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1. Introduction

Although it is usually said that the first work in Real Geometry is due to Harnack [23], 
who obtained an upper bound for the number of connected components of a non-singular 
real algebraic curve in terms of its genus, modern Real Algebraic Geometry was born 
with Tarski’s article [36], where it is proved that the image of a semialgebraic set under a 
polynomial map is a semialgebraic set. A map f := (f1, . . . , fn) : Rm → R

n is polynomial
if its components fk ∈ R[x] := R[x1, . . . , xm] are polynomials. Analogously, f is regular if 
its components can be represented as quotients fk = gk

hk
of two polynomials gk, hk ∈ R[x]

such that hk never vanishes on Rm. A subset S ⊂ R
n is semialgebraic when it has a 

description by a finite boolean combination of polynomial equalities and inequalities, 
which we will call a semialgebraic description. Unless stated otherwise, the topology 
employed in the article is the Euclidean one.

We are interested in studying what might be called the ‘inverse problem’ to Tarski’s re-
sult. In the 1990 Oberwolfach reelle algebraische Geometrie week [22] Gamboa proposed:

Problem 1.1. To characterize the (semialgebraic) subsets of Rn that are either polynomial 
or regular images of Rm.

During the last decade we have attempted to understand better polynomial and reg-
ular images of Rm. Our main objectives have been the following:

• To find obstructions to be either polynomial or regular images.
• To prove (constructively) that large families of semialgebraic sets with piecewise 

linear boundary (convex polyhedra, their interiors, complements and the interiors of 
their complements) are either polynomial or regular images of Euclidean spaces.
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In [9,10] we presented the first step to approach Problem 1.1. In [7] appears a complete 
solution to Problem 1.1 for the 1-dimensional case, whereas in [18,21,12,13,16,15,37,38]
we approached constructive results concerning the representation as either polynomial 
or regular images of the semialgebraic sets with piecewise linear boundary commented 
above. A survey concerning this topic, which provides the reader a global idea of the 
state of the art, can be found in [20]. Articles [19,14] are of different nature. In them we 
find new obstructions for a semialgebraic subset of Rn to be either a polynomial or a 
regular image of Rm. In the first one we found some properties concerning the difference 
Cl(S) \ S for a polynomial image S of Rm whereas in the second it is shown that the set 
of points at infinite of S is a connected set.

The rigidity of polynomial and regular maps makes really difficult to approach Prob-
lem 1.1 in its full generality. Taking into account the flexibility of Nash maps, Gamboa 
and Shiota discussed in 1990 the possibility of approaching the following variant of Prob-
lem 1.1.

Problem 1.2. To characterize the (semialgebraic) subsets of Rn that are Nash images 
of Rm.

A Nash function on an open semialgebraic set U ⊂ R
n is a semialgebraic smooth 

function on U . Recall that a (non-necessarily continuous) map f : S → T is semial-
gebraic if its graph is a semialgebraic set (in particular we assume that both S and T
are semialgebraic sets). Given a semialgebraic set S ⊂ R

n, a Nash function on S is the 
restriction to S of a Nash function on an open semialgebraic neighborhood U ⊂ R

n of S.
In 1990 Shiota outlined to Gamboa and the rest of the Real Geometry team at Madrid 

a vague schedule that sustains the following conjecture (wrongly announced in [22,9] as 
proved by Shiota) in order to provide a satisfactory answer to Problem 1.2.

Conjecture 1.3 (Shiota). Let S ⊂ R
n be a semialgebraic set of dimension d. Then S is a 

Nash image of Rd if and only if S is pure dimensional and there exists an analytic path 
α : [0, 1] → S whose image meets all connected components of the set of regular points 
of S.

The set of regular points of a semialgebraic set S ⊂ R
n is defined as follows. Let X

be the Zariski closure of S in Rn and let X̃ be the complexification of X, that is, the 
smallest complex algebraic subset of Cn that contains X. Define Reg(X) := X \Sing(X̃)
and let Reg(S) be the interior of S \ Sing(X̃) in Reg(X). We will explain this in more 
detail in 2.A.

In 2004 we met again with Shiota and discussed about possible ways to attack his 
conjecture. It was not clear how to follow certain parts of his 1990 schedule and we 
have performed strong variations and substantially simplified the architecture of the 
approach. However, that fruitful meeting was the starting point for the present work 
and some related ones [3,17]. The latter include useful tools for this article concerning:
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(1) Extension of Nash functions on a Nash manifold H with boundary to a Nash manifold 
M of its same dimension that contains H as a closed subset [17].

(2) Approximation results on a Nash manifold relative to a Nash subset with monomial 
singularities [3].

(3) Equivalence of Nash classification and C2 semialgebraic classification for Nash man-
ifolds with boundary [3].

Recall that an (affine) Nash manifold with or without boundary is a pure dimensional 
semialgebraic subset M of some affine space Rm that is a smooth submanifold with or 
without boundary of an open subset of Rm. As all the Nash manifolds with or without 
boundary appearing in this work are affine, we will assume this property when referring 
to Nash manifolds with or without boundary. In addition when we refer to a Nash 
manifold with boundary, we assume that this boundary is smooth and in fact a Nash 
submanifold. The zero set of a Nash function on a Nash manifold M is called a Nash 
subset of M .

1.A. Main results

The main result of this work is Theorem 1.4 that includes a positive solution to Shiota’s 
Conjecture. Its statement requires some preliminary definitions. Let α : [0, 1] → R

n be 
a continuous semialgebraic path. Let A ⊂ (0, 1) be the smallest (finite) subset of (0, 1)
such that the restriction α|(0,1)\A is a Nash map. Denote η(α) := α(A).

A semialgebraic set S ⊂ R
n is well-welded if it is pure dimensional and for each pair 

of points x, y ∈ S there exists a continuous semialgebraic path α : [0, 1] → S such that 
α(0) = x, α(1) = y and η(α) ⊂ Reg(S).

Main Theorem 1.4 (Characterization of Nash images). Let S ⊂ R
n be a semialgebraic 

set of dimension d. The following assertions are equivalent:

(i) S is a Nash image of Rd.
(ii) S is a Nash image of Rm for some m ≥ d.
(iii) S is connected by Nash paths.
(iv) S is connected by analytic paths.
(v) S is pure dimensional and there exists a Nash path α : [0, 1] → S whose image meets 

all the connected components of the set of regular points of S.
(vi) S is pure dimensional and there exists an analytic path α : [0, 1] → S whose image 

meets all the connected components of the set of regular points of S.
(vii) S is well-welded.

The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) and (i) =⇒ (ii) =⇒ (v) =⇒ (vi) are 
straightforward. Only the proof of the non-completely trivial implication (ii) =⇒ ‘S is 
pure dimensional’ requires a comment and it is shown in Corollary 6.3. We will show in 
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Section 7 that a semialgebraic set S satisfying either condition (iii), (iv), (v) or (vi) is 
well-welded. Finally, we will prove in Section 8 that (vii) =⇒ (i). An important milestone 
to prove Theorem 1.4 is the following result, that will be approached in Section 6.

Theorem 1.5. Let H ⊂ R
n be a connected d-dimensional Nash manifold with boundary. 

Then H is a Nash image of Rd.

In Section 3 we treat separately the 1-dimensional case and we characterize 
1-dimensional Nash images of Euclidean spaces in terms of their irreducibility. The 
ring N (S) of Nash functions on a semialgebraic set S ⊂ R

n is a noetherian ring [11, 
Thm.2.9] and we say that S is irreducible if and only if N (S) is an integral domain [11].

Proposition 1.6 (The 1-dimensional case). Let S ⊂ R
n be a 1-dimensional semialgebraic 

set. Then S is a Nash image of some Rm if and only if S is irreducible. In addition, if 
such is the case S is a Nash image of R.

Compare Proposition 1.6 with the more restrictive characterization results for poly-
nomial and regular images of Euclidean spaces [7].

1.B. Two consequences

We present next two remarkable consequences of Theorem 1.4.

1.B.1. Representation of arc-symmetric semialgebraic sets
Arc-symmetric semialgebraic sets were introduced by Kurdyka in [28] and subse-

quently studied by many authors. Recall that a semialgebraic set S ⊂ R
n is arc-symmetric

if for each analytic arc γ : (−1, 1) → R
n with γ((−1, 0)) ⊂ S it holds that γ((−1, 1)) ⊂ S. 

In particular arc-symmetric semialgebraic sets are closed subsets of Rn. An arc-symmetric 
semialgebraic set S ⊂ R

n is irreducible if it cannot be written as the union of two proper 
arc-symmetric semialgebraic subsets [28, §2]. Equivalently, S is irreducible if and only if 
the ring N (S) is an integral domain. It follows from Theorem 1.4 and [28, Cor.2.8] that 
a pure dimensional irreducible arc-symmetric semialgebraic set is a Nash image of Rd

where d := dim(S). In addition, it holds:

Corollary 1.7. Let S ⊂ R
n be a pure dimensional irreducible semialgebraic set of dimen-

sion d whose closure Cl(S) is arc-symmetric. Then S is a Nash image of Rd.

1.B.2. Elimination of inequalities
Tarski–Seidenberg principle on elimination of quantifiers can be restated geometrically 

by saying that the projection of a semialgebraic set is again semialgebraic. A converse 
problem, to find an algebraic set in Rn+k whose projection is a given semialgebraic subset 
of Rn, is known as the problem of eliminating inequalities. Motzkin proved in [30] that 
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this problem always has a solution for k = 1. However, his solution is rather complicated 
and is generally a reducible algebraic set. In another direction Andradas–Gamboa proved 
in [1,2] that if S ⊂ R

n is a closed semialgebraic set whose Zariski closure is irreducible, 
then S is the projection of an irreducible algebraic set in some Rn+k. In [33] Pecker 
gives some improvements on both results: for the first by finding a construction of an 
algebraic set in Rn+1 that projects onto the given semialgebraic subset of Rn, far simpler 
than the original construction of Motzkin; for the second by proving that if S is a locally 
closed semialgebraic subset of Rn with an interior point, then S is the projection of an 
irreducible algebraic subset of Rn+1.

In this article we prove the following result that looks for a non-singular algebraic set 
with the simplest possible topology that projects onto a semialgebraic set.

Corollary 1.8. Let S ⊂ R
n be a semialgebraic set of dimension d. We have:

(i) If S is Nash path-connected, it is the projection of an irreducible non-singular al-
gebraic set X ⊂ R

n+k (for some k ≥ 0) whose connected components are Nash 
diffeomorphic to Rd. In addition:
(1) Each connected component of X projects onto S.
(2) Given any two of the connected components of X there exists an automorphism 

of X that swaps them.
(ii) In general S is the projection of an algebraic set X ⊂ R

n+k (for some k ≥ 0) that is 
Nash diffeomorphic to a finite pairwise disjoint union of affine subspaces of Rd+1.

Even for dimension 1, it is not possible to impose the connectedness of X (see Exam-
ple 10.1 and Remark 10.2).

1.C. Structure of the article

The article is organized as follows. In Section 2 we present some basic notions and 
notations used in this paper as well as some preliminary results. The reader can start 
directly in Section 3 and resort to the Preliminaries only when needed. In Section 3 we 
afford the 1-dimensional case. Its presentation is short and evidences strong differences 
with the polynomial and regular cases [7]. In Sections 4 and 5 we analyze with care 
the main properties of Nash collars, Nash doubles and the drilling blow-up, which is an 
adaptation to the Nash setting of the oriented blow-up [25,6] of a real analytic space with 
center a closed real analytic subspace. We refer the reader to [27, §5] for a presentation 
of the oriented blow-up of a real analytic manifold M with center a closed real analytic 
submanifold N whose vanishing ideal inside M is finitely generated (this happens for 
instance if N is compact). In our case, we take advantage of the noetherianity of the 
ring of Nash functions on a Nash manifold to develop the drilling blow-up and to obtain 
stronger global properties than in the general real analytic case. The previous tools (Nash 
collars, Nash doubles and drilling blow-ups) are the key to build boundaries on Nash 
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manifolds in Proposition 4.1 and to modify the topology of a Nash manifold in order to 
prove Theorem 1.5 in Section 6. We are convinced that the strategy followed to prove 
Theorem 1.5 will have further applications. In Section 7 we study the main properties 
of well-welded semialgebraic sets and we show that a semialgebraic set satisfying any 
of the assertions (iii), (iv), (v) or (vi) in the statement of Theorem 1.4 is well-welded. 
Next, in Section 8 we prove Theorem 1.4. In Section 9 we introduce the concept of Nash 
path-connected components of a semialgebraic set and we prove that each semialgebraic 
set can be (uniquely) written as the (finite) union of its Nash path-components. Finally, 
in Section 10 we prove Corollaries 1.7 and 1.8. The article ends with three Appendices. 
In the first one we present a miscellanea of C2 semialgebraic homeomorphisms between 
intervals that are used in the article whereas in the second we recall certain results 
concerning strict transforms of analytic and Nash paths under finite chains of blow-ups. 
The third Appendix concerns an algebrization result for a Nash normal crossing divisor 
of a Nash manifold.
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2. Preliminaries on semialgebraic sets and Nash manifolds

In this section we introduce many concepts and notation needed in the article. We 
establish the following conventions: M ⊂ R

m and N ⊂ R
n are Nash manifolds. Nash 

subsets of a Nash manifold or algebraic subsets of Rn are denoted with X, Y and Z. 
The semialgebraic sets are denoted with S, T, R, . . . On the other hand, H ⊂ R

m is a 
Nash manifold of dimension d with (smooth) boundary, ∂H is its boundary and Int(H) =
H\∂H is its interior. In addition, Cr semialgebraic and Nash functions on a semialgebraic 
set are denoted with f, g, h, . . . .

Recall some general properties of semialgebraic sets. Semialgebraic sets are closed 
under Boolean combinations and by quantifier elimination they are also closed under 
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projections. Any set defined by a first order formula in the language of ordered fields is 
a semialgebraic set [4, pp. 28, 29]. Thus, the basic topological constructions as closures, 
interiors or boundaries of semialgebraic sets are again semialgebraic. Also images and 
preimages of semialgebraic sets by semialgebraic maps are again semialgebraic. The 
dimension dim(S) of a semialgebraic set S is the dimension of its Zariski closure [4, 
§2.8]. The local dimension dim(Sx) of S at a point x ∈ Cl(S) is the dimension dim(U)
of a small enough open semialgebraic neighborhood U ⊂ Cl(S) of x. The dimension of S
coincides with the maximum of these local dimensions. For any fixed k the set of points 
x ∈ S such that dim(Sx) = k is a semialgebraic subset of S.

2.A. Set of regular points of a semialgebraic set

Let Z ⊂ C
n be a complex algebraic set and let IC(Z) be the ideal of all polynomials 

F ∈ C[x] such that F (z) = 0 for each z ∈ Z. A point z ∈ Z is regular if the localization of 
the polynomial ring C[x]/IC(Z) at the maximal ideal Mz associated to z is a regular local 
ring. In this complex setting the Jacobian criterion and Hilbert’s Nullstellensatz imply 
that z ∈ Z is regular if and only if there exists an open neighborhood U ⊂ C

n of z such 
that U ∩Z is an analytic manifold. We denote Reg(Z) the set of regular points of Z and 
it is an open dense subset of Z. If Z is irreducible, it is pure dimensional and Reg(Z) is a 
connected analytic manifold. In case Z is not irreducible, then the connected components 
of Reg(Z) are finitely many analytic manifolds (possibly of different dimensions). We 
denote Sing(Z) := Z \ Reg(Z) the set of singular points of Z.

Let X ⊂ R
n be a (real) algebraic set and let IR(X) be the ideal of all polynomials 

f ∈ R[x] such that f(x) = 0 for each x ∈ X. A point x ∈ X is regular if the localization 
of R[x]/IR(X) at the maximal ideal mx associated to x is a regular local ring [4, §3.3]. 
Let X̃ ⊂ C

n be the complex algebraic set that is the zero set of the extended ideal 
IR(X)C[x]. We call X̃ the complexification of X. The ideal IC(X̃) coincides with the 
tensorized ideal IR(X) ⊗R C, so X̃ is the smallest complex algebraic subset of Cn that 
contains X and

C[x]/IC(X̃) ∼= (R[x]/IR(X)) ⊗R C.

The localization (R[x]/IR(X))mx
is a regular local ring if and only if so is its complexi-

fication

(R[x]/IR(X))mx
⊗R C ∼= (C[x]/IC(X̃))Mx

.

Thus, the set of regular points of X is Reg(X) = Reg(X̃) ∩ X and its set of singular 
points is Sing(X) := X \ Reg(X) = Sing(X̃) ∩ X. The connected components of the 
open semialgebraic subset Reg(X) of X is a finite union of Nash manifolds (possibly of 
different dimensions).

Let S ⊂ R
n be a semialgebraic set of dimension d. The Zariski closure S

zar of S in Rn

is the smallest algebraic subset of Rn that contains S. We define
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Fig. 1. X : (x2 + zy2)x − y4 = 0.

Reg(S) := IntReg(Szar)(S \ Sing(Szar)) and Sing(S) := S \ Reg(S).

The connected components of the open subset Reg(S) of Szar is a finite union of Nash 
manifolds (possibly of different dimensions) and Sing(S) is a semialgebraic set of dimen-
sion < d, which is closed in S. The set Regk(S) of points of dimension k of Reg(S) is 
either the empty-set or a Nash manifold of dimension k for each k = 0, 1, . . . , d. If S is 
pure dimensional, Reg(S) is a dense subset of S. A point x ∈ S is smooth if there exists 
an open neighborhood U ⊂ R

n of x such that U ∩ S is a Nash manifold. It holds that 
each regular point is a smooth point, but the converse is not always true even if S = X

is a real algebraic set, as it shows the following example.

Example 2.1. Consider the algebraic set X := {(x2 + zy2)x − y4 = 0} ⊂ R
3. The set of 

regular points of X is the difference X \{x = 0, y = 0}, whereas the set of smooth points 
of X is the difference X \ {x = 0, y = 0, z ≤ 0} (see Fig. 1).

