or [0, 1] and these are Nash images of R.

We are ready to prove Proposition 1.6.

Proof of Proposition 1.6. Assume § is irreducible. Let X be the Zariski closure of 8 in
R” and let X be its complexification. Let (}7, 7) be the normalization of X and let &
be the involution of Y induced by the involution o of X that arises from the restriction
to X of the complex conjugation in C™. We may assume that Y C C™ and that & is
the restriction to Y of the complex conjugation of C™. By [11, Thm.3.15] and since 8
is irreducible, 7=1(8) has a 1-dimensional connected component T such that 7(T) = 8.
As X has dimension 1, it is a coherent analytic set, so T C Y := YNR™ As Y
is a normal-curve, Y is a non-singular real algebraic curve. We claim: the connected
components of Y are Nash diffeomorphic either to S* or to the real line R.

By [34, Thm.VI.2.1] there exist a compact affine non-singular real algebraic curve Z,
a finite set F which is empty if Y is compact and a union Y’ of some connected compo-
nents of Z \ F such that Y is Nash diffeomorphic to Y’ and CI(Y”) is a compact Nash
curve with boundary F. As Z is a compact affine non-singular real algebraic curve, its
connected components are diffeomorphic to S!, so by [34, Thm.VI.2.2] the connected
components of Z are in fact Nash diffeomorphic to S'. Now, each connected component
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of Y is Nash diffeomorphic to an open connected subset of S!, so it is Nash diffeomorphic
either to S! or to the real line R, as claimed.

Consequently, T is Nash diffeomorphic to a connected subset of either S' or R. By
Examples 3.1 and 3.2 the semialgebraic set T is a Nash image of R, so also 8 is a Nash
image of R. The converse is straightforward. O

4. Building boundaries on Nash manifolds

The purpose of this section is to develop a tool to build boundaries on a non-compact
Nash manifold. More precisely we will prove the following.

Proposition 4.1. Let H C R™ be a Nash manifold with boundary. Then there exists
a surjective Nash map f : Int(H) — H that has local representations of the type
(T1,...,mq) = (22, 29,...,24) at each point of f~*(OH).

In order to ease the understanding of the strategy followed to prove Proposition 4.1
we refer the reader to Fig. 2 (b). This proof requires the use of Nash collars and Nash
doubles of a Nash manifold with boundary H (see Fig. 2 (a)). These constructions for H
compact are a common tool in Nash Geometry [34, §VI] but as far as we know there is
no explicit reference to them in the literature when H is non-compact. In 4.A we afford
the construction of Nash collars when H is non-necessarily compact. In 4.B we endow
the (smooth) double of H with a Nash manifold structure. The resulting Nash manifold
D(H) is called the Nash double of H. Its construction requires a Nash equation of 0H
that is strictly positive on Int(H) and has rank 1 at the points of 0H.

4.A. Nash collars

Let H C R™ be a Nash manifold with boundary 0H. A Nash collar of OH is an
open semialgebraic neighborhood W C H of 0H equipped with a Nash diffeomorphism
Y : W — 0H x [0,1) such that ¢(z) = (z,0) for all x € H. We recall next how Nash
collars are constructed. For the smooth case see [31, Thm.I.5.9].

Lemma 4.2. Let M C R™ be a Nash manifold of dimension d and let N C M be a Nash
submanifold of dimension d—1. Let U C M be an open semialgebraic neighborhood of N
and p: U — N a Nash retraction. Let h be a Nash function on U such that {h =0} = N
and dh : T,M — R is surjective for all x € N. Consider the Nash map ¢ = (p,h) :
U — N x R. Then there exist an open semialgebraic neighborhood V.C U of N and a
strictly positive Nash function € on N such that o(V) = {(z,t) € N xR : [t| < e(z)}
and oly 1V — o(V) is a Nash diffeomorphism.

Proof. We show first: The derivative dyp = (dyp,dzh) : ToM — T, N x R is an iso-
morphism for all x € N. As dim(T, M) = dim(T, N x R), it is enough to show: d,¢ is
surjective.
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Fig. 2. (a) Nash double of H and (b) surjective Nash map f : Int(H) — H.

As ¢|y = (idw,0), we have dyo|r,n = (idr,n,0), so T, N x {0} C Im(d,¢). In
addition d,h : T,M — R is surjective, so there exists v € T, M such that d h(v) = 1.
Thus, d,p(v) = (d.p(v),1) and d,p is surjective.

Let U’ :={x € U : d,¢ is an isomorphism}, which is an open semialgebraic neigh-
borhood of N in U. Thus, ¢|y : U — N x R is an open map and ¢(U’) is an open
semialgebraic neighborhood of N x {0} in N x R. As ¢|y+ : U" — ¢(U’) is a local home-
omorphism and ¢|y = (idy, 0) is a homeomorphism (onto its image), there exist by [3,
Lem.9.2] open semialgebraic neighborhoods U” C U’ of N and W C N x R of N x {0}
such that |y : U” — W is a semialgebraic homeomorphism.

Consider the strictly positive semialgebraic map

§: N —(0,400), x> dist((z,0), (N x R) \ W).

By 2.D.1 there exists a strictly positive Nash function & on N such that 1§ < & < 4.
Consider the open semialgebraic neighborhood W' := {(z,t) € N xR : |t|<e(z)} CW
of N x R and define V := (¢|y»)"1(W’). The restriction ¢|y, : V — W’ is a Nash
diffeomorphism, as required. 0O

Lemma 4.3. Let H C R™ be a d-dimensional Nash manifold with boundary OH. Let
M C R™ be a Nash manifold of dimension d that contains H as a closed subset. Then
there exist an open semialgebraic neighborhood M' C M of H and a Nash equation h of
O0H in M’ such that Int(H) = {h > 0} and dyh : T, H — R is surjective for all z € OH.

Proof. We may assume OH # @. The proof is conducted in several steps:

4.A.1. We construct first an S? semialgebraic function hg on M such that 0H C
{ho = 0} and d ho(v) > 0 for each « € OH and each non-zero vector v € T,, M pointing
‘inside M.

By 2.C.5 we can cover OH with finitely many open semialgebraic subsets U; of M
that are equipped with Nash diffeomorphisms u; := (u;1, ..., uiq) : U; — R such that
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UiNH = {u;; >0} fori=1,...,7. Let {6;};1] be an S? partition of unity subordinated
to the finite covering {U;}I_; U {M \ OH} of M and consider the S? function hg =
Sy Biwir. It holds OH C {hg = 0}.

Fix x € OH and let v € T, M be a non-zero vector pointing ‘inside M’, that is,
dyu;1(v) > 0 if x € U;. We have

deho = Y uin(2)dab; + Y Oi(@)dpuin = Y 0i(2)dauin  ~

zeU; z€eU; zeU;
deho(v) = Y 0i(x)dpuir (v) > 0
xzeU;
because > iy 0i(z) =1, 0;(z) > 0 and dyui(v) > 0if 2 € U;.

4.A.2. By [3, Prop.8.2] there exists a Nash function h; on M close to hg in the S?
topology such that OH C {hy = 0} and d hi(v) > 0 for each 2 € 9H and each non-zero
vector v € T, M pointing ‘inside M’. We claim: there exists an open semialgebraic neigh-
borhood W C M of OH such that {hy > 0}NW =Int(H)NW and {hy =0} NW = 9H.

Pick a point x € H and assume x € U;. As hy vanishes identically at 0H, we may
write hi|y, = ui1a1 where a; is a Nash function on U;. Pick y € 0H N U; and observe
that dyhy = al(y)dyuu. Let v € TyM be a non-zero vector pointing ‘inside M’. As
dyuii(v) > 0 and dyhi(v) > 0, we deduce a1 (y) > 0. Define Wy := {a; > 0} C U; and
notice that 0OHNU; C W1y, {hy; > 0}NW; = Int(H)NW; and {h; = 0}NW; = 0HNW;.
Construct analogously W, ..., W, and observe that W := |J;_, W; satisfies the required
properties.

4.A.8. Next, we construct h. If W = M, it is enough to set h := hy. Suppose W # M.
Let &g be a (continuous) semialgebraic function whose value is 1 on 0H and —1 on M\W.
Let ¢ be a Nash approximation of g such that |e — go| < 3. Then

(@) >1 ifzedH,
<F ifzeM\W.

Thus, {¢ > 0} C W is an open semialgebraic neighborhood of dH. By [34, Prop.IL.5.3]
OH is a Nash subset of M. Let f be a Nash equation of 0H in M. Substituting f by
% we may assume that f is non-negative and f(z) =1 if e(z) = 0.

Consider the (continuous) semialgebraic function on M given by

(@) im {1 if e(z) > 0,

f%(x) if e(z) <0.

Let g be a Nash function on M such that § < g2. Consider the Nash function
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h:=hy + f2g*(h? +1)
and let us prove that it satisfies the required conditions.

4.A.4. We claim: h is positive on Int(H).
Let @ € Int(H). If hy(x) > 0, then h(z) > 0. If hy(x) <0, then e(z) < 0 and

h(z) = hi () + g* () f(2) (A3 () + 1)
1
f2(x)

4.A.5. Ttholds: {h=0}NW =0H, {h>0}NW =Int(H)NW and d,h: T,H — R
is surjective for all x € OH.

Recall that W = |JI_, W, and fix i = 1. We have seen in 4.A.2 that there exists a
Nash function a; on Uj such that hi|y, = uiia; and OH NU; € Wy := {a; > 0}. As
f vanishes identically at 0H, we deduce that f|y, = u11b; where by is a Nash function

> ha(z) + F2()(hi(z) +1) = hi(z) + hi(z) + 1> 0.

on U;. Consequently,

hlo, = uirar + ¢°|v,uiy b3 (ufyaf + 1) = uii (a1 + ¢°|v, ua1bi (ufyaf 4 1))

and d.h = a1(z)dyu;; =dshy Ve € 0HNU;.

Define W] := {a1 + ¢°|y,u11b3(u31a? + 1) > 0} N Wy, which is an open semialgebraic
subset of M. We have 0H NU; € W] and {h > 0} N W] = Int(H) N W{. Construct
analogously W3, ..., W/ and observe that W’ := J;_, W/ C M is an open neighborhood
of OH that satisfies {h = 0}NW' = 0H, {h > 0}NW' = Int(H)NW' and d,h : T, H - R
is surjective for all x € OH.

Consequently, M’ := Int(H) U W’ satisfies the required conditions. O

Lemma 4.4. Let H C R™ be a d-dimensional Nash manifold with boundary OH. Then
every semialgebraic neighborhood U C H of OH contains a Nash collar (W) of O0H
in H.

Proof. By 2.C.5 there exists a Nash manifold M C R™ of dimension d that contains H
as a closed subset and such that 0H is a Nash submanifold of M of dimension d — 1. Let
U’ C M be an open semialgebraic neighborhood of dH such that U' N H = U.

As 0H is a Nash manifold without boundary, there exists a Nash tubular neighborhood
A of OH in R™ together with a Nash retraction p : A — 9H. Substituting U’ by U’ N A,
we may assume U’ C A. By Lemma 4.3 we can shrink M to have a Nash equation h
of OH in M such that {h > 0} N M = Int(H) and d,h : T, H — R is surjective for all
x € 0H. Denote

0 :=(plur,hlvr) : U — 0H x R.
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By Lemma 4.2 there exists an open semialgebraic neighborhood V' C U’ of H and a
strictly positive Nash function € on 9H such that p(V) = {(y,t) € 90H xR : |t| < e(y)}
and ¢|y : V — (V) is a Nash diffeomorphism. Consider the Nash diffeomorphism

YV = OH x (=1,1), x> (p(x>’ 6(};((?))>

and W :=¢~Y(0H x [0,1)) C U’ N H. The restriction ¢|y : W — dH x [0, 1) provides
a collar of 9H such that W C U, as required. 0O

4.B. Nash doubles

Let H C R™ be a d-dimensional Nash manifold with boundary 0H. Let h be a Nash
equation of OH such that Int(H) = {h > 0} and d,h : T, H — R is surjective for all
x € OH (see Lemma 4.3). We have:

4.B.1. D(H):={(z,t) € HxR: t> — h(z) =0} is a Nash manifold of dimension d
that contains OH x {0} as the Nash subset {t = 0}.

Proof. The semialgebraic set D(H) satisfies

D(H)\ (0H x {0}) = {(z,t) € Int(H) x R : t = £/h(z)},

which is the union of two disjoint graphs of Nash functions on the Nash manifold Int(H).
Consequently, it is enough to show: for each (z,0) € OH x {0} there exists an open
semialgebraic neighborhood W C D(H) of (x9,0) such that W is a Nash manifold.

Let M’ € R™ be a Nash manifold of dimension d that contains H as a closed subset.
Pick a point xg € dH and let U C M’ be an open semialgebraic neighborhood of x
equipped with a Nash diffeomorphism v := (ug,...,uq) : U — (=1,1) x R4 such
that u(zg) = 0 and U N H = {u; > 0}. We may assume u; = h|y. Observe that
V :=(UNH) x R is an open semialgebraic subset of H x R and

W :=DH)NV = {(z,£/h(z)): z € UNH}
is an open semialgebraic neighborhood of (xg,0) in D(H). Consider the Nash map
u = (U, uly) W= (=1,1) x R (1) = (tug(z), ... ug(x))
and let us check that it is a Nash diffeomorphism. As
(uly, ..., u)) (W) = (ug,...,ug)(UNH) =R

we have v/ (W) = (—=1,1) x R¥~! so v/ is surjective.



J.F. Fernando / Advances in Mathematics 331 (2018) 627-719 649

Pick (21,t1), (z2,t2) € W such that u'(x1,t1) = v/ (22,12). Then t; = t3, so
ul(xl) = h(l‘l) = t% = t% = h(l‘g) = Ul(l‘g)

and u(z1) = u(xs). As u is injective, we have x1 = xa, 80 (x1,t1) = (x2,t2). Thus, u’ is
injective. Denote u™! := ¢ := (¢1,..., dm). The inverse of v is the Nash map

¢:(-1,1) x R W, (t, ) = (t,y2, - ya) = (0(t%,9),1).

The differential of ¢ at a point (t,3') € (—1,1) x R~ is

2] 0 0
20(2,y)  GB(2y) - G2y
6 m. 6 m . . a m '
Qt aq;l (tza y/) 8(22 (t27 y/) e a(bm(t27 y/)

and it has rank d. Consequently, u’ is a Nash diffeomorphism as required. O

4.B.2. Consider the surjective Nash map 7 : D(H) — H, (z,t) — « and write e = +.
We have:

(i) The restriction 7|p(myniet>01 : D(H)N{et > 0} — Int(H) is a Nash diffeomorphism.
(ii) 7(z,0) =« for all (x,0) € OH x {0} = D(H) N {t = 0}.
(ili) 7 has local representations (yi,...,ya) — (Y3,Y2,---,Ya) at each point of D(H) N

{t=0}.

Proof. (i) The intersection D(H) N {et > 0} is the graph of the strictly positive Nash
function ev/h on Int(H). Consequently Tlp(E)n{et>0y + D(H) N {et > 0} — Int(H) is
Nash diffeomorphism.

Statement (ii) is evident.

(iii) Consider the Nash diffeomorphism «’ constructed in the proof of 4.B.1 and its
inverse (. We have

(~1L,)xR*™ S WS HAU S (=1,1) x R,
(t,y') = (6%, y'), 1) = o(t%, ) = (12, 9),

as required. O

4.B.3. H is Nash diffeomorphic to He := D(H) N {et > 0} for e = £ and D(H) is
a Nash manifold structure for the double of H. In addition, the Nash map 7 : D(H) —
D(H), (x,t) — (x,—t) is an involution such that T(Hy) = H_ and whose set of fized
points is OH x {0}.
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Proof. The proof is conducted in several steps:

Step 1. To prove that H. and H are Nash diffeomorphic we need to construct first
suitable neighborhoods U C H of 0H and V C D(H) of 0H x {0}.

Let U C H be an open semialgebraic neighborhood of 0H equipped with a Nash
retraction p : U — OH. Define ¢ := (p,h) : U — OH x R. By Lemma 4.2 we may assume
there exists a strictly positive Nash function £ on 0H such that

o(U)={(y,s) €0H xR: 0<s<e(y)}

and ¢ : U — ¢(U) is a Nash diffeomorphism.
Let V := 771(U) and V' := {(y,t) € OH x R : [t| < \/e(y)}. We claim: The Nash
map

YV = 0H xR, (x,t) = (p(x),t) (4.1)

is a Nash diffeomorphism onto its image V.

(1) ¢ is ingective. If (z1,t1), (z2,t2) € V satisfy ¢ (z1,t1) = ¢ (z2,t2), then p(z1) =
p(z2) and h(z1) = t3 = t3 = h(z2). Consequently, ¢(z1) = p(x2), so 1 = x2. Thus,
(.’L’l,tl) = (.’L‘Qﬂfg).

(2) (V) = V'. Pick (z,t) € V. Then « € U and ¢(x) = (p(x),h(z)) € ¢(U), so
t2 = h(z) < e(p(z)) and ¥(x,t) € V'. Conversely, let (y,t) € V'. As (y,t?) € ¢(U), there
exists € U such that ¢(z) := (p(z),h(z)) = (y,t?). Then (x,t) € V and (z,t) :=
(p(2). ) = (3,1).

(3) The derivative d v : T.D(H) — T,,yOH x R is an isomorphism for each z € V.
Write z := (z,t) and notice that T,D(H) = {(v,r) € T, H x R: dh(v) — 2tr = 0} and
4 (v,7) = (dp(v), 7). TE £ £ 0,

4.0(0,) = (dup(0), Syduh(0)).

As dyp = (dgp,d.h) is an isomorphism, also d.v is an isomorphism. If ¢ = 0, that is,
z = (x,0) € O0H x R, then T,D(H) = {(v,r) € T,H xR : dzh(v) =0} = T,0H xR
and d ¢ (v,r) = (v,r) because plgg = idgg. Consequently, d,1 is an isomorphism also
in this case.

Step 2. Define
o ::H\gp‘l({(y,s) EOH xR: 0< 8] < #}),
e ::Hé\w_1<{(y,s)€8HxR: 0§|g|<%}),

and let us show: The restriction we := w|ge : H® — H® is a Nash diffeomorphism.
Indeed, w, is clearly injective. Let x € H®. As « € Int(H), we have h(xz) > 0 and
write ¢t := ey/h(x). It holds that (z,t) € D(H) and n(z,t) = . We want to check that
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(x,t) € H2. If © ¢ U, then (z,t) € H.\V C H?. If x € U, then ¢(z,t) = (p(x),t). As
x € H*, it holds ‘S(pzli)) < h(z), so 7VE(S(I)) < /h(z) = et. Consequently, (z,t) € H?
and w, is surjective. In addition, by 4.B.2(i) d,w, = d,7 is an isomorphism for each
z € H* C D(H) N {et > 0}. Consequently, w, is a Nash diffeomorphism.

Step 3. H® is Nash diffeomorphic to H and H? is Nash diffeomorphic to H.. By 2.D.3
it is enough to show that the pairs of objects above are S? diffeomorphic.
As 7 is an involution such that 7(Hy) = H_, we assume € = +. Denote

{(y,s) € 0H xR: 0<s<e(y)},
{(y,t) e 0H xR: 0 <t < +/e(y)},
{(y,t) € OH xR : 0 < —t < +/e(y).

Observe that U = ¢~ 1(U’), V = =Y (W UW") and set W := ¢~1(W’). Consider the
Nash diffeomorphisms

U’
W’
w’ .

AU 9H x[0,1), (n.5) = (v E(S—y))

AW = 9H % [0,1), (5.1) = (v, L)
e(y)
Observe that (Ao @)(H*NU) =0H x [3,1) and (Aoy)(HS NW) =0H x [3,1).
Let fi1 : [3,1) — [0,1) and f; : [§,1) — [0,1) be S diffeomorphisms such that
filiz 1y = idz 1y and fo[(s 1) = id[z ;) (see Examples A.1(i) and (ii) in Appendix A).
Consider the S? diffeomorphisms

It holds Fi|8H><[%,1) = idé)Hx[%,l) for i = 1,2. Denote again ¢ and 1 the respective
restrictions of these Nash maps to U and W. Define

g:H.%HxH{x if o € H*\ U,
’ (Ao) " Y(F((Aoyp)(z) ifzeH NU,

gy HY — Hy z»—){z if ze HY \ W,
TR @ew) M BB o)) ifze HEOW.

Both g and g, are S? diffeomorphisms.

Step 4. Consequently, both H; and H_ = 7(H ) are Nash diffeomorphic to H and have
as common boundary 0H x {0}. In addition 7|ggx 0y = idamx {0y, so D(H) is by [31,
§1.6] the double of H. O
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4.B.4. There exists an open semialgebraic neighborhood V of 0H x {0} in D(H) such
that M. := H. UV is a Nash manifold Nash diffeomorphic to Int(H) that contains H,
as a closed subset. In particular m(M.) = H.

Proof. Define V' := {(y,s) € 0H xR : |s| < \/e(y)} and V := ¢~ (V") where 1 is the
Nash map defined in (4.1). Consider the Nash diffeomorphism

@:V”ﬁ@HX(—LlL(%Syﬁ(%—iiﬁ)

By 4.B.3 it is enough to show that M, := H. UV and Int(H,) are Nash diffeomorphic.
As 7 is an involution such that 7(H_) = H,, we assume ¢ = —. By 2.D.3 it is enough
to show that the objects above are S? diffeomorphic.

Let f3:(=1,1) = (=1,0) be an S diffeomorphism such that fs_y 1} =id_; 1
(see Example A.1(iii)). Consider the §? diffeomorphism

F3:0H x (—1,1) — 0H x (—1,0), (y,t) — (y, f3(t))

and define

P if € M_\ 'V,

h:M_ —Int(H_), z+— {
(©oy) M (F5((®0v)(2) ifxeV,

which is an S? diffeomorphism.
Observe H_. C M_ and H =n(H_) C n(M_) C n(D(H)) C H, as required. O

4.C. Proof of Proposition /.1
Let D(H) be the Nash double of H. By 4.B.4 there exist

o a Nash manifold M_ C D(H) such that H_ C M_ is a closed subset and 7(M_) = H,
 a Nash diffeomorphism ¢ : Int(H) — M_.