To prove that the points of the open half-line {x = 0, y = 0, z < 0} are non-smooth 
we proceed by contradiction. Pick a point p := (0, 0, −a2) ∈ {x = 0, y = 0, z < 0} and 
assume that it is smooth. As the line {x = 0, y = 0} ⊂ X, the vector (0, 0, 1) would 
be tangent to X at p, so the plane z = −a2 would be transversal to X at p. Thus, 
the intersection X ∩ {z = −a2} should be a curve that is smooth at p, but this is a 
contradiction because such curve {(x2 − (ay)2)x − y4 = 0, z = −a2} has three tangent 
lines at p, which are those lines of equations {x − ay = 0}, {x + ay = 0} and {x = 0}
inside the plane {z = −a2}. The origin cannot be a smooth point of X because the set of 
smooth points of X is an open subset of X. Consequently, the set of non-smooth points 
of X contains the closed half-line {x = 0, y = 0, z ≤ 0}. To finish we prove that the 
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points of the open half-line {x = 0, y = 0, z > 0} are smooth. To that end, observe that 
the map ϕ : {(t, s) ∈ R

2 : t > 0} → R
3, (s, t) �→ ((s2 + t2)s2, (s2 + t2)s, t2) is a Nash 

embedding whose image is X ∩ {z > 0}.

The set Sth(S) of smooth points of a semialgebraic set S ⊂ R
n is by [35] a semialgebraic 

subset of Rn (and consequently a Nash submanifold of Rn), which contains Reg(S)
(maybe as a proper subset as it happens in Example 2.1), and it is open in S. The set 
Sthk(S) of points of dimension k of Sth(S) is either the empty-set or a Nash manifold of 
dimension k for each k = 0, 1, . . . , d. Denote NSth(S) := S \Sth(S) the set of non-smooth 
points of S. If X is an algebraic set, Sing(X) is always an algebraic subset of X whereas 
NSth(X) is in general only a semialgebraic subset of X, see Example 2.1.

Remark 2.2. Let S ⊂ R
n be a pure dimensional semialgebraic set such that Szar ⊂ R

n

is a non-singular real algebraic set. Then Reg(S) = IntSzar(S) = Sth(S) and Sing(S) =
NSth(S).

As Szar is a non-singular real algebraic set, Reg(Szar) = S
zar and Sing(Szar) = ∅. 

Thus, as S is pure dimensional, IntSzar(S) = Sth(S) and

Reg(S) = IntReg(Szar)(S \ Sing(Szar)) = IntSzar(S) = Sth(S),

Sing(S) = S \ Reg(S) = S \ Sth(S) = NSth(S).

Using the definition of smooth point one proves readily the following result.

Lemma 2.3. Let M ⊂ R
m and N ⊂ R

n be Nash manifolds and let f : M → N be a Nash 
diffeomorphism. Let S ⊂ M be a semialgebraic set. Then f(Sth(S)) = Sth(f(S)) and 
f(NSth(S)) = NSth(f(S)).

The previous result is no longer true if we consider the set Reg(S) of regular points 
of S instead of Sth(S).

Example 2.4. Consider the semialgebraic set S := {x2 + y2 − y3 = 0} ⊂ R
2 and the Nash 

diffeomorphism

f : R2 → R
2, (x, y) �→ (x(x2 + 1), x2 + 1 + y).

Denote T := {(0, −1)} ∪{y = 0} and observe that f(T) = S, Sing(T) = ∅ and Sing(S) =
{(0, 0)}. Consequently, f(Reg(T)) = f(T) = S 
= Reg(S).

The previous example shows that the sets Reg(S) and Sing(S) depend on how S is 
immersed in an affine space, whereas Lemma 2.3 points out that the sets Sth(S) and 
NSth(S) are subsets of S of intrinsic nature. As we will use in the sequel resolution of 
singularities, we will need to employ the sets Reg(S) and Sing(S) instead of the sets Sth(S)
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and NSth(S) in a large part of the article. However, in the proof of implication (vii) =⇒ (i) 
of Theorem 1.4 we will take advantage of the intrinsic nature of the sets Sth(S) and 
NSth(S). This justifies the introduction of both pairs of concepts: ‘regular/singular’ points 
and ‘smooth/non-smooth’ points. In Lemma 8.3 we show that under certain conditions 
we may embed S in some affine space in order to have Reg(S) = Sth(S) and Sing(S) =
NSth(S).

2.B. Desingularization of algebraic sets

Let X ⊂ Y ⊂ R
n be algebraic sets such that Y is non-singular. Recall that X is a 

normal-crossings divisor of Y if for each point x ∈ Y there exists a regular system of 
parameters x1, . . . , xd for Y at x such that X is given on an open Zariski neighborhood 
of x in Y by the equation x1 · · ·xk = 0 for some k ≤ d. In particular, the irreducible 
components of X are non-singular and have codimension 1 in Y .

A rational map f := (f1, . . . , fn) : Z → R
n on an algebraic set Z ⊂ R

m is regular if 
its components are quotients of polynomials fk := gk

hk
such that Z ∩ {hk = 0} = ∅.

Hironaka’s desingularization results [24] are powerful tools that we will use fruitfully 
in Sections 7 and 8. We recall here the two results we need.

Theorem 2.5 (Desingularization). Let X ⊂ R
n be an algebraic set. Then there exist a 

non-singular algebraic set X ′ ⊂ R
m and a proper regular map f : X ′ → X such that

f |X′\f−1(Sing(X)) : X ′ \ f−1(Sing(X)) → X \ SingX

is a diffeomorphism whose inverse map is also regular.

Remark 2.6. If X is pure dimensional, X \ SingX is dense in X. As f is proper, it is 
surjective.

Theorem 2.7. Let X ⊂ Y ⊂ R
n be algebraic sets such that Y is non-singular. Then 

there exists a non-singular algebraic set Y ′ ⊂ R
m and a proper surjective regular map 

g : Y ′ → Y such that g−1(X) is a normal-crossings divisor of Y ′ and the restriction

g|Y ′\g−1(X) : Y ′ \ g−1(X) → Y \X

is a diffeomorphism whose inverse map is also regular.

2.C. Nash manifolds and Nash normal-crossings divisors

The open semialgebraic subsets of a Nash manifold M ⊂ R
m are a base of the topology 

and therefore Nash functions define a sheaf that we denote with N . In particular, the 
sheaf N induces a notion of Nash function f : U → R over an arbitrary open subset U of 
M possibly not semialgebraic. In case U is an open subset of Rm, Nash means that f is 
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smooth and there exists a nonzero polynomial P (x, t) ∈ R[x, t] = R[x1, . . . , xm, t] such 
that P (x, f(x)) = 0 for all x ∈ U . If U is semialgebraic this definition is equivalent to 
the one in the Introduction [4, Prop.8.1.8]. We apparently have two definitions of Nash 
function f : M → R. Both notions are equal because every Nash manifold has a Nash 
tubular neighborhood.

2.C.1. [4, Cor.8.9.5] Let M ⊂ R
m be a Nash manifold. Then there exists an open 

semialgebraic neighborhood U of M in Rm and a Nash retraction ρ : U → M .
Recall the existence of finite atlas for M with domains Nash diffeomorphic to Rdim(M):

2.C.2. [17, Lem.2.2] A Nash manifold M ⊂ R
m of dimension d admits a finite open 

(semialgebraic) covering M =
⋃r

i=1 Mi by Nash manifolds Mi ⊂ M each of them Nash 
diffeomorphic to Rd.

Let N ⊂ M be a closed Nash submanifold of dimension e. By [34, Cor.II.5.4] N is a 
non-singular Nash subset of M and by [3, Thm.1.4] we have:

2.C.3. The Nash submanifold N can be covered by finitely many open semialgebraic 
subsets U of M equipped with Nash diffeomorphisms u := (u1, . . . , ud) : U → R

d such 
that U ∩N = {u1 = 0, . . . , ud−e = 0}.

It is also possible to construct tubular neighborhoods of N inside M . A Nash (vector) 
bundle over M is a (vector) bundle (E , θ, M) such that E is an (affine) Nash manifold 
and the projection θ : E → M is a Nash map. Examples of Nash bundles are: the trivial 
bundle of M , the tangent bundle of M , the normal bundle of M , etc.

2.C.4. [34, Lem.II.6.2] There exists a Nash subbundle (E , θ, N) of the trivial Nash 
bundle (N × R

m, η, N), a (strictly) positive Nash function δ on N and a Nash diffeo-
morphism ϕ from a semialgebraic neighborhood V of N in M onto

Eδ := {(x, y) ∈ E : ‖y‖ < δ(x)}

such that ϕ|N = (idN , 0). The tuple (V, ϕ, E , θ, N, δ) is a Nash tubular neighborhood of 
N in M and the composition θ ◦ ϕ : V → N is a Nash retraction.

As an application of 2.C.3 it follows a counterpart of 2.C.2 for Nash manifolds with 
boundary:

2.C.5. Let H ⊂ R
m be a d-dimensional Nash manifold with boundary. By [17, 

Thm.1.11] H is a closed subset of a Nash manifold M ⊂ R
m of dimension d in such a 

way that:

(i) ∂H is a closed Nash submanifold of M and so a Nash non-singular subset of M .
(ii) M can be covered with finitely many open semialgebraic subsets U equipped with 

Nash diffeomorphisms (u1, . . . , ud) : U → R
d such that
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{
U ⊂ H or U ∩H = ∅ if Udoes not meet ∂H,

U ∩H = {u1 ≥ 0} if Umeets ∂H.

A Nash normal-crossings divisor of M is a Nash subset X ⊂ M whose irreducible 
components are non-singular Nash hypersurfaces X1, . . . , Xp of M in general position. 
This means that at every point x ∈ Xi1 , . . . , Xir , x /∈ Xi for i 
= i1, . . . , ir, the tangent 
hyperplanes TxXi1 , . . . , TxXir are linearly independent in the tangent space TxM . In 
[17, Thm.1.6] we prove the following:

2.C.6. Let X be a Nash normal-crossings divisor of M . Then X can be covered by 
finitely many open semialgebraic subsets U of M equipped with Nash diffeomorphisms 
(u1, . . . , ud) : U → R

d such that U ∩X = {u1 · · ·ur = 0}, where r depends on U .
Both Nash submanifolds and Nash normal-crossings divisors are particular cases of 

coherent Nash subsets X of M (see [3, §2.B, Lem.5.1]). We can say by [3, §2.B] and [4, 
Prop.8.6.9] that a Nash set X ⊂ M is coherent if the N -sheaf of ideals Jx = I(Xx) for 
x ∈ M is of finite type, that is, for every x ∈ M there exists an open neighborhood U
and a surjective morphism N s|U → J |U . By [3, Eq. (2.2)] it holds that if X ⊂ M is a 
coherent Nash subset, then for any semialgebraic open subset U of M we have

I(X)N (U) = I(X ∩ U) (2.1)

where I(X ∩ U) := {f ∈ N (U) : f |X∩U = 0} and I(X) := I(X ∩M). Consequently, if 
x ∈ X, the ideal I(Xx) = I(X)N (Mx). Conversely, we have [34, (I.6.5)]:

2.C.7. If f1, . . . , fr ∈ N (M) generate I(Xx) for all x ∈ X, then f1, . . . , fr generate 
also I(X). In particular, if f ∈ N (M) satisfies fx ∈ I(Xx) for all x ∈ X, then f ∈ I(X).

2.D. Approximation of differentiable semialgebraic maps by Nash maps

Let M ⊂ R
m be a Nash manifold of dimension d. Denote the set of all continuous 

semialgebraic functions on M with S0(M). For every integer r ≥ 1 we denote the set 
of all semialgebraic functions f : M → R that are differentiable of class r with Sr(M). 
We equip Sr(M) with the Sr semialgebraic Whitney topology [34, §II.1, pp. 79–80]. If 
r ≥ 1, let ξ1, . . . , ξs be semialgebraic Sr−1 tangent fields on M that span the tangent 
bundle of M . For every strictly positive continuous semialgebraic function ε : M → R

we denote the set of all functions g ∈ Sr(M) such that{
|g| < ε if r = 0,
|g| < ε and |ξi1 · · · ξi�(g)| < ε for 1 ≤ i1, . . . , i� ≤ s, 1 ≤ � ≤ r if r ≥ 1

with Uε. These sets Uε form a basis of neighborhoods of the zero function for a topology 
in Sr(M) that does not depend on the choice of the tangent fields if r ≥ 1. The first 
important result is that the inclusion N (M) ⊂ Sr(M) is dense.
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2.D.1. [34, Thm.II.4.1] Every semialgebraic Sr function on M can be approximated 
in the Sr topology by Nash functions.

Let N ⊂ R
n be a Nash manifold. A semialgebraic map f := (f1, . . . , fn) : M →

N ⊂ R
n is Sr if each component fk : M → R is Sr. We denote the set of all Sr maps 

M → N with Sr(M, N). We consider in Sr(M, N) the subspace topology given by the 
canonical inclusion in the following product space endowed with the product topology 
[34, Rmk.II.1.3]:

Sr(M,N) ⊂ Sr(M,Rn) = Sr(M,R) × n· · · × Sr(M,R) : f �→ (f1, . . . , fn).

Roughly speaking, g is close to f when its components gk are close to the components 
fk of f . The previous topologies can be extended to the set Sr(S, T) of Sr semialgebraic 
maps between two semialgebraic sets S and T if S ⊂ M is closed [3, §2.D-E]. This allows 
for instance to provide a topology on the set of Sr maps between two Nash manifolds 
with boundary.

A map h : S → T is an Sr diffeomorphism if it is a bijection and both h and h−1

are Sr maps. Diffeomorphisms between Nash manifolds behave well with respect to 
approximation if r ≥ 1.

2.D.2. [34, Lem.II.1.7] Let h : M → N be an Sr diffeomorphism of Nash manifolds. 
If an Sr map g : M → N is Sr close enough to h, then g is also an Sr diffeomorphism, 
and g−1 is Sr close to h−1.

From this and the existence of Nash tubular neighborhoods (2.C.1) we deduce that 
for all r ≥ 1 every Sr diffeomorphism f : M → N can be approximated by Nash diffeo-
morphisms, hence S1 and Nash classifications coincide for Nash manifolds. In the case of 
Nash manifolds with boundary we proved in [3, Rmk.9.6] that S2 and Nash classifications 
coincide.

2.D.3. Two Nash manifolds with boundary that are S2 diffeomorphic are Nash dif-
feomorphic.

2.D.4. In addition, if f : H1 → H2 is an S2 diffeomorphism between two Nash 
manifolds with boundary and f |∂H1 : ∂H1 → ∂H2 is a Nash diffeomorphism, then there 
exists a Nash diffeomorphism g : H1 → H2 close to f such that g|∂H1 = f |∂H1 .

We will deal in addition with S0 homeomorphisms between Nash manifolds. In this 
case it is not possible to approximate them by Nash diffeomorphisms, but the following 
result allows us to approximate them by Nash surjective maps.

Lemma 2.8. Let M ⊂ R
m and N ⊂ R

n be Nash manifolds and let f : M → N be a 
semialgebraic homeomorphism. Let g : M → N be a semialgebraic map close to f in the 
S0 topology. Then g is surjective.
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Proof. We adapt the proof of [26, Thm.2.1.8]. By [34, Rmk.II.1.15] the map

f−1
∗ : S0(M,N) → S0(M,M), h �→ f−1 ◦ h

is continuous. Thus, if g is close to f , then f−1 ◦ g is close to idM . If we prove that each 
g′ ∈ S0(M, M) close to the identity is surjective, then each g close to f will satisfy that 
f−1 ◦ g is surjective, so g is surjective.

By [34, Thm.VI.2.1] there exist a compact affine non-singular algebraic set X, a non-
singular algebraic subset Y of X that either has codimension 1 if M is non-compact
or is empty if M is compact and a union M ′ of some connected components of X \ Y

such that M is Nash diffeomorphic to M ′ and Cl(M ′) is a compact Nash manifold with 
boundary Y . Let ε be a non-negative Nash equation of Y in X and let h ∈ S0(M ′, M ′) be 
such that ‖h − idM ′ ‖ < ε|M ′ . We claim: h extends continuously to X \M ′ as the identity 
map idX\M ′ . It is enough to check: if {zk}k≥1 ⊂ M ′ tends to y ∈ Y , then {h(zk)}k tends 
to y.

Indeed, ‖h(zk) − zk‖ < ε(zk) for each k ≥ 1. As {zk}k tends to y ∈ Y , we have that 
{ε(zk)}k tends to 0, so {h(zk)}k tends to y, as claimed.

Consider next the continuous semialgebraic map

H : X → X, x �→
{
h(x) if x ∈ M ′,

x if x ∈ X \M ′.

It satisfies

‖H(x) − idX(x)‖
{
< ε(x) if x ∈ M ′,

= 0 if x ∈ X \M ′.

As X is compact, we know by [26, Thm.2.1.8] that there exists δ > 0 such that if 
ξ : X → X is a continuous map and ‖ξ − idX ‖ < δ, then ξ is surjective. Consequently, 
if h ∈ S0(M ′, M ′) satisfies ‖h − idM ′ ‖ < min{ε, δ}, then H : X → X is surjective. 
Let us check that also h ∈ S0(M ′, M ′) is surjective. Pick a point y ∈ M ′. Then there 
exists x ∈ X, such that H(x) = y. If x ∈ X \M ′, then H(x) = x ∈ X \M ′, which is a 
contradiction. So x ∈ M ′ and h(x) = H(x) = y, that is, h is surjective, as required. �
2.E. Modification of analytic arcs by Nash arcs

The handling of well-welded semialgebraic sets in Section 7 requires the modification 
of analytic arcs by Nash arcs that avoid certain algebraic sets. To that end we will use 
the following result:

Lemma 2.9. Let M ⊂ R
m be a connected Nash manifold and let Y ⊂ R

m be an algebraic 
set. Let M1, M2 be open semialgebraic subsets of M and let α : (−1, 1) → M1 ∪M2 ∪{0}
be an analytic arc such that α(0) = 0, α((0, 1)) ⊂ M1 and α((−1, 0)) ⊂ M2. Assume that 
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M 
⊂ Y . Then for every integer ν ≥ 1 there exist ε > 0 and a Nash arc β : (−ε, ε) →
M1 ∪M2 ∪ {0} such that:

(i) β(0) = 0, α(t) − β(t) ∈ (t)νR{t}m,
(ii) β((−ε, ε)) ∩ Y ⊂ {0},
(iii) β((0, ε)) ⊂ M1 and β((−ε, 0)) ⊂ M2.