Let us check that f := 7 o g satisfy the required conditions. First f(Int(H)) =
7(M_) = H. Next, pick a point yo € OH and let z9 € f~(yo). We have to
prove that f has a local representation (x1,...,24) = (23, 22,...,24) at xq. It holds
z0 := g(x0) = (¥0,0). As g is a Nash diffeomorphism, it is enough to prove that = has a
local representation (x1,...,7q) — (22, 22,...,74) at zo. But this follows by 4.B.2(iii),
as required. O

5. A main ingredient: the drilling blow-up

In this section we construct the drilling blow-up of a Nash manifold M with center a
closed Nash submanifold N. We refer the reader to [25,6] for the oriented blow-up of a
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real analytic space with center a closed subspace, which is the counterpart of the tool we
present in this section for the real analytic setting. In [27, §5] appears a presentation of
the oriented blow-up in the analytic case closer to the drilling blow-up we provide here.
The authors consider there the case of the oriented blow-up of a real analytic manifold
M with center a closed real analytic submanifold N whose vanishing ideal inside M is
finitely generated (this happens for instance if N is compact). In [8, §3] we present a
similar construction in the semialgebraic setting, which is used to ‘appropriately embed’
semialgebraic sets in Euclidean spaces. The following result, whose proof makes use of
the drilling blow-up and which will be a key tool for our purposes, will allow to erase a
closed Nash submanifold from a Nash manifold (see Fig. 5).

Lemma 5.1 (Erasing a closed Nash submanifold). Let M be a Nash manifold and let
N C M be a closed Nash submanifold. Then there exists a surjective Nash map
h: M\N — M.

5.A. Local structure of the drilling blow-up

Let M C R™ be a Nash manifold of dimension d and let N C M be a closed
Nash submanifold of dimension e. Assume that there exists a Nash diffeomorphism
w = (ug,...,uqg) : M — R? such that N = {uey1 = 0,...,us = 0}. Denote
Y oi=u"l R =R x R*® — M. Let Ceq1,...,¢s : R? — R¥ be Nash maps such
that the vectors (e4+1(y,0),...,C4(y,0) are linearly independent for each y € R¢. Write
2z €RY° as z:= (2e41,.- ., 24). Consider the Nash maps

"2 Rd =R x Rdie - Rk? (ya Z) — <G+1(ya Z)Ze+1 +...+ Cd(ya Z)Zd7
¢ RO X R xS 5 RY, (y, p,w0) = Ceqr (4, pw)Weys + - -+ + Caly, pw)wa

and assume that ¢(y, z) = 0 if and only if z = 0. Consider the projections

6 : RT=R® x RI¢ 5 R, (y,2) — v,
By : RT=R® x R 5 RI7¢, (y,2) — 2.

Define

R X A8 () o (ol 2

5.A.1. ® is a well-defined Nash map.

Proof. Observe first that o(y, pw) = pd(y, p,w) for all (y,p,w) € R® x R x S¥=¢~1 If

p # 0, the product pw # 0, so pg(y, p,w) = @(y, pw) # 0 and é(y, p,w) # 0. If p =0,
then
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(Y, 0,w) = Cer1 (¥, 0)wer1 + - + Ca(y, 0)wq

As Cetr1(y,0),...,Ca(y,0) are linearly independent and |jw| = 1, we conclude
#(y,0,w) # 0. Consequently, ® is a well-defined Nash map, as required. O

5.A.2. Fir e ==+ and denote

I, =

[0,4+00) ife=+,
(—00,0] ife=—.

The closure Mg in M x SF=1 of the set

t :{(“’(y’ )T EMXS“:”“)}

is a Nash manifold with boundary such that:

(i) M, C Im(®).

(ii) The restriction of ® to R® x I, x S™=¢~! induces a Nash diffeomorphism between
R® x I. x S%=¢=1 and M,. Consequently, dM, = ®(R® x {0} x ST*1) and I, =
Int(M,) = ®(R® x (I, \ {0}) x S¥—e1),

Proof. (i) Recall p(y, pw) = po(y, p,w) for all (y, p,w) € R® x R x S4=¢~1. As sign(p) =
ﬁ for p # 0, we have

o(y, p, w)
oy, p,w)||

Consequently, Iy UT_ C Im(®). Let us check: M, \ T C Im(®).

Pick a point (a,b) € M, \T.. By the Nash curve selection lemma [4, Prop.8.1.13] there
exists a Nash arc v : (—1,1) = M x S¥=1 such that v(0) = (a,b) and 7((0,1)) C T..
Let 7 : M x S¥~1 — M be the projection onto the first factor and let (o, 3) : (—1,1) —
R® x R%~¢ = R? be a Nash arc such that 1(a, 3) = 7 o 7. We write

_ ha
7‘(0,1) - (wﬁengH) © (a7ﬁ)‘(0’1)'

Note that 5(0) = 0 because otherwise (a,b) € I'c. In addition, a = ¢ (a(0),0). Observe
that

— sign(p) LW
= sign(p) (5.1)

bl ¢ PO
=0t lp(a(t), B(1))]|

As v((0,1)) C I, the Nash arc § is not identically 0 and we may assume ((t) = 0 if and
only if t = 0. Let £ € R[[t]]aig be a Nash series such that ||3(t)| = &(¢) for ¢ > 0 small.
As

(5.2)
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order(§) = +r1n<1n {order(f3;)},

the quotient ﬁkm) extends to a Nash arc n: (—1,1) — S¥¢~1. We have 8 = (&€)(en).
By (5.1) and (5.2)

b= and (a,b) = ®(«(0),0,en(0)) € Im(P).

[[6(c(0), 0, en(0))]|

(ii) The proof of this statement is conducted in several steps:

Step 1. Denote R := ®(R® x {0} x S97¢~1) and consider the open semialgebraic subset
of Im(®)

U :={(a,b) € Im(®) : tk((Cex10u)(a),...,(lsou)(a)) =d—e}. (5.3)

As Cey1(y,0),...,Ci(y,0) are linearly independent for each y € R® we have R C U. In
addition,

& U) = {(, pw) € B x R x ST 1k(Gora (g, pw), - ., Caly, pw)) = d — e}

We claim: ®|p-1(¢y : @71 (U) = U is a Nash diffeomorphism. In particular, U is a Nash
manifold that contains R.

Let (a,b) € U and let (y, p, w) € R® x R x S¥~¢~1 be such that ®(y, p,w) = (a,b), that
is, @ = 9(y, pw) and b = EELUL Consequently, (y, pw) = u(a) = (61 (u(a)), 2(u(a)))-
Consider the system of linear equations

Vet1(Ceyr 0u)(a) + -+ va(Ca o u)(a) = b. (5-4)

As (a,b) € U and b € S¥7!, the system (5.4) has a unique non-zero solution v € R4~¢,
If we solve (5.4) using Cramer’s rule, one sees that the map U — S4=¢71 (a,b) — w :=
(Wet1y .-, wq) := 7oy 1s Nash. As I6]] = 1,

Vet1(Gev1 0 u)(a) + - -+ + va(Ca 0 u)(a)
[vet1(Cetr 0 u)(a) + - 4 va(Ca o u)(a)l

b=vet1(er10u)(a)+ - +va(Cgou)(a) =

S (G ow)(a) o (G0 w)(a)
P Cort o w)(a) + +ﬁw@omwm
Wei1(Ger 0 w)(@) + -+ + walGa 0 w)(a)
oo (Cerr o w(@) + -+ walCaow) (@)
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As pw = 05(u(a)), the vectors 03(u(a)) and w are linearly dependent. As w is a unitary
vector, O2(u(a)) = (02(u(a)), w)w. It holds

®(6:(u(a)), (02(u(a)), w), w)

8ttty et (Ger 01(@) - Fwa(Caow(@) \ _
= (MO @) e S+ T waGre @) = @

Write w(a, b) := w. The Nash map
Vo : U — R xR xS (a,b) — (01 (u(a)), (02(u(a)), w(a,b)),w(a,b)) (5.5)
satisfies: Im(W¥o) € ®~1(U) and ® o ¥y = idy. Let us check in addition Wo o ®|gp-1(1) =

idg-1(1y to conclude ®|g-1(yr) is a Nash diffeomorphism.
Let (y, p,w) € ®~1(U). We have

(Tg 0 @) (y, p,w) = ¥y (w(y,pw), %) = (y”’<w’ HZ_H> \|Z_||>

where v € R47¢ is the unique solution of the system

_ Wet1Get1(y, pw) + -+ - + wala(y, pw))
Ve+1<€+1(y7 Pw) + + Vdcd(yv p’UJ) - Hwe+1<6’+1(y’ pw) 4+ 4+ wdCd(y; pw))” ’

Consequently,

w
 wet1Cer1 (Y, pw) + -+ - + wala(y, pw)) ||

v

and pir =w (recall that ||w|| = 1). Thus, (Vg o ®)(y, p, w) = (y, p,w), as claimed.
Step 2. Next, let us check: ®~1(I'.) = R® x (I \ {0}) x S¥=¢~1 and the restriction

®|:R® x (I \ {0}) x S~ T,

is a Nash diffeomorphism.
Define

e T RO (10 {0D) % 85 (@) o (B (u(a) clfatula)] ).

The previous map is well-defined and Nash because 02(u(a)) # 0 for all (a,b) € T. It
follows that ®

Rex (I.\{0})xsi—<—1 is a Nash diffeomorphism whose inverse is V..

Step 3. We deduce from Steps 1 & 2 that the restriction ®|: R x I, x S4=¢~1 — ME isa
Nash diffeomorphism. As R¢ x I, x S¥~¢~1 is a Nash manifold with boundary, M, is also a
Nash manifold with boundary. In addition M, = R and Int(M,) =T, as required. O
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5.A.3. Denote R = 8]T/f+ = OM_ and M = ]T/f+ UM_ = 'y URUT_. Then
® induces a Nash diffeomorphism between R x R x S~ ¢~ and M. In addition, the
Nash map o : M x S¥=1 — M x S¥=1 (a,b) — (a, —b) induces a Nash involution on M
without fixed points such that J(M+) =M_ and D(y, —p, —w) = (60DP)(y, p,w) for each
(y,p,w) € R x R x ST=¢~1. We call M the twisted Nash double of M.

Proof. By 5.A.2 it holds
PR xR xS 1) =T_URUT, = M. (5.6)

In addition, it follows from the proof of 5.A.2(ii) (Steps 1 & 2) that @ is injective and a
local Nash diffeomorphism (for the points of R¢x {0} x S¥~¢~! use the map ¥, introduced
in (5.5)). Consequently, ® is a Nash diffeomorphism onto its image M and the latter is
a Nash manifold.

The second part of the statement is straightforward. O

5.A.4. Consider the projection m : M x SF=1 — M onto the first factor and denote
e := 7|37 . Then
(i) me is proper, 7TE(J\Z) =M and R=7_1(N).
(ii) The restriction we|r, : T'e = M \ N is a Nash diffeomorphism.
(ili) For each q € N it holds 77" (q) = {q} x SI=¢~1 where SI~°~1 is the sphere of
dimension d — e — 1 obtained when intersecting the sphere SF~1 with the linear
subspace Ly generated by (Ces1 0 w)(q), ..., (Caou)(q).

Proof. (i) Let K C M be a compact set. Then 77 !(K) = K x S*~!, which is a compact
set. As M, = CI(T,) is a closed subset of M x S¥~!  the intersection 7= (K) N M, is a

compact set, so 7 is proper. Thus, m(M.) = Cl(x(T.)) = CI(M \ N) = M. In addition
7-H(N) = M\ T, = R.
(ii) We have the commutative diagram

RIN{z=0} — > =T, (. 2) > (¥ ), 72y )
id Jﬂre l I
R4\ {z =0} /! M\ N (y,2) | ¥(y, 2)

o

As O is a Nash diffeomorphism, we conclude that 7|p, is also a Nash diffeomorphism.
(iii) Let ¢ € N. We have

T (@) = 7@ N R =7 (@) NSRS x {0} x 8971 = {g x Ay (871,

where
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R® x [0, +00) x S¢7e~! RY

P=HF=HN)) —

(ya Ps w) I (y, pw)

Fig. 3. Local structure of the drilling blow-up M+ of M of center N.

(Cet1 0 u)(Qwet1 + - + (Ca 0 u)(g)wad
[(Cet1 0u)(@wes1 + -+ + (Ca 0 u)(q)wall

d—e—1 k—1
Ay ST ST, wi= (Wegy -, Wa)

The map A, is a Nash diffeomorphism between S*~¢~! and the sphere obtained when in-
tersecting S¥~! with the linear subspace L, generated by (Ceq10u)(q), ..., (Caou)(q). O

5.A.5. Denote 7 := 7|y and consider the commutative diagram (see also Figs. 3
and 4).
L3} —
REXRx S Do B (g, p,w) > ((y, pw), L)
uowod l% l I (57)
R . M (pw) i (g, pw)

As a consequence, we have: The Nash maps . and T have local representations

= (Z1,..., %) = (X1, ..., Tey Tet1, Tet1Tet2s - - - 5 Let124) (5.8)
in an open neighborhood of each point p € R. In addition, dﬂ'p(TpM\) Z Trp)N-

Proof. After a change of coordinates in R® x R x S?~¢~1, we may assume that p € R
is the image of the point (0,0, (1,0,...,0)). Consider the local parametrization around
(0,0,(1,0,...,0)) of the set R® x R x S¥=¢~! given by

n: R® x R x B — R¢ x R x St~ 1
(W, 0,0 = (Vet2, -, va)) = (¥, 0, (V1= [[0]?0))

where B is the open ball of center the origin and radius 1 in R*=¢~1. It holds

uomodon: RExRxB — RY,
. p,0) = (g, o/ 1= V], pv).
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Consider the Nash diffeomorphism

v
fiREXRxB =R (y,p,0) = (yvp 1—lv|]? 7)

VIl

whose inverse is

/
fTLRY S REX R x B, (y,p0,0) — (y,p' 1+ ||v’H2,U7>.

V[l

The Nash map
mi=uomo®ono fT iR 5 R, (y,p/,0) = (y, 0, p'V")
represents 7 locally around p and the restriction

7T2 = 7rI|{ep’20} : {Ep > 0} - Rda (yaplavl) = (yvp/’p/vl)

represents 7. locally around p.
To prove that dm,(T,M) ¢ Tr( N, it is enough to show dr(R?) ¢ {z = 0} = u(N).

(e+1)
If €41 := (0,...,0, 1 ,0,...,0), we have dnjj(ect1) = ect1 ¢ {z = 0}, as re-

quired. O
5.B. Global structure of the drilling blow-up

We construct next the drilling blow-up of a Nash manifold with center a closed Nash
submanifold. We refer the reader to Fig. 4 in order to get a global idea of the involved
strategy. Let M C R™ be a Nash manifold of dimension d and let N C M be a closed
Nash submanifold of dimension e. Let f1, ..., fx € N (M) be a finite system of generators
of the ideal I(N) of Nash functions on M vanishing identically on N. Consider the Nash
map

F:M\N—S" 1z (§1($)7~-~,fk(as))

(@), @) (5:9)

We have:
5.B.1. Fize=%. The closure M, in M x S¥=1 of the graph
[e:={(z,eF(z)) € M xSkF71: 2z € M\ N}

is a Nash manifold with boundary Denote R := 8M+ = OM_ and M : M+ UM_ =
'y URUT_. In addition, M is a Nash manifold and the Nash map o : M x SF-1

M x Sk L (a, b) = (a,—b) induces a Nash involution on M without fived points that
maps M+ onto M_. We call M the twisted Nash double of M+
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Proof. The Nash manifold M can be covered by 2.C.3 (applied to N) and by 2.C.2
(applied to M \ N) with finitely many open semialgebraic subsets U; equipped with
Nash diffeomorphisms w; := (u;1,...,uq) : Ui — R¢ such that either U; N N = & or
UiNN ={t;er1 =0,...,u;,4 = 0}. Denote ¢, := u;l.

The collection {U; x S¥=11}; is a finite open semialgebraic covering of M x SF=1. To
prove that ]\Z is a Nash manifold with boundary, we will show that ]\Afe N (U; x SF=1) is
a Nash manifold with (possibly empty) boundary for i = 1,...,r. Analogously, to check
that 1 is a Nash manifold, we will show that each intersection M N (U; x SF=1) is a
Nash manifold.

Case 1. If NN U; = @, the intersection M, N (U; x S¥=1) is the graph of the Nash map
eF|y,, so it is a Nash manifold. Observe that (m N ]\Z) N(U; x S¥1) = @, so

M (U; x S = (M4 N (U x SEY) U (M_ n (U; x SF71)

is also a Nash manifold.

Case 2. If N NU; # @, the intersection ]\,Jv€ N (U; x S¥=1) is the closure in U; x SF=1 of
the set

Dic:=TcN (U x SF7Y) = {(¥i(y, 2), e F (i (y, 2))) € Uy x SF71 2 2 #£ 0}

and M N (U; x S¥=1) = (M, 0 (Ui x S571)) U (M_ 0 (U; x SF1)).
By (2.1) it holds

I(NNU;) = IINNU;) = (filv,s - - -5 felo)N (Us).

As 1); is a Nash diffeomorphism, fjot;, ..., fr o1, generate the ideal I({z = 0}) of Nash
functions on R? vanishing identically on ¢; '(NNU;) = {z = 0}. The ideal I({z = 0}) is
also generated by zet1,...,24. Thus, there exist Nash functions (;, € N (R?) such that

feoi = Cey1,0(y,2)2e41 + - + Cae(y, 2)2d-
Notice that
0
8—%(& 0 1;)(y,0) = (je(y,0) (5.10)

for each y € R®. Write ¢j := ({j1,---,Cix) : RT — R*. We have

(frovi)(y, 2), s (fe 0 ¥i)(y, 2)) = Cer1(Ys 2)Zer1 + -+ + Ca(y, 2)2a-

As fr oy, ..., fr o ; generate the ideal I({z = 0}), we deduce:

o Cor1(y,2)7est + -+ Caly, 2)za = 0 if and only if = = 0.
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o The vectors (o11(y,0),...,Ca(y,0) are linearly independent for all y € R¢ (by (5.10)
and the Jacobian criterion).

By 5.A.2 and 5.A.3 we deduce that M, N (U; x S¥=1) is a Nash manifold with boundary
and M N (U; x S¥71) is a Nash manifold.
The rest of the statement follows from 5.A.3. O

5.B.2. We keep the notations already introduced in 5.B.1. Consider the projection
m: M x SF=1 — M onto the first factor. Denote wc := |37 and 7 := 7|5;. We have:

(i) . is proper, WG(]\Z) =M and R =7_1(N).

(ii) The restriction we|r, : T'e = M \ N is a Nash diffeomorphism.

(ili) Consider the Nash map f := (fi,...,fx) : M — R* (whose coordinates generate
I(N)). Fiz ¢ € N and let E; be any complementary linear subspace of TyN in
T,M. Then w7 1(q) = {q} x Sg*efl, where Sg*e’l denotes the sphere of dimension
d—e—1 obtained when intersecting S*~1 with the (d—e)-dimensional linear subspace
4 (E,):

(iv) The Nash maps w. and T have local representations of the type

= (T1,...,2d) = (T1,. ., Ty Tet1, Tep1Tet 2y -+ 5 Tet124)
in an open neighborhood of each point p € R. In addition, dﬂ'p(Tp]/W\) Z TrpyN.

Proof. This statement follows straightforwardly from 5.A.4 and 5.A.5. To prove (iii) we
use in addition (5.10) and the equality ker(d,f) =T,N. O

5.B.3. The pairs (]\Zﬂre) and (M\, 7) do not depend on the generators fi,..., fr of
I(N) up to Nash diffeomorphisms compatible with the respective projections. Moreover,
such Nash diffeomorphisms are unique.

Proof. Let fr11 := g1f1 + - + gifx € I(N) for some g; € N(M). Let (]/\Z/,ﬂ'é) and
(M',;7") be the pairs associated to the system of generators fi,..., fi, fe+1 of I(N).

Let us construct a Nash diffeomorphism © : M — M’ such that the following diagram
commutes.

\ / (5.11)

Denote R’ := (7')~1(N). Consider the Nash maps
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g::(glv'~'7gk):M_>Rk7 f::(fla'~'7fk):M_>Rk7 and
fri=(f fen) s Mo RM

and let F': M\ N — S¥=1 be the Nash map introduced in (5.9).

If (a,b) € M\ R, then b = €F'(a) = epf{t3; and

f'a) \ " (eF(a), (g(a),eF(a)))\ _ “ (b,{(g(a),b)) ~
(a,ei“f/(@”)—( , \/1+<g(a),eF(a)>2> (,—1+<g(a)7b>2)€Mé\R. (5.12)

Consider the Nash map

@:J\?—)J/\/P, (a,b)n—)(a M

)
VAR <9(a)7b>2)

and let us check that it is the Nash diffeomorphism we are looking for.

We claim: If (a,¢ := (c1,...,¢k,cky1)) € M, then ¢ == (c1,...,¢cx) # 0 and ¢ =
(¢ (g(a), ).

We distinguish two cases:

Case 1. If p ¢ N, there exist e = £ such that

_ @) _ (fa) {g(a), f(a))
1 (@) 1 (@)

c = (Clv<g(a)’cl>)'
Case 2. If p € N, there exists by the Nash curve selection lemma a Nash arc v : (=1,1) —
M’ such that v(0) = (a,c) and ¥((0,1)) € M!\ R'. It holds
I =/
o — clim /2T 2O
=0 [[(f o7 o) (t)]]
— i (Lo o)1), {(go T 07)(), (f o 07)(1)))
t=0 [(f" o7 o) ()]l

= (¢, {g(a),c)).