Proof. For simplicity we can assume M1 ∩ M2 = ∅, 0 /∈ M1 ∪ M2 and 0 ∈ Y . Let 
V ⊂ M be an open semialgebraic neighborhood of the origin equipped with a Nash 
diffeomorphism ϕ : V → R

d such that ϕ(0) = 0. Shrinking the domain of α, we may 
assume Im(α) ⊂ V . Denote α̂ := ϕ ◦ α : (−δ, δ) → R

d where δ > 0 is small enough.
Shrinking Mi, V and the domain of α̂, we may assume that 0 /∈ ϕ(Mi ∩ V ) and 

ϕ(Mi ∩ V ) = {g1i > 0, . . . , g�i > 0} for some polynomials gji ∈ R[x]. There exists s ≥ ν

large enough such that if γ ∈ R{t}d and γ− α̂ ∈ (t)sR{t}d, we have (gj1 ◦γ)(t) > 0 and 
(gj2 ◦ γ)(−t) > 0 for t > 0 small enough and j = 1, . . . , �. Let γ ∈ R[t]d be a polynomial 
tuple such that γ − α̂ ∈ (t)sR{t}d.

As Y ∩ V has dimension < d, also the algebraic set Y ′ := ϕ(Y ∩ V )
zar

has dimension 
< d. Let h ∈ R[x] be a polynomial equation of Y ′. Consider the surjective polynomial 
map

R× R
d → R

d, (t, y) �→ γ(t) + ts+1y.

Let y0 ∈ R
d be such that the univariate polynomial h(γ(t) + ts+1y0) ∈ R[t] is not 

identically zero. Let ε > 0 be such that γ0(t) := γ(t) + ts+1y0 ∈ R[t]d satisfies

gj1(γ0(t)) > 0, gj2(γ0(−t)) > 0, h(γ0(t)) 
= 0 and h(γ0(−t)) 
= 0

for 0 < t < ε. The Nash arc β := ϕ−1 ◦γ0 : (−ε, ε) → M1∪M2∪{0} satisfies the required 
properties. �
3. A light start-up: the 1-dimensional case

In this short section we prove Proposition 1.6 and present some enlightening examples. 
Nash images of Euclidean spaces contained in the real line are its intervals and all of 
them are Nash images of R. To be convinced of this fact it is enough to have a look at 
the following examples.

Examples 3.1. (i) The interval (0, 1) is Nash diffeomorphic to R. Consider the Nash 
diffeomorphism (together with its inverse):

f : R → (0, 1), t �→ t

2
√

1 + t2
+ 1

2 and f−1 : (0, 1) → R, t �→ 2t− 1
2
√
t(1 − t)

.

In addition f((0, +∞)) = (1 , 1) and f([0, +∞)) = [ 1 , 1).
2 2
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(ii) The interval [0, 1) is the image of the Nash map

h1 : R → R, t �→ t2

t2 + 1 ,

whereas [0, 1] is the image of the Nash map

h2 : R → R, t �→ t

t2 + 1 + 1
2 .

Nash images of Euclidean spaces contained in a circumference are its connected subsets 
and all of them are Nash images of R.

Examples 3.2. (i) The circumference S1 : x2 + y2 = 1 is a Nash image of R. Consider 
the inverse of the stereographic projection from the point (1, 0), which is the map

f : R → S
1 \ {(1, 0)}, t �→

(1 − t2

1 + t2
,

2t
1 + t2

)
.

Next, we identify R2 with C and the coordinates (x, y) with x +
√
−1y. Consider the 

map

g : C → C, z := x +
√
−1y �→ z2 = (x2 − y2) +

√
−1(2xy).

The image of R under g ◦ f is S1.
(ii) Any connected proper subset S of S1 is a Nash image of R because it is Nash 

diffeomorphic to either (0, 1), [0, 1) or [0, 1] and these are Nash images of R.

We are ready to prove Proposition 1.6.

Proof of Proposition 1.6. Assume S is irreducible. Let X be the Zariski closure of S in 
R

n and let X̃ be its complexification. Let (Ỹ , π) be the normalization of X̃ and let σ̂
be the involution of Ỹ induced by the involution σ of X̃ that arises from the restriction 
to X̃ of the complex conjugation in Cn. We may assume that Ỹ ⊂ C

m and that σ̂ is 
the restriction to Ỹ of the complex conjugation of Cm. By [11, Thm.3.15] and since S
is irreducible, π−1(S) has a 1-dimensional connected component T such that π(T) = S. 
As X has dimension 1, it is a coherent analytic set, so T ⊂ Y := Ỹ ∩ R

m. As Ỹ
is a normal-curve, Y is a non-singular real algebraic curve. We claim: the connected 
components of Y are Nash diffeomorphic either to S1 or to the real line R.

By [34, Thm.VI.2.1] there exist a compact affine non-singular real algebraic curve Z, 
a finite set F which is empty if Y is compact and a union Y ′ of some connected compo-
nents of Z \ F such that Y is Nash diffeomorphic to Y ′ and Cl(Y ′) is a compact Nash 
curve with boundary F . As Z is a compact affine non-singular real algebraic curve, its 
connected components are diffeomorphic to S1, so by [34, Thm.VI.2.2] the connected 
components of Z are in fact Nash diffeomorphic to S1. Now, each connected component 
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of Y is Nash diffeomorphic to an open connected subset of S1, so it is Nash diffeomorphic 
either to S1 or to the real line R, as claimed.

Consequently, T is Nash diffeomorphic to a connected subset of either S1 or R. By 
Examples 3.1 and 3.2 the semialgebraic set T is a Nash image of R, so also S is a Nash 
image of R. The converse is straightforward. �
4. Building boundaries on Nash manifolds

The purpose of this section is to develop a tool to build boundaries on a non-compact 
Nash manifold. More precisely we will prove the following.

Proposition 4.1. Let H ⊂ R
m be a Nash manifold with boundary. Then there exists 

a surjective Nash map f : Int(H) → H that has local representations of the type 
(x1, . . . , xd) �→ (x2

1, x2, . . . , xd) at each point of f−1(∂H).

In order to ease the understanding of the strategy followed to prove Proposition 4.1
we refer the reader to Fig. 2 (b). This proof requires the use of Nash collars and Nash 
doubles of a Nash manifold with boundary H (see Fig. 2 (a)). These constructions for H
compact are a common tool in Nash Geometry [34, §VI] but as far as we know there is 
no explicit reference to them in the literature when H is non-compact. In 4.A we afford 
the construction of Nash collars when H is non-necessarily compact. In 4.B we endow 
the (smooth) double of H with a Nash manifold structure. The resulting Nash manifold 
D(H) is called the Nash double of H. Its construction requires a Nash equation of ∂H
that is strictly positive on Int(H) and has rank 1 at the points of ∂H.

4.A. Nash collars

Let H ⊂ R
m be a Nash manifold with boundary ∂H. A Nash collar of ∂H is an 

open semialgebraic neighborhood W ⊂ H of ∂H equipped with a Nash diffeomorphism 
ψ : W → ∂H × [0, 1) such that ψ(x) = (x, 0) for all x ∈ ∂H. We recall next how Nash 
collars are constructed. For the smooth case see [31, Thm.I.5.9].

Lemma 4.2. Let M ⊂ R
m be a Nash manifold of dimension d and let N ⊂ M be a Nash 

submanifold of dimension d −1. Let U ⊂ M be an open semialgebraic neighborhood of N
and ρ : U → N a Nash retraction. Let h be a Nash function on U such that {h = 0} = N

and dxh : TxM → R is surjective for all x ∈ N . Consider the Nash map ϕ := (ρ, h) :
U → N × R. Then there exist an open semialgebraic neighborhood V ⊂ U of N and a 
strictly positive Nash function ε on N such that ϕ(V ) = {(x, t) ∈ N × R : |t| < ε(x)}
and ϕ|V : V → ϕ(V ) is a Nash diffeomorphism.

Proof. We show first: The derivative dxϕ = (dxρ, dxh) : TxM → TxN × R is an iso-
morphism for all x ∈ N . As dim(TxM) = dim(TxN × R), it is enough to show: dxϕ is 
surjective.
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Fig. 2. (a) Nash double of H and (b) surjective Nash map f : Int(H) → H.

As ϕ|N = (idN , 0), we have dxϕ|TxN = (idTxN , 0), so TxN × {0} ⊂ Im(dxϕ). In 
addition dxh : TxM → R is surjective, so there exists v ∈ TxM such that dxh(v) = 1. 
Thus, dxϕ(v) = (dxρ(v), 1) and dxϕ is surjective.

Let U ′ := {x ∈ U : dxϕ is an isomorphism}, which is an open semialgebraic neigh-
borhood of N in U . Thus, ϕ|U ′ : U ′ → N × R is an open map and ϕ(U ′) is an open 
semialgebraic neighborhood of N ×{0} in N ×R. As ϕ|U ′ : U ′ → ϕ(U ′) is a local home-
omorphism and ϕ|N = (idN , 0) is a homeomorphism (onto its image), there exist by [3, 
Lem.9.2] open semialgebraic neighborhoods U ′′ ⊂ U ′ of N and W ⊂ N × R of N × {0}
such that ϕ|U ′′ : U ′′ → W is a semialgebraic homeomorphism.

Consider the strictly positive semialgebraic map

δ : N → (0,+∞), x �→ dist((x, 0), (N × R) \W ).

By 2.D.1 there exists a strictly positive Nash function ε on N such that 1
2δ < ε < δ. 

Consider the open semialgebraic neighborhood W ′ := {(x, t) ∈ N ×R : |t| < ε(x)} ⊂ W

of N × R and define V := (ϕ|U ′′)−1(W ′). The restriction ϕ|V : V → W ′ is a Nash 
diffeomorphism, as required. �
Lemma 4.3. Let H ⊂ R

m be a d-dimensional Nash manifold with boundary ∂H. Let 
M ⊂ R

m be a Nash manifold of dimension d that contains H as a closed subset. Then 
there exist an open semialgebraic neighborhood M ′ ⊂ M of H and a Nash equation h of 
∂H in M ′ such that Int(H) = {h > 0} and dxh : TxH → R is surjective for all x ∈ ∂H.

Proof. We may assume ∂H 
= ∅. The proof is conducted in several steps:

4.A.1. We construct first an S2 semialgebraic function h0 on M such that ∂H ⊂
{h0 = 0} and dxh0(v) > 0 for each x ∈ ∂H and each non-zero vector v ∈ TxM pointing 
‘inside M ’.

By 2.C.5 we can cover ∂H with finitely many open semialgebraic subsets Ui of M
that are equipped with Nash diffeomorphisms ui := (ui1, . . . , uid) : Ui → R

d such that 
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Ui∩H = {ui1 ≥ 0} for i = 1, . . . , r. Let {θi}r+1
i=1 be an S2 partition of unity subordinated 

to the finite covering {Ui}ri=1 ∪ {M \ ∂H} of M and consider the S2 function h0 :=∑r
i=1 θiui1. It holds ∂H ⊂ {h0 = 0}.
Fix x ∈ ∂H and let v ∈ TxM be a non-zero vector pointing ‘inside M ’, that is, 

dxui1(v) > 0 if x ∈ Ui. We have

dxh0 =
∑
x∈Ui

ui1(x)dxθi +
∑
x∈Ui

θi(x)dxui1 =
∑
x∈Ui

θi(x)dxui1 �
dxh0(v) =

∑
x∈Ui

θi(x)dxui1(v) > 0

because 
∑

x∈Ui
θi(x) = 1, θi(x) ≥ 0 and dxui1(v) > 0 if x ∈ Ui.

4.A.2. By [3, Prop.8.2] there exists a Nash function h1 on M close to h0 in the S2

topology such that ∂H ⊂ {h1 = 0} and dxh1(v) > 0 for each x ∈ ∂H and each non-zero 
vector v ∈ TxM pointing ‘inside M ’. We claim: there exists an open semialgebraic neigh-
borhood W ⊂ M of ∂H such that {h1 > 0} ∩W = Int(H) ∩W and {h1 = 0} ∩W = ∂H.

Pick a point x ∈ ∂H and assume x ∈ U1. As h1 vanishes identically at ∂H, we may 
write h1|U1 = u11a1 where a1 is a Nash function on U1. Pick y ∈ ∂H ∩ U1 and observe 
that dyh1 = a1(y)dyu11. Let v ∈ TyM be a non-zero vector pointing ‘inside M ’. As 
dyu11(v) > 0 and dyh1(v) > 0, we deduce a1(y) > 0. Define W1 := {a1 > 0} ⊂ U1 and 
notice that ∂H∩U1 ⊂ W1, {h1 > 0} ∩W1 = Int(H) ∩W1 and {h1 = 0} ∩W1 = ∂H∩W1. 
Construct analogously W2, . . . , Wr and observe that W :=

⋃r
i=1 Wi satisfies the required 

properties.

4.A.3. Next, we construct h. If W = M , it is enough to set h := h1. Suppose W 
= M . 
Let ε0 be a (continuous) semialgebraic function whose value is 1 on ∂H and −1 on M \W . 
Let ε be a Nash approximation of ε0 such that |ε − ε0| < 1

2 . Then

ε(x)
{
> 1

2 if x ∈ ∂H,
< −1

2 if x ∈ M \W .

Thus, {ε > 0} ⊂ W is an open semialgebraic neighborhood of ∂H. By [34, Prop.II.5.3]
∂H is a Nash subset of M . Let f be a Nash equation of ∂H in M . Substituting f by 

f2

ε2+f2 we may assume that f is non-negative and f(x) = 1 if ε(x) = 0.
Consider the (continuous) semialgebraic function on M given by

δ(x) :=
{

1 if ε(x) > 0,
1

f2(x) if ε(x) ≤ 0.

Let g be a Nash function on M such that δ < g2. Consider the Nash function
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h := h1 + f2g2(h2
1 + 1)

and let us prove that it satisfies the required conditions.

4.A.4. We claim: h is positive on Int(H).
Let x ∈ Int(H). If h1(x) > 0, then h(x) > 0. If h1(x) ≤ 0, then ε(x) ≤ 0 and

h(x) = h1(x) + g2(x)f2(x)(h2
1(x) + 1)

> h1(x) + 1
f2(x)f

2(x)(h2
1(x) + 1) = h2

1(x) + h1(x) + 1 > 0.

4.A.5. It holds: {h = 0} ∩W = ∂H, {h > 0} ∩W = Int(H) ∩W and dxh : TxH → R

is surjective for all x ∈ ∂H.
Recall that W =

⋃r
i=1 Wi and fix i = 1. We have seen in 4.A.2 that there exists a 

Nash function a1 on U1 such that h1|U1 = u11a1 and ∂H ∩ U1 ⊂ W1 := {a1 > 0}. As 
f vanishes identically at ∂H, we deduce that f |U1 = u11b1 where b1 is a Nash function 
on U1. Consequently,

h|U1 = u11a1 + g2|U1u
2
11b

2
1(u2

11a
2
1 + 1) = u11(a1 + g2|U1u11b

2
1(u2

11a
2
1 + 1))

and dxh = a1(x)dxu11 = dxh1 ∀x ∈ ∂H ∩ U1.

Define W ′
1 := {a1 + g2|U1u11b

2
1(u2

11a
2
1 + 1) > 0} ∩ W1, which is an open semialgebraic 

subset of M . We have ∂H ∩ U1 ⊂ W ′
1 and {h > 0} ∩ W ′

1 = Int(H) ∩ W ′
1. Construct 

analogously W ′
2, . . . , W

′
r and observe that W ′ :=

⋃r
i=1 W

′
i ⊂ M is an open neighborhood 

of ∂H that satisfies {h = 0} ∩W ′ = ∂H, {h > 0} ∩W ′ = Int(H) ∩W ′ and dxh : TxH → R

is surjective for all x ∈ ∂H.
Consequently, M ′ := Int(H) ∪W ′ satisfies the required conditions. �

Lemma 4.4. Let H ⊂ R
m be a d-dimensional Nash manifold with boundary ∂H. Then 

every semialgebraic neighborhood U ⊂ H of ∂H contains a Nash collar (W, ψ) of ∂H
in H.

Proof. By 2.C.5 there exists a Nash manifold M ⊂ R
m of dimension d that contains H

as a closed subset and such that ∂H is a Nash submanifold of M of dimension d −1. Let 
U ′ ⊂ M be an open semialgebraic neighborhood of ∂H such that U ′ ∩H = U .

As ∂H is a Nash manifold without boundary, there exists a Nash tubular neighborhood 
A of ∂H in Rm together with a Nash retraction ρ : A → ∂H. Substituting U ′ by U ′ ∩A, 
we may assume U ′ ⊂ A. By Lemma 4.3 we can shrink M to have a Nash equation h
of ∂H in M such that {h > 0} ∩M = Int(H) and dxh : TxH → R is surjective for all 
x ∈ ∂H. Denote

ϕ := (ρ|U ′ , h|U ′) : U ′ → ∂H × R.
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By Lemma 4.2 there exists an open semialgebraic neighborhood V ⊂ U ′ of ∂H and a 
strictly positive Nash function ε on ∂H such that ϕ(V ) = {(y, t) ∈ ∂H ×R : |t| < ε(y)}
and ϕ|V : V → ϕ(V ) is a Nash diffeomorphism. Consider the Nash diffeomorphism

ψ : V → ∂H × (−1, 1), x �→
(
ρ(x), h(x)

ε(ρ(x))

)
and W := ψ−1(∂H × [0, 1)) ⊂ U ′ ∩H. The restriction ψ|W : W → ∂H × [0, 1) provides 
a collar of ∂H such that W ⊂ U , as required. �
4.B. Nash doubles

Let H ⊂ R
m be a d-dimensional Nash manifold with boundary ∂H. Let h be a Nash 

equation of ∂H such that Int(H) = {h > 0} and dxh : TxH → R is surjective for all 
x ∈ ∂H (see Lemma 4.3). We have:

4.B.1. D(H) := {(x, t) ∈ H ×R : t2 − h(x) = 0} is a Nash manifold of dimension d
that contains ∂H × {0} as the Nash subset {t = 0}.

Proof. The semialgebraic set D(H) satisfies

D(H) \ (∂H × {0}) = {(x, t) ∈ Int(H) × R : t = ±
√

h(x)},

which is the union of two disjoint graphs of Nash functions on the Nash manifold Int(H). 
Consequently, it is enough to show: for each (x0, 0) ∈ ∂H × {0} there exists an open 
semialgebraic neighborhood W ⊂ D(H) of (x0, 0) such that W is a Nash manifold.

Let M ′ ⊂ R
m be a Nash manifold of dimension d that contains H as a closed subset. 

Pick a point x0 ∈ ∂H and let U ⊂ M ′ be an open semialgebraic neighborhood of x0
equipped with a Nash diffeomorphism u := (u1, . . . , ud) : U → (−1, 1) × R

d−1 such 
that u(x0) = 0 and U ∩ H = {u1 ≥ 0}. We may assume u1 = h|U . Observe that 
V := (U ∩H) × R is an open semialgebraic subset of H × R and

W := D(H) ∩ V = {(x,±
√
h(x)) : x ∈ U ∩H}

is an open semialgebraic neighborhood of (x0, 0) in D(H). Consider the Nash map

u′ := (u′
1, . . . , u

′
d) : W → (−1, 1) × R

d−1, (x, t) �→ (t, u2(x), . . . , ud(x))

and let us check that it is a Nash diffeomorphism. As

(u′
2, . . . , u

′
d)(W ) = (u2, . . . , ud)(U ∩H) = R

d−1,

we have u′(W ) = (−1, 1) × R
d−1, so u′ is surjective.
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Pick (x1, t1), (x2, t2) ∈ W such that u′(x1, t1) = u′(x2, t2). Then t1 = t2, so

u1(x1) = h(x1) = t21 = t22 = h(x2) = u1(x2)

and u(x1) = u(x2). As u is injective, we have x1 = x2, so (x1, t1) = (x2, t2). Thus, u′ is 
injective. Denote u−1 := φ := (φ1, . . . , φm). The inverse of u′ is the Nash map

ζ : (−1, 1) × R
d−1 → W, (t, y′) := (t, y2, . . . , yd) �→ (φ(t2, y′), t).

The differential of ζ at a point (t, y′) ∈ (−1, 1) × R
d−1 is⎛⎜⎜⎜⎜⎝

2t∂φ1
∂y1

(t2, y′) ∂φ1
∂y2

(t2, y′) · · · ∂φ1
∂yd

(t2, y′)
...

...
. . .

...
2t∂φm

∂y1
(t2, y′) ∂φm

∂y2
(t2, y′) · · · ∂φm

∂yd
(t2, y′)

1 0 · · · 0

⎞⎟⎟⎟⎟⎠
and it has rank d. Consequently, u′ is a Nash diffeomorphism as required. �

4.B.2. Consider the surjective Nash map π : D(H) → H, (x, t) → x and write ε = ±. 
We have:

(i) The restriction π|D(H)∩{εt>0} : D(H) ∩{εt > 0} → Int(H) is a Nash diffeomorphism.
(ii) π(x, 0) = x for all (x, 0) ∈ ∂H × {0} = D(H) ∩ {t = 0}.
(iii) π has local representations (y1, . . . , yd) �→ (y2

1 , y2, . . . , yd) at each point of D(H) ∩
{t = 0}.

Proof. (i) The intersection D(H) ∩ {εt > 0} is the graph of the strictly positive Nash 
function ε

√
h on Int(H). Consequently π|D(H)∩{εt>0} : D(H) ∩ {εt > 0} → Int(H) is 

Nash diffeomorphism.
Statement (ii) is evident.
(iii) Consider the Nash diffeomorphism u′ constructed in the proof of 4.B.1 and its 

inverse ζ. We have

(−1, 1) × R
d−1 ζ→ W

π→ H ∩ U
u→ (−1, 1) × R

d−1,

(t, y′) �→ (φ(t2, y′), t) �→ φ(t2, y′) �→ (t2, y′),

as required. �
4.B.3. H is Nash diffeomorphic to Hε := D(H) ∩ {εt ≥ 0} for ε = ± and D(H) is 

a Nash manifold structure for the double of H. In addition, the Nash map τ : D(H) →
D(H), (x, t) �→ (x, −t) is an involution such that τ(H+) = H− and whose set of fixed 
points is ∂H × {0}.
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Proof. The proof is conducted in several steps:
Step 1. To prove that Hε and H are Nash diffeomorphic we need to construct first 
suitable neighborhoods U ⊂ H of ∂H and V ⊂ D(H) of ∂H × {0}.

Let U ⊂ H be an open semialgebraic neighborhood of ∂H equipped with a Nash 
retraction ρ : U → ∂H. Define ϕ := (ρ, h) : U → ∂H×R. By Lemma 4.2 we may assume 
there exists a strictly positive Nash function ε on ∂H such that

ϕ(U) = {(y, s) ∈ ∂H × R : 0 ≤ s < ε(y)}

and ϕ : U → ϕ(U) is a Nash diffeomorphism.
Let V := π−1(U) and V ′ := {(y, t) ∈ ∂H × R : |t| <

√
ε(y)}. We claim: The Nash 

map

ψ : V → ∂H × R, (x, t) �→ (ρ(x), t) (4.1)

is a Nash diffeomorphism onto its image V ′.
(1) ψ is injective. If (x1, t1), (x2, t2) ∈ V satisfy ψ(x1, t1) = ψ(x2, t2), then ρ(x1) =

ρ(x2) and h(x1) = t21 = t22 = h(x2). Consequently, ϕ(x1) = ϕ(x2), so x1 = x2. Thus, 
(x1, t1) = (x2, t2).

(2) ψ(V ) = V ′. Pick (x, t) ∈ V . Then x ∈ U and ϕ(x) = (ρ(x), h(x)) ∈ ϕ(U), so 
t2 = h(x) < ε(ρ(x)) and ψ(x, t) ∈ V ′. Conversely, let (y, t) ∈ V ′. As (y, t2) ∈ ϕ(U), there 
exists x ∈ U such that ϕ(x) := (ρ(x), h(x)) = (y, t2). Then (x, t) ∈ V and ψ(x, t) :=
(ρ(x), t) = (y, t).

(3) The derivative dzψ : TzD(H) → Tρ(z)∂H × R is an isomorphism for each z ∈ V . 
Write z := (x, t) and notice that TzD(H) = {(v, r) ∈ TxH × R : dxh(v) − 2tr = 0} and 
dzψ(v, r) = (dxρ(v), r). If t 
= 0,

dzψ(v, r) =
(
dxρ(v),

1
2tdxh(v)

)
.

As dxϕ = (dxρ, dxh) is an isomorphism, also dzψ is an isomorphism. If t = 0, that is, 
z = (x, 0) ∈ ∂H × R, then TzD(H) = {(v, r) ∈ TxH × R : dxh(v) = 0} = Tx∂H × R

and dzψ(v, r) = (v, r) because ρ|∂H = id∂H . Consequently, dzψ is an isomorphism also 
in this case.
Step 2. Define

H• := H \ ϕ−1
({

(y, s) ∈ ∂H × R : 0 ≤ |s| < ε(y)
4

})
,

H•
ε := Hε \ ψ−1

({
(y, s) ∈ ∂H × R : 0 ≤ |s| <

√
ε(y)
2

})
,

and let us show: The restriction �ε := π|H•
ε

: H•
ε → H• is a Nash diffeomorphism.

Indeed, �ε is clearly injective. Let x ∈ H•. As x ∈ Int(H), we have h(x) > 0 and 
write t := ε

√
h(x). It holds that (x, t) ∈ D(H) and π(x, t) = x. We want to check that 
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(x, t) ∈ H•
ε . If x /∈ U , then (x, t) ∈ Hε \ V ⊂ H•

ε . If x ∈ U , then ψ(x, t) = (ρ(x), t). As 
x ∈ H•, it holds ε(ρ(x))

4 ≤ h(x), so 
√

ε(ρ(x))
2 ≤

√
h(x) = εt. Consequently, (x, t) ∈ H•

ε

and �ε is surjective. In addition, by 4.B.2(i) dz�ε = dzπ is an isomorphism for each 
z ∈ H•

ε ⊂ D(H) ∩ {εt > 0}. Consequently, �ε is a Nash diffeomorphism.
Step 3. H• is Nash diffeomorphic to H and H•

ε is Nash diffeomorphic to Hε. By 2.D.3
it is enough to show that the pairs of objects above are S2 diffeomorphic.

As τ is an involution such that τ(H+) = H−, we assume ε = +. Denote

U ′ := {(y, s) ∈ ∂H × R : 0 ≤ s < ε(y)},
W ′ := {(y, t) ∈ ∂H × R : 0 ≤ t <

√
ε(y)},

W ′′ := {(y, t) ∈ ∂H × R : 0 ≤ −t <
√
ε(y).

Observe that U = ϕ−1(U ′), V = ψ−1(W ′ ∪W ′′) and set W := ψ−1(W ′). Consider the 
Nash diffeomorphisms

Λ : U ′ → ∂H × [0, 1), (y, s) �→
(
y,

s

ε(y)

)
,

Δ : W ′ → ∂H × [0, 1), (y, t) �→
(
y,

t√
ε(y)

)
.

Observe that (Λ ◦ ϕ)(H• ∩ U) = ∂H × [ 14 , 1) and (Δ ◦ ψ)(H•
+ ∩W ) = ∂H × [ 12 , 1).

Let f1 : [ 14 , 1) → [0, 1) and f2 : [ 12 , 1) → [0, 1) be S2 diffeomorphisms such that 
f1|[ 34 ,1) = id[ 34 ,1) and f2|[ 34 ,1) = id[ 34 ,1) (see Examples A.1(i) and (ii) in Appendix A). 
Consider the S2 diffeomorphisms

F1 : ∂H × [ 14 , 1) → ∂H × [0, 1), (y, t) �→ (y, f1(t)),

F2 : ∂H × [ 12 , 1) → ∂H × [0, 1), (y, t) �→ (y, f2(t))

It holds Fi|∂H×[ 34 ,1) = id∂H×[ 34 ,1) for i = 1, 2. Denote again ϕ and ψ the respective 
restrictions of these Nash maps to U and W . Define

g : H• → H, x �→
{
x if x ∈ H• \ U,

(Λ ◦ ϕ)−1(F1((Λ ◦ ϕ)(x))) if x ∈ H• ∩ U ,

g+ : H•
+ → H+, z �→

{
z if z ∈ H•

+ \W,

(Δ ◦ ψ)−1(F2((Δ ◦ ψ)(z))) if z ∈ H•
+ ∩W .

Both g and g+ are S2 diffeomorphisms.
Step 4. Consequently, both H+ and H− = τ(H+) are Nash diffeomorphic to H and have 
as common boundary ∂H × {0}. In addition τ |∂H×{0} = id∂H×{0}, so D(H) is by [31, 
§I.6] the double of H. �
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4.B.4. There exists an open semialgebraic neighborhood V of ∂H×{0} in D(H) such 
that Mε := Hε ∪ V is a Nash manifold Nash diffeomorphic to Int(H) that contains Hε

as a closed subset. In particular π(Mε) = H.

Proof. Define V ′ := {(y, s) ∈ ∂H × R : |s| <
√
ε(y)} and V := ψ−1(V ′) where ψ is the 

Nash map defined in (4.1). Consider the Nash diffeomorphism

Θ : V ′ → ∂H × (−1, 1), (y, s) →
(
y,

s√
ε(y)

)
.

By 4.B.3 it is enough to show that Mε := Hε ∪ V and Int(Hε) are Nash diffeomorphic. 
As τ is an involution such that τ(H−) = H+, we assume ε = −. By 2.D.3 it is enough 
to show that the objects above are S2 diffeomorphic.

Let f3 : (−1, 1) → (−1, 0) be an S2 diffeomorphism such that f3|(−1,− 1
2 ] = id(−1,− 1

2 ]
(see Example A.1(iii)). Consider the S2 diffeomorphism

F3 : ∂H × (−1, 1) → ∂H × (−1, 0), (y, t) �→ (y, f3(t))

and define

h : M− → Int(H−), z �→
{
z if z ∈ M− \ V ,

(Θ ◦ ψ)−1(F3((Θ ◦ ψ)(z))) if x ∈ V ,

which is an S2 diffeomorphism.
Observe H− ⊂ M− and H = π(H−) ⊂ π(M−) ⊂ π(D(H)) ⊂ H, as required. �

4.C. Proof of Proposition 4.1

Let D(H) be the Nash double of H. By 4.B.4 there exist

• a Nash manifold M− ⊂ D(H) such that H− ⊂ M− is a closed subset and π(M−) = H,
• a Nash diffeomorphism g : Int(H) → M−.

Let us check that f := π ◦ g satisfy the required conditions. First f(Int(H)) =
π(M−) = H. Next, pick a point y0 ∈ ∂H and let x0 ∈ f−1(y0). We have to 
prove that f has a local representation (x1, . . . , xd) �→ (x2

1, x2, . . . , xd) at x0. It holds 
z0 := g(x0) = (y0, 0). As g is a Nash diffeomorphism, it is enough to prove that π has a 
local representation (x1, . . . , xd) �→ (x2

1, x2, . . . , xd) at z0. But this follows by 4.B.2(iii), 
as required. �
5. A main ingredient: the drilling blow-up

In this section we construct the drilling blow-up of a Nash manifold M with center a 
closed Nash submanifold N . We refer the reader to [25,6] for the oriented blow-up of a 
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real analytic space with center a closed subspace, which is the counterpart of the tool we 
present in this section for the real analytic setting. In [27, §5] appears a presentation of 
the oriented blow-up in the analytic case closer to the drilling blow-up we provide here. 
The authors consider there the case of the oriented blow-up of a real analytic manifold 
M with center a closed real analytic submanifold N whose vanishing ideal inside M is 
finitely generated (this happens for instance if N is compact). In [8, §3] we present a 
similar construction in the semialgebraic setting, which is used to ‘appropriately embed’ 
semialgebraic sets in Euclidean spaces. The following result, whose proof makes use of 
the drilling blow-up and which will be a key tool for our purposes, will allow to erase a 
closed Nash submanifold from a Nash manifold (see Fig. 5).

Lemma 5.1 (Erasing a closed Nash submanifold). Let M be a Nash manifold and let 
N ⊂ M be a closed Nash submanifold. Then there exists a surjective Nash map
h : M \N → M .

5.A. Local structure of the drilling blow-up

Let M ⊂ R
m be a Nash manifold of dimension d and let N ⊂ M be a closed 

Nash submanifold of dimension e. Assume that there exists a Nash diffeomorphism 
u := (u1, . . . , ud) : M → R

d such that N = {ue+1 = 0, . . . , ud = 0}. Denote 
ψ := u−1 : R

d ≡ R
e × R

d−e → M . Let ζe+1, . . . , ζd : R
d → R

k be Nash maps such 
that the vectors ζe+1(y, 0), . . . , ζd(y, 0) are linearly independent for each y ∈ R

e. Write 
z ∈ R

d−e as z := (ze+1, . . . , zd). Consider the Nash maps

ϕ : Rd ≡ R
e × R

d−e → R
k, (y, z) �→ ζe+1(y, z)ze+1 + . . . + ζd(y, z)zd,

φ : Re × R× S
d−e−1 → R

k, (y, ρ, w) �→ ζe+1(y, ρw)we+1 + · · · + ζd(y, ρw)wd

and assume that ϕ(y, z) = 0 if and only if z = 0. Consider the projections

θ1 : Rd ≡ R
e × R

d−e → R
e, (y, z) �→ y,

θ2 : Rd ≡ R
e × R

d−e → R
d−e, (y, z) �→ z.

Define

Φ : Re × R× S
d−e−1 → M × S

k−1, (y, ρ, w) �→
(
ψ(y, ρw), φ(y, ρ, w)

‖φ(y, ρ, w)‖
)
.

5.A.1. Φ is a well-defined Nash map.

Proof. Observe first that ϕ(y, ρw) = ρφ(y, ρ, w) for all (y, ρ, w) ∈ R
e × R × S

d−e−1. If 
ρ 
= 0, the product ρw 
= 0, so ρφ(y, ρ, w) = ϕ(y, ρw) 
= 0 and φ(y, ρ, w) 
= 0. If ρ = 0, 
then
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φ(y, 0, w) = ζe+1(y, 0)we+1 + · · · + ζd(y, 0)wd.

As ζe+1(y, 0), . . . , ζd(y, 0) are linearly independent and ‖w‖ = 1, we conclude
φ(y, 0, w) 
= 0. Consequently, Φ is a well-defined Nash map, as required. �

5.A.2. Fix ε = ± and denote

Iε :=
{

[0,+∞) if ε = +,
(−∞, 0] if ε = −.