As in both cases ¢ € S¥, we have ¢ # 0, as claimed.
The Nash map

/
U:M — M,(a,c)— (a,ﬁ)
c

is the inverse of O, so O is a Nash diffeomorphism. In addition, 7 = 7’ 0 © and @(ME) =
M! for e = %, as required. The unicity of © follows from (5.11) and (5.12). O

Definition 5.2. The pair (M+, ) will be called the drilling blow-up of the Nash manifold
M with center the closed Nash submanifold N C M.
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Remark 5.3. We will see in 5.D that the twisted Nash double M of ]T/.I'JJr together with
7 : M — M relates the drilling blow-up of M with center N with the classical blow-up
of M with center .

We are ready to prove Lemma 5.1. We will make a strong use of the global structure
of the drilling blow-up of a Nash manifold M with center a closed Nash submanifold N.

Proof of Lemma 5.1. Let (M+,7T) be the drilling blow-up of M with center N and let
R:= WII(N), see Fig. 5. The Nash map my : My — M is surjective. By Proposition 4.1
there exists a surjective Nash map

f : Int(M_,.) = M+ \ R — MJ’_.

By 5.B.2 the restriction 7T|M+\R : M+ \ R — M \ N is a Nash diffeomorphism. Conse-
quently,
"L MA\N o Mo \7 ' (N) = M

hi=mi oo (mili p)

is a surjective Nash map, as required. O
5.C. Alternative presentation of the drilling blow-up

Our purpose next is to extend the construction in diagram (5.7) to an open semial-
gebraic neighborhood of the center NV of the drilling blow-up of M. Let M C R™ be a
Nash manifold of dimension d and let N C M be a closed Nash submanifold of dimen-
sion e. Let (.7\//.7, 7) be the twisted Nash double of the drilling blow-up (M+,7r+) of M
with center N. In the next lemma we will use notations already introduced in 2.C.4. We
refer the reader to Fig. 4 to appreciate its importance.

Lemma 5.4. Let Uy C M and Uy C M be respective open semialgebraic neighbor-
hoods of N and R := 7 Y(N). Then there exist Nash tubular open neighborhoods
(V1,01,8,01,N,0) of N in Uy and (Va,p2,%#,02,R,0 o T|g) of R in Uz and a Nash
embedding 1 := (1,19) : R — N x S™71 (z,v) — (x,92(x,v)) such that 7(Va) = V1,

proTo cp;l t Fsorlp — 65, (T,0,1) = (2, tha(x,v))
and Va is the Nash double of a collar of R in M+.
Proof. By 2.C.4 there exists a Nash tubular neighborhood (V, ¢, &, 0, N,d) of N in Uj.

Recall that (&,6, N) is a Nash subbundle of the trivial bundle (N x R™, 8’ N). Write
= (¢1,¢P2) : V= N x R™ and observe that ¢1|n = idy and ¢2|n = 0.
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5.C.1. For each z € N we have dyo = (dzd1,drd2) : TuM — T,N x R™ and
dy 1|7, v = (id7, N, 0). Let H,, be a complementary linear subspace of T, N in T, M. As
d.p is an isomorphism, d,¢1 |1, v = idr, n and d.¢1(H,) C T, N, we have

T(x,O)Cg) =dyp(Tp M) = dpp(Te N & Hy) = (T, N x {0}) ® (dpr,dr2)(Hy)
= (T, N x {0}) & ({0} x dpppo(H,)) = To N X dypo(H,,), (5.13)

so dim(d,¢2(H;)) = d — e. By the Jacobian criterion the tuple ¢o := (¢a1,. .., d2m)
generates I(N,) for each x € N, that is, (¢p2)N, := (P21, - -, Pam )Nz = I(N,) for each
x € N. Write I(N) :={f e N(M) : flx =0} and Iy(N) :={f e N(V): f|ly =0}
By (2.1) and 2.C.7

(@2)N(V) = (21, ..., o )N (V) = Iy (N) = I(N)N (V).

Let (V,7*) be the twisted Nash double of the drilling blow-up of V with center N that
arises from a finite system of generators of I(IN) restricted to V and let (‘7’7 7') be the
twisted Nash double of the drilling blow-up of V' centered at N that arises from ¢o. It
holds V = 7 V) and 7 = 7| if (]\/Z, 7) is the twisted Nash double of the drilling
blow-up of M with center N. By 5.B.3 there exists a Nash diffeomorphism O : VoV
that makes the following diagram commutative.

© ‘7,
\%4

5.C.2. Denote the coordinates in R™ with y := (y1,...,¥m). The restriction to &5
of the tuple (yi,...,¥m) generates the ideal I(N x {0}) of N'(&5). Let (&5,1I) be the

twisted Nash double of the drilling blow-up (&5.4,II+) of & with center N x {0} that
arises from the tuple (yi,...,ym). It holds

1%

~

&Es = Cl({(:c,y,:l:ﬁ) €& xSy £ 0}).

By 5.B.2(iii) ﬁ_l(ac,()) = {(x,0)} x S(4,0) where S, o) is the intersection of S”~! with
the linear subspace 6~!(z) of R™. Consequently,

G \TTH N x {0)) = {(a,y, 1) € & x 8™y #0), (5.14)

T (N % {0}) = {(&,0, £74) € & x S™ ¢ (z,9) € &, y# 0}, (5.15)
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5.C.3. Tt holds V' C V x S™~! and é?;; C & x S™~1. We claim: The image of the
Nash map

AV = & xS™ 1 (a,b) — (p(a),b)
18 é?;;, The image of the Nash map
A& =V xS (z,y,w) o (07 (@, y),w)

is V. Thus, A : & — V' and A : V' — & are mutually inverse Nash diffeomorphisms.
Pick (a,b) € V' \ (7')"1(N). We have

_ $2(a)
(@) = (2520 )

Consequently,

Aa,) = (ola), 27290 = (61(a), da(a),

¢2(a) >
[62(a)] H) ©

Toa(@l) €

By continuity A(V) C &.
Pick now (z,y,w) € & \ II71(IV x {0}). We have w = +% = i% and

Ay w) = (@7 o), 202 S

——
m
<

By continuity A(&5) C V.

5.C.4. The maps in the rows of the following commutative diagram are Nash diffeo-

morphisms:

(5.16)

idy %)

3
< <— <0
2
- <D
=
-~

5.C.5. Tt holds: The Nash maps

p:& = TN x {0}), (z,y,w) — (x,0,w),
0: 6 — N x {0}, (z,y) — (z,0)

are Nash retractions such that Il o p=opo0 1I.
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5.C.6. Define

+||y|| if ($7yaw) € gé,—i—v

h:& — R, (:c,y7w)»—>{ _ 7
—llyll if (z,y,w) € &,—.

We claim: The semialgebraic function h is Nash and d;h : TqéA% — R is surjective
for all ¢ € TI7Y(N x {0}). In addition, |h(z,y,w)| = |yl for all (z,y,w) € &, so
{h=0} =T (N x (0))

Pick a point g € II71(N x {0}) y 5.B.2(iv) there exist semialgebraic neighborhoods
A C 5’5 of ¢ and Ay C &5 of H( ) and Nash diffeomorphisms

wi=(u,...,uq) : A — R?,
vi= (vl,...,vd):AQ%Rd
such that u(q) = 0, v(II(g)) = 0, v((N x {0}) N A2) = {ves1 =0,...,v4 = 0} and
ﬁo =vollou™! :R? —» RY,
(xlw .. 71'd) = (217' . .,Zd) = (:Ela sy Tey Letly Let2Let1s - - .,$d$e+1).

As yi1,...,ym generate the ideal I(N x {0}) of N(E€s), their restrictions to (N X
{0}) N Ay generate by (2.1) the ideal I((N x {0}) N A2) of AN (Az). We have
yi(v™ (21, 26,0,...,0)) =0 for (21,...,2.) € R® x {0} and i = 1,...,m and

Zey1 = (Y100 N&G + 4+ (ymov Hém

for some &1, ..., &, € N(R?). By Schwarz’s inequality

2 <G4+ &) (yrov )P+ (ymov™H)?).

Composing with ﬁo, we have

~ ~

22, < (G o)+ + (€m0 Ilp)?) ((y1 0v ™ o Ilg)? + -+ + (ym 0 v ! 0 Tlp)?).

Comparlng orders at the origin we deduce that the Nash series (y; o v™! oIl ) -+
(ym o v~L 0 TI)? has order 2 at the origin. As y;(v"'(z1,..., 2,0, ...,0)) = 0 for each
(21,...,2¢) € R® x {0},

—1 =
yiov  ollp = Zer1vs

where 7; is a Nash function on R¢. Thus,

~ ~

(yrov™toTlp)* + -+ (ym o v oIlo)* =gy (0 + -+ + 7).
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As (yyov7to ﬁ0)2 + -+ (ymovto ﬁ0)2 is a Nash series of order 2 at the origin,

2 +---+~2, is a unit at the origin. Consequently, hou™t = 2.1 1/72 + -+ + 72, on an
open semialgebraic neighborhood of the origin. In particular,

d(hou™1)

A2 A2
T (0) i+ +92,0) > 0.

Thus, h is a Nash function and dgh : qu\//j — R is surjective for all ¢ € II=1(N x {0}).

5.C.7. Consider the trivial Nash bundle & := II=}(N x {0}) x R over II"*(N x {0})
and let 0 : 94 — II71(N x {0}) be the projection onto the first factor. Define

gi=(p.h):E =Y, (z,y,w) — (2,0, +llgl) if (2, w) € v,
’ C (2,0,w, —|lyll) if (z,y,w) € & _.

By Lemma 4.2 there exists an open semialgebraic neighborhood W C & of TI—? (N x{0})
such that g(W) C ¢ is an open semialgebraic neighborhood of II=1(N x {0}) x {0} and
the restriction map g|W W — g(W) is a Nash diffeomorphism.

As I is proper, H((% \ W) is a closed subset of &5 that does not meet N x {0}.
As the restriction H‘&;\H 1(nx{oy 18 @ Nash diffeomorphism, H(é% \ W) = & \ TI(W).

Consequently, W' := II(W) is an open semialgebraic neighborhood of N x {0} in &5.

5.C.8. We may assume taking a smaller strictly positive § € N(N) that & = W’
and W = II71(&5) = &s. Define ¢’ := 6 0 0|y« oy € N(N x {0}). We claim:

9(&) =9, 5 = {(,0,w,1) €F : |t] < (&' o TI)(w,0,w)}.

Consequently, &y is a Nash tubular neighborhood of ﬁ_l(N x {0}) and g : & — G55 is
a Nash diffeomorphism.

We have
& =T71(&) = {(z,y,w) € & : |yl < 5(x)}
= {(z,y,w) € & : |h(z,y,w)| < (& o II)(z,0,w)}
=g '({(2,0,w,t) €F : [t| < (& oTD)(x,0,0)}) = g (Fy051)-
as claimed.

1

5.C.9. The composition Mo g~ is a Nash map that satisfies

~

Hog™:g(&) — &, (x,0,w,t) — (z,tw). (5.17)
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5.C.10. Consider the trivial Nash vector bundle .# := R x R over R :=7~!(N) and
let #3 : R x R — R be the projection onto the first factor. By (5.15) and (5.16) the Nash

map
Vo= (Mo ®)r: RCV =T LN x {0}) C &

is a Nash diffeomorphism and there exists a Nash map v, : R — S™! such that
Yo(z,v) = (x,0,¥2(x,v)) for each (x,v) € R. In addition, ¢y induces a Nash isomorphism
of Nash vector bundles

U:F =9 (x,0,t) = (2,0,92(x,v),1)

such that the following diagram is commutative.

F

02 0, J/

R YN x {0}

o

IR | &

By (5.16) Moy = poT|R, SO §' ooy = dofoypoT|p = dom|g because fop|y = idy.
Consequently, V(Fsoz(,) = Yy ofi-

5.C.11. Define ¢; := ¢ and @y := V" logoAoO. We have the following commutative

diagram:

)

R|8s
)
(<)

~ = S} A g
V) =—V . V! o e Fso7|n (z,v,1)
7y " 7’ il ” ltplo%otpz_l
.d ; . Tog~toU=gp; ofop; !
1 1
VeV ==V ——= & (@, tha (2, v))
P1

Take Vy := V, 01 := 0, Vo := 7 1(V). The Nash tubular neighborhoods (V1, 1, &, 01,
N,§) of N in Uy and (Va, po, #, 605, R, 6 o T|g) of R in Us and the Nash embedding

111} R — N x Smila (:L',U) = (x,q/zg(x,v))

satisfy the required conditions. O

The following result justifies the first part of the name of the drilling blow-up
(M4, 7my), see also Figs. 4 and 5.
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Corollary 5.5 (Alternative description of the drilling blow-up). Let M C R™ be a Nash
manifold, let N C M be a closed Nash submanifold and let U be an open semialgebraic
neighborhood of N in M. Then there exist a Nash tubular neighborhood (V,p,&,0, N, J)
of N in U such that M \'V is a Nash manifold with boundary OV and a Nash diffeomor-
phismg:M\V—>M+,

Proof. By Lemma 5.4 there exist Nash tubular open neighborhoods (V1, @1, &, 601, N, 1)
of N in U and (Va,¢9,.%,02,R,e1 := 6; o T|g) of R := 7 %(N) in M and a Nash
embedding ¢ : R — N x S™7 1 (x,v) — (z,12(z,v)) such that

proTo 3051 2 T, — 85y, (x,0,t) = (x, the(x,v))

and Vo C M is the Nash double of a collar of R in MJr. By 5.C.10 we may write
ZF = RxRand 6, : R xR — R is the projection onto the first factor. Recall that
7T+|J\7+\R . M, \ R — M\ N is a Nash diffeomorphism. Define ¢ := %1, Vo= o7 (&),
v := 1|y and 0 := 0;. We claim: (V,p,&,0, N, ) is the Nash tubular neighborhood we
sought.

Notice that 7" (V) = ¢5 ' (Z:) N M, where £ := 6 o 7|r. Define M*® := M \ V and
]T/[/; =7 (Me) = M+\<p51(ﬁg). It holds 7T+|Ml : M}r — M?* is a Nash diffeomorphism.

Denote W := {(2,t) € F : 0 <t <e1(2)} = palpy (Fe,) N M;) and consider the
Nash diffeomorphism

AW s Rx[01), (50) (= Elt@)

As £ = 1, we have (Aogog)(M; Ny (W) = R x [3,1). Let f1 : [3,1) — [0,1) be
an §? diffeomorphism such that fi|is 1) = id[s ;) (see Example A.1(i)). Consider the S”

diffeomorphism
Fy: R x [i, 1) = Rx[0,1), (2,t) = (2, f1(t)).

It holds F1|RX[%’1) = ide[g,l)- Denote again @9 the restriction of this Nash map to
@5 H(W) and define

TRy {x e M2 g3 0),
(Ao wa)  (Fr((Aogo)(x)) if e M3 gy (W),

which is an §? diffeomorphisms. The restriction q)|7r;1(av) : W_Il(aV) = 6]?4/_7_ —

FIl(N) = 0M, is a Nash diffeomorphism. By 2.D.4 there exists a Nash diffeomorphism

o’ : M$ — M, such that <I)’|31\~/“r = (I)|3M;'

The composition g := &' o (7r+|;7[1.) : M* — M, is a Nash diffeomorphism, so M*® is
+

a Nash manifold with boundary 0V = g*1(8M+), as required. 0O
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Cor. 5.5
R:=7"*(N)

Fig. 5. Geometry of the tool introduced in Lemma 5.1 to erase a closed Nash submanifold N from the Nash
manifold M.

5.D. Relationship between drilling blow-up and classical blow-up

We justify next the second part of the name of the drilling blow-up relating it with
the classical blow-up. Let M C R™ be a Nash manifold of dimension d and let N C M
be a closed Nash submanifold of dimension e. Let fi,..., fi € N (M) be a system of
generators of I(IV). Define

I = {(z,(fi(z):...: fu(z))) € M x RP*1: € M\ N}
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The closure B(M, N) of I in M x RP*~! together with the restriction ' to B(M, N)
of the projection M x RP*~1 — M is the classical blow-up of M with center N.

Corollary 5.6. Let (.7\//.7, 7) be the twisted Nash double of the drilling blow-up (M+,w+).
Let o : M — M, (a,b) — (a,—b) be the involution of M without fixed points. Consider
the Nash map

O: M xS*t = M xRPF, (p,q) = (p, [d])
and its restriction 0 : M — B(M,N). We have

(i) 9(]\//.7) = B(M,N),0occ=0,7" 00 =7 and 0~ *(a,[b]) = {(a,b), (a,—b)} for each
(a,[b]) € B(M, N).
(ii) @ is an unramified two to one Nash covering of B(M,N).

Remark 5.7. Many well-known properties of (B(M, N),n’) concerning: the fibers of 7/,
the local representations (5.8) of 7’ at the points of 7/~ (N), finite coverings of B(M, N)
whose members are Nash diffeomorphic either to R® x RP?~¢ or to R%, the fact that 7’ is
proper and the restriction 7| : B(M, N)\ #' " (N) — M \ N is a Nash diffcomorphism,
the fact that B(M, N) does not depend on the generators of I(N), etc., follow at once
from 5.A, 5.B and Corollary 5.6.

6. Connected Nash manifolds with boundary as Nash images of Euclidean spaces

In this section we prove Theorem 1.5. By Proposition 4.1 every Nash manifold H with
boundary is the image under a Nash map of its interior Int(H). Consequently, we are
reduced to prove the following.

Theorem 6.1. Let M C R™ be a connected d-dimensional Nash manifold. Then M is a
Nash image of R%.

The proof of Theorem 6.1 still requires some preliminary work that we develop next.
We prove first that connected Nash manifolds with boundary are connected by Nash
paths, so they are under the assumptions of Theorem 1.4.

Lemma 6.2. Let M C R™ be a connected Nash manifold. Then M is connected by Nash
paths.

Proof. By [4, Thm.2.4.5 & Prop.2.5.13] M is semialgebraically path connected. Let
z,y € M and let o : [0,1] — M be a continuous semialgebraic path that connects
zand y. Let e > 0 and let @ : (—¢,14¢) — M be any (continuous) semialgebraic exten-
sion of « to the interval (—e, 1+¢). By [34, Cor.IL.5.7] there exists a Nash approximation
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B:(—e,1+¢) - M of a such that 3(0) = a(0) = z and 8(1) = (1) = y. Thus, M is
connected by Nash paths. O

Corollary 6.3. Let M C R™ be a connected Nash manifold and let f : M — R™ be a
Nash map. Then 8 := f(M) is pure dimensional and connected by Nash paths.

Proof. Assume § is not pure dimensional. Let B C R™ be a small ball such that dim(BnN
8) < dim(8). Let Y be the Zariski closure of BN 8 and let P € R[x] be a polynomial
equation of Y. As the Nash function Po f vanish on the open set f~1(B) of the connected
Nash manifold M, the composition P o f is identically zero on M. Consequently, § C Y,
which is a contradiction. Thus, 8 is pure dimensional.

To prove that 8 is connected by Nash paths pick z,y € § and let a,b € M be such
that f(a) =« and f(b) = y. As M is connected by Nash paths, there exists a Nash path
B:[0,1] = M connecting a and b. Thus, o := f o § is a Nash path connecting = and y,
as required. O

Remark 6.4. By Proposition 4.1 and Corollary 6.3 connected Nash manifolds with bound-
ary are connected by Nash paths.

6.A. Managing semialgebraic triangulations

The proof of Theorem 6.1 involves an inductive argument on the number of simplices of
a suitable (semialgebraic) triangulation of the connected Nash manifold M. Let o C R™
be a simplex of dimension d. The facets of o are the faces of o of dimension d — 1. As
usual, we denote the relative interior of o with ¢° and we will say that o is a d-simplex.
The first step of the inductive argument concerns the following statement: The interior
of a simplex is a Nash image of an Fuclidean space.

Lemma 6.5. Let 0 C R™ be a simplex of dimension n and let 0¥ be its interior. Then o°
is Nash diffeomorphic to R™.

Proof. Tt is enough to consider the simplex o := {x; > 0,...,%, > 0,x1+---+x, <1} C
R™. Consider the open orthant Q := {y; > 0,...,y, > 0} and the Nash diffeomorphism

fio® >0, (:cl,...,:ﬂn)'—>( 1 Ty )

1_2?:1%,“'71_2?:1%

whose inverse is the Nash map

19— oY, (yl,...,yn)&—>< 9 Yn )

L+ L+ 2

We are reduced to prove that Q is Nash diffeomorphic to R™. To that end, we show that
the open interval (0,+00) is Nash diffeomorphic to R. Consider
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Y(v2) ~ v2 = ep

D
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.
\‘ a5 /4
. .
- 4
0 k4
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. .
. ¢
g vy = —ep

Fig. 6. Construction of the homeomorphisms between D and o2 \ 7.

t+Vi2+4

1
h1:(0,+oo)—>R7t»—>t—¥ and hy':R — (0,400), t > 5

We are done. O

The following result is the clue to erase a simplex from a semialgebraic triangulation
of a Nash manifold.

Lemma 6.6 (Erasing simplices). Let 01,00 C R™ be two simplices of dimension n that
only share a facet 7. Let D := a) U (09 \ 07) = (T°Ua) U (02 \ 7) and D := o1 U 0.
Then there exists a semialgebraic homeomorphism 1 : o3 — D such that (oo \ 7) = D

and 1/}‘002\7'0 = idaaz\‘ro .

Proof. The proof is conducted in several steps. Fig. 6 summarizes the followed strategy.

6.A.1. Let v; be the vertex of o; not contained in 7. We may assume 7 C {x,, = 0},

its barycenter is the origin of R", vy := (va1,...,v2,) € {x, > 0} and vy is —e, =
(0,...,0,—1). We claim: after a semialgebraic homeomorphism of R™ that keeps o1 in-
variant, we may assume vy = e, := (0,...,0,1).