The closure M̃ε in M × S
k−1 of the set

Γε :=
{(

ψ(y, z), ε ϕ(y, z)
‖ϕ(y, z)‖

)
∈ M × S

k−1 : z 
= 0
}

is a Nash manifold with boundary such that:

(i) M̃ε ⊂ Im(Φ).
(ii) The restriction of Φ to Re × Iε × S

d−e−1 induces a Nash diffeomorphism between 
R

e × Iε × S
d−e−1 and M̃ε. Consequently, ∂M̃ε = Φ(Re × {0} × S

d−e−1) and Γε =
Int(M̃ε) = Φ(Re × (Iε \ {0}) × S

d−e−1).

Proof. (i) Recall ϕ(y, ρw) = ρφ(y, ρ, w) for all (y, ρ, w) ∈ R
e ×R × S

d−e−1. As sign(ρ) =
ρ
|ρ| for ρ 
= 0, we have

φ(y, ρ, w)
‖φ(y, ρ, w)‖ = sign(ρ) ϕ(y, ρw)

‖ϕ(y, ρw)‖ . (5.1)

Consequently, Γ+ � Γ− ⊂ Im(Φ). Let us check: M̃ε \ Γε ⊂ Im(Φ).
Pick a point (a, b) ∈ M̃ε \Γε. By the Nash curve selection lemma [4, Prop.8.1.13] there 

exists a Nash arc γ : (−1, 1) → M × S
k−1 such that γ(0) = (a, b) and γ((0, 1)) ⊂ Γε. 

Let π : M × S
k−1 → M be the projection onto the first factor and let (α, β) : (−1, 1) →

R
e × R

d−e ≡ R
d be a Nash arc such that ψ(α, β) = π ◦ γ. We write

γ|(0,1) =
(
ψ, ε

ϕ

‖ϕ‖
)
◦ (α, β)|(0,1).

Note that β(0) = 0 because otherwise (a, b) ∈ Γε. In addition, a = ψ(α(0), 0). Observe 
that

b = lim
t→0+

ε
ϕ(α(t), β(t))

‖ϕ(α(t), β(t))‖ . (5.2)

As γ((0, 1)) ⊂ Γε, the Nash arc β is not identically 0 and we may assume β(t) = 0 if and 
only if t = 0. Let ξ ∈ R[[t]]alg be a Nash series such that ‖β(t)‖ = ξ(t) for t > 0 small. 
As
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order(ξ) = min
e+1≤i≤d

{order(βi)},

the quotient β
‖β‖ |(0,1) extends to a Nash arc η : (−1, 1) → S

d−e−1. We have β = (εξ)(εη). 
By (5.1) and (5.2)

b = lim
t→0+

φ(α(t), εξ(t), εη(t))
‖φ(α(t), εξ(t), εη(t))‖

Consequently, as ξ(0) = 0,

b = φ(α(0), 0, εη(0))
‖φ(α(0), 0, εη(0))‖ and (a, b) = Φ(α(0), 0, εη(0)) ∈ Im(Φ).

(ii) The proof of this statement is conducted in several steps:
Step 1. Denote R := Φ(Re × {0} × S

d−e−1) and consider the open semialgebraic subset 
of Im(Φ)

U := {(a, b) ∈ Im(Φ) : rk((ζe+1 ◦ u)(a), . . . , (ζd ◦ u)(a)) = d− e}. (5.3)

As ζe+1(y, 0), . . . , ζd(y, 0) are linearly independent for each y ∈ R
e we have R ⊂ U . In 

addition,

Φ−1(U) = {(y, ρ, w) ∈ R
e × R× S

d−e−1 : rk(ζe+1(y, ρw), . . . , ζd(y, ρw)) = d− e}.

We claim: Φ|Φ−1(U) : Φ−1(U) → U is a Nash diffeomorphism. In particular, U is a Nash 
manifold that contains R.

Let (a, b) ∈ U and let (y, ρ, w) ∈ R
e×R ×S

d−e−1 be such that Φ(y, ρ, w) = (a, b), that 
is, a = ψ(y, ρw) and b = φ(y,ρ,w)

‖φ(y,ρ,w)‖ . Consequently, (y, ρw) = u(a) = (θ1(u(a)), θ2(u(a))). 
Consider the system of linear equations

ve+1(ζe+1 ◦ u)(a) + · · · + vd(ζd ◦ u)(a) = b. (5.4)

As (a, b) ∈ U and b ∈ S
k−1, the system (5.4) has a unique non-zero solution v ∈ R

d−e. 
If we solve (5.4) using Cramer’s rule, one sees that the map U → S

d−e−1, (a, b) �→ w :=
(we+1, . . . , wd) := v

‖v‖ is Nash. As ‖b‖ = 1,

b = ve+1(ζe+1 ◦ u)(a) + · · · + vd(ζd ◦ u)(a) = ve+1(ζe+1 ◦ u)(a) + · · · + vd(ζd ◦ u)(a)
‖ve+1(ζe+1 ◦ u)(a) + · · · + vd(ζd ◦ u)(a)‖

=
ve+1
‖v‖ (ζe+1 ◦ u)(a) + · · · + vd

‖v‖ (ζd ◦ u)(a)
‖ve+1

‖v‖ (ζe+1 ◦ u)(a) + · · · + vd
‖v‖ (ζd ◦ u)(a)‖

= we+1(ζe+1 ◦ u)(a) + · · · + wd(ζd ◦ u)(a)
.
‖we+1(ζe+1 ◦ u)(a) + · · · + wd(ζd ◦ u)(a)‖
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As ρw = θ2(u(a)), the vectors θ2(u(a)) and w are linearly dependent. As w is a unitary 
vector, θ2(u(a)) = 〈θ2(u(a)), w〉w. It holds

Φ(θ1(u(a)), 〈θ2(u(a)), w〉, w)

=
(
ψ(θ1(u(a)), θ2(u(a))), we+1(ζe+1 ◦ u)(a) + · · · + wd(ζd ◦ u)(a)

‖we+1(ζe+1 ◦ u)(a) + · · · + wd(ζd ◦ u)(a)‖
)

= (a, b)

Write w(a, b) := w. The Nash map

Ψ0 : U → R
e × R× S

d−e−1, (a, b) �→ (θ1(u(a)), 〈θ2(u(a)), w(a, b)〉, w(a, b)) (5.5)

satisfies: Im(Ψ0) ⊂ Φ−1(U) and Φ ◦Ψ0 = idU . Let us check in addition Ψ0 ◦Φ|Φ−1(U) =
idΦ−1(U) to conclude Φ|Φ−1(U) is a Nash diffeomorphism.

Let (y, ρ, w) ∈ Φ−1(U). We have

(Ψ0 ◦ Φ)(y, ρ, w) = Ψ0

(
ψ(y, ρw), φ(y, ρ, w)

‖φ(y, ρ, w)‖
)

=
(
y, ρ
〈
w,

v

‖v‖
〉
,

v

‖v‖
)

where v ∈ R
d−e is the unique solution of the system

ve+1ζe+1(y, ρw) + · · · + vdζd(y, ρw) = we+1ζe+1(y, ρw) + · · · + wdζd(y, ρw))
‖we+1ζe+1(y, ρw) + · · · + wdζd(y, ρw))‖ .

Consequently,

v = w

‖we+1ζe+1(y, ρw) + · · · + wdζd(y, ρw))‖

and v
‖v‖ = w (recall that ‖w‖ = 1). Thus, (Ψ0 ◦ Φ)(y, ρ, w) = (y, ρ, w), as claimed.

Step 2. Next, let us check: Φ−1(Γε) = R
e × (Iε \ {0}) × S

d−e−1 and the restriction

Φ| : Re × (Iε \ {0}) × S
d−e−1 → Γε

is a Nash diffeomorphism.
Define

Ψε : Γε → R
e × (Iε \ {0}) × S

d−e−1, (a, b) �→
(
θ1(u(a)), ε‖θ2(u(a))‖, θ2(u(a))

ε‖θ2(u(a))‖
)
.

The previous map is well-defined and Nash because θ2(u(a)) 
= 0 for all (a, b) ∈ Γε. It 
follows that Φ|Re×(Iε\{0})×Sd−e−1 is a Nash diffeomorphism whose inverse is Ψε.

Step 3. We deduce from Steps 1 & 2 that the restriction Φ| : Re× Iε×S
d−e−1 → M̃ε is a 

Nash diffeomorphism. As Re×Iε×S
d−e−1 is a Nash manifold with boundary, M̃ε is also a 

Nash manifold with boundary. In addition ∂M̃ε = R and Int(M̃ε) = Γε, as required. �
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5.A.3. Denote R := ∂M̃+ = ∂M̃− and M̂ := M̃+ ∪ M̃− = Γ+ � R � Γ−. Then 
Φ induces a Nash diffeomorphism between Re × R × S

d−e−1 and M̂ . In addition, the 
Nash map σ : M × S

k−1 → M × S
k−1, (a, b) → (a, −b) induces a Nash involution on M̂

without fixed points such that σ(M̃+) = M̃− and Φ(y, −ρ, −w) = (σ ◦Φ)(y, ρ, w) for each 
(y, ρ, w) ∈ R

e × R × S
d−e−1. We call M̂ the twisted Nash double of M̃+.

Proof. By 5.A.2 it holds

Φ(Re × R× S
d−e−1) = Γ− �R � Γ+ = M̂. (5.6)

In addition, it follows from the proof of 5.A.2(ii) (Steps 1 & 2) that Φ is injective and a 
local Nash diffeomorphism (for the points of Re×{0} ×S

d−e−1 use the map Ψ0 introduced 
in (5.5)). Consequently, Φ is a Nash diffeomorphism onto its image M̂ and the latter is 
a Nash manifold.

The second part of the statement is straightforward. �
5.A.4. Consider the projection π : M × S

k−1 → M onto the first factor and denote 
πε := π|

M̃ε
. Then

(i) πε is proper, πε(M̃ε) = M and R = π−1
ε (N).

(ii) The restriction πε|Γε
: Γε → M \N is a Nash diffeomorphism.

(iii) For each q ∈ N it holds π−1
ε (q) = {q} × S

d−e−1
q where Sd−e−1

q is the sphere of 
dimension d − e − 1 obtained when intersecting the sphere Sk−1 with the linear 
subspace Lq generated by (ζe+1 ◦ u)(q), . . . , (ζd ◦ u)(q).

Proof. (i) Let K ⊂ M be a compact set. Then π−1(K) = K × S
k−1, which is a compact 

set. As M̃ε = Cl(Γε) is a closed subset of M × S
k−1, the intersection π−1(K) ∩ M̃ε is a 

compact set, so πε is proper. Thus, π(M̃ε) = Cl(π(Γε)) = Cl(M \N) = M . In addition 
π−1
ε (N) = M̃ε \ Γε = R.
(ii) We have the commutative diagram

R
d \ {z = 0}

id

Θ Γε

π|Γε

(y, z)
(
ψ(y, z), ε ϕ(y,z)

‖ϕ(y,z)‖

)

R
d \ {z = 0}

ψ|
∼=

M \N (y, z) ψ(y, z)

As Θ is a Nash diffeomorphism, we conclude that π|Γε
is also a Nash diffeomorphism.

(iii) Let q ∈ N . We have

π−1
ε (q) = π−1(q) ∩R = π−1(q) ∩ Φ(Re × {0} × S

d−e−1) = {q} × Δu(Sd−e−1),

where
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Fig. 3. Local structure of the drilling blow-up M̃+ of M of center N .

Δu : Sd−e−1 → S
k−1, w := (we+1, . . . , wd) �→

(ζe+1 ◦ u)(q)we+1 + · · · + (ζd ◦ u)(q)wd

‖(ζe+1 ◦ u)(q)we+1 + · · · + (ζd ◦ u)(q)wd‖
.

The map Δu is a Nash diffeomorphism between Sd−e−1 and the sphere obtained when in-
tersecting Sk−1 with the linear subspace Lq generated by (ζe+1◦u)(q), . . . , (ζd◦u)(q). �

5.A.5. Denote π̂ := π|
M̂

and consider the commutative diagram (see also Figs. 3
and 4).

R
e × R× S

d−e−1

u◦π̂◦Φ

Φ
∼=

M̂

π̂

(y, ρ, w)
(
ψ(y, ρw), φ(y,ρ,w)

‖φ(y,ρ,w)‖

)

R
d M

u

∼=
(y, ρw) ψ(y, ρw)

(5.7)

As a consequence, we have: The Nash maps πε and π̂ have local representations

x := (x1, . . . , xd) �→ (x1, . . . , xe, xe+1, xe+1xe+2, . . . , xe+1xd) (5.8)

in an open neighborhood of each point p ∈ R. In addition, dπp(TpM̂) 
⊂ Tπ(p)N .

Proof. After a change of coordinates in Re × R × S
d−e−1, we may assume that p ∈ R

is the image of the point (0, 0, (1, 0, . . . , 0)). Consider the local parametrization around 
(0, 0, (1, 0, . . . , 0)) of the set Re × R × S

d−e−1 given by

η : R
e × R×B → R

e × R× S
d−e−1,

(y, ρ, v := (ve+2, . . . , vd)) �→ (y, ρ, (
√

1 − ‖v‖2, v))

where B is the open ball of center the origin and radius 1 in Rd−e−1. It holds

u ◦ π̂ ◦ Φ ◦ η : Re × R×B → R
d,

(y, ρ, v) �→ (y, ρ
√

1 − ‖v‖2, ρv).
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Consider the Nash diffeomorphism

f : Re × R×B → R
d, (y, ρ, v) →

(
y, ρ
√

1 − ‖v‖2,
v√

1 − ‖v‖2

)
,

whose inverse is

f−1 : Rd → R
e × R×B, (y, ρ′, v′) �→

(
y, ρ′
√

1 + ‖v′‖2,
v′√

1 + ‖v′‖2

)
.

The Nash map

π′ := u ◦ π̂ ◦ Φ ◦ η ◦ f−1 : Rd → R
d, (y, ρ′, v′) �→ (y, ρ′, ρ′v′)

represents π̂ locally around p and the restriction

π′
ε := π′|{ερ′≥0} : {ερ ≥ 0} → R

d, (y, ρ′, v′) �→ (y, ρ′, ρ′v′)

represents πε locally around p.
To prove that dπp(TpM̂) 
⊂ Tπ(p)N , it is enough to show dπ′

0(Rd) 
⊂ {z = 0} = u(N).

If �ee+1 := (0, . . . , 0, 
(e+1)

1 , 0, . . . , 0), we have dπ′
0(ee+1) = ee+1 /∈ {z = 0}, as re-

quired. �
5.B. Global structure of the drilling blow-up

We construct next the drilling blow-up of a Nash manifold with center a closed Nash 
submanifold. We refer the reader to Fig. 4 in order to get a global idea of the involved 
strategy. Let M ⊂ R

m be a Nash manifold of dimension d and let N ⊂ M be a closed 
Nash submanifold of dimension e. Let f1, . . . , fk ∈ N (M) be a finite system of generators 
of the ideal I(N) of Nash functions on M vanishing identically on N . Consider the Nash 
map

F : M \N → S
k−1, x �→ (f1(x), . . . , fk(x))

‖(f1(x), . . . , fk(x))‖ . (5.9)

We have:

5.B.1. Fix ε = ±. The closure M̃ε in M × S
k−1 of the graph

Γε := {(x, εF (x)) ∈ M × S
k−1 : x ∈ M \N}

is a Nash manifold with boundary. Denote R := ∂M̃+ = ∂M̃− and M̂ := M̃+ ∪ M̃− =
Γ+ � R � Γ−. In addition, M̂ is a Nash manifold and the Nash map σ : M × S

k−1 →
M × S

k−1, (a, b) → (a, −b) induces a Nash involution on M̂ without fixed points that 
maps M̃+ onto M̃−. We call M̂ the twisted Nash double of M̃+.
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Proof. The Nash manifold M can be covered by 2.C.3 (applied to N) and by 2.C.2
(applied to M \ N) with finitely many open semialgebraic subsets Ui equipped with 
Nash diffeomorphisms ui := (ui,1, . . . , ui,d) : Ui → R

d such that either Ui ∩ N = ∅ or 
Ui ∩N = {ui,e+1 = 0, . . . , ui,d = 0}. Denote ψi := u−1

i .
The collection {Ui × S

k−1}i is a finite open semialgebraic covering of M × S
k−1. To 

prove that M̃ε is a Nash manifold with boundary, we will show that M̃ε ∩ (Ui × S
k−1) is 

a Nash manifold with (possibly empty) boundary for i = 1, . . . , r. Analogously, to check 
that M̂ is a Nash manifold, we will show that each intersection M̂ ∩ (Ui × S

k−1) is a 
Nash manifold.
Case 1. If N ∩ Ui = ∅, the intersection M̃ε ∩ (Ui × S

k−1) is the graph of the Nash map 
εF |Ui

, so it is a Nash manifold. Observe that (M̃+ ∩ M̃−) ∩ (Ui × S
k−1) = ∅, so

M̂ ∩ (Ui × S
k−1) = (M̃+ ∩ (Ui × S

k−1)) � (M̃− ∩ (Ui × S
k−1))

is also a Nash manifold.
Case 2. If N ∩ Ui 
= ∅, the intersection M̃ε ∩ (Ui × S

k−1) is the closure in Ui × S
k−1 of 

the set

Γi,ε := Γε ∩ (Ui × S
k−1) = {(ψi(y, z), εF (ψi(y, z))) ∈ Ui × S

k−1 : z 
= 0}

and M̂ ∩ (Ui × S
k−1) = (M̃+ ∩ (Ui × S

k−1)) ∪ (M̃− ∩ (Ui × S
k−1)).

By (2.1) it holds

I(N ∩ Ui) = I(N)N (Ui) = (f1|Ui
, . . . , fk|Ui

)N (Ui).

As ψi is a Nash diffeomorphism, f1 ◦ψi, . . . , fk ◦ψi generate the ideal I({z = 0}) of Nash 
functions on Rd vanishing identically on ψ−1

i (N ∩Ui) = {z = 0}. The ideal I({z = 0}) is 
also generated by ze+1, . . . , zd. Thus, there exist Nash functions ζj,� ∈ N (Rd) such that

f� ◦ ψi = ζe+1,�(y, z)ze+1 + · · · + ζd,�(y, z)zd.

Notice that

∂

∂zj
(f� ◦ ψi)(y, 0) = ζj,�(y, 0) (5.10)

for each y ∈ R
e. Write ζj := (ζj,1, . . . , ζj,k) : Rd → R

k. We have

((f1 ◦ ψi)(y, z), . . . , (fk ◦ ψi)(y, z)) = ζe+1(y, z)ze+1 + · · · + ζd(y, z)zd.

As f1 ◦ ψi, . . . , fk ◦ ψi generate the ideal I({z = 0}), we deduce:

• ζe+1(y, z)ze+1 + · · · + ζd(y, z)zd = 0 if and only if z = 0.
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• The vectors ζe+1(y, 0), . . . , ζd(y, 0) are linearly independent for all y ∈ R
e (by (5.10)

and the Jacobian criterion).

By 5.A.2 and 5.A.3 we deduce that M̃ε ∩ (Ui × S
k−1) is a Nash manifold with boundary 

and M̂ ∩ (Ui × S
k−1) is a Nash manifold.

The rest of the statement follows from 5.A.3. �
5.B.2. We keep the notations already introduced in 5.B.1. Consider the projection 

π : M × S
k−1 → M onto the first factor. Denote πε := π|

M̃ε
and π̂ := π|

M̂
. We have:

(i) πε is proper, πε(M̃ε) = M and R = π−1
ε (N).

(ii) The restriction πε|Γε
: Γε → M \N is a Nash diffeomorphism.

(iii) Consider the Nash map f := (f1, . . . , fk) : M → R
k (whose coordinates generate 

I(N)). Fix q ∈ N and let Eq be any complementary linear subspace of TqN in 
TqM . Then π−1

ε (q) = {q} × S
d−e−1
q , where Sd−e−1

q denotes the sphere of dimension 
d −e −1 obtained when intersecting Sk−1 with the (d −e)-dimensional linear subspace 
dqf(Eq).

(iv) The Nash maps πε and π̂ have local representations of the type

x := (x1, . . . , xd) �→ (x1, . . . , xe, xe+1, xe+1xe+2, . . . , xe+1xd)

in an open neighborhood of each point p ∈ R. In addition, dπp(TpM̂) 
⊂ Tπ(p)N .

Proof. This statement follows straightforwardly from 5.A.4 and 5.A.5. To prove (iii) we 
use in addition (5.10) and the equality ker(dqf) = TqN . �

5.B.3. The pairs (M̃ε, πε) and (M̂, ̂π) do not depend on the generators f1, . . . , fk of 
I(N) up to Nash diffeomorphisms compatible with the respective projections. Moreover, 
such Nash diffeomorphisms are unique.

Proof. Let fk+1 := g1f1 + · · · + gkfk ∈ I(N) for some gj ∈ N (M). Let (M̃ε

′
, π′

ε) and 
(M̂ ′, ̂π′) be the pairs associated to the system of generators f1, . . . , fk, fk+1 of I(N). 
Let us construct a Nash diffeomorphism Θ : M̂ → M̂ ′ such that the following diagram 
commutes.

M̂

π̂

Θ
M̂ ′

π̂′

M

(5.11)

Denote R′ := (π̂′)−1(N). Consider the Nash maps
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g := (g1, . . . , gk) : M → R
k, f := (f1, . . . , fk) : M → R

k, and

f ′ := (f, fk+1) : M → R
k+1

and let F : M \N → S
k−1 be the Nash map introduced in (5.9).

If (a, b) ∈ M̃ε \R, then b = εF (a) = ε f(a)
‖f(a)‖ and

(
a, ε

f ′(a)
‖f ′(a)‖

)
=
(
a,

(εF (a), 〈g(a), εF (a)〉)√
1 + 〈g(a), εF (a)〉2

)
=
(
a,

(b, 〈g(a), b)〉√
1 + 〈g(a), b〉2

)
∈ M̃ ′

ε \R′. (5.12)

Consider the Nash map

Θ : M̂ → M̂ ′, (a, b) �→
(
a,

(b, 〈g(a), b)〉√
1 + 〈g(a), b〉2

)
and let us check that it is the Nash diffeomorphism we are looking for.

We claim: If (a, c := (c1, . . . , ck, ck+1)) ∈ M̂ ′, then c′ := (c1, . . . , ck) 
= 0 and c =
(c′, 〈g(a), c′〉).

We distinguish two cases:
Case 1. If p /∈ N , there exist ε = ± such that

c = ε
f ′(a)
‖f ′(a)‖ = ε

(f(a), 〈g(a), f(a)〉)
‖f ′(a)‖ = (c′, 〈g(a), c′〉).

Case 2. If p ∈ N , there exists by the Nash curve selection lemma a Nash arc γ : (−1, 1) →
M̂ ′ such that γ(0) = (a, c) and γ((0, 1)) ⊂ M̃ ′

ε \R′. It holds

c = ε lim
t→0

(f ′ ◦ π̂′ ◦ γ)(t)
‖(f ′ ◦ π̂′ ◦ γ)(t)‖

= ε lim
t→0

((f ◦ π̂′ ◦ γ)(t), 〈(g ◦ π̂′ ◦ γ)(t), (f ◦ π̂′ ◦ γ)(t)〉)
‖(f ′ ◦ π̂′ ◦ γ)(t)‖ = (c′, 〈g(a), c′〉).

As in both cases c ∈ S
k, we have c′ 
= 0, as claimed.

The Nash map

Ψ : M̂ ′ → M̂, (a, c) �→
(
a,

c′

‖c′‖
)

is the inverse of Θ, so Θ is a Nash diffeomorphism. In addition, π̂ = π̂′ ◦Θ and Θ(M̃ε) =
M̃ ′

ε for ε = ±, as required. The unicity of Θ follows from (5.11) and (5.12). �
Definition 5.2. The pair (M̃+, π+) will be called the drilling blow-up of the Nash manifold 
M with center the closed Nash submanifold N ⊂ M .
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Remark 5.3. We will see in 5.D that the twisted Nash double M̂ of M̃+ together with 
π̂ : M̂ → M relates the drilling blow-up of M with center N with the classical blow-up 
of M with center N .

We are ready to prove Lemma 5.1. We will make a strong use of the global structure 
of the drilling blow-up of a Nash manifold M with center a closed Nash submanifold N .

Proof of Lemma 5.1. Let (M̃+, π) be the drilling blow-up of M with center N and let 
R := π−1

+ (N), see Fig. 5. The Nash map π+ : M̃+ → M is surjective. By Proposition 4.1
there exists a surjective Nash map

f : Int(M̃+) = M̃+ \R → M̃+.

By 5.B.2 the restriction π|
M̃+\R : M̃+ \ R → M \ N is a Nash diffeomorphism. Conse-

quently,

h := π+ ◦ f ◦ (π+|M̃+\R)−1 : M \N → M̃+ \ π−1(N) → M

is a surjective Nash map, as required. �
5.C. Alternative presentation of the drilling blow-up

Our purpose next is to extend the construction in diagram (5.7) to an open semial-
gebraic neighborhood of the center N of the drilling blow-up of M . Let M ⊂ R

m be a 
Nash manifold of dimension d and let N ⊂ M be a closed Nash submanifold of dimen-
sion e. Let (M̂, ̂π) be the twisted Nash double of the drilling blow-up (M̃+, π+) of M
with center N . In the next lemma we will use notations already introduced in 2.C.4. We 
refer the reader to Fig. 4 to appreciate its importance.

Lemma 5.4. Let U1 ⊂ M and U2 ⊂ M̂ be respective open semialgebraic neighbor-
hoods of N and R := π̂−1(N). Then there exist Nash tubular open neighborhoods 
(V1, ϕ1, E , θ1, N, δ) of N in U1 and (V2, ϕ2, F , θ2, R, δ ◦ π̂|R) of R in U2 and a Nash 
embedding ψ := (ψ1, ψ2) : R → N × S

m−1, (x, v) �→ (x, ψ2(x, v)) such that π̂(V2) = V1,

ϕ1 ◦ π̂ ◦ ϕ−1
2 : Fδ◦π̂|R → Eδ, (x, v, t) �→ (x, tψ2(x, v))

and V2 is the Nash double of a collar of R in M̃+.

Proof. By 2.C.4 there exists a Nash tubular neighborhood (V, ϕ, E , θ, N, δ) of N in U1. 
Recall that (E , θ, N) is a Nash subbundle of the trivial bundle (N × R

m, θ′, N). Write 
ϕ := (φ1, φ2) : V → N × R

m and observe that φ1|N = idN and φ2|N = 0.
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5.C.1. For each x ∈ N we have dxϕ = (dxφ1, dxφ2) : TxM → TxN × R
m and 

dxφ1|TxN = (idTxN , 0). Let Hx be a complementary linear subspace of TxN in TxM . As 
dxϕ is an isomorphism, dxφ1|TxN = idTxN and dxφ1(Hx) ⊂ TxN , we have

T(x,0)E = dxϕ(TxM) = dxϕ(TxN ⊕Hx) = (TxN × {0}) ⊕ (dxφ1, dxφ2)(Hx)

= (TxN × {0}) ⊕ ({0} × dxφ2(Hx)) = TxN × dxφ2(Hx), (5.13)

so dim(dxφ2(Hx)) = d − e. By the Jacobian criterion the tuple φ2 := (φ21, . . . , φ2m)
generates I(Nx) for each x ∈ N , that is, (φ2)Nx := (φ21, . . . , φ2m)Nx = I(Nx) for each 
x ∈ N . Write I(N) := {f ∈ N (M) : f |N = 0} and IV (N) := {f ∈ N (V ) : f |N = 0}. 
By (2.1) and 2.C.7

(φ2)N (V ) := (φ21, . . . , φ2m)N (V ) = IV (N) = I(N)N (V ).

Let (V̂ , ̂π∗) be the twisted Nash double of the drilling blow-up of V with center N that 
arises from a finite system of generators of I(N) restricted to V and let (V̂ ′, ̂π′) be the 
twisted Nash double of the drilling blow-up of V centered at N that arises from φ2. It 
holds V̂ = π̂−1(V ) and π̂∗ = π̂|V̂ if (M̂, ̂π) is the twisted Nash double of the drilling 
blow-up of M with center N . By 5.B.3 there exists a Nash diffeomorphism Θ : V̂ → V̂ ′

that makes the following diagram commutative.

V̂

π̂∗

Θ
V̂ ′

π̂′

V

5.C.2. Denote the coordinates in Rm with y := (y1, . . . , ym). The restriction to Eδ

of the tuple (y1, . . . , ym) generates the ideal I(N × {0}) of N (Eδ). Let (Êδ, Π̂) be the 
twisted Nash double of the drilling blow-up (Ẽδ,+, Π+) of Eδ with center N × {0} that 
arises from the tuple (y1, . . . , ym). It holds

Êδ := Cl({(x, y,± y
‖y‖ ) ∈ Eδ × S

m−1 : y 
= 0}).

By 5.B.2(iii) Π̂−1(x, 0) = {(x, 0)} × S(x,0) where S(x,0) is the intersection of Sm−1 with 
the linear subspace θ−1(x) of Rm. Consequently,

Êδ \ Π̂−1(N × {0}) = {(x, y,± y
‖y‖ ) ∈ Eδ × S

m−1 : y 
= 0}, (5.14)

Π̂−1(N × {0}) = {(x, 0,± y
‖y‖ ) ∈ Eδ × S

m−1 : (x, y) ∈ Eδ, y 
= 0}. (5.15)
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5.C.3. It holds V̂ ′ ⊂ V × S
m−1 and Êδ ⊂ Eδ × S

m−1. We claim: The image of the 
Nash map

Λ : V̂ ′ → Eδ × S
m−1, (a, b) �→ (ϕ(a), b)

is Êδ. The image of the Nash map

Δ : Êδ → V × S
m−1, (x, y, w) �→ (ϕ−1(x, y), w)

is V̂ ′. Thus, Δ : Êδ → V̂ ′ and Λ : V̂ ′ → Êδ are mutually inverse Nash diffeomorphisms.
Pick (a, b) ∈ V̂ ′ \ (π̂′)−1(N). We have

(a, b) =
(
a,± φ2(a)

‖φ2(a)‖
)
.

Consequently,

Λ(a, b) =
(
ϕ(a),± φ2(a)

‖φ2(a)‖
)

=
(
φ1(a), φ2(a),±

φ2(a)
‖φ2(a)‖

)
∈ Êδ.

By continuity Λ(V̂ ′) ⊂ Êδ.
Pick now (x, y, w) ∈ Êδ \ Π̂−1(N × {0}). We have w = ± y

‖y‖ = ± φ2(ϕ−1(x,y))
‖φ2(ϕ−1(x,y))‖ and

Δ(x, y, w) =
(
ϕ−1(x, y),± φ2(ϕ−1(x, y))

‖φ2(ϕ−1(x, y))‖
)
∈ V̂ ′.

By continuity Δ(Êδ) ⊂ V̂ ′.

5.C.4. The maps in the rows of the following commutative diagram are Nash diffeo-
morphisms:

V̂
Θ

π̂∗

V̂ ′ Λ

π̂′

Êδ

Π̂

V
idV

V
ϕ

Eδ

(5.16)

5.C.5. It holds: The Nash maps

ρ : Êδ → Π̂−1(N × {0}), (x, y, w) �→ (x, 0, w),

� : Eδ → N × {0}, (x, y) �→ (x, 0)

are Nash retractions such that Π̂ ◦ ρ = � ◦ Π̂.
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5.C.6. Define

h : Êδ → R, (x, y, w) �→
{

+‖y‖ if (x, y, w) ∈ Ẽδ,+,
−‖y‖ if (x, y, w) ∈ Ẽδ,−.

We claim: The semialgebraic function h is Nash and dqh : TqÊδ → R is surjective 
for all q ∈ Π̂−1(N × {0}). In addition, |h(x, y, w)| = ‖y‖ for all (x, y, w) ∈ Êδ, so 
{h = 0} = Π̂−1(N × {0}).

Pick a point q ∈ Π̂−1(N ×{0}). By 5.B.2(iv) there exist semialgebraic neighborhoods 
A1 ⊂ Êδ of q and A2 ⊂ Eδ of Π̂(q) and Nash diffeomorphisms

u := (u1, . . . , ud) : A1 → R
d,

v := (v1, . . . , vd) : A2 → R
d

such that u(q) = 0, v(Π̂(q)) = 0, v((N × {0}) ∩A2) = {ve+1 = 0, . . . , vd = 0} and

Π̂0 := v ◦ Π̂ ◦ u−1 : Rd → R
d,

(x1, . . . , xd) �→ (z1, . . . , zd) := (x1, . . . , xe, xe+1, xe+2xe+1, . . . , xdxe+1).

As y1, . . . , ym generate the ideal I(N × {0}) of N (Eδ), their restrictions to (N ×
{0}) ∩ A2 generate by (2.1) the ideal I((N × {0}) ∩ A2) of N (A2). We have 
yi(v−1(z1, . . . , ze, 0, . . . , 0)) = 0 for (z1, . . . , ze) ∈ R

e × {0} and i = 1, . . . , m and

ze+1 = (y1 ◦ v−1)ξ1 + · · · + (ym ◦ v−1)ξm

for some ξ1, . . . , ξm ∈ N (Rd). By Schwarz’s inequality

z2
e+1 ≤ (ξ2

1 + · · · + ξ2
m)((y1 ◦ v−1)2 + · · · + (ym ◦ v−1)2).

Composing with Π̂0, we have

x2
e+1 ≤ ((ξ1 ◦ Π̂0)2 + · · · + (ξm ◦ Π̂0)2)((y1 ◦ v−1 ◦ Π̂0)2 + · · · + (ym ◦ v−1 ◦ Π̂0)2).

Comparing orders at the origin we deduce that the Nash series (y1 ◦ v−1 ◦ Π̂0)2 + · · · +
(ym ◦ v−1 ◦ Π̂0)2 has order 2 at the origin. As yi(v−1(z1, . . . , ze, 0, . . . , 0)) = 0 for each 
(z1, . . . , ze) ∈ R

e × {0},

yi ◦ v−1 ◦ Π̂0 = xe+1γi

where γi is a Nash function on Rd. Thus,

(y1 ◦ v−1 ◦ Π̂0)2 + · · · + (ym ◦ v−1 ◦ Π̂0)2 = x2
e+1(γ2

1 + · · · + γ2
m).
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As (y1 ◦ v−1 ◦ Π̂0)2 + · · · + (ym ◦ v−1 ◦ Π̂0)2 is a Nash series of order 2 at the origin, 
γ2
1 + · · ·+ γ2

m is a unit at the origin. Consequently, h ◦u−1 = xe+1
√
γ2
1 + · · · + γ2

m on an 
open semialgebraic neighborhood of the origin. In particular,

∂(h ◦ u−1)
∂xe+1

(0) =
√

γ2
1 + · · · + γ2

m(0) > 0.

Thus, h is a Nash function and dqh : TqM̂ → R is surjective for all q ∈ Π̂−1(N × {0}).

5.C.7. Consider the trivial Nash bundle G := Π̂−1(N ×{0}) ×R over Π̂−1(N ×{0})
and let θ′2 : G → Π̂−1(N × {0}) be the projection onto the first factor. Define

g := (ρ, h) : Êδ → G , (x, y, w) �→
{

(x, 0, w,+‖y‖) if (x, y, w) ∈ Ẽδ,+,
(x, 0, w,−‖y‖) if (x, y, w) ∈ Ẽδ,−.

By Lemma 4.2 there exists an open semialgebraic neighborhood W ⊂ Êδ of Π̂−1(N×{0})
such that g(W ) ⊂ G is an open semialgebraic neighborhood of Π̂−1(N ×{0}) ×{0} and 
the restriction map g|W : W → g(W ) is a Nash diffeomorphism.