Consider the semialgebraic homeomorphism

X .
T — 2 (2,1, ,V2p—1,V2n — 1) ifx, >0
YR 5 R, z:= (21,...,25) — van (V215 V201, V2 — 1) o
T if z, <0,

whose inverse map is

_ n n y+yn(v2,1>~-~7U2,n—1a7}2,n - 1) if Yn > 07
YR = R yi= (Y1 n) _
Y if y, <0.
We have v(v2) = e, and 7|, <0y = idx,<0}- As 7 C {x, = 0}, it holds (o2) is the
simplex whose vertices are those of 7 and e,,.
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6.A.2. Denote the simplex whose vertices are the affinely independent points
P, .., pk € R™ with [py,...,px]. Let wy,...,w, be the vertices of the (n — 1)-simplex .
The barycenter of 7 is the origin, so the barycenter of o5 is wg := n%rlen. Consider the
n-simplices

mi ‘= [O,wo,wl,...,wi,l,wi+1,...7wn] 1= 17...7n,

N2i i= [€n, W0, W1, -+, Wim 1, Wi 1, -, Wy] 1 =1,...,m.
The family {m11,...,%1n, %21, -.,M2n} provides a triangulation of 9. Consider also the
n-simplices

€17 1= [—en, Wo, W1, ..., Wi—1,Wit1,..., Wy t=1,...,n.
Our choices done in 6.A.1 assure that the collection {€11,...,€15,721,...,72n} provides

a triangulation of D.

6.A.3. Fix i =1,...,n and take barycentric coordinates in R™ with respect to the
affine basis B, := {0, wg, w1, ..., Wi—1,Wi41,. .., Wy} and consider the affine isomorphism
of R™ given by

RS R (1= 30004+ 3 A = (1= 30 M) (—en) + D M.

k#i k#i k#i k#i

Observe that 7/%(7711‘) = €14 wi|771iﬂ771j = wj‘ﬂlimﬂlj and wil"]lim"ﬂj = id"]lim"72j for 1 <
i,j < n. Consequently, the semialgebraic map

— i(x) fxen,fori=1,...,n,
Vv:og =D, x— vilz) n
T ifxemnyfori=1,....n
is a well-defined homeomorphism such that (o2 \ 7) = D and |ss,\r0 = idye,\70, as
required. O

To take advantage of the full strength of Lemma 6.6 we need the following result to
subdivide simplices in the appropriate way, see Fig. 7.

Lemma 6.7. Let ¢ C R" be a simpler of dimension n and let 11,...,7, be facets of
o for some k = 1,...,n+ 1. Let € be either the intersection of the remaining facets
Thtly---yTntl f K <nm+1oroifk=n+1. Let b be the barycenter of € and let n;
be the convex hull of 7; U {b} for i = 1,... k. Then the simplices n1,...,nx provide a
triangulation of o.

Proof. We have to prove: ¢ = Ule 1 and if p1 is a face of n; and p2 is a face of n;,
then p1 N po is either the empty-set or a common face of p1 and ps.
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Fig. 7. Triangulation of o induced by € := 741 N -+ N Tpy1.

6.A.4. If k=mn+1, then 0 =€ and b is the barycenter of o, so 11, ...,n,+1 provide
a triangulation of o. We assume in the following k < n+ 1. Let W be the affine subspace
of R™ generated by € and let L be the affine subspace generated by 6 := . N---N7,. We
have dim(W) =k — 1, dim(L) =n — k and WN L = &. Let E be the affine hyperplane
of R™ that contains L and is parallel to W. Consider the projection

7:R'\E—=>W, 2~ ({2} +L)NW,

where {z} + L denotes the affine subspace of R™ generated by {z} U L. We claim:
m(o\ E) =e. As 7|y = idw and e C W, it is enough to check that w(o \ E) C e.

It holds: the vertices of o are either vertices of € or 0.

Both € and 6 are faces of 0. The k vertices of € (it is a simplex of dimension k — 1)
are vertices of o and the n — k + 1 vertices of 6 (it is a simplex of dimension n — k) are
vertices of 0. We have k + (n — k + 1) = n + 1 vertices. As e N0 = &, we have all the
vertices of o.

Denote the vertices of € with vy, ..., v, and the vertices of § with vg41,...,vn41. For
each z € o\ E there exist A; > 0 such that Z?jll Mi=landz = Z?:Jrll \ivi. AsoNE =0

and z € o \ E, we have p = Zle)\i >0.If pu=1,thenz € e and n(z) =z € e. If
1 < 1, consider the points

n+1
pZZ%UiEGCW and qzzl)fﬂviEGCL
i=1 i=k+1

that satisfy = = up + (1 — p)q. Consequently,
p:lltx—i_%qe({w}"‘lz)mw and W(x):pee'

6.A.5. We are ready to prove o = Ule ni.Let x € 0. If x € 0, thenx € 1 N--- N7
So we assume x ¢ 6. Consider the simplex p of base 6 and vertex 7(z) € e. Observe that
x € p and we may write x = an(z) + (1 — a)y for some y € 6 and a € [0,1]. The k
facets of € are the intersections of € with the facets 7y, ..., 7 of o. In addition, n; N e is
the cone of base 7; N e (a facet of €) and vertex b (the barycenter of €). Consequently,
€= Ule(m Ne) and we assume that 7(z) € ;p Ne. Asw(x) €mandy € § C 1 C ny,
we conclude z = an(z) + (1 — a)y € m.
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6.A.6. Let p1 be a face of n; and py a face of ;. We have to prove that py N pa is
either the empty-set or a common face of p; and ps.

Observe that p; is either a face of o, the vertex b or the cone of basis a face of ¢ and
vertex b.

(1) Suppose p1 = {b}. Then p; N pg is either the empty-set or {b}.

(2) Suppose p; is a face of 0. Then p1 Npa = p1 NpaNo is the intersection of two faces
of o, so it is either the empty-set or a face of ¢, which is a common face of p; and ps.

(3) Suppose p1 and ps are cones over faces 61 and d5 of o with vertex {b}. Consequently,
p1 N po is either {b} or the cone of base §; N d2 and vertex {b}, which is a face of p;
and pg, as required. O

6.B. Proof of Theorem 6.1
The proof is conducted in several steps. Fig. 8 summarizes the followed strategy.

6.B.1. We may assume M is bounded in R™. By [4, Thm.9.2.1 & Rmk.9.2.3] there
exist a finite simplicial complex K and a semialgebraic homeomorphism ® : | K| — Cl(M)
such that

 The semialgebraic sets M and CI(M) \ M are finite unions of images ®(c) where
ocecK.
o The restriction ®|,0 : 0 — CI(M) is a Nash embedding for each o € K.

Denote the simplices of dimension d of K with o1,...,0,.

0.B.2. Let E be the union of the simplices of K of dimension < d — 2. Denote
ol = (®~Y(M)\ E)No;. Let us reorder the indices 1,...,r in such a way that o} shares
the interior of a face of dimension d — 1 with U;;ll O’} fori = 2,...,r. Consequently,
M\ Uj=;y1 ®(0y) is connected fori=1,...,r —1.

Indeed, as M is a connected Nash manifold, ®~!(M) \ E is connected. Fix 1 < s <7
and assume that we have ordered the simplices o1, ...,0, in such a way that o shares
the interior of a face of dimension d — 1 with U;;ll o fori=2,...,s Let C1 :=j_, 0}
and Cy := U§:s+1 cr;.. As @~ Y(M)\ E = C; Uy is connected and Cy,Cy are closed in
®~1(M)\ E, we may assume that C; N o), # &, so o, shares the interior of a face
of dimension d — 1 with szl o’;. This is so because K is a triangulation of C1(M) and
(®~1(M)\ E)Nn = @ for each face 1 of dimension < d — 2. Proceeding recursively 6.13.2

follows.

6.B.3. We proceed by induction on r to prove the statement. If r = 1, then M is
Nash diffeomorphic to an open simplex, so by Lemma 6.5 M is Nash diffeomorphic to R?.
Assume the result true for r — 1. As M \ ®(o,.) is connected, there exists a surjective
Nash map hy : R? — M \ ®(0,). Let us check that the statement is also true for r.
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\(NoUNl)

Fig. 8. Strategy to prove Theorem 6.1.

To that end, it is enough to show that M is the image under a surjective Nash map
ho : M\ ®(o,) — M. Once this is done, h := hg o hy : R* — M is the surjective Nash
map we sought.

6.B.4. LetT,...,7s be the facets of o, that are facets of another simplex o}, for some
k=1,...,7—1. Let € be either the intersection of the remaining facets 7541, ..., 7441 of
orif s <d+1or o, if s =d+ 1. Thus, € is a face of o, of dimension s — 1. The s facets
of € are the intersections of € with the facets 7, ..., 75 of o,. Let b be the barycenter of
e and let 7; be the convex hull of 7, U {b} for i = 1,...,s. By Lemma 6.7 the simplices
M, ...,Ns provides a triangulation of o.

Let $), be the collection of all the faces of 71, ...,n, of dimension ¢ for £ =0,...,d—2
and let $4_1 be the collection of all the facets of nq,...,n, different from 7,..., 7.
Define

Ny := U d(c”)yN M
oEN,

and observe that Ny is a closed Nash submanifold of M\ f;(l) N, where f;é N; = gif

¢ = 0. By Lemma 5.1 there exists a surjective Nash map gp : M\[_lﬁzo N; — M\ ;;(1) N;.
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Thus,

d—1
g::gd_lo"'ogoiM\l_leg)M
7=0

is a surjective Nash map.

6.B.5. Observe that M\ ||9Z) N; = (M \ ®(s,)) U Uj=1 (77 Un)). For each j =
1,...,s let 0;; be the simplex of K such that o;, N o, = 7;. By Lemma 6.6 there
exists a semialgebraic homeomorphism f; : o;; \ 75 — (04, \ 7;) U (1) U 7)) such that
fjlafn‘j\fj = idaffz‘j\Tj'

Consider the semialgebraic homeomorphism

£ M\®(o,) = (M\(o,))UJ ®(rURY), = >

j=1

{x if v ¢ JI_, (oy,),
(I)(fj(q)_l(l‘))) ifx e (I)(O'ij).

Let f': M\ ®(o,) - M\ I_I?;é N; be a close Nash approximation of f (use 2.D.1).
As f is a semialgebraic homeomorphism, f’ is by Lemma 2.8 surjective. Consequently
ho:=f'og: M\ ®(o,) = M is a surjective Nash map, as required. O

7. Main properties of well-welded semialgebraic sets

In this section we describe the main properties of well-welded semialgebraic sets. Given
a continuous semialgebraic path « : [0,1] — R™ we define n(«) as the image a(A) of
the smallest (finite) subset A C (0,1) such that af,1)\ 4 is a Nash map. Recall that a
semialgebraic set § C R™ is well-welded if § is pure dimensional and for each pair of
points x,y € § there exists a continuous semialgebraic path « : [0,1] — § such that
a(0) =z, (1) = y and n(a) C Reg(8).

The following two results provide examples of well-welded semialgebraic sets. Once
we prove Theorem 1.4 we will conclude that there are no more well-welded semialgebraic
sets.

Lemma 7.1. Let 8§ C R™ be a semialgebraic set that is connected by Nash paths. Then §
is well-welded.

Proof. As 8 is connected by Nash paths, we only have to check that 8 is pure dimensional.
Suppose by contradiction that 8 is not pure dimensional. Pick z € 8 and an open
semialgebraic neighborhood U C R™ of = such that dim(8§ NU) < dim(8). Let Y be the
Zariski closure of § N U in R™ and pick a point y € 8§\ Y. Let a : [0,1] — 8 be a Nash
path such that a(0) = x and a(1) = y. As o= (8§ NY) C [0, 1] is a neighborhood of the
origin and Y is an algebraic set, we deduce by the identity principle that y € Im(a) C Y,
which is a contradiction. Thus, 8 is pure dimensional, as required. O
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Fig. 9. Sketch of proof of Lemma 7.2.

Lemma 7.2. Let § C R"™ be a pure dimensional semialgebraic set. Assume that there exists
a Nash path o : [0,1] — 8 whose image meets all the connected components of Reg(8).
Then 8 is well-welded.

Proof. Let M, ..., M, be the connected components of Reg(8). Let x; € M; N Im(«)
and let t; € (0,1) be such that a(t;) = z;. We may assume t; < --- < .. As § is
pure dimensional, 8§ = |J_, CI(M;) N 8. Let y1,y2 € 8 and assume y; € CI(M;) N§
and y, € CI(M;) N8 with i < j. By the Nash curve selection lemma there exist Nash
arcs oy, : (—1,1) = R™ such that a;((—1,0)) C M;, oy ((—1,0)) C M; and a(0) = ys
for k = 1,2. As M; and M; are connected Nash manifolds, there exist Nash paths
71 :[0,1] = M; and 75 : [0,1] — M; such that

€Z; ifk}:L

0) =z := ar(—21) and 1) =
Y,(0) = 25 k(—3) (1) {xj T

Consider the continuous semialgebraic path

Bi=(aalig,0) " Fm ki) ¥ Fasl_1 g

that connects the points y1,y2 and satisfies
n(B) C {z1,x;,xj, 22} C Reg(8),

see Fig. 9. Consequently, 8 is well-welded, as required. 0O
7.A. Basic properties of well-welded semialgebraic sets I

We show next that well-welded semialgebraic sets have irreducible Zariski closure and
well-welded closure. We will prove later in 7.C that they are in fact irreducible and that
the image of a well-welded semialgebraic set under a Nash map is again well-welded.

Lemma 7.3. Let 8 C R™ be a well-welded semialgebraic set. Then ™ is irreducible.

Proof. Suppose by contradiction that §™ is reducible. Let X 1,--., X, be the irreducible
components of ™. We have
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Sing(8 USlng YU U(XiﬁXj).
i#]

We claim: 8N X; \ Sing(8™) # @ fori=1,...,r
Suppose that $ N X7 \ Sing(8™") = @. Then § C Sing(X;) U Ui, (8N X;), so

T T

| X =8 ¢ Sing(x1) U | X3,

i=1 =2

which is a contradiction.

Let z; € N X; \ Sing(8™") for i = 1,2 and let f; € R[x] be a polynomial equation
of X;. Let a : [0,1] — 8 be a (continuous) semialgebraic map such that a(0) = z,
a(1l) = x5 and n(a) C Reg(8). Let

=inf{t € (0,1): «(t) ¢ X1}.

Note that a(ty) ¢ n(a) because a(ty) € X1 N X; C Sing(8™) for some i # 1 and
n(a) C Reg(8). Let ¢ > 0 be such that af,—c,4e) is a Nash map, a((to — €,t0)) C
X1 and a((to,to +€)) N X1 = D. As fi1 0 &f(y—c,to+c) is a Nash function such that
Jroa|(ty—c.to) = 0, we have f10a(y—c to+2) = 0, which is a contradiction. Consequently,
$™ is irreducible, as required. O

Lemma 7.4. Let § C T C R”™ be semialgebraic sets such that § is well-welded and T C
CI(8). Then T is well-welded.

Proof. Let z1,292 € T. As § is pure dimensional, Cl(Reg(8)) = CI(8§) = CI(7). B

the Nash curve selection lemma there exist Nash arcs ay : (—1,1) — R™ such that
ar((—1,0)) C Reg(8), ay(0) = a4 for k = 1,2. Consider the points yj := ay(—3) for
k=1,2. As 8 is well-welded, there exists a continuous semialgebraic path as : [0,1] — 8
such that as(0) = y1, as(1) =y and n(as) C Reg(8). As S =T, we have

Reg(8) = Intpy(gear) (S \ Sing(8™)) ¢ Intp sz (T\ Sing(8™)) = Reg(7).

The continuous semialgebraic path o := (041\[_%70])_1 * (g * a2|[_%,0] connects x; with
x9 and n(a) C n(as) U{y1,y2} C Reg(8) C Reg(T). Consequently, T is well-welded. O

7.B. Description of well-welding in terms of bridges

It is difficult to handle the definition of well-welded semialgebraic set. Our purpose
next is to provide a characterization of well-welding in terms of the existence of Nash
arcs between the connected components of the set of regular points of a semialgebraic
set.
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Definition 7.5. Let My, My C R™ be two Nash manifolds. A (Nash) bridge between M,
and My is the image T’ of a Nash arc o : (—1,1) — R" such that «((—1,0)) C M; and
a((0,1)) C M,.

To lighten the presentation we write bridge when referring to Nash bridge. As a
straightforward consequence of Proposition 7.8 below we have the following.

Corollary 7.6. Let 8 C R™ be a pure dimensional semialgebraic set and let My, ... M, be
the connected components of Reg(8). The following assertions are equivalent:

(i) 8 is well-welded.
(ii) We can reorder the indices i = 1,...,r in such a way that there exist bridges I'; C 8
between M; and L];;ll M; fori=2,...,r.

When dealing with well-welded semialgebraic sets, we need often that a continuous
semialgebraic path connecting two points avoids certain algebraic set. In this direction
we present the following three results.

Lemma 7.7. Let o : [0,1] — R™ be a continuous semialgebraic path and let Y C R™ be an
algebraic set. Assume that Im(a) ¢ Y and n(a) NY = @. Then o~ 1(Y) is a finite set.

Proof. Suppose a~!(Y) is not a finite set. Then a~1(Y) is a closed semialgebraic subset
of the interval [0, 1] of dimension 1. Let A C (0, 1) be the smallest (finite) subset of (0, 1)
such that o/ 1)\ 4 is a Nash map. Let C' be a connected component of [0, 1]\ (AU {0, 1})
such that dim(C N a~1(Y)) = 1. As a|¢ is a Nash map, C C o 1(Y). As a7 1(Y) is
closed, CI(C) C a=1(Y). Notice that C1(C)\ C c Au{0,1}. If C1(C) \ C = {0,1}, we
have Cl(C) = [0,1], so Im(a)) C Y, which is a contradiction. Consequently, A # & and
(CHC)\ C)NA+#2,s0n(a)NY # &, against the hypothesis. Thus, a1 (Y) is a finite
set, as required. O

Proposition 7.8. Let 8§ C R™ be a pure dimensional semialgebraic set and let My, ..., M,
be the connected components of Reg(8). Let Z C R™ be an algebraic set such that M; ¢ Z
fori=1,...,r. The following assertions are equivalent:

(i) For each pair of points x1,29 € 8 there exists a continuous semialgebraic path
a:[0,1] = 8 such that a(0) = 21, a(1) = z2 and n(a) C Reg(8) \ Z.
(ii) The indices i =1,...,r can be reordered to have bridges I'; C 8§ between M; \ Z and
;;ﬁ(Mj\Z) fori=2, ... r.

Proof. (ii) = (i) Let 1,22 € 8. As § is pure dimensional, Reg(8) \ Z is dense in 8
and we may assume z; € Cl(M; \ Z) and x2 € Cl(M, \ Z) for some ¢ = 1,...,r. By
the Nash curve selection lemma there exist Nash paths aj : (—1,1) — R™ such that
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Fig. 10. Sketch of proof of implication (ii) = (i) in Proposition 7.8.

a1((—=1,0)) € M1\ Z, aa((—1,0)) € M, \ Z and a;(0) = xy, for k = 1,2. Consider the
points yy = ak(—%) for k = 1,2. We proceed by induction on /.

If ¢ =1, then y1,y2 € My \ Z. As M; is a connected Nash manifold, there exists a
Nash path g : [0,1] — M; such that 5(0) = y; and B(1) = yo. Consider the continuous
semialgebraic path a := (a1|[7%70])*1 * B % az|[_1 o that connects the points 71 and 2
and satisfies n(«) C {y1,y2} C Reg(8) \ Z and Im(«o) C My U {z1,22} C 8.

Assume that for each point y € M; for i = 2,...,f — 1 there exists a continuous
semialgebraic path « : [0,1] — 8 such that a(0) = z1, a(1) = y and n(a) C Reg(8) \ Z.
Let v: (—=1,1) — 8 be a Nash arc such that y((—1,1)) =Ty, v((-1,0)) C Uf;%(Mj \Z)
and v((0,1)) C M, \ Z. Let u := y(—%) € ;;}(Mj \ Z) and v := y(3) € M;\ Z. By
induction hypothesis there exists a continuous semialgebraic path p; : [0,1] — 8 such
that p1(0) = z1, p1(1) = w and n(p1) C Reg(8)\ Z. As My is a connected Nash manifold,
there exists a Nash path po : [0,1] — M, such that p2(0) = v and p2(1) = y2. Consider
the continuous semialgebraic path a := pp * 'y|[7%7%} * Po * a2|[7%70] that connects the
points 21 and z9 and satisfies n(a) C n(p1) U{u,v,y2} C Reg(8) \ Z and Im(a) C 8, see
Fig. 10.

(i) = (ii) If Reg(8) is connected, there is nothing to prove. Assume that the result
is true if the number of connected components of Reg(8) is < r and let us check that

[V

the result is also true if the number of connected components of Reg(8) is 7.
Let x; € M; \ Z for i
semialgebraic path « : [0,1] — 8 such that «(0) = z1, z; € Im(a) for i = 2,...,r and
n(a) C Reg(8) \ Z. By Lemma 7.7 Im(a) N Z is a finite set.
We may reorder the connected components M; in such a way that if ¢ < j, then

1,...,r. By hypothesis one can construct a continuous

ti:=inf{t € (0,1) : «aft) € M;} <inf{t € (0,1): a(t) € M;} =:t;.

Let us check: 8 := C1(8\ C1(M,)) N8 is pure dimensional, satisfies the hypothesis of (i)
and Reg(8") = |I'Z{ M;. Tt is enough to show:

(a) Reg(8') = |_|;:11 M; is dense in 8'. Consequently, 8 is pure dimensional.
(b) For each point x € 8 there exists a continuous semialgebraic path B : [0,1] — &
such that B(0) = x1, B(1) = = and n(B) C Reg(8') \ Z.
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Let us prove first (a). By Lemma 7.3 $™ is irreducible because 8 is well-welded. As

|_|;:11 M; is a non-empty open subset of 8§, we conclude § =3 . Thus,

Reg(S/) = IntReg(gmr)(S/ \ Sing(gzar)) - Reg(s) = I_I Ml
i=1
We deduce

EMZ- C Reg(8’) € 8 NReg(8) = Cl(Reg(8) \ CI(M,.)) N Reg(8)

i=1

—c1(|_|M \ CI(M, )m|_|M c01(|_| )N |_|M |_|M1,
so Reg(8') = LI/} M;.
As My, ..., M, are the connected components of Reg(8), we have M; C (Cl(M;) \
Cl(M, ))ﬂS so CI((C1(M;) \ CY(M,))N8) = CL(M;) for i = 1,...,r — 1. As 8§ =
U7, ICI( )08

3’201(00( M) N8\ CL(M, ))OS_CI(TUCI )8\ ClM, ))ms
_U01 ((CL(M;) \ CI(M,)) N 8) ms_Um ) N8 = Cl(Reg(8') N &,

so Reg(8') is dense in §'.