As Π̂ is proper, Π̂(Êδ \ W ) is a closed subset of Eδ that does not meet N × {0}. 
As the restriction Π̂|Êδ\Π̂−1(N×{0}) is a Nash diffeomorphism, Π̂(Êδ \W ) = Eδ \ Π̂(W ). 
Consequently, W ′ := Π̂(W ) is an open semialgebraic neighborhood of N × {0} in Eδ.

5.C.8. We may assume taking a smaller strictly positive δ ∈ N (N) that Eδ = W ′

and W = Π̂−1(Eδ) = Êδ. Define δ′ := δ ◦ θ|N×{0} ∈ N (N × {0}). We claim:

g(Êδ) = Gδ′◦Π̂ := {(x, 0, w, t) ∈ G : |t| < (δ′ ◦ Π̂)(x, 0, w)}.

Consequently, Êδ is a Nash tubular neighborhood of Π̂−1(N ×{0}) and g : Êδ → Gδ′◦Π̂ is 
a Nash diffeomorphism.

We have

Êδ = Π̂−1(Eδ) = {(x, y, w) ∈ Êδ : ‖y‖ < δ(x)}

= {(x, y, w) ∈ Êδ : |h(x, y, w)| < (δ′ ◦ Π̂)(x, 0, w)}

= g−1({(x, 0, w, t) ∈ G : |t| < (δ′ ◦ Π̂)(x, 0, w)}) = g−1(Gδ′◦Π̂),

as claimed.

5.C.9. The composition Π̂ ◦ g−1 is a Nash map that satisfies

Π̂ ◦ g−1 : g(Êδ) → Eδ, (x, 0, w, t) �→ (x, tw). (5.17)
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5.C.10. Consider the trivial Nash vector bundle F := R×R over R := π̂−1(N) and 
let θ2 : R×R → R be the projection onto the first factor. By (5.15) and (5.16) the Nash 
map

ψ0 := (Λ ◦ Θ)|R : R ⊂ V̂ → Π̂−1(N × {0}) ⊂ Êδ

is a Nash diffeomorphism and there exists a Nash map ψ2 : R → S
m−1 such that 

ψ0(x, v) = (x, 0, ψ2(x, v)) for each (x, v) ∈ R. In addition, ψ0 induces a Nash isomorphism 
of Nash vector bundles

Ψ : F → G , (x, v, t) �→ (x, 0, ψ2(x, v), t)

such that the following diagram is commutative.

F
Ψ
∼=

θ2

G

θ′
2

R
ψ0

∼=
Π̂−1(N × {0})

By (5.16) Π̂◦ψ0 = ϕ ◦ π̂|R, so δ′ ◦ Π̂◦ψ0 = δ ◦θ ◦ϕ ◦ π̂|R = δ ◦ π̂|R because θ ◦ϕ|N = idN . 
Consequently, Ψ(Fδ◦π̂|R) = Gδ′◦Π̂.

5.C.11. Define ϕ1 := ϕ and ϕ2 := Ψ−1◦g◦Λ ◦Θ. We have the following commutative 
diagram:

π̂−1(V )

π̂|
V̂

ϕ2

∼=

V̂
Θ
∼=

π̂∗

V̂ ′ Λ
∼=

π̂′

Êδ

Π̂

g

∼=
Gδ′◦Π̂ Fδ◦π̂|R

Ψ
∼=

Π̂◦g−1◦Ψ=ϕ1◦π̂◦ϕ−1
2

(x, v, t)

ϕ1◦π̂◦ϕ−1
2

V
idV

ϕ1

∼=
V

idV

V
ϕ

∼=
Eδ (x, tψ2(x, v))

Take V1 := V , θ1 := θ, V2 := π̂−1(V ). The Nash tubular neighborhoods (V1, ϕ1, E , θ1,

N, δ) of N in U1 and (V2, ϕ2, F , θ2, R, δ ◦ π̂|R) of R in U2 and the Nash embedding

ψ : R → N × S
m−1, (x, v) �→ (x, ψ2(x, v))

satisfy the required conditions. �
The following result justifies the first part of the name of the drilling blow-up 

(M̃+, π+), see also Figs. 4 and 5.
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Corollary 5.5 (Alternative description of the drilling blow-up). Let M ⊂ R
m be a Nash 

manifold, let N ⊂ M be a closed Nash submanifold and let U be an open semialgebraic 
neighborhood of N in M . Then there exist a Nash tubular neighborhood (V, ϕ, E , θ, N, δ)
of N in U such that M \V is a Nash manifold with boundary ∂V and a Nash diffeomor-
phism g : M \ V → M̃+.

Proof. By Lemma 5.4 there exist Nash tubular open neighborhoods (V1, ϕ1, E , θ1, N, δ1)
of N in U and (V2, ϕ2, F , θ2, R, ε1 := δ1 ◦ π̂|R) of R := π̂−1(N) in M̂ and a Nash 
embedding ψ : R → N × S

m−1, (x, v) �→ (x, ψ2(x, v)) such that

ϕ1 ◦ π̂ ◦ ϕ−1
2 : Fε1 → Eδ1 , (x, v, t) �→ (x, tψ2(x, v))

and V2 ⊂ M̂ is the Nash double of a collar of R in M̃+. By 5.C.10 we may write 
F := R × R and θ2 : R × R → R is the projection onto the first factor. Recall that 
π+|M̃+\R : M̃+ \ R → M \ N is a Nash diffeomorphism. Define δ := δ1

4 , V := ϕ−1
1 (Eδ), 

ϕ := ϕ1|V and θ := θ1. We claim: (V, ϕ, E , θ, N, δ) is the Nash tubular neighborhood we 
sought.

Notice that π−1
+ (V ) = ϕ−1

2 (Fε) ∩ M̃+ where ε := δ ◦ π̂|R. Define M• := M \ V and 
M̃•

+ := π−1
+ (M•) = M̃+\ϕ−1

2 (Fε). It holds π+|M̃•
+

: M̃•
+ → M• is a Nash diffeomorphism.

Denote W := {(z, t) ∈ F : 0 ≤ t < ε1(z)} = ϕ2(ϕ−1
2 (Fε1) ∩ M̃+) and consider the 

Nash diffeomorphism

Λ : W → R× [0, 1), (z, t) →
(
z,

t

ε1(z)

)
.

As ε
ε1

= 1
4 , we have (Λ ◦ ϕ2)(M̃•

+ ∩ ϕ−1
2 (W )) = R × [ 14 , 1). Let f1 : [ 14 , 1) → [0, 1) be 

an S2 diffeomorphism such that f1|[ 34 ,1) = id[ 34 ,1) (see Example A.1(i)). Consider the S2

diffeomorphism

F1 : R× [ 14 , 1) → R× [0, 1), (z, t) �→ (z, f1(t)).

It holds F1|R×[ 34 ,1) = idR×[ 34 ,1). Denote again ϕ2 the restriction of this Nash map to 

ϕ−1
2 (W ) and define

Φ : M̃•
+ → M̃+, x �→

{
x if x ∈ M̃•

+ \ ϕ−1
2 (W ),

(Λ ◦ ϕ2)−1(F1((Λ ◦ ϕ2)(x))) if x ∈ M̃•
+ ∩ ϕ−1

2 (W ),

which is an S2 diffeomorphisms. The restriction Φ|π−1
+ (∂V ) : π−1

+ (∂V ) = ∂M̃•
+ →

π−1
+ (N) = ∂M̃+ is a Nash diffeomorphism. By 2.D.4 there exists a Nash diffeomorphism 

Φ′ : M̃•
+ → M̃+ such that Φ′|

∂M̃•
+

= Φ|
∂M̃•

+
.

The composition g := Φ′ ◦ (π+|−1
M̃•

+
) : M• → M̃+ is a Nash diffeomorphism, so M• is 

a Nash manifold with boundary ∂V = g−1(∂M̃+), as required. �
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Fig. 4. Full picture of the drilling blow-up M̃+ of M with center N .

Fig. 5. Geometry of the tool introduced in Lemma 5.1 to erase a closed Nash submanifold N from the Nash 
manifold M .

5.D. Relationship between drilling blow-up and classical blow-up

We justify next the second part of the name of the drilling blow-up relating it with 
the classical blow-up. Let M ⊂ R

m be a Nash manifold of dimension d and let N ⊂ M

be a closed Nash submanifold of dimension e. Let f1, . . . , fk ∈ N (M) be a system of 
generators of I(N). Define

Γ′ := {(x, (f1(x) : . . . : fk(x))) ∈ M × RP
k−1 : x ∈ M \N}.



J.F. Fernando / Advances in Mathematics 331 (2018) 627–719 671
The closure B(M, N) of Γ′ in M × RP
k−1 together with the restriction π′ to B(M, N)

of the projection M × RP
k−1 → M is the classical blow-up of M with center N .

Corollary 5.6. Let (M̂, ̂π) be the twisted Nash double of the drilling blow-up (M̃+, π+). 
Let σ : M̂ → M̂, (a, b) �→ (a, −b) be the involution of M̂ without fixed points. Consider 
the Nash map

Θ : M × S
k−1 → M × RP

k−1, (p, q) → (p, [q])

and its restriction θ : M̂ → B(M, N). We have

(i) θ(M̂) = B(M, N), θ ◦ σ = θ, π′ ◦ θ = π̂ and θ−1(a, [b]) = {(a, b), (a, −b)} for each 
(a, [b]) ∈ B(M, N).

(ii) θ is an unramified two to one Nash covering of B(M, N).

Remark 5.7. Many well-known properties of (B(M, N), π′) concerning: the fibers of π′, 
the local representations (5.8) of π′ at the points of π′−1(N), finite coverings of B(M, N)
whose members are Nash diffeomorphic either to Re×RP

d−e or to Rd, the fact that π′ is 
proper and the restriction π′| : B(M, N) \ π′−1(N) → M \N is a Nash diffeomorphism, 
the fact that B(M, N) does not depend on the generators of I(N), etc., follow at once 
from 5.A, 5.B and Corollary 5.6.

6. Connected Nash manifolds with boundary as Nash images of Euclidean spaces

In this section we prove Theorem 1.5. By Proposition 4.1 every Nash manifold H with 
boundary is the image under a Nash map of its interior Int(H). Consequently, we are 
reduced to prove the following.

Theorem 6.1. Let M ⊂ R
m be a connected d-dimensional Nash manifold. Then M is a 

Nash image of Rd.

The proof of Theorem 6.1 still requires some preliminary work that we develop next. 
We prove first that connected Nash manifolds with boundary are connected by Nash 
paths, so they are under the assumptions of Theorem 1.4.

Lemma 6.2. Let M ⊂ R
m be a connected Nash manifold. Then M is connected by Nash 

paths.

Proof. By [4, Thm.2.4.5 & Prop.2.5.13] M is semialgebraically path connected. Let 
x, y ∈ M and let α : [0, 1] → M be a continuous semialgebraic path that connects 
x and y. Let ε > 0 and let α̂ : (−ε, 1 + ε) → M be any (continuous) semialgebraic exten-
sion of α to the interval (−ε, 1 +ε). By [34, Cor.II.5.7] there exists a Nash approximation 
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β : (−ε, 1 + ε) → M of α such that β(0) = α(0) = x and β(1) = α(1) = y. Thus, M is 
connected by Nash paths. �
Corollary 6.3. Let M ⊂ R

m be a connected Nash manifold and let f : M → R
n be a 

Nash map. Then S := f(M) is pure dimensional and connected by Nash paths.

Proof. Assume S is not pure dimensional. Let B ⊂ R
n be a small ball such that dim(B∩

S) < dim(S). Let Y be the Zariski closure of B ∩ S and let P ∈ R[x] be a polynomial 
equation of Y . As the Nash function P ◦f vanish on the open set f−1(B) of the connected 
Nash manifold M , the composition P ◦ f is identically zero on M . Consequently, S ⊂ Y , 
which is a contradiction. Thus, S is pure dimensional.

To prove that S is connected by Nash paths pick x, y ∈ S and let a, b ∈ M be such 
that f(a) = x and f(b) = y. As M is connected by Nash paths, there exists a Nash path 
β : [0, 1] → M connecting a and b. Thus, α := f ◦ β is a Nash path connecting x and y, 
as required. �
Remark 6.4. By Proposition 4.1 and Corollary 6.3 connected Nash manifolds with bound-
ary are connected by Nash paths.

6.A. Managing semialgebraic triangulations

The proof of Theorem 6.1 involves an inductive argument on the number of simplices of 
a suitable (semialgebraic) triangulation of the connected Nash manifold M . Let σ ⊂ R

n

be a simplex of dimension d. The facets of σ are the faces of σ of dimension d − 1. As 
usual, we denote the relative interior of σ with σ0 and we will say that σ is a d-simplex. 
The first step of the inductive argument concerns the following statement: The interior 
of a simplex is a Nash image of an Euclidean space.

Lemma 6.5. Let σ ⊂ R
n be a simplex of dimension n and let σ0 be its interior. Then σ0

is Nash diffeomorphic to Rn.

Proof. It is enough to consider the simplex σ := {x1 ≥ 0, . . . , xn ≥ 0, x1+· · ·+xn ≤ 1} ⊂
R

n. Consider the open orthant Q := {y1 > 0, . . . , yn > 0} and the Nash diffeomorphism

f : σ0 → Q, (x1, . . . , xn) �→
( x1

1 −
∑n

i=1 xi
, . . . ,

xn

1 −
∑n

i=1 xi

)
whose inverse is the Nash map

f−1 : Q → σ0, (y1, . . . , yn) �→
( y1

1 +
∑n

i=1 yi
, . . . ,

yn
1 +
∑n

i=1 yi

)
.

We are reduced to prove that Q is Nash diffeomorphic to Rn. To that end, we show that 
the open interval (0, +∞) is Nash diffeomorphic to R. Consider
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Fig. 6. Construction of the homeomorphisms between D and σ2 \ τ .

h1 : (0,+∞) → R, t �→ t− 1
t

and h−1
1 : R → (0,+∞), t �→ t +

√
t2 + 4
2 .

We are done. �
The following result is the clue to erase a simplex from a semialgebraic triangulation 

of a Nash manifold.

Lemma 6.6 (Erasing simplices). Let σ1, σ2 ⊂ R
n be two simplices of dimension n that 

only share a facet τ . Let D := σ0
1 ∪ (σ2 \ ∂τ) = (τ0 ∪ σ0

1) ∪ (σ2 \ τ) and D := σ1 ∪ σ2. 
Then there exists a semialgebraic homeomorphism ψ : σ2 → D such that ψ(σ2 \ τ) = D

and ψ|∂σ2\τ0 = id∂σ2\τ0 .

Proof. The proof is conducted in several steps. Fig. 6 summarizes the followed strategy.

6.A.1. Let vi be the vertex of σi not contained in τ . We may assume τ ⊂ {xn = 0}, 
its barycenter is the origin of Rn, v2 := (v21, . . . , v2n) ∈ {xn > 0} and v1 is −en :=
(0, . . . , 0, −1). We claim: after a semialgebraic homeomorphism of Rn that keeps σ1 in-
variant, we may assume v2 = en := (0, . . . , 0, 1).

Consider the semialgebraic homeomorphism

γ : Rn → R
n, x := (x1, . . . , xn) �→

{
x− xn

v2n
(v2,1, . . . , v2,n−1, v2,n − 1) if xn > 0,

x if xn ≤ 0,

whose inverse map is

γ−1 : Rn → R
n, y := (y1, . . . , yn) �→

{
y + yn(v2,1, . . . , v2,n−1, v2,n − 1) if yn > 0,
y if yn ≤ 0.

We have γ(v2) = en and γ|{xn≤0} = id{xn≤0}. As τ ⊂ {xn = 0}, it holds γ(σ2) is the 
simplex whose vertices are those of τ and en.



674 J.F. Fernando / Advances in Mathematics 331 (2018) 627–719
6.A.2. Denote the simplex whose vertices are the affinely independent points 
p1, . . . , pk ∈ R

n with [p1, . . . , pk]. Let w1, . . . , wn be the vertices of the (n −1)-simplex τ . 
The barycenter of τ is the origin, so the barycenter of σ2 is w0 := 1

n+1en. Consider the 
n-simplices

η1i := [0, w0, w1, . . . , wi−1, wi+1, . . . , wn] i = 1, . . . , n,

η2i := [en, w0, w1, . . . , wi−1, wi+1, . . . , wn] i = 1, . . . , n.

The family {η11, . . . , η1n, η21, . . . , η2n} provides a triangulation of σ2. Consider also the 
n-simplices

ε1i := [−en, w0, w1, . . . , wi−1, wi+1, . . . , wn] i = 1, . . . , n.

Our choices done in 6.A.1 assure that the collection {ε11, . . . , ε1n, η21, . . . , η2n} provides 
a triangulation of D.

6.A.3. Fix i = 1, . . . , n and take barycentric coordinates in Rn with respect to the 
affine basis Bi := {0, w0, w1, . . . , wi−1, wi+1, . . . , wn} and consider the affine isomorphism 
of Rn given by

ψi : Rn → R
n,
(
1 −
∑
k �=i

λk

)
0 +
∑
k �=i

λkwk �→
(
1 −
∑
k �=i

λk

)
(−en) +

∑
k �=i

λkwk.

Observe that ψi(η1i) = ε1i, ψi|η1i∩η1j = ψj |η1i∩η1j and ψi|η1i∩η2j = idη1i∩η2j for 1 ≤
i, j ≤ n. Consequently, the semialgebraic map

ψ : σ2 → D, x �→
{
ψi(x) if x ∈ η1i for i = 1, . . . , n,
x if x ∈ η2i for i = 1, . . . , n

is a well-defined homeomorphism such that ψ(σ2 \ τ) = D and ψ|∂σ2\τ0 = id∂σ2\τ0 , as 
required. �

To take advantage of the full strength of Lemma 6.6 we need the following result to 
subdivide simplices in the appropriate way, see Fig. 7.