Let us show next (b). As z € 8§, there exists an index 1 < ¢ < r — 1 such
that x € ClI(M; \ Z). By the Nash curve selection lemma there exists a Nash arc
v ¢ (=1,1) = R™ such that v, ((—=1,0)) € M; \ Z and v,(0) = x. Let s; € (0,%;41) be
such that a(s;) € M; \ Z. As M; is a connected Nash manifold, there exists a Nash path

5 1 [0,1] = M; such that 72(0) = a(s;) and y2(1) = 71(—3). The continuous semial-
gebraic path (8 := aljg,,] * 72 * fyl|[7%70] connects z7 with z and satisfies Im(5) C &
and

n(B) € n(alo,s,) Ufalsi),1(=3)} C Reg(8")\ Z.

Consequently, 8 satisfies the desired conditions.

By induction hypothesis we may assume that there exist bridges I'; C 8 between
M; \ Z and 3;11(M] \ Z) fori=2,...,r — 1. Recall that Im(a) N Z is a finite set. Let
€ > 0 be such that the restriction o, _c 4, 4. is a Nash map, a((t,, t,+¢)) C M, \ Z and
a((t, —e,ty)) C M; \ Z for some i =1,...,r — 1. It holds (after reparameterizing) that
Ty :=a((t, —e,t, +¢)) is a bridge between I_I;’;% M;\ Z and M, \ Z, as required. O
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Corollary 7.9. Let § C R™ be a well-welded semialgebraic set and let Z C R™ be an
algebraic set that does not contain 8. Then for each pair of points x,y € 8 there exists

a continuous semialgebraic path « : [0,1] — 8 such that a(0) = z, a(l) = y and
n(a) C Reg(8)\ Z.

Proof. Let M, ..., M, be the connected components of Reg(8). As § is well-welded, we
can reorder the indices i = 1,...,r in such a way that there exist bridges I'; C 8§ between
M; and |_|§;1 M; for ¢ = 2,...,r (see Corollary 7.6). Denote X = gzar, which is an
irreducible algebraic set not contained in Z. By Theorem 2.5 there exist a non-singular
algebraic set X7 and a proper regular map f : X; — X such that 8 C f(X;) and

Flx\f-1(sing(x)) + X1\ f71(Sing(X)) — X \ Sing(X)

is a diffeomorphism whose inverse map is also regular.

Denote A; := CI(f~1(T; \ Sing(X))) N f~1(;) and N; := f=1(M;) for i = 1,...,r.
As M; C X \ Sing(X), we have that N; C X; \ f~1(Sing(X)) is a Nash manifold. After
shrinking T'; if necessary, we may assume by Lemma B.2 that A; is a bridge between N;
and [_Ié-;l1 N; such that A; \ L= N; = {¢;} and f(g;) € 8 for some ¢; € X;.

Consider the algebraic set Z’ := f~1(Z N X) C X;. As X is irreducible, also X;
is irreducible. If Z’ contains N;, then Z’ contains X7, so Z contains X, which is a
contradiction. Consequently, Z’ contains no N;. As X is a Nash manifold, there exists by
Lemma 2.9 a bridge A} between N;\ Z’ and ;;(Nj\Z’) such that AJ\[I7_; N; = {q:}.
Consequently, T, := f(A}) is a bridge between M; \ Z and |_|;-;11 (M; \ Z) such that
I, \ Reg(8) = {f(q;)} C 8. By Proposition 7.8 the result follows. 0O

7.C. Basic properties of well-welded semialgebraic sets I1
We prove next the remaining announced properties of well-welded semialgebraic sets.
Corollary 7.10. Let § C R™ be a well-welded semialgebraic set. Then § is irreducible.

Proof. Denote d := dim(8). By [11, Lem.3.6] it is enough to prove that if f is a Nash
function on 8§ whose zero-set has dimension d, then f is identically zero.

Let f be a Nash function on § whose zero-set has dimension d. Let My, ..., M, be
the connected components of Reg(8). We may assume that f is identically zero only
on My,..., M. Observe that £ > 1 and assume by contradiction that k£ < r. Let
T = {f = 0} N Uj—g1 M;, which is a semialgebraic set of dimension < d. Let Y
be the Zariski closure of T, which has dimension < d.

Pick points #1 € [ ¥ (M; \'Y) and x5 € [|]_,,1(M; \ Y). By Corollary 7.9 there
exists a continuous semialgebraic path « : [0, 1] — 8 such that «(0) = z1, a(1) = 25 and
n(a) C Reg(8) \ Y. By Lemma 7.7 the inverse image o~ !(Y N §) is a finite set, so there
exist € > 0 and #o € (0, 1) such that af(;,—c ¢,+<) is a Nash map,
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Fig. 11. Semialgebraic set 8 := {(42% — y?)(4y®> — z?) > 0,y > 0} U {(0,0)} C R? and its set of regular
points.

T

a((to — €, t0)) |i|M\Y and  a((to,to+¢)) € || (M;\Y).
i=1 i=k+1

As foal(y—c,t,) is identically zero, foa(y,—c +,4¢) is identically zero, so a((to,to+€)) C
T C Y, which is a contradiction. Consequently, ¥ = r and f is identically zero, as
required. 0O

Corollary 7.11. Let 8§ C R™ and 85 C R"™ be semialgebraic sets. Assume that there exists
a surjective Nash map f : 81 — 8o and that 81 is well-welded. Then 8o is well-welded.

Proof. Let y1,y2 € 83 and x1,29 € 81 be such that f(x;) = y;. Let Y be the Zariski
closure of f~1(Sing(82)), which has dimension < dim(8;) because 8 is irreducible. By
Corollary 7.9 there exists a continuous semialgebraic path « : [0,1] — 8; such that
a(0) = z1, a(l) = x2 and n(a) C Reg(81) \ Y. The (continuous) semialgebraic map
8= foa satisfies 5(0) = y, B(L) = y2 and n(8) C F(f~1(S: \ Sing(S2))) = Reg(Sx).
Consequently, 8o is well-welded. O

Example 7.12. There exist pure dimensional, irreducible semialgebraic sets that are not
well-welded. Let

8 :={(42® —y*)(4y* — 2*) > 0, > 0} U {(0,0)} C R?

which is a pure dimensional irreducible semialgebraic set, see Fig. 11. Let us check that
it is not well-welded.

Observe first that Sing(8) = {(0,0)}. Pick the points z := (1,1),y := (—1,1) € § and
assume that 8 is well-welded. There exists a continuous semialgebraic path o : [0,1] — 8
such that @(0) = z, a(1) = y and n(a) C 8\{(0,0)}. Consider the open semialgebraic sets
A :=Reg(8)N{z > 0} and Ay := Reg(8)N{x < 0}, which satisfy 8 = A; UA2U{(0,0)}.
Let to := inf(a=1(Az)) > 0. Note that a(tg) = (0,0) and there exists ¢ > 0 such that

(1) a((to —e,t0)) C Ax, a(to,to +¢)) C As,
(ii) &/(t) # 0 and a(t) # a(ty) for all t € (tg —&,to +¢) \ {to}-
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The tangent line to Im(a/|,—c 1,4e)) at a(to) is the line generated by the vector

w = lim 2 = allo)
t=to (t—to)"

where 2k is the order of the series ||a||? at to. Note that

— € Cl(A) \ {(0,0)},

€ Cl(Az U —A2) \ {(0,0)},

which is a contradiction because Cl(A;) N Cl(Az U —A3) = {(0,0)}. Thus, 8§ is not
well-welded. O

7.D. Alternative description of well-welded semialgebraic sets

We describe next well-welded semialgebraic sets using piecewise analytic paths instead
of continuous semialgebraic paths. We say that a continuous path « : [0,1] — R™ is
piecewise analytic if there exists a finite set A’ C (0, 1) such that (g 1)\ 4+ is an analytic
map. Let A be the smallest set with the previous property and define n(a) = a(A).

Lemma 7.13. Let 8§ C R™ be a semialgebraic set. Then the following assertions are equiv-
alent:

(i) 8 is well-welded.
(ii) For each pair of points x,y € 8 there exists a piecewise analytic path o : [0,1] — 8
such that a(0) = z, a(1) =y and n(a) C Reg(8).

Proof. The implication (i) = (ii) is immediate. For the converse, we proceed as follows.

Let My, ..., M, be the connected components of Reg(8). An analytic bridge between
M; and M; is the image A of an analytic arc o : (—1,1) — R™ such that a((—1,0)) C M;
and a((0,1)) C M;. Proceeding as in the proof of Proposition 7.8 we can reorder the
indices ¢ = 1,...,r in such a way that there exist analytic bridges A; C 8 between M; and

;;11 M; for i = 2,...,r. By Lemma 2.9 we can substitute the analytic bridges A; C 8
by (Nash) bridges I'; C 8 between M; and ;;11 M; for i = 2,...,r. By Corollary 7.6
S is well-welded. O

The following two results are the counterpart of Lemmas 7.1 and 7.2 for analytic
paths. As the proofs are pretty similar to those of Lemmas 7.1 and 7.2, we leave the
details to the reader.
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Lemma 7.14. Let 8§ C R™ be a semialgebraic set that is connected by analytic paths. Then
S is well-welded.

Lemma 7.15. Let 8 C R™ be a pure dimensional semialgebraic set. Assume that there
exists an analytic path « : [0,1] — 8 whose image meets all the connected components of
Reg(8). Then § is well-welded.

7.E. Strict transforms of well-welded semialgebraic sets

We prove next that as it happens with irreducible arc-analytic sets [28, Thm.2.6] the
strict transform of a well-welded semialgebraic set under a sequence of blow-ups is a
well-welded semialgebraic set of its same dimension.

Lemma 7.16. Let X CR™ and Z C Y C R™ be algebraic sets. Let f : X — Y be a proper
regular map such that the restriction f|x\j-1(z): X \ f~HZ) = Y \ Z is bijective. Let
8 C Y be a well-welded semialgebraic set of dimension d such that 8 ¢ Z. Then the strict
transform 81 := C1(f~1(8\ Z2)) N f~1(8) of 8 under f is a well-welded semialgebraic set
of dimension d.

Proof. The proof is conducted in several steps:

7.E.1. We may assumeY =8 and X =X\ [-1(Z)
Let Y :=8", 2/ =8""nZand X' = f~1(Y"\ Z’)Zar. Consider the proper regular
map f':= flx : X" = Y. The restriction f'|xn -1z : X'\ f/71Z") = Y'\ Z"is

bijective because X'\ f'~1(Z') = f~L(Y'\ Z').

7.E.2. We claim: 81 is pure dimensional. As the restriction f|x\z : X \ f71(Z) —
Y \ Z is proper and bijective, it is a semialgebraic homeomorphism. As 8 \ Z is pure
dimensional of dimension d, also f~(8\ Z) is pure dimensional of dimension d. As
18\ 2) c 8 c CI(f~1(8\ 2)), we conclude that 8; is pure dimensional of dimension
d as well.

7.E.3. Observe that dim(X) = dim(Y') = d and dim(Z) < d. The algebraic set

zar

Z1 = f(Sing(X) U Sing(81)) USing(Y") U Z

has by [4, Thm.2.8.8] dimension < d. We claim: f~1(Z;) has dimension < d.

As the restriction f|x\z : X\ f71(Z) = Y\ Z is bijective, dim(f ' (Z1\Z)) = dim(Z1\
Z) < dby [4, Thm.2.8.8]. If f~1(Z) has dimension d, it contains an irreducible component
of X, which is a contradiction because X = X \ f*l(Z)Zar. Thus, dim(f~1(2)) < d, so
dim(f~1(21)) < d.
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7.E.4. The restriction f|x\f-1(z,) : X \ f7'(Z1) = Y \ Z1 is a bijective proper
regular map between the Nash manifolds X \ f~1(Z;) and Y \ Z;. Let C be the set of
critical points of f|x\¢-1(z,), which is by [4, Thm.9.6.2 & Lem.9.6.3] a semialgebraic set
of dimension < d. Let Zy := Z; U mmr, which is an algebraic set of dimension < d.
Again f~1(Z2) = f~1(Z2\ Z)U f~1(Z) has dimension < d. Consequently, the restriction
map flx\f-1(z,) : X\ f~YZy) = Y \ Zy is a Nash diffeomorphism between the Nash
manifolds X \ f~(Z3) and Y \ Zs.

7.E.5. As 8; has dimension d, Sing(8;) has dimension < d and f(Sing(S7))  has
dimension < d. Define Z3 := mmr U Z and observe that f=1(Z3) = f~1(Z3\
Z)U f~Y(Z) is an algebraic set of dimension < d.

7.E.6. Let Mj,..., M, be the connected components of Reg(8). By Proposition 7.8
and Corollary 7.9, we may reorder the indices 1,...,r in such a way that for each
j = 2,...,r there exists a bridge I'; C 8 between M; \ Z3 and Ui;(Mk \ Z3). We
have I'; \ Reg(8) = {p;} for j = 2,...,r. Shrinking each bridge I';, we may assume that
IiNnZsC{p;}forj=2...,r

7.E.7. Let C;1,...,C;s, be the connected components of M; \ Zs. AsT;NZ5 C {p;},
we may assume that I'; is a bridge between C;; and uz;ll ‘;’;1 Clj. As M; is a connected
Nash manifold, we may construct using Lemmas 2.9 and 6.2 bridges I';; C M; between
Cij and |12} Ci.

7.E.8. Denote the connected components of Reg(8) \ Zs with Ny,...,Ns. By 7.E.6
and 7.E.7 we may assume that there exist bridges A; C 8 between N; and |_|]_} Ny such
that the intersection A; N Z3 is either the empty-set or a singleton for j =2,...,s

Denote A := CI(f~'(A; \ Z)) N f~1(A;) C 81. By Lemma B.2 AS N f~1(Z) is either
the empty-set or a singleton {z;} and the curve germ A;.,Zj is irreducible. Denote NJ/» =
J7H(N;). As 8\ Zs is Nash diffeomorphic to f~1(8\ Z3), it holds that N7, ..., N/ are the
connected components of the Nash manifold f~*(8\ Z3). Shrinking A%, we may assume
that it is a bridge between N} and |_|f;11 N/ forj=2,...,s

7.E.9. As Sing(81) C f~(Z3), we have 8; \ f~1(Z3) C Reg(81). Note that
Si\ fHZs) = fTH8\ Z3) = |_|N’
because Z C Zz, f~1(8\ Z) C 8§ C f~1(8) and

T8N Zs) = fTIB\N )\ TN (Zs) C 81\ fTH(Zs) € fTH8\ Zs).



J.F. Fernando / Advances in Mathematics 331 (2018) 627-719 689

Let M{, ..., M, be the connected components of Reg(81). As Sing(81) C f~1(Z3),

s l
||V} =81\ f1(Zs) C Reg(81) = |_]| M,
j=1 k=1

so each N} is contained in some Mj. As dim(f~'(Z3)) < d, we have Reg(81) C
CI(LIj=; N}). Thus, for each k = 1,...,¢ there exists 1 < j < s such that N} C M;.
Define

Jk):=min{j=1,...,s: N]" C M}

and note that j(k1) # j(k2) if k1 # ko. We may assume j(k1) < j(k2) if k1 < k2. Observe
that A;(k) C 8 is a bridge between M} and | |¥=! M]. We conclude by Corollary 7.6
that 8 is well-welded, as required. 0O

Corollary 7.17. Let Y C X C R"™ be algebraic sets and let 8 C X be a well-welded
semialgebraic set of dimension d such that 8 ¢ Y. Let (B(X,Y),w) be the blow-up of X
with center Y and let 81 := Cl(m=2(8\Y))N7w=1(8) be the strict transform of 8 under .
Then 81 is a well-welded semialgebraic set of dimension d.

8. Well-welded semialgebraic sets as Nash images of Euclidean spaces

In this section we prove Theorem 1.4. The most difficult part, implication (vii) = (i),
is approached in two steps. We prove first that each well-welded semialgebraic set is the
image under a Nash map of a ‘checkerboard set’ of its same dimension. Afterwards we
show that a checkerboard set of dimension d is the image under a Nash map of its set of
regular points, which is a connected Nash manifold of dimension d and consequently a
Nash image of R? by Theorem 6.1. We define the boundary of a semialgebraic set § C R™
as 08 := CI(8) \ Reg(8). It holds Sing(8) C 08.

8.A. Checkerboard sets

A pure dimensional semialgebraic set 8§ C R™ is a checkerboard set (see Fig. 12) if it
satisfies the following properties:
« $"isa non-singular real algebraic set.
« 08" isa normal-crossings divisor of s
o Reg(8) is connected.

Remark 8.1. The difference 8 \ 98" is a union of connected components of 8™ \ 8™
A5Zar

Observe that § \ 88" = CI(8) \ 98™" = Reg(8) \ 88™"". Consequently, $ \ 98" is
an open and closed subset of 8 \ 98", so it is a union of connected components of

=zar ~oZar

8\ 98",
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zar
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zar

Fig. 12. Checkerboard set 8, its closure C1(8), its Zariski closure 8”*", 88 and the Zariski closure of 98.

Each checkerboard set is a well-welded semialgebraic set by the following result.

Lemma 8.2. Let X C R" be a non-singular algebraic set and let Y C X be a normal-
crossings divisor. Let € C X \'Y be a union of connected components of X \'Y and let
8§ C X be a semialgebraic set such that C C 8§ C CI(C). Then § is well-welded if and only
if 8 is connected.

Proof. The ‘only if’ implication is straightforward. We prove next the ‘if” implication.

Let Cq,...,C. be the connected components of €. We claim: there exist points
P2,...,pr € Y N8 such that, after reordering indices, p; € 8§ N Cl(C;) N Ul ! 1 CI(Cy)
fori=2....r

We proceed by induction on 7. If » = 1, the claim is clear. Assume the result true
if the number of connected components of € is < r and let us see that it is also true
when it is equal to r. As 8 is connected, there exists a continuous semialgebraic path
a:[0,1] — 8 whose image meets all the connected components C;. We may reorder the
indices 1,...,r in such a way that if ¢ < j, then

=inf{t € (0,1) : «(t) € CI(C;) N8} <inf{t € (0,1): a(t) € CI(C;) N8} =:t;.

Consider the semialgebraic set 8’ := C1(8 \ C1(€,.)) N8. It holds: § is connected.
As Cq, ..., C, are the connected components of €, we have C1(€;) = CI(C1(€;)\C1(C,))
for i # r. Consequently,

= CI(8\ C1(C,)) N8 = L_J CI(C1(C;) \ CI(€,)) N8 = U e (8.1)

i=1

Consider the connected semialgebraic set T := «([0,¢,]). Observe that T C 8’ and
TNCIC;) # @ for i =1,...,r — 1. Consequently, 8’ is connected.

As 8'\Y = |_|;":_11 C;, there exist by induction hypothesis points po,...,p,_1 € Y N§’
such that, after reordering indices, p; € § N C1(C;) N Ul ! 1ClCj) fori=2,...,7—1. As



J.F. Fernando / Advances in Mathematics 331 (2018) 627-719 691

8§ = 8 U (Cl(C,)N8) is connected and 8’ and Cl(C,) N § are closed in §, there exists
pr € 8 NCI(C,.). By (8.1) there exists 1 <7 < r — 1 such that p, € CI(€;) N Cl(€,.) N 8.
Notice that C1(C;)NCIL(€,) C Y because C is a union of connected components of X\ Y.
Thus, the claim follows.

Next we prove: 8¢ := CU {pa,...,pr} is a well-welded semialgebraic set.

Fixi=2,...,rand let 1 < j <i—1 be such that p; € C1(€;)NCI(C;) CY. AsY is a
normal-crossings divisor of X, there exists an open semialgebraic neighborhood U C X
of p; and a Nash diffeomorphism ¢ : U — R? such that ¢(0) = p; and (U NY) =
{z1-- x5 = 0}. We may assume

{I1>0,...,IS>O}C1/J((‘3¢0U) and {611’1>0,...,€S$S>O}C1/)(Gij)

where ¢j, = £1 for k = 1,..., s. Consider the Nash curve 8 := (B1,...,84) : (=1,1) — R?
where

Bult) = {t ifep = —1

t2 if{:‘k =1
fork=1,...,sand Bi(t) =0 for k =s+1,...,d. Observe that
B((-1,0)) C {e1x1 >0,...,e5zs >0} and £((0,1)) C {1 >0,...,2s > 0}.

Consider the Nash curve v := ¢ 1o : (=1,1) — €; UC; U {p;} that satisfies
~v((—1,0)) C €; and ~«((0,1)) C C;. Thus, I'; := v((—1,1)) C 8 is a bridge between
C; and €;. By Corollary 7.6 8¢ is well-welded.

As 8y € 8 C Cl(8p), we conclude by Lemma 7.4 that 8 is well-welded, as required. O

The following result will allow us to lighten the presentation of the proof of implication
(vii) = (i) of Theorem 1.4.

Lemma 8.3. Let 8§ C R”™ be a pure dimensional semialgebraic set of dimension d. Suppose
that Sth(8) is connected, there exists a Nash manifold M of dimension d that contains 8
and the smallest Nash subset Y of M that contains (C1(8) N M) \ Sth(8) is a Nash
normal crossings divisor of M. Then there exists a Nash embedding ¢ : M — R™ for
some m > 1 such that (8) is a checkerboard subset of R™, Reg(¢(8)) = ¢(Sth(8)) and

Sing(p(8)) = ¢(NSth(8)).

Proof. As 8 is connected, we may assume that M is connected. By Lemma C.1 there
exists a Nash embedding ¢ : M < R™ such that

(i) ¢(M) is a connected component of its Zariski closure V' in R™ that is a non-singular
real algebraic set of dimension d.
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(ii) The Zariski closure X of ¢(Y) in R™ is a normal crossing divisor of V such that
(M) N X = p(Y).

Observe that ¢(.9) "= o(M) “ = V. By Remark 2.2 and Lemma 2.3 we deduce

p(Sth(8)) = Sth(p(8)) = Reg(p(8)) and 9p(8) = Cl(¢(8)) \ Reg(p(8)) = ¢((CL(S) N
M)\ Sth(8)). Thus, ¢(Y) is the smallest Nash subset of ¢(M) that contains dp(8), so
Wzar is X, which is a normal crossing divisor of V = mzar. Consequently, ¢(8) is
a checkerboard subset of R™, Reg(¢(8)) = ¢(Sth(8)) and Sing(p(8)) = ¢(NSth(8)), as

required. O
8.B. Well-welded semialgebraic sets as Nash images of checkerboard sets

Our purpose next is to prove that a well-welded semialgebraic set is the image under
a proper surjective regular map of a checkerboard set of its same dimension.

Theorem 8.4. Let § C R™ be a well-welded semialgebraic set of dimension d and denote
X := 8™, Then there exist a checkerboard set T C R™ of dimension d and a proper
reqular map f:Y =T — X such that f(T) =8.

Remark 8.5. As f is proper, if 8 is in addition bounded, then T is also bounded.
The proof of Theorem 8.4 is quite involved and requires some preliminary work.

Proposition 8.6. Let X C R™ be a non-singular algebraic set of dimension d and let
Z C X be a normal-crossings divisor. Let § C X be a connected semialgebraic set such
that C := 8\ Z is a union of connected components of X \ Z and € C 8 C CI(C). Then
there exist a checkerboard set T C R™ of dimension d and a proper surjective regular
map f:Y =T — X such that the restriction fivv-1z) Y\ fHZ) = X\ Zisa
reqular diffeomorphism and f(7T) = 8.

Proof of Proposition 8.6 when S is closed. Let M, ..., M, be the connected components

of the Nash manifold Reg(8) and define R := J,_,; CL(M;) N CL(M;). Notice that

R={xe€8: Reg(8), ¢ M;,Vi=1,...,s} C {x €8: Reg(8), is not connected}.
The irreducible components of Z are non-singular. Denote them with Z;,..., Z,.

8.B.1. We claim: each irreducible component of A := R is an irreducible component
of some intersection Z;, N---N Z;,.

AsR C Z,also A C Z. Let Ay be an irreducible component of A and let Ry := RN A;.
Let As, ..., A, be the remaining irreducible components of A. Observe that
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Ry \ U Aj =R\ U A;#@ and  dim(A;) = dim (Rl \ U Aj) = dim(®R,)

Jj=2 Jj=2 Jj=2

because A is the Zariski closure of R. In addition, we have A; N Reg(A) = Reg(41) N
Reg(A) and Ry NReg(R) = A; NReg(R) = Reg(R1) N Reg(R).
Assume that A; C Zj exactly for k =1,...,¢. Note that £ < d. Pick a point

x € Ry NReg(R) \ U Z; C Reg(A).
j=t+1

As Z is a normal-crossings divisor of X, the intersection Z; N---N Z; is a non-singular
algebraic set and there exists an open semialgebraic neighborhood U C X \ U;: 141 Zj of
x equipped with a Nash diffeomorphism v : U — R9 such that u(z) = 0 and u(ZNU) =
{x1 -z = 0}. We may assume in addition:

e RNU=ANU=A,NU =R, NU is a connected closed submanifold of U.
o w(Z;NU)={x; =0} fori=1,...,¢
. Sm li,m 7é @ and SrmMQ,r 7é .

As € is a union of connected components of X \ Z, we have that u(C N U) is a union
of sets of the type {e1x1 > 0,...,epz¢ > 0} where g; = +1. Consider the projection
7 R x R=¢ — R (z,y) — 2 and observe that w(CNU) = w(u(CNU)) x R4,
Consequently, § = CI(€) satisfies u(§ NU) = 7(u(§ N U)) x R¥=*. As Reg(8), is not
connected, Reg(m(u(8 NU)))g is not connected. Consequently, for each y € (Z;N---N
Z;) NU the germ Reg(8), is not connected. As 8, N My, # @ and 8, N My, # &, we
deduce 8§, " M1, # @ and 8, N Ms, # @ for each y € (ZyN---N Z;) NU. Thus,

ANUC(Zin-NZ)NUCRNU = A NU.

As ZyN---NZ, is pure dimensional, we conclude that dim(A;) = dim(Z;N---NZp). As
Ay is irreducible, it is an irreducible component of Z; N --- N Z,.

8.B.2. Next, we prove: dim(R) < dim(X) — 2. Assume by contradiction that
dim(R) = dim(X) — 1. Let € Reg(Z) N Reg(R). There exists an open semialgebraic
neighborhood U C X of z such that U N Z is Nash diffeomorphic to {x; = 0}, so €,
is either Nash equivalent to {z; > 0} or to {1 > 0} U {z; < 0}. Consequently, 8, is
either Nash equivalent to {z; > 0} or to R%. But in both cases Reg(8), is connected,
a contradiction.

8.B.3. Let Aj be an irreducible component of A and let (Y7, f1) be the blow-up of
X with center A;. Denote T7 := CI(f; *(8\ A1)) and observe that f1(T,) = 8 because f
is proper and surjective and 8 \ A; is dense in 8§ because § is pure dimensional. Let us
prove:
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o f7N(Z) is a normal-crossings divisor of Yi.
T\ ffl(Z) is a union of connected components of Y1\ ffl(Z),
o T} is connected.

Reg(T1) has at most s — 1 connected components.

Assume that A; C Zj exactly for £k = 1,...,£. As Ay is an irreducible component of
Z1N---NZy, the inverse image ffl(Z) is a normal-crossings divisor of 7. As X \ A; and
Y1\ f; *(A;) are Nash diffeomorphic, also X \ Z and Y7 \ f; ' (Z) are Nash diffeomorphic.
As € is a union of connected components of X \ Z, the inverse image f; *(€) is a union
of connected components of Y7 \ f; *(Z). Consequently, f; (@) is closed in Y7 \ f;(Z)
and f71(C) = CI(f;7 (@) \ f{ (Z). Let us check: T = CI(f;1(€)).

We have

T = Cl(fi '8\ A1) = CL(f 1 (€) UCI(f ' ((8\ ©) \ Ay)).

As CI(fH((8\ @)\ A1) C f,1(2), it holds

T\ SN 2) = QT @)\ fH(2) = f7(©).

As f7H(8\ A;) and 8 \ A; are Nash diffecomorphic and 8§ \ A; is pure dimensional,
also f;1(8\ Aj) is pure dimensional, so T; = CI(f; *(8\ A1)) is pure dimensional. As
dim(f;71(Z)) = d —1 = dim(7;) — 1, we deduce T, = CI(T1 \ f;1(2)) = CI(f{1(€)).
By Lemma 8.2 8 is well-welded, so T7 is by Lemma 7.16 well-welded and therefore
connected. It only remains to check that Reg(77) has at most s—1 connected components.
As dim(A;) < dim(M;) — 2, the differences M; \ A; are connected Nash manifolds, so
the same happens with the sets f; '(M; \ A1). Observe that

U 71 (M \ A1) € Reg(T1) € 1 = CI(f71(€))

=1

= QI (Reg(8) \ A1) = C1L (| /7 (M \ An) = |J QUST (M \ Av)), (8:2)

i=1 i=1

so Reg(71) has at most s connected components. Let us check that in fact it has at
most s — 1. This follows from equality (8.2) if we prove that CI(f; ' (M; U My) \ A;) is
connected.

Recall that A; is an irreducible component of Z; N --- N Z,. Pick a point

x € Reg(R) N Aq '\ U Z; C Reg(A).
j=E+1

We may assume z € C1(M;)NCl(Msz). Let U C X\U;:S+1 Z; be an open semialgebraic
neighborhood of z such that RNU = ANU = A; NU that is equipped with a Nash
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diffeomorphism u : U — R% such that u(A; NU) = {z1 =0,...,2, =0} and u(ZNU) =
{zy---24 =0} C R In particular,

Observe that €NU is a union of sets of the type Q. := {e1z1 > 0,..., €2y > 0} where
€:= (e1,...,e0) € {—1,+1}", that is, there exists § C {—1,+1}* such that

ent={JQ.

€€y

Denote Q. := {e;x1 > 0,...,exy > 0}. Observe that Reg(8)NU is not connected because
it has at least two connected components E; := u(M; NU) and Ey := u(Mz N U). Let
Q. C F1 and Q. C Ey. We have

9.NQ9u C CI(Ey)NCl(Ey) Cu(RNU) =u(A; NU).

As dim(A; NU) = d—¢, we deduce ¢ = —e. This means in addition that w(M;NU) = Q.
and u(MoNU) = Q_. and we assume € = (1,...,1). In fact, SNU = (C1(M;)UCl(M2))NU
and

u@NU)={x1 >0,...,20 >0} U{—21 >0,...,—x¢ > 0}.

This is so because if € CI(M;) for j # 1, we have u(M; NU) = Qe for some " €
{—1,1}*. As we have seen ¢’ = —¢, so M; = M.

Let y € f; ! (). There exists an open semialgebraic neighborhood V C Y; of y and a
Nash diffeomorphism v : V' — R such that v(y) = 0 and uo f; ov™! : R — R? is given
by

(xh s ,.’Ed) = ($1,$1$27 sy T1LYy D41y - - ,(Ed)-
Consequently,

(uo frov Y)Y H€NU) = {21 > 0,122 > 0,..., 2120 > 0}
U{z; <0,z129 <0,...,z120 < 0}
={x1>0,290>0,...,2p >0} U{x; <0,29 >0,...,2 >0}
={x1 #0,20 >0,...,2¢ > 0},
see Fig. 13. Therefore T7 contains Cl(v({z1 # 0,22 > 0,...,2; > 0})) = Cl(v({z2 > 0,
...,xg > 0})) and
filv{z1 > 0,20 >0,...,2, > 0}) = (M1 \ A1) N T,
fl(U<{.’1?1 <0,29>0,...,20 > 0}) = (MQ\Al) NnU.



696 J.F. Fernando / Advances in Mathematics 331 (2018) 627-719

(z1,...,2q) —— (21, Z122,...,2124) (z1,...,24) —— (T1,2122,...,212q)

Fig. 13. Behavior of unions of two quadrants under blow-up.

Thus, Reg(CI(f;*((M; U My) \ A;))) C Reg(T1) is connected, so Reg(T;) has by (8.2)

at most s — 1 connected components.

8.B.4. We repeat recursively the previous process until we obtain T and f satisfying
the conditions in the statement, as required. O

Proof of Proposition 8.6 for the general case. Let 8y := C1(8) = C1(€). By Proposition 8.6
for the closed case there exist a checkerboard set Ty and a proper surjective regular map
fo: Yy = ‘J“_ozar — X such that Zp := f; 1(Z) is a normal-crossings divisor of Yy, the
restriction foly,\z, : Yo \ Zo — X \ Z is a regular diffeomorphism, Ty = Cl(f;'(€)) and
fo(To) = Sp. Let T7 := fo_l(S) N Ty be the strict transform of 8§ under fy. As 8 is by
Lemma 8.2 well-welded, also T7 is by Lemma 7.16 well-welded, so T7 is connected. If
Reg(T7) is connected, we are done, so we assume that Reg(J7) is not connected. Observe
that f5 ' (@) is dense in T;. Let Ny, ..., Ny be the connected components of Reg(T7). As
T, is connected, we suppose C1(Ny) N CL(N3) N T # @.

8.B.5. We may assume: there ezist ¢ € Cl(N1)NCL(N2)NT1 and an open semialgebraic
neighborhood U C Yy of q equipped with a Nash diffeomorphism u : U — R¢ such that
u(q) =0,

{z1>0,...,2, >0} Cu(N1NU) and {x1<0,...,2 <0} Cu(N2NU).

Pick a point p € CI(N7) N CI(N3) N T and let e := dim(Cl(N7), N CL(N2),). We
distinguish two situations depending on the value of e:

Case 1. e < d — 1. Let A; be an irreducible component of the Zariski closure A of
CI(N7) N CI(N3) of maximal dimension passing through p. Let Zp1,..., Zoe be all the
irreducible components of Z; that contain A;. Proceeding similarly to the proof 8.B.1
one shows that A; is an irreducible component of Zp; N --- N Zye. Note that e = d — £.
Consider the blow-up (Yg, f1) of Yy with center A;. Define Tj := CI(f; ' (To \ A1)).
Proceeding similarly to the proof of 8.B.3 one shows:

() fi'(Zo) is a normal-crossings divisor of Y.
(i) T4\ f1 1 (Zo) is a union of connected components of Yy \ fi *(Zo).
(iii) Ty is connected.
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In addition, it holds:
(iv) For each point z € f; ™ (p)NTh, we have dim(Cl(f{ *(N1)).NCI(f;H(Ny)).) = d—1.

Denote the union of the irreducible components of Zy that do not contain A; with Z).
To prove (iv) pick

x € Reg(Cl(N1) N CL(N2)) N A1\ Z) C Reg(A)

close to p. Let U C Y be an open semialgebraic neighborhood of x equipped with a
Nash diffeomorphism u : U — R? such that u(z) =0, w(ANU) = {z; =0,...,2, = 0}
and u(ZoNU) = {x1 -2, = 0}. We may assume in addition:

e CI(N1)NCIN2)NU = ANVU is a connected closed submanifold of U.
. U(ZOZQU):{J%ZO} fOI‘Z'Zl,...,g.

Assume Qp :={z1 > 0,...,2¢ >0} Cu(Ny NU) and Q. :={e1x1 > 0,..., 607y > 0} C
u(No N U) for some € := (e1,...,¢) € {—1,+1}¢. As

C1(Q1) N CLUQ.) € u(CLN,) NCLUN) NU) = w(ANTU) = {zy =0,...,2¢ = 0},

we have e = (—1,...,—1), Q; =u(N;NU) and Q. = u(N2NU).

Let y € Y{ be a point close to z such that f1(y) = x. There exists an open semialgebraic
neighborhood V' C Y{ of y and a Nash diffeomorphism v : V' — R? such that uo fjov~! :
R? — RY is given by

(X1, xq) V> (T1,X1%9, .« ., T1Lg, Tog1, - -5 Tg)-

We have

(uo fi ov_l)_l(Ql UQ.) ={z1 > 0,212 >0,...,272, > 0}
U {Lll‘l < 0,122 <0,...,212¢ < O}
={r1>0,22>0,...,2¢ >0} U{x1 < 0,20 >0,...,2¢ > 0}
={z1 #£0,20>0,...,24 > 0}

So CI(f{ H(N1)) N CI(f; 1 (N2)) NV contains v~!({z; = 0}), which has dimension d — 1.

Consequently, dim(CI(f; *(N1)). N CI(fy H(N2)).) =d — 1.
We assume in what follows e = d — 1.

Case 2. e = d — 1. Consider the blow-up (Yy, f1) of Yy with center {p} C T7. Consider
the strict transform 77 := C1(f; (71 \ {p})) N f; *(T1). We have:

o f71(Zy) is a normal-crossings divisor of Yy.
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o T\ f11(Zo) is a union of connected components of Yy \ fi *(Zo).
o T} is connected (use the argument described above involving Lemmas 8.2 and 7.16).

As dim(ClL(N1), N Cl(N2),) = d — 1, we assume there exists an open semialgebraic
neighborhood U of p in Y and a Nash diffeomorphism u : U — R% such that u(p) = 0,
w(ZoNU)={x1- -2, =0} and

le 22{1'1>0,.’E2>0...,.’E[>0}CU(N10U)7 (83)

Ro:={x1 < 0,22 >0...,2p >0} Cu(NaNU). (8.4)

Consider the Nash path germ «(t) := u=1(¢,t2,--- ,t2) C N; N U and observe that

gi= lim i (a() € £ () N CUST T\ {ph) € UG T (D) 0 £ (T) = T4
(8.5)

Thus, there exists an open semialgebraic neighborhood V' C Yy of ¢ and a Nash dif-

feomorphism v : V' — R? such that v(q) = 0 and uwo f; ov™! : R — R? is given

by

(x1,...,24) = (T1,2122, ..., T124).

We have

(wo frov™")TH(R1 UR2 U{0})

x120 > 0} U {21 < 0,2929 > 0,..., 2120 > 0} U{z1 =0}

:{.’1?1>0,5L’1l‘2>0,...,
={x1>0,...,2 >0} U{z1 <0,...,2, <0} U{z1 =0},

see Fig. 13. Consequently, 8.B.5 holds true.

8.B.6. Observe that ¢ ¢ N, for i = 1,...,s. Consider the blow-up (Yj, f1) of Yy with
71(T1). We have:

center {g} C Ty and the strict transform 7 := C1(f; " (T1 \ {¢})) N f;(
o f71(Zp) is a normal-crossings divisor of Y.

o T\ fi1(Zy) is a union of connected components of Yy \ f;(Zo).
o T} is connected by Lemmas 7.16 and 8.2.

Let us check that Reg(77) has at most s — 1 connected components. It holds

U FrH(Ni) € Reg(T1) € T7 = CL(fi ' (Reg(T1) \ {g})) N 1 (T1)

(Uf1 D) Ule1 )N AN, (8.6)
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so Reg(77) has at most s connected components. Let us check that in fact it has at most
s—1.
Proceeding similarly to (8.5) we find a point

y € fi (@) N OIS (T \ {a}) € CUSTH T\ {ph) N fiH(T1) = T1.

Thus, there exist an open semialgebraic neighborhood V' C Y{ of y and a Nash dif-
feomorphism v : V' — R? such that v(y) = 0 and wo f; ov™! : R4 — R? is given
by

(T1,...,2q) = (21,2122, ...,2124).
Consequently, if Ry is defined as in (8.3), then —Ry = {z1 < 0,22 <0,...,2, < 0} and

(wo frov ™) (R U Ry U{0}) = {21 > 0,122 > 0,..., 2120 > 0}
U{l’l < 0,212 <0..., 2170 <O}U{l‘1 :0}
={22>0,...,2¢ >0} U {x; =0},

see Fig. 13. So T} contains v({z2 > 0,...,2, > 0}) and

fl(U({.’El > 0,29 >O...,.’1}g>0}) CcNiNU,
fl(v({xl < 0,22 >0...,.T}g>0}) C NonU.

Thus, Reg(CI(f;  (N1UN2))N f71(T1)) C Reg(T4) is connected, so Reg(T}) has by (8.6)
at most s — 1 connected components.

8.B.7. We repeat recursively the previous process until we obtain T and f satisfying
the conditions in the statement, as required. O

We are ready to prove Theorem 8.4.

Proof of Theorem 8.4. Let X be the Zariski closure of 8. By Theorem 2.5 there exist a
non-singular algebraic set X’ and a proper regular map f : X’ — X such that the restric-
tion f|x\ f-1(sing(x)) : X'\ [ (Sing(X)) — X \ Sing(X) is a biregular diffeomorphism.
The strict transform 8’ := C1(f~1(8\ Sing(X))) N f~1(8) is by Lemma 7.16 well-welded
and f(8') = 8. So we may assume from the beginning that X is non-singular.

Let Z be the Zariski closure of R := CI(8) \ Reg(8). By Theorem 2.7 there exist a
non-singular algebraic set X’ and a proper surjective regular map f : X’ — X such that
f71(Z) is a normal-crossings divisor of X’ and the restriction f|xn -1(z) : X'\ f~1(Z) —
X\ Z is a biregular diffeomorphism. The strict transform 8’ := f~1(8§)NCI(f~1(8\ Z))
is by Lemma 7.16 well-welded and f(8') = 8. Even more 8§\ Z = CI(8) \ Z = Reg(8) \ Z
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is a closed and open subset of X \ Z, so C:= f~1(8\ Z) is a closed and open subset of
X"\ f~1(Z). Consequently, € is a union of connected components of X'\ f~(Z).
Thus, we may assume from the beginning:

The Zariski closure of 8 is non-singular.

o The Zariski closure of CI(8) \ Reg(8) is contained in a normal-crossings divisor Z.
e 8\ Z is a union of connected components of X \ Z.

e 8 is connected (and so well-welded by Lemma 8.2).

By Proposition 8.6 there exist a checkerboard set T C R™ and a proper surjective
regular map f:Y := T - X such that f(T) =8, as required. O

8.C. Proof of Theorem 1./

The implications (i) = (ii) = (iii) = (iv) and (i) = (ii) = (v) = (vi) are
straightforward. As quoted in the Introduction, only the proof of the non-completely
trivial implication (ii) = ‘8 is pure dimensional’ requires a comment and it is shown in
Corollary 6.3. The implication (iii) = (vii) is proved in Lemma 7.1 whereas (v) => (vii)
follows from Lemma 7.2. In addition, (iv) = (vii) is shown in Lemma 7.14 and
(vi) = (vii) in Lemma 7.15. To finish we prove (vil) = (i), that is, a well-welded
semialgebraic set of dimension d is a Nash image of R?. By Theorem 8.4 we may as-
sume: 8 is a checkerboard set. Let My := gzar, which is a Nash manifold, and let Z be the
smallest Nash subset of M, that contains 08, which is a Nash normal crossings divisor
of My (because its irreducible components as a Nash set are connected components of
the irreducible components of 8™ as an algebraic set). By Remark 8.1 the difference
8\ 98" = Reg(8) \ 98™" is a union of connected components of My \ 88 . As 98"
is a normal crossings divisor of My, we conclude that 98 = CI(8) \ Reg(8) is a pure
dimensional semialgebraic set of dimension d—1. To get a general idea on how this proof
works see Fig. 15. The proof is conducted in several steps.

8.C.1. Step 1. Initial preparation. Let Z1, ..., Zs be the irreducible components of Z
as a Nash subset of My. Let B C 08 C Z be a semialgebraic set. For eachi =1,... s let
B, be the closure of the set of points of dimension < dim(B) of the intersection B N Z;.
Denote B* := B\ |J;_, B; and observe that B* is pure dimensional open semialgebraic
subset of B and dim(B \ Sth(B*)) < dim(B). We claim: if A is a connected component
of Sth(B*), then for eachi=1,...,s either ANZ; =@ or A C Z;.

Fixi=1,...,ssuch that ANZ; # & and pick a point p € ANZ;. Thenp € (BNZ;)\B;,
so p is a point of dimension dim(B) of B N Z;. As dim(B \ Sth(B*)) < dim(B), we
deduce p € Sth(B*) is a point of dimension dim(Sth(B*)) = dim(B) of Sth(B*) N Z,.
As A is the connected component of Sth(B*) that contains p, we have dim(A N Z;) =
dim(Sth(B*) N Z;) = dim(Sth(B*)) = dim(A). As A is a connected Nash manifold and
Z; a Nash subset of My, we conclude by the identity principle A C Z;.
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8.C.2. Step 2. Construction of the bad subset T of 8 and a suitable partition of T
into Nash manifolds of different dimensions. As S isa non-singular real algebraic set
and 8 is pure dimensional, Reg(8) = Sth(8) and Sing(8) = NSth(8) by Remark 2.2. In
particular, 98 = CI(8) \ Sth(8). Let G be the set of points of Sing(8) of local dimension
< d — 1. Define the bad subset of 8 as:

T := NSth(NSth(8)) U (C1(S) N 8) C Z,

which is a semialgebraic set of dimension < d — 1. Define Ry := T, Ry, := Ri—1 \ T, and
T := Sth(R;_;) C Rp—1 for k > 1 (see 8.C.1 for the definition of R;_; from Ry_1).
Each semialgebraic set Ty is a Nash manifold (and an open subset of Ri_1) and each
semialgebraic set Ry, is a closed subset of T. In addition, if 1 < k < j,

CI(TJ) NT, = CI(TJ) NTNT, C :Rj—l NT. C :Rk NT, = <. (87)

Observe that dim(Rg41) < dim(Rg) for k > 0 (if Ry, # @), so Ry—1 = &. Consequently,

d—1
T=T1UR =T UToURy =--- = |_|‘Ik;
k=1
S — Stn(S) L (NSR(S) \ T) U T

8.C.3. Step 3. The difference 8 \ T is a Nash manifold with boundary the difference
NSth(8) \ T and interior Sth(8).

It holds that NSth(8) \ T is either empty or a Nash manifold of dimension d — 1.
Assume NSth(8) \ T # @ and pick a point € NSth(S) \ T. As NSth(S) C Z and Z
is a normal-crossings divisor, there exists an open semialgebraic neighborhood U of x
in My equipped with a Nash diffeomorphism v : U — R? such that u(z) = 0 and
w(ZNU) ={xy---x, = 0} for some 1 < r < d. As NSth(8) \ T is a Nash manifold of
dimension d — 1, we may assume u((NSth(8) \ T)NU) = {z1 = 0}. As Sth(§) \ Z is a
union of connected components of My \ Z, the Nash manifold Sth(8) is connected and 8
is pure dimensional, we may assume u(8§ NU) = {z1 > 0}. Consequently, 8 \ T is a Nash
manifold with boundary NSth(8) \ 7 and interior Sth(S).

8.C.4. Step 4. Define 6 := {1 < k < d—1: Ty # g} and {(8) := #&. We
prove next by induction on £(8) the following: There exist a connected Nash manifold
H with boundary OH and a surjective Nash map f : H — 8 such that Int(H) is Nash
diffeomorphic to Sth(8). Once this will be done, recall that H is by Theorem 1.5 a Nash
image of R?, so also 8 will be a Nash image of R? and the proof will be finished.

If £(8) =0 (or equivalently T = &), then 8 = 8\ T is by 8.C.3 a Nash manifold with
boundary and it is enough to take H := § and f := idg. Assume statement 8.C.4 true
for £(8) — 1 and let us check that it is also true for £(8).
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8.C.5. Write £ := £(8) and observe that T, = @ if and only if k > ¢+1. As T, is locally
compact (because it is a Nash manifold), the semialgebraic set € := C1(T,) \ T, is closed.
By (8.7) € does not meet Tjfor1 <j</{ soCNT =g. As T is a closed subset of & and
C C CUT)\T, we have SNC = &. Let M := M;\ €, which is a Nash manifold of dimension
d that contains 8. Observe that T, is a closed Nash submanifold of M of dimension e < d.
Let (M+, 74+ ) be the drilling blow-up of M with center T, and let (]/\4\, 7) be the twisted
Nash double of (M.H 7). By 5.B.1 77"(J}) is a closed non-singular Nash hypersurface

X

of the Nash manifold M. Denote & := Cl(z'(Z \ T¢)) N M, and X := (T N E,

—

which are closed semialgebraic subsets of M. Observe that € = 7' (Z \ T;) UK. Define

= (8)N O (8\TY) and Sy =8} \ K.

It holds 8 \ 7;'(Z) = 77"(8\ Z) and (8; \ &) N« " (T¢) = 8 N a ' (T¢). Denote
M’ := M \ X, which is a Nash manifold, and Z’ := (€ \ X) U (7" (T¢) N 81).

8.C.6. We claim: Z' is the smallest Nash subset of M’ that contains the semialgebraic
set 081 := (CI(81) N M')\ NSth(81) and it is a Nash normal crossings divisor of M’. In
addition, Sth(81) s a connected Nash manifold of dimension d. Once this is proved, we
deduce by Lemma 8.3 that, up to a suitable Nash embedding of M’, the semialgebraic
set 81 is a checkerboard set such that Reg(8;) = Sth(8;) and Sing(8;) = NSth(8;).

As 7r+\]\7+\7r;1({h) : M+ \ 77" (T) = M \ T, is a Nash diffeomorphism, we have:

o &\ K =n"(Z\Ty) is the smallest Nash subset of M, \ 77" (T) that contains the
semialgebraic set 081 \ 7" (T¢) = 7' (98 \ T¢), because Z \ T; is the smallest Nash
subset of M \ Ty that contains 98 \ Tp. To prove this last fact recall that 98 is pure
dimensional of dimension d — 1 and dim(7T;) < d — 1.

e E\X = 7;"(Z\ T,) is a Nash normal crossings divisor of M, \ 7' (T¢) because
Z \ Ty is a Nash normal crossings divisor of M \ ;.

As M, \7;'(T¢) is an open and closed semialgebraic subset of M’\ 7' (T;), we deduce
that € \ X is the smallest Nash subset of M’ \ 7, '(T;) that contains the semialgebraic
set 081 \ ' (T¢) and it is a Nash normal crossings divisor of M’ \ 7;"'(T;). As €\ K is
a closed semialgebraic subset of M’, we conclude by [34, Prop.I1.5.3] that £ \ X is the
smallest Nash subset of M’ that contains the semialgebraic set 981 \ 7' (T;) and a Nash
normal crossings divisor of M’.

8.C.7. Let us check: (wll(ﬂ'g) N81) is a closed non-singular Nash hypersurface of M'.
As (771(Te) N 81) N (E\ K) = @, this will show that Z’ is the smallest Nash subset of
M’ that contains 981 = 7" (98 \ T¢) U (73 '(T¢) N 81) and it is a Nash normal crossings
divisor of M’.
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We have Sth(8) C 8\ Ty, so Sth(8) = Sth(S\ Ty). As 7.'(Ty) = OM, and
dim(8;) = dim (M), we have 8; N7 ' (T;) C NSth(8;) and Sth(8;) = Sth(8; \ 7" (Tr)).
As 74| M7 (7o) is a Nash diffeomorphism,

Sth(81) = Sth(r; ' (8 \ T¢)) = 7' (Sth(8\ T¢)) = 71 ' (Sth(8)),

which is a connected Nash manifold of dimension d. Consequently, NSth(8;) =
7 (NSth(8) \ To) U (81 Ny (Ty)) and 981 = 7' (98 \Te) U (1 (Te) N 81). As M, is
a Nash manifold with boundary 71 (T), the difference M \ € is a Nash manifold with
boundary 7' (T¢) \ € = 71 (Te) \ K.

Observe that S\ Z = Cl( )\Z = 8th(8)\ Z is a closed an open subset of My\Z = M\ Z
(see Remark 8.1). As 7' (T,) N Sth(81) = @,

7718\ Z) = n; L (Sth(8) \ Z) = Sth($;) \ 71 1(Z) = Sth(8;) \ €

is a union of connected components of 7' (M\Z) = (M+\€)\7r;1 (T¢), that is, Sth(81)\ &
is a union of connected components of the interior Int(MJr \ €) of the Nash manifold
with boundary M, \ €. Thus, the closure D of Sth(81)\ € in M, \ € is a Nash manifold
with boundary D N (7' (T¢) \ K).

8.C.8. We claim: 8 \ € is the closure of Sth(81) \ € in ]TL. \ €.

As8\Z = CI(§)\Z and T, C ZNS, we have C1(8)\ (Z\T,) = 8\(2\7/) (8\Z)UT,.
As 71 (CL8) \ (Z\ Ty)) \ K is a closed subset of M+ \ &= (n7"(M\ (Z\Ty))\ X that
contains 7' (8 \ Z), we deduce

81\ E€=8/\ &= (m"(8\ (Z\T)) NCLUr; (S\ Te))) \ K
= (r31(CUS) \ (Z\ T¢)) N Cla 18\ 2)) \ K € (M \ &) N Cl(m (8 \ Z))

is the closure of 7;'(8\ Z) in M, \ €.

8.C.9. Thus, 81 \ € is a Nash manifold with boundary 8; N7 " (T;). As 81\ € is a
closed subset of M, \ &, the intersection (8; \ &) N 71 (T) = 81 N7 (Ty) is a closed
subset of (M, \ &) N (Te) = 71 (Te) \ K, which is itself a closed subset of M’ = ]/\/[\\fK
Consequently, §; N 7'(';1(‘3'() is a closed non-singular Nash hypersurface of M’.

8.C.10. 'We check next: £(81) = 4(8) —
As NSth(8;) = 71" (NSth(8)\ T¢) U (81 N7y (T¢)), the restriction map W+|M+\w;1(7@) :

M, \ 7 (T¢) — M \ Ty is a Nash diffeomorphism and 8; N 73" (T,) is a Nash manifold
of dimension d — 1, we deduce NSth(NSth(81)) = m ' (NSth(NSth(8)) \ T¢) and the set
G’ of points of NSth(8;) of dimension < d — 1 is 7' (G \ Ty). We claim the bad subset
T’ := NSth(NSth(81)) U (CLI(G) N 81) of 81 equals 7 (T\ Ty) = U,C L7 (Tk). We have
to prove: C1(§) N8 = 7 ((CL(G) N 8) \ Tp).
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Ty

T4+181

Fig. 14. Behavior of the surjective Nash map 74 |s, : 81 — 8.

As G = 774G\ Tp) € Cl(x;H(Z\ To)) N M, = &, also CI(§') N M, C €. Thus,

CLG) N8 = (CUS) Na ' (8) NCUAH S8\ T))) \ (3 (Te) N €)
=CHG)NEN(m " (8) \ w1 (Te)) = CUG) N7 (S )\ To).

As 74| M\m 7' (T0) is a Nash diffeomorphism and §' = 77"'(§\ T¢), it holds

CHS)N81 =CUS) N7 (8\ Te) = 73 (CUG) NS\ Te),

as claimed. Therefore, 7/ = 7' (T\ T)).

Decompose T’ = | |{~1 T4 following the algorithm proposed in 8.C.2. As 7| M\T,
is a Nash diffeomorphism and T, N T, = @ if k # ¢, we deduce T}, = 7' (T}) for
k=1,...,0—1and T, =@ fork=4¢,...,d—1. As T,_, # &, we conclude

0S) =#{1<k<d—1: T, £2}=108)—1.

8.C.11. We claim: 71 (81) = 8, see Fig. 14.

As 81 = (m31(8) N CUm (8 \ T)) \ K and KX = 771 (T¢) N E, we have 8\ T, C
7+(81) C 8. Thus, to prove 74 (81) = 8, it is enough to show T, C 71 (81). Pick a point
a € Typ. As Z\C is a Nash normal crossing divisor of M, there exists an open semialgebraic
neighborhood U C M of a equipped with a Nash diffeomorphism u : U — R? such that
u(a) = 0 and w(UN Z) = {z;---xq = 0} for some ¢t < d. By 8.C.1 and the definition
of Ty (see 8.C.2) the connected component T§ of T, that contains a is contained in the
irreducible components of Z that contain a. Thus, u(T§ NU) C {2y = 0,...,z4 = 0}.
Shrinking U is necessary, we may assume J; N U = T, NU is a closed subset of U and
by 2.C.3 we may modify w in order to have u(T,NU) = {ze11 =0,...,24 = 0} for some
1 <e+1 <t Consider coordinates (Zeq1,...,2q) in R%=¢. By 5.A.5 there exists a Nash
diffeomorphism @ : R® x [0, +00) x S47¢~! — V := 7 (U) such that

womy o®: R x [0,400) x ST 5 R (y, p,w) = (y, pw).

Observe that @~ 1(ENV) =R® x [0, +00) x (S4¢" LN {x;-- 24 = 0}). We may assume
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Fig. 15. Sketch of proof of the implication (vii) = (i) of Theorem 1.4.

{zt>0,...,24 >0} Cu((8\ Z2)ND).

Let wo € {4 > 0,...,74 > 0} C R¥° be a unitary vector. We have (uom o®)(0, p, wq) =
pwo € u((8\ Z)NU) for each p > 0, so in particular (uomy o ®)(0,0,w) = 0. Thus,

©(0,0,w) € (71 ((8\ (Z\ T) NU)NCUx 8\ Z)NT))) \ € C 81,

so a € m4(81). Consequently, Ty C w4 (81).

8.C.12. 'We have proved that 8; is (up to a suitable Nash embedding of M") a checker-
board set such that £(81) = £(8) — 1 and Sth(8;) is Nash diffeomorphic to Sth(8) via 7.
By induction hypothesis there exist a connected Nash manifold H with boundary and
a surjective Nash map f1 : H — 81 such that Int(H) is Nash diffeomorphic to Sth(8;),
which is itself Nash diffeomorphic to Sth(8) via my. Thus, f ;=70 f1 : H - Sisa
surjective Nash map and Int(H) is Nash diffeomorphic to Sth(8), as required. O

9. Nash path-connected components of a semialgebraic set

To take advantage of the full strength of Theorem 1.4 applied to an arbitrary semial-
gebraic set 8§ we introduce the Nash path-components of a semialgebraic set. Recall that
by Theorem 1.4 Nash path-connected and well-welded semialgebraic sets coincide.

Definition 9.1. A semialgebraic set § C R™ admits a decomposition into Nash path-
connected components if there exist semialgebraic sets 81,...,8, C 8 such that:
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1) Each §; is Nash path-connected.
2) If T C 8 is a Nash path-connected semialgebraic set that contains §;, then §; = 7.
3) 8i & Ui S;

)8

(
(
(
( USz

4

Theorem 9.2. Let § C R”™ be a semialgebraic set. Then 8§ admits a decomposition into
Nash path-connected components and this decomposition is unique. In addition, the Nash
path-connected components of a semialgebraic set are closed in 8.

Before proving Theorem 9.2 we need a preliminary result.

Lemma 9.3. Let 81,82 C R"™ be two well-welded semialgebraic sets of dimension d such
that dim(81 N'82) = d. Then 8 := 81 U S8y is well-welded.

Proof. Let zy, € 8y for k = 1,2 and let y € (81 N82) \ Sing(8). As each 8§, is well-welded,
there exist by Corollary 7.9 continuous semialgebraic paths «y : [0,1] — 8 such that
ar(0) = 2k, ax(1) = y and n(ar) C Reg(Sk) \Sing(S)Zar. The continuous semialgebraic
path o := aq * agl connects the points 1 and zo and satisfies

n(a) € nlar) Un(az) U {y} C Reg(8).
Consequently, 8 is well-welded, as required. O

Proof of Theorem 9.2. We divide the proof into two parts:

Ezistence. We proceed by induction on the dimension d of 8. If d = 0, the Nash path-
connected components of § coincide with its connected components. Suppose the result
true for dimension < d — 1 and let us see that it is also true for dimension d.

Let 8o be the (semialgebraic) set of points of dimension d of 8. Write 8§ = 8¢ UT where
T:=8N S\—Sozar. Obser\ﬁrthat 8o and T are closed subsets of 8§ and dim(7) < d — 1.

In addition, T =8\ 8y . Let Mi,..., M, be the connected components of Reg(8o).
Observe that ClI(M;) N8 is Nash path—connected fori=1,.

9.2.1. We claim: There exists a partition I,..., I, of the set {1,...,r} such that

= |J an)ns

i€l

is Nash path-connected for k=1,...,¢ and for each J C {1,...,£} of cardinal > 2 the
semialgebraic set | J
Define

I 8; is not Nash path-connected.

51 = {I c{l,...,r}: 1€l and U Cl(M;) N8 is Nash path—connected}.
i€l
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Observe that §1 # @. If J1,Jo C F1, then by Lemma 9.3 J; U Jy € F1. Let I; be the
maximum of §; ordered with respect to the inclusion. Denote K := {1,...,7} \ I1. By
induction there exists a partition Io,...,I, of K such that 8 := UieIk CI(M;)N 8§ is
Nash path-connected for & = 2,...,¢ and for each J C {2,...,¢} of cardinal > 2 the
semialgebraic set | J e ;S; is not Nash path-connected. It can be checked that the sets
I, ..., I, satisfy the required properties.

9.2.2. Observe that §¢ = Ule 8; and by Lemma 9.3 each intersection 8; N §; has
dimension < d — 1 if i # j.

9.2.3. By induction hypothesis there exists a family T3,...,7, of Nash path-
connected components of T. We may assume, after eliminating redundant T, that
T1, ..., Ty satisfy the following: 8 = 8oUUSL, Tj and T; ¢ SoUU,; T for j = 1,...,m.

9.2.4. Let us check that 81,...,84,71,...,T,, are a family of Nash path-connected
components of 8. By construction they satisfy conditions (1), (3) and (4) of Definition 9.1.
Let us check that they also satisfy condition (2). In particular, by Lemma 7.4 a Nash
path-connected component of § is a closed subset of 8. We distinguish two possibilities
accordingly to the different dimensions of the semialgebraic sets 8; and T;.

9.2.5. Let R C 8 be a Nash path-connected semialgebraic set that contains 8;. As
81 has dimension d, also R has dimension d. As R is pure dimensional, it is contained in
8y = Ule 8;. We may assume that dim(RN8§;) = d exactly for 1 < i < s < ¢. We claim:
s=1.

Otherwise, each union 8; U R is Nash path-connected by Lemma 9.3 for j =1,...,s.
Consequently, by Lemma 9.3 R := R U U;:1 8; is Nash path-connected. On the other
hand, dim(RN§;) < d for j =s+1,...,¢, so the semialgebraic set € := Uﬁ:s—&-l RNS;
has dimension < d — 1 and satisfies

iR/:fRUOS]‘Z OSJ‘UGI
j=1 j=1

because R C 89 = |J'_, 8;. As R is pure dimensional,

01(:R/)ms:01(92’\6')08:01(Osj)mS: Osj.

Jj=1 Jj=1

Consequently, U;Zl 8; is Nash path-connected, which contradicts 9.2.1.
As s = 1, it holds dim(R N §;) < d for 2 < j < £. Thus, the semialgebraic set
C:= Uﬁ:z RN 8; has dimension < d and satisfies R = 8; UC. As R is pure dimensional,
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S$1CRCCR)NS =CIR\C)N8=CI(8; \C) N8 = 8§;.
Consequently, 81 = R.

9.2.6. Let R C & be a Nash path-connected semialgebraic set that contains T;.
We claim: R C 7. Assume this proved for a while. As J; is a Nash path-connected
component of T, we have R = T;. Thus, the semialgebraic sets 8i1,...,8¢, T1,...,Tm
satisfy condition (2) of Definition 9.1. Consequently, it is enough to prove: R C 7.

As R is Nash path-connected, it is pure dimensional. As R ¢ 8y (because T; ¢ 8)
and 8 is a closed subset of §,

dim(R) = dim(R \ 89) = dim(R N (8 \ 8g)) < dim(R N T) < dim(R).

As R is Nash path-connected, it is irreducible. As dim(RN7T) = dim(R), we have R =

ROT cT™ =8\8; ,s0

zar

RCSNRY c8snT =8n8\8, =7T.

Uniqueness. Let {8;};_; and {R;}5_; be two families of semialgebraic sets satisfying the
conditions of Definition 9.1. Assume s < r.

Let z € Ry ¢ Uy Rj. As each R; is a closed subset of 8, the difference 8\ U,,; R; =
R1\ Uj;,él R; is an open neighborhood of = in §, so 8, = R; .. In particular, & and
R1 have the same dimension at z. As 8§, = Ry, and dim(8,;) = max{dim(8;,) : i =
1,...,7r}, we assume dim(8; ,) = dim(8;) = dim(R1 ;). As 81 5 = 81,:NS; = 81, NR1 4,
we have dim(8; ;) = dim(Ry,) = dim(81,, N Riz). As 8;,R; are pure dimensional,
dim(8;) = dim(Ry) = dim(R; N 8;1). By Lemma 9.3 §; U Ry is Nash path-connected, so
by condition (2) 81 = 81 UR; = R;y. Proceeding similarly with Ry, ..., R, we assume
Ri=8 fori=1,....s. As 8 = J_; R, = U;_; i, we deduce by condition (3) that
r = s. Consequently, the families {8;};_; and {R;}?_, coincide, as required. O

Examples 9.4. (i) Let 8§ := {z?2 — y?> = 0} C R3. The Nash path-connected components
of 8 are §; : =8N {z >0} and 83 := {x =0,y = 0}.
(i) Let 8§ := 8; U8, U 83 C R?, where

81:=[-1,1] x [-2,2] x {0}, 8g:=[-2,-1] x {-1,1} x [-1,1],
& 83:=1[1,2] x {—1,1} x [-1,1].
The Nash path-connected components of § are 81, 8o N {y = 1}, 8o N{y = —1},

83N {y = 1} and 83 N {y = —1}. In contrast, X has three irreducible components
[11, Rmk.4.4(iii)], which are 8N {z =0}, 8N{y =1} and SN {y = —1}.
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10. Two relevant consequences of Main Theorem 1.4
In this section we prove Corollaries 1.7 and 1.8.
10.A. Proof of Corollary 1.7

By Theorem 1.4 it is enough to prove that § is well-welded. The proof is conducted
in several steps.

10.2.1.  As 8 is an irreducible semialgebraic set, C1(8) is an irreducible arc-symmetric
semialgebraic set. Let X be the Zariski closure of 8§ and let 7 : X — X be a resolution
of the singularities of X (Theorem 2.5). By [28, Thm.2.6] applied to the irreducible
arc-symmetric set Cl1(8) there exists a connected component E of X such that m(E) =
Cl(Reg(C1(8))) = CI(8) (recall that CI(8) is pure dimensional). As W‘)?\ﬂ_,l(sing(x)) :
X \ 7 1(Sing(X)) — X \ Sing(X) is a regular diffeomorphism and 8 \ Sing(X) is dense
in C1(8), we have Cl(m=1(8\ Sing(X)) = E. Let § := 7= 1(8) N Cl(x~1(8 \ Sing(X))) =
71(8) N E be the strict transform of § under 7. We claim: S is connected.

Otherwise, there exists a closed semialgebraic subset @ C E such that 8§ C E \C
and E \ C is not connected. As 7 is proper, €' := 7(C) is a closed subset of X. Ob-
serve that SN €' = @. Let Y be the smallest Nash subset of R \ €’ that contains 8.
As § is irreducible, also Y is irreducible. Observe that Y is an irreducible component
of the Nash subset X \ € of R" \ ¢ and (Y := 7~ 1(Y) N E, 7|) is a resolution of
the singularities of Y. As Y is irreducible, also Y is irreducible, so Y C E \ € is con-
nected. As § is dense in FE, we conclude that Y meets all the connected components
of E'\ €, which is a contradiction because Y is connected but E \ € is not. Thus, S is
connected.

10.2.2.  'We prove next: $ is well-welded. Once this is done, 8§ = ﬂ(g) is by Lemma 7.11
well-welded. As § is a connected dense semialgebraic subset of the Nash manifold F, it is
enough to check: If T is a connected dense semialgebraic subset of a Nash manifold M,
then T is well-welded.

Let p € T\ Intp(7), where Intp(T) denotes the interior of T in M. Let Cq,...,C,
be the connected components of Intys(T) whose closures contain p. Let L C M be a
compact semialgebraic neighborhood of p. By [4, Thm.9.2.1 & Rmk.9.2.3] there exists a
finite simplicial complex K and a semialgebraic homeomorphism @ : |K| — L such that
{p} and each semialgebraic set C; N L is a finite union of images ®(¢°) where o € K and
the restriction ®|,0 : 0® — L C M is a Nash embedding for each o € K.

It holds that given two connected components C; and C; there exist finitely many
connected components C;,, ..., C;, such that €; = C;,, €; = C;, and CI(C;, )NCI(C;, ., )NL
contains the image under ® of a simplex of dimension d — 1 that contains {p} as a
vertex.
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10.2.3. To prove that T is well-welded, it is enough by Corollary 7.6 to show the
following: Let C; and Cy be two connected components of Intpr(T) that contain p in
their closure and Cl(C1) N Cl(C2) N L contains the image under ® of a simplex o of
dimension dim(8) — 1 that contains {p} as a vertex. Then there exists an analytic
path o : [—1,1] — €1 U Cy U {p} such that a((—1,0)) C €y, a((0,1)) C Cy and
a(0) = {p}.

Denote Ag := ®(c°). By the Nash curve selection lemma there exists a Nash path
B:(—1,1) = M such that 8(0) = p and 5((0,1)) C Ag. After a change of coordinates,
we may assume by [4, Cor.9.3.10] that the projection p : R? := R4™! x R — R4~1 x {0}
induces a Nash diffeomorphism p|4 : A — p(A) where A is an open semialgebraic subset
of Ap that contains p in its closure. Let ¢ : p(A) — R be a Nash function such that
A = graph(¢). The Nash map

P Q= p(A) X R = p(A) xR, (2, zq) = (&, 24 — $(2”))

induces a Nash diffeomorphism that maps A onto p(A) x {0}. In addition, we may
assume that ¢(C; NInt(L) N Q) is an open semialgebraic subset of p(A) x (—oo,0) whose
boundary contains p(A) x {0} and ¢(C2 NInt(L) N ) is an open semialgebraic subset of
p(A) x (0,400) whose boundary contains p(A) x {0}. For each ¢ > 1 consider the Nash
path

Ye: (=1,1) = RY t= ((po B)(2), 2.

Observe that for £ > 1 large enough, we may assume v¢((—1,0)) C ¢©(C; NInt(L) N Q),
v¢(0) = (p(p),0) and v,((0,1)) C v(Co NInt(L) N ). Thus, for ¢ > 1 large enough the
Nash path

g (=1,1) = R ¢ B(£2) + (0,...,0,£244D)
satisfies ag((—1,0)) C €1, ag(0) = p and a,((0,1)) C €3 because apl(—1,1)\f0} = ¢~ " ©
Yel(=1,1)\{0}, as required. O

10.B. Proof of Corollary 1.8

(i) By Theorem 1.4 there exists a Nash map f : RY — R™ whose image is 8. By
Artin-Mazur’s description [4, Thm.8.4.4] of Nash maps there exist s > 1 and a non-
singular irreducible algebraic set Z C R4+ of dimension d, a connected component
M of Z and a Nash diffeomorphism g : R? — M such that the following diagram is

commutative.
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7 > RIx R" x R®* = R™

M 2

-
R4 ! R"™
\\f\ /

S

We denote the projection of R? x R™ x R® onto the first space R with 7 and the
projection of R¢ x R™ x R® onto the second space R™ with 7y. Write m := d 4+ n + s.

By [29] applied to M and the union of the remaining connected components of Z there
exist finitely many polynomials Py, ..., Py, Q1,...,Q¢ € R[x] := R[x1,...,%x;] such that
each @); is strictly positive on R™ and

¢
M = ZO{ZP]-\/QJ- > 0}.
j=1
Observe that M is the projection of the algebraic set
¢
Y = {(xyy,t)EZx]RexR: (ijy?)t2_]_:0, y?—Qj =0forj:1,.,,7£}
j=1

under : R™ x Rf x R — R™, (z,y,t) ~ .
Fix € := (e1,...,er,6001) € {—=1,1} 1 and let M, := Y N {etys > 0,...,em0 > 0,
€r+1t > 0}. Consider the Nash diffeomorphism

Ve : M — M, x> (l‘,él \4/ Ql(x)""aef 4\/ Qé(l‘)a€€+1 7 = )
\/Zj:lpj(z) Qj(z)

whose inverse map is the restriction to M, of the projection .
Observe that {M}cc(—1,13¢+1 is the collection of the connected components of Y. As
m(M.) = M and using the diagram above, we deduce

(m2 0 m)(Me) = mo(M) = (f om)(M) = f(R?) = 8.
In addition, each M, is Nash diffeomorphic to R? and for ¢ # ¢’ the polynomial map
fee R xREXR - R™ xR xR, (2,9,t) = (2, (€ €) - (y,1))

induces an involution of ¥ such that ¢ . (M,) = M. We have denoted
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(e-€) - (y,t) == (e1€\y1, - - -, €0€pys, eg+162+1t).

As Z is non-singular, also Y is non-singular. Let X be the irreducible component of Y
that contains M . 1). Then k := m + ¢+ 1 —n and the non-singular algebraic set X
satisfy the requirements in the statement.

In addition, each connected component of X is Nash diffeomorphic to R? and it has
finitely many. Thus, X is Nash diffeomorphic to R% x {1,..., s}, where s is the number
of connected components of X.

(ii) Let 81,...,8, be the Nash path-components of 8, which satisfy 8§ = |J._; 8;.
By (i) there exist m > 1 and for each i = 1,...,r a non-singular algebraic set X; C R™
that is Nash diffeomorphic to a disjoint union of affine subspaces of R4*+1 (all of them
affinely equivalent to R% where d; := dim(8;) < d = dim(8)) and satisfies 7(X;) = §;,
where 7 : R® x R™™" — R", (z,y) — z is the projection onto the first n coordinates.
Consider the pairwise disjoint union X := | |I_; X; x {i} € R™*! and the projection
7' R® x RmHL=7 x R — R", (z,y,t) — 2. Then X is a non-singular algebraic set,
which is Nash diffeomorphic to a pairwise disjoint union of affine subspaces of R4+ and
satisfies m(X) = 8, as required. O

The following example shows that Corollary 1.8 is somehow sharp.

Example 10.1. Let X C R”™ be a real algebraic curve Nash diffeomorphic to R. Let
m: R™ — R be a linear projection. Then w(X) is not a proper open interval of R.

Notice that Y := Clgpn (X) = X U {poo} where p,, is a certain point of the hyper-
plane of infinity of RP™. Observe that 7 is the restriction to R™ of a central projection
IT: RP" --» RP! with center a projective subspace L of H(R) of dimension n — 2.

If poo ¢ L, then II(Y) is a compact subset of RP! and II(ps) is the point at infinity
of RP!. Thus, 7(X) is a closed semialgebraic subset of R.

If poo € L, we assume by contradiction that 7(X) is a proper open interval of R. Then
Y has at least two different tangents at p... However, as X is Nash diffeomorphic to R,
the analytic germ Y, has only one branch, which is a contradiction. Thus, 7(X) is not
a proper open interval of R.

Remark 10.2. Let 8 := (0,1) C R. By Corollary 1.8 there exist n > 0 and an algebraic set
X C R"*! whose connected components are Nash diffeomorphic to R and a projection
7 R"™ — R such that 7(X) = (0,1). By Example 10.1 we know that X is not
connected.

Appendix A. Miscellanea of C2? semialgebraic diffeomorphisms between intervals

We present examples of S? diffeomorphisms between intervals required in Section 4

and 5.
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0.8 1

0.6 +

fi(@)

0.4+

0.2+

0 B T 4 4 4 Il 4
0.2 0.4 0.6 0.8 1 1.2
T

Fig. A.16. Graph of f;.

0.2 0.4 0.6 0.8 1 1.2
T

Fig. A.17. Graph of f5.

Examples A.1. (i) The function f : [,1) — [0,1) given by

%(4£E—1) if%gxgé,

fi(z) = q $(642* — 1602° + 1442%) — 17z + §  if § <2 < 3,
x if2<a<1

is an S? diffeomorphism such that f1|[%)1) =1ids ), see Fig. A.16.
(ii) The function f5 : [3,1) — [0,1) given by
L2z —1) if1<a<?,
4 3 2

fo(z) = 2048(% — HE- + 82) 863z + 144 if 3 <z <3,

T if % <z<l1

is an §? diffeomorphism such that f2|[%71) =id;s ), see Fig. A.17.

713
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E —0.4 +

Fig. A.18. Graph of f3.
(iii) The function f5:(—1,1) — (—1,0) given by

if -1 <z <—3,
(16z* + 1623 +z — 1) if -3 <x <0,
ifo<z<l1

fg(l‘) =

= = K

—
8
I
—_
~

is an S? diffeomorphism such that f3|(_1)_%] =id(_; 1y, see Fig. A.18.
Appendix B. Strict transform of Nash arcs under blow-up

We recall here that the strict transform of an irreducible Nash curve germ under
a sequence of blow-ups is again an irreducible Nash curve germ. We analyze first the
images under Nash parameterization germs.

Lemma B.1. Let g := (g1,...,9n) : Ro = R be an analytic map germ such that the
germs g({t > 0}o) and g({t < 0}o) are different. Then Im(g) is an irreducible analytic
curve germ. In addition, if g is Nash, then Im(g) is an irreducible Nash curve germ.

Proof. Let G : Cy — C{ be the complex analytic map germ induced by g. As G is not
identically zero, G~1(0) = {0}. By [5, Thm.3.4.24] G is a finite analytic map germ. Using
a finite representative of G : Cy — C and Remmert’s Theorem [32, Thm.VIIL.2.2] we
deduce that Zy := G(Cy) is a 1-dimensional analytic germ. Consequently, Xy := Zy "Ry
is an irreducible analytic curve germ. Let 6 : Cy — Z; be a normalization of Z; that is
invariant under conjugation. As X is coherent, §(Rg) = Xo. There exists an analytic map
germ F : Cy — Cp such that G = 0 o F. As G and 0 are invariant under conjugation,
also F' is invariant under conjugation. Then F' is a univariate analytic function germ
of order k > 1 with real coefficients. As g({t > 0}9) and g({t < 0}9) are different,
k is odd and ¢g(Rg) = Xj is an irreducible analytic curve germ. The Nash case is now
straightforward. O

Lemma B.2. Let 'y C Ry be an irreducible Nash curve germ and let I be a representative.
Let f : M — N be a Nash map between Nash manifolds and let Z C M andY C N C
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R™ be Nash subsets such that 0 € Y. Assume that Tg C N, T'g ¢ Y, the restriction
fly-1mynz f~UT)NZ — T is proper and the restriction fly-1m\y)nz U\ Nz —
I'\Y is bijective. Denote A := Cl(f~Y (T \Y)NZ)N f~YT) N Z. Then there exists a
point p € f~1(0)NZ such that A, is an irreducible Nash curve germ, A, N f~1(Y) = {p}
and f(A,) =T.

Proof. We may assume I'NY = {0} and T = Im(v) where v : (—1,1) — N is a Nash arc
such that v(0) = 0 and v is a homeomorphism onto its image. We claim: AN f~%(Y)NZ
is a singleton {p} and A, is an irreducible Nash curve germ.

The map g := f[x : A — T is proper. Thus, the restriction g|y\g-1¢0y : A\ g 10) —
T'\ {0} is proper and bijective, so it is a semialgebraic homeomorphism. As g is proper,
g7 10) # 2. Let p € g~1(0) and observe that p € C1(g~1(v((0,1))))UCl(g~*(v((—1,0)))).

Assume p € T := Cl(g(v((0,1)))). Let X3, be the smallest Nash germ that contains
Ty Observe that X, N f~1(Y), = {p} and 7((0,1))o C f(X1p) C Lo. As fly-1r\y) :
fHT\Y) — I'\Y is bijective, f(X1 ) is by Lemma B.1 a Nash germ. Thus, f(X; ,) = o
and p € Cl(¢g~(v((~1,0)))). As T is semialgebraically homeomorphic to (—1,1), we
conclude A \ g~1(0) is semialgebraically homeomorphic to (—1,1) \ {0}. Consequently,
AN f7YY) = {p} is a singleton and A, = X, , is an irreducible Nash curve germ, as
required. O

Appendix C. Algebraic structure of a Nash normal crossing divisor

As an application of classical algebraization Artin—Mazur’s result for Nash functions
[4, §8.4], we show that if Y is a Nash normal crossing divisor of a Nash manifold M C R™,
there exists a Nash immersion of M in some affine space R such that M is a union of
some connected components of its Zariski closure V' in R™ (a non-singular real algebraic
subset of R™), the Zariski closure X of Y in R™ is a normal crossings divisor of V' and
MNnX=Y.

Lemma C.1. Let M C R"™ be a Nash manifold of dimension d and letY C M be a Nash
normal crossings divisor of M. Then up to a suitable Nash embedding of M in some
affine space R™ we may assume:

(i) M is a union of connected components of its Zariski closure V in R™, which is in
addition a non-singular real algebraic subset of R™ of pure dimension d.
(ii) The Zariski closure X of Y in R™ is a normal crossings divisor of V.and MNX =Y.

Proof. Let Yi,...,Y,. be the irreducible components of Y as a Nash subset of M,
which are non-singular Nash hypersurfaces of M in general position. As N(M) is
a noetherian ring, there exist finitely many Nash functions g;; € N(M) such that
1Y) = (9i1,---,9:)N(M). Let y € Y and assume (after reordering the indices ¢
if necessary) that y € Y; exactly for ¢ = 1,...,e. As Y is a Nash normal crossings



716 J.F. Fernando / Advances in Mathematics 331 (2018) 627-719

divisor of M, we may assume (after reordering the indices j if necessary) that the lin-
ear forms dygi1,...,dyger : TyM — R are linearly independent and Y coincides with
{911 - - ge1 = 0} in some neighborhood of y in M, see [17, Prop.5.1].

By Artin—Mazur’s description of Nash functions [4, §8.4] M is up to a Nash diffeo-
morphism an open and closed subset of a non-singular real algebraic set Vy C R™ of
pure dimension d, which is in addition the Zariski closure of M, and the Nash functions
gir are restrictions to M of polynomial functions G;; on Vj. Consider the real algebraic
sets

Xoi Z:{ZEEVOZ Gﬂ(x):O,,Gzz(ﬂc):O} and Xy :=Xp U---U Xgy.

The obstructions for Xy to be a Nash normal crossings divisor of V{; concentrate out-
side M, because Xg; "M =Y; fori=1,...,r and Y is a Nash normal crossings divisor.
In addition, XoNn M =Y, U---UY,. =Y.

C.1.1. We claim: There exists an algebraic subset Z of Vi satisfying the following:

1) MNZ=go.
(2) Pick x € Xo \ Z and suppose (after reordering the indices i if necessary) that x €
Xo; exactly for i = 1,...,e. Then we may assume (after reordering the indices

J if necessary) that the linear forms d.Gi1,...,dsGe1 : TyVo — R are linearly
independent and there exists an open Zariski neighborhood U of x in Vo \ Z such
thathﬁU:{G11-~-G61 :O}QU.

Assume statement C.1.1 proved for a while and let h € R[x] := R[x1,...,%,] be a
polynomial equation of Z in R™. Consider the algebraic sets

Vi={(z,y) e Vo xR: yh(z) =1} and X :={(z,y) € Xo xR: yh(z) =1},

which are biregularly equivalent to the constructible sets Vp \ Z and Xy \ Z via the
projection onto the first m coordinates. Using [5, Cor.4.3.18] the reader can check readily
that V is a non-singular algebraic subset of R™*! that, up to a Nash diffeomorphism,
contains M as an open and closed subset and X is a normal crossing divisor of V' such
that XN M =Y.

C.1.2. Let Zy be the union of the singular sets Sing(?izar) fori=1,...,r and all
the irreducible components of X, different from KZM? ... ,Kzar (which are irreducible
algebraic sets because Y7, ...,Y, are irreducible Nash sets). The irreducible components
of Xo different from Y; ,...,Y, " do not meet M because: Xo N M = Y and for
each y € Y we assume y € Y; exactly for i = 1,...,e (after reordering the indices ¢ if
necessary), the linear forms dygi1,...,dyge1 : TyM — R are linearly independent (after
reordering the indices j if necessary) and Y coincides with {g11---g.1 = 0} in some
neighborhood of y in M (recall that g;; = G;;|m for each pair of indices ¢, 7). We have
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Y, e, NMcXo,NnM=Y; and Sing(Y; )N M C Sing(Xo;) "M = @.

Consequently, Zo N M = @.

Foreachi=1,...,r let Gi1,...,Gir, Gi 41 . ..,Gis be a system of generators of the
ideal I (Y;) = In(Y"™") of polynomials in R[x] vanishing identically on Y;. Let P, ..., P,
be a system of generators of the ideal Igx(M) = Ir(Vp) of polynomials in R[x] vanishing
identically on M. As V} is non-singular and has dimension d, the rank

tk{d,Py,...,dPs} =m—d
for each x € Vj. Denote I, :={1,...,r} and for each non-empty subset I C I, define

7, = {xe Y™ : 1k{d.Gij, do Py - T,R™ - R: i€ 1, j=1,...,s}<m—d+#1}
el
C Xo,

where #I denotes the cardinal of I, and observe that Y N Z; = @. Thus, Z := Zy U
Uz;ﬁlch Zr is an algebraic subset of Xg C Vy. If z € X\ Z, we define I, :== {i € I, :
T e Yizar}. Let us check: ZN M = & and for each x € Xo \ Z the rank

tk{d,G;j,d, Pj(x) : T,R™ = R: ie€l,, j=1,...,st =m—d+#I,

and there exists an open Zariski neighborhood U of x in Vi such that Xo NU =
{G1j, -+ Grj. =0} NU for some indices 1 < j1,...,jr < s (depending on x).
Observe first that

MNZ=MnN U Zr=MnXynN U Zr=YnN U Zr = o.
GAICI, GAICI, GAICI,

Fix a point z € Xg\ Z. As x ¢ Z;,, we have
tk{d,Gij,d, P; : T,R™ - R: ie€l,, j=1,...,s} = (m—d) + #I,.
We may assume (after reordering the indices i, j if necessary) that I, := {1,...,e} and
tk{d;G11,...,dxGe1,dz Py, ..., dpPp_q: TR™ - R} = (m —d) +e. (C.1)

Let Z, be the union of the irreducible components of the real algebraic set {G11 -+ Ge1 =
0} different from ?far, .. ,?ezar and observe that {G11 -+ Ge1 = 0}\ Z, = (Uf:1 ?izar)\
Z. Condition (C.1) guarantees that « ¢ Z,. Consider the open Zariski neighborhood

U .= {y eVy: I‘k{dyGll,...,dyGel,dypl,... ;dme—d : TyRm %R} = (m 7d) +6}

\(ZgEuZu O ?ﬁar)

i—=e+1
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of z in Vg \ Z. Observe that Xo NU = (U_,Y; )NU = {G11---Gex = 0} N U, as
required. O
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