Lemma 6.7. Let σ ⊂ R
n be a simplex of dimension n and let τ1, . . . , τk be facets of 

σ for some k = 1, . . . , n + 1. Let ε be either the intersection of the remaining facets 
τk+1, . . . , τn+1 if k < n + 1 or σ if k = n + 1. Let b be the barycenter of ε and let ηi
be the convex hull of τi ∪ {b} for i = 1, . . . , k. Then the simplices η1, . . . , ηk provide a 
triangulation of σ.

Proof. We have to prove: σ =
⋃k

i=1 ηi and if ρ1 is a face of ηi and ρ2 is a face of ηj, 
then ρ1 ∩ ρ2 is either the empty-set or a common face of ρ1 and ρ2.
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Fig. 7. Triangulation of σ induced by ε := τk+1 ∩ · · · ∩ τn+1.

6.A.4. If k = n + 1, then σ = ε and b is the barycenter of σ, so η1, . . . , ηn+1 provide 
a triangulation of σ. We assume in the following k < n +1. Let W be the affine subspace 
of Rn generated by ε and let L be the affine subspace generated by θ := τ1 ∩ · · · ∩ τk. We 
have dim(W ) = k − 1, dim(L) = n − k and W ∩ L = ∅. Let E be the affine hyperplane 
of Rn that contains L and is parallel to W . Consider the projection

π : Rn \ E → W, x �→ ({x} + L) ∩W,

where {x} + L denotes the affine subspace of Rn generated by {x} ∪ L. We claim: 
π(σ \ E) = ε. As π|W = idW and ε ⊂ W , it is enough to check that π(σ \ E) ⊂ ε.

It holds: the vertices of σ are either vertices of ε or θ.
Both ε and θ are faces of σ. The k vertices of ε (it is a simplex of dimension k − 1) 

are vertices of σ and the n − k + 1 vertices of θ (it is a simplex of dimension n − k) are 
vertices of σ. We have k + (n − k + 1) = n + 1 vertices. As ε ∩ θ = ∅, we have all the 
vertices of σ.

Denote the vertices of ε with v1, . . . , vk and the vertices of θ with vk+1, . . . , vn+1. For 
each x ∈ σ\E there exist λi ≥ 0 such that 

∑n+1
i=1 λi = 1 and x =

∑n+1
i=1 λivi. As σ∩E = θ

and x ∈ σ \ E, we have μ :=
∑k

i=1 λi > 0. If μ = 1, then x ∈ ε and π(x) = x ∈ ε. If 
μ < 1, consider the points

p =
k∑

i=1

λi

μ vi ∈ ε ⊂ W and q =
n+1∑

i=k+1

λi

1−μvi ∈ θ ⊂ L

that satisfy x = μp + (1 − μ)q. Consequently,

p = 1
μx + μ−1

μ q ∈ ({x} + L) ∩W and π(x) = p ∈ ε.

6.A.5. We are ready to prove σ =
⋃k

i=1 ηi. Let x ∈ σ. If x ∈ θ, then x ∈ η1 ∩ · · · ∩ ηk. 
So we assume x /∈ θ. Consider the simplex ρ of base θ and vertex π(x) ∈ ε. Observe that 
x ∈ ρ and we may write x = απ(x) + (1 − α)y for some y ∈ θ and α ∈ [0, 1]. The k
facets of ε are the intersections of ε with the facets τ1, . . . , τk of σ. In addition, ηi ∩ ε is 
the cone of base τi ∩ ε (a facet of ε) and vertex b (the barycenter of ε). Consequently, 
ε =
⋃k

i=1(ηi ∩ ε) and we assume that π(x) ∈ η1 ∩ ε. As π(x) ∈ η1 and y ∈ θ ⊂ τ1 ⊂ η1, 
we conclude x = απ(x) + (1 − α)y ∈ η1.
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6.A.6. Let ρ1 be a face of ηi and ρ2 a face of ηj . We have to prove that ρ1 ∩ ρ2 is 
either the empty-set or a common face of ρ1 and ρ2.

Observe that ρi is either a face of σ, the vertex b or the cone of basis a face of σ and 
vertex b.

(1) Suppose ρ1 = {b}. Then ρ1 ∩ ρ2 is either the empty-set or {b}.
(2) Suppose ρ1 is a face of σ. Then ρ1∩ρ2 = ρ1∩ρ2∩σ is the intersection of two faces 

of σ, so it is either the empty-set or a face of σ, which is a common face of ρ1 and ρ2.
(3) Suppose ρ1 and ρ2 are cones over faces δ1 and δ2 of σ with vertex {b}. Consequently, 

ρ1 ∩ ρ2 is either {b} or the cone of base δ1 ∩ δ2 and vertex {b}, which is a face of ρ1
and ρ2, as required. �
6.B. Proof of Theorem 6.1

The proof is conducted in several steps. Fig. 8 summarizes the followed strategy.

6.B.1. We may assume M is bounded in Rm. By [4, Thm.9.2.1 & Rmk.9.2.3] there 
exist a finite simplicial complex K and a semialgebraic homeomorphism Φ : |K| → Cl(M)
such that

• The semialgebraic sets M and Cl(M) \M are finite unions of images Φ(σ0) where 
σ ∈ K.

• The restriction Φ|σ0 : σ0 → Cl(M) is a Nash embedding for each σ ∈ K.

Denote the simplices of dimension d of K with σ1, . . . , σr.

6.B.2. Let E be the union of the simplices of K of dimension ≤ d − 2. Denote 
σ′
i := (Φ−1(M) \E) ∩ σi. Let us reorder the indices 1, . . . , r in such a way that σ′

i shares 
the interior of a face of dimension d − 1 with 

⋃i−1
j=1 σ

′
j for i = 2, . . . , r. Consequently, 

M \
⋃r

j=i+1 Φ(σi) is connected for i = 1, . . . , r − 1.
Indeed, as M is a connected Nash manifold, Φ−1(M) \E is connected. Fix 1 ≤ s < r

and assume that we have ordered the simplices σ1, . . . , σs in such a way that σ′
i shares 

the interior of a face of dimension d − 1 with 
⋃i−1

j=1 σ
′
j for i = 2, . . . , s. Let C1 :=

⋃s
j=1 σ

′
j

and C2 :=
⋃r

j=s+1 σ
′
j . As Φ−1(M) \ E = C1 ∪ C2 is connected and C1, C2 are closed in 

Φ−1(M) \ E, we may assume that C1 ∩ σ′
s+1 
= ∅, so σ′

s+1 shares the interior of a face 
of dimension d − 1 with 

⋃s
j=1 σ

′
j . This is so because K is a triangulation of Cl(M) and 

(Φ−1(M) \E) ∩η = ∅ for each face η of dimension ≤ d −2. Proceeding recursively 6.B.2
follows.

6.B.3. We proceed by induction on r to prove the statement. If r = 1, then M is 
Nash diffeomorphic to an open simplex, so by Lemma 6.5 M is Nash diffeomorphic to R

d. 
Assume the result true for r − 1. As M \ Φ(σr) is connected, there exists a surjective 
Nash map h1 : R

d → M \ Φ(σr). Let us check that the statement is also true for r. 
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Fig. 8. Strategy to prove Theorem 6.1.

To that end, it is enough to show that M is the image under a surjective Nash map 
h0 : M \ Φ(σr) → M . Once this is done, h := h0 ◦ h1 : Rd → M is the surjective Nash 
map we sought.

6.B.4. Let τ1, . . . , τs be the facets of σr that are facets of another simplex σk for some 
k = 1, . . . , r− 1. Let ε be either the intersection of the remaining facets τs+1, . . . , τd+1 of 
σr if s < d + 1 or σr if s = d + 1. Thus, ε is a face of σr of dimension s − 1. The s facets 
of ε are the intersections of ε with the facets τ1, . . . , τs of σr. Let b be the barycenter of 
ε and let ηi be the convex hull of τi ∪ {b} for i = 1, . . . , s. By Lemma 6.7 the simplices 
η1, . . . , ηs provides a triangulation of σ.

Let H� be the collection of all the faces of η1, . . . , ηs of dimension � for � = 0, . . . , d −2
and let Hd−1 be the collection of all the facets of η1, . . . , ηs different from τ1, . . . , τs. 
Define

N� :=
⋃

σ∈H�

Φ(σ0) ∩M

and observe that N� is a closed Nash submanifold of M \��−1
j=0 Nj , where ��−1

j=0 Nj := ∅ if 
� = 0. By Lemma 5.1 there exists a surjective Nash map g� : M\��

j=0 Nj → M\��−1
j=0 Nj . 
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Thus,

g := gd−1 ◦ · · · ◦ g0 : M \
d−1�
j=0

Nj → M

is a surjective Nash map.

6.B.5. Observe that M \ �d−1
j=0 Nj = (M \ Φ(σr)) ∪

⋃s
j=1 Φ(τ0

j ∪ η0
j ). For each j =

1, . . . , s let σij be the simplex of K such that σij ∩ σr = τj . By Lemma 6.6 there 
exists a semialgebraic homeomorphism fj : σij \ τj → (σij \ τj) ∪ (τ0

j ∪ η0
j ) such that 

fj |∂σij
\τj = id∂σij

\τj .
Consider the semialgebraic homeomorphism

f : M \Φ(σr) → (M \Φ(σr))∪
s⋃

j=1
Φ(τ0

j ∪η0
j ), x �→

{
x if x /∈

⋃s
j=1 Φ(σij ),

Φ(fj(Φ−1(x))) if x ∈ Φ(σij ).

Let f ′ : M \ Φ(σr) → M \ �d−1
j=0 Nj be a close Nash approximation of f (use 2.D.1). 

As f is a semialgebraic homeomorphism, f ′ is by Lemma 2.8 surjective. Consequently 
h0 := f ′ ◦ g : M \ Φ(σr) → M is a surjective Nash map, as required. �
7. Main properties of well-welded semialgebraic sets

In this section we describe the main properties of well-welded semialgebraic sets. Given 
a continuous semialgebraic path α : [0, 1] → R

n we define η(α) as the image α(A) of 
the smallest (finite) subset A ⊂ (0, 1) such that α|(0,1)\A is a Nash map. Recall that a 
semialgebraic set S ⊂ R

n is well-welded if S is pure dimensional and for each pair of 
points x, y ∈ S there exists a continuous semialgebraic path α : [0, 1] → S such that 
α(0) = x, α(1) = y and η(α) ⊂ Reg(S).

The following two results provide examples of well-welded semialgebraic sets. Once 
we prove Theorem 1.4 we will conclude that there are no more well-welded semialgebraic 
sets.

Lemma 7.1. Let S ⊂ R
n be a semialgebraic set that is connected by Nash paths. Then S

is well-welded.

Proof. As S is connected by Nash paths, we only have to check that S is pure dimensional. 
Suppose by contradiction that S is not pure dimensional. Pick x ∈ S and an open 
semialgebraic neighborhood U ⊂ R

n of x such that dim(S ∩ U) < dim(S). Let Y be the 
Zariski closure of S ∩ U in Rn and pick a point y ∈ S \ Y . Let α : [0, 1] → S be a Nash 
path such that α(0) = x and α(1) = y. As α−1(S ∩ Y ) ⊂ [0, 1] is a neighborhood of the 
origin and Y is an algebraic set, we deduce by the identity principle that y ∈ Im(α) ⊂ Y , 
which is a contradiction. Thus, S is pure dimensional, as required. �
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Fig. 9. Sketch of proof of Lemma 7.2.

Lemma 7.2. Let S ⊂ R
n be a pure dimensional semialgebraic set. Assume that there exists 

a Nash path α : [0, 1] → S whose image meets all the connected components of Reg(S). 
Then S is well-welded.

Proof. Let M1, . . . , Mr be the connected components of Reg(S). Let xi ∈ Mi ∩ Im(α)
and let ti ∈ (0, 1) be such that α(ti) = xi. We may assume t1 < · · · < tr. As S is 
pure dimensional, S =

⋃r
i=1 Cl(Mi) ∩ S. Let y1, y2 ∈ S and assume y1 ∈ Cl(Mi) ∩ S

and y2 ∈ Cl(Mj) ∩ S with i < j. By the Nash curve selection lemma there exist Nash 
arcs αk : (−1, 1) → R

n such that α1((−1, 0)) ⊂ Mi, α1((−1, 0)) ⊂ Mj and αk(0) = yk
for k = 1, 2. As Mi and Mj are connected Nash manifolds, there exist Nash paths 
γ1 : [0, 1] → Mi and γ2 : [0, 1] → Mj such that

γk(0) = zk := αk(−1
2 ) and γk(1) =

{
xi if k = 1,
xj if k = 2.

Consider the continuous semialgebraic path

β := (α1|[− 1
2 ,0])

−1 ∗ γ1 ∗ α|[ti,tj ] ∗ γ−1
2 ∗ α2|[− 1

2 ,0]

that connects the points y1, y2 and satisfies

η(β) ⊂ {z1, xi, xj , z2} ⊂ Reg(S),

see Fig. 9. Consequently, S is well-welded, as required. �
7.A. Basic properties of well-welded semialgebraic sets I

We show next that well-welded semialgebraic sets have irreducible Zariski closure and 
well-welded closure. We will prove later in 7.C that they are in fact irreducible and that 
the image of a well-welded semialgebraic set under a Nash map is again well-welded.

Lemma 7.3. Let S ⊂ R
n be a well-welded semialgebraic set. Then S

zar is irreducible.

Proof. Suppose by contradiction that Szar is reducible. Let X1, . . . , Xr be the irreducible 
components of Szar. We have
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Sing(Szar) =
r⋃

i=1
Sing(Xi) ∪

⋃
i�=j

(Xi ∩Xj).

We claim: S ∩Xi \ Sing(Szar) 
= ∅ for i = 1, . . . , r.
Suppose that S ∩X1 \ Sing(Szar) = ∅. Then S ⊂ Sing(X1) ∪

⋃r
i=2(S ∩Xi), so

r⋃
i=1

Xi = S
zar ⊂ Sing(X1) ∪

r⋃
i=2

Xi,

which is a contradiction.
Let xi ∈ S ∩Xi \ Sing(Szar) for i = 1, 2 and let f1 ∈ R[x] be a polynomial equation 

of X1. Let α : [0, 1] → S be a (continuous) semialgebraic map such that α(0) = x1, 
α(1) = x2 and η(α) ⊂ Reg(S). Let

t0 := inf{t ∈ (0, 1) : α(t) /∈ X1}.

Note that α(t0) /∈ η(α) because α(t0) ∈ X1 ∩ Xi ⊂ Sing(Szar) for some i 
= 1 and 
η(α) ⊂ Reg(S). Let ε > 0 be such that α|(t0−ε,t0+ε) is a Nash map, α((t0 − ε, t0)) ⊂
X1 and α((t0, t0 + ε)) ∩ X1 = ∅. As f1 ◦ α|(t0−ε,t0+ε) is a Nash function such that 
f1 ◦α|(t0−ε,t0) ≡ 0, we have f1 ◦α|(t0−ε,t0+ε) ≡ 0, which is a contradiction. Consequently, 
S

zar is irreducible, as required. �
Lemma 7.4. Let S ⊂ T ⊂ R

n be semialgebraic sets such that S is well-welded and T ⊂
Cl(S). Then T is well-welded.

Proof. Let x1, x2 ∈ T. As S is pure dimensional, Cl(Reg(S)) = Cl(S) = Cl(T). By 
the Nash curve selection lemma there exist Nash arcs αk : (−1, 1) → R

n such that 
αk((−1, 0)) ⊂ Reg(S), αk(0) = xk for k = 1, 2. Consider the points yk := αk(−1

2) for 
k = 1, 2. As S is well-welded, there exists a continuous semialgebraic path α3 : [0, 1] → S

such that α3(0) = y1, α3(1) = y2 and η(α3) ⊂ Reg(S). As Szar = T
zar, we have

Reg(S) = IntReg(Szar)(S \ Sing(Szar)) ⊂ IntReg(Szar)(T \ Sing(Szar)) = Reg(T).

The continuous semialgebraic path α := (α1|[− 1
2 ,0])

−1 ∗ α3 ∗ α2|[− 1
2 ,0] connects x1 with 

x2 and η(α) ⊂ η(α3) ∪ {y1, y2} ⊂ Reg(S) ⊂ Reg(T). Consequently, T is well-welded. �
7.B. Description of well-welding in terms of bridges

It is difficult to handle the definition of well-welded semialgebraic set. Our purpose 
next is to provide a characterization of well-welding in terms of the existence of Nash 
arcs between the connected components of the set of regular points of a semialgebraic 
set.
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Definition 7.5. Let M1, M2 ⊂ R
n be two Nash manifolds. A (Nash) bridge between M1

and M2 is the image Γ of a Nash arc α : (−1, 1) → R
n such that α((−1, 0)) ⊂ M1 and 

α((0, 1)) ⊂ M2.

To lighten the presentation we write bridge when referring to Nash bridge. As a 
straightforward consequence of Proposition 7.8 below we have the following.

Corollary 7.6. Let S ⊂ R
n be a pure dimensional semialgebraic set and let M1, . . .Mr be 

the connected components of Reg(S). The following assertions are equivalent:

(i) S is well-welded.
(ii) We can reorder the indices i = 1, . . . , r in such a way that there exist bridges Γi ⊂ S

between Mi and �i−1
j=1 Mj for i = 2, . . . , r.

When dealing with well-welded semialgebraic sets, we need often that a continuous 
semialgebraic path connecting two points avoids certain algebraic set. In this direction 
we present the following three results.

Lemma 7.7. Let α : [0, 1] → R
n be a continuous semialgebraic path and let Y ⊂ R

n be an 
algebraic set. Assume that Im(α) 
⊂ Y and η(α) ∩ Y = ∅. Then α−1(Y ) is a finite set.

Proof. Suppose α−1(Y ) is not a finite set. Then α−1(Y ) is a closed semialgebraic subset 
of the interval [0, 1] of dimension 1. Let A ⊂ (0, 1) be the smallest (finite) subset of (0, 1)
such that α|(0,1)\A is a Nash map. Let C be a connected component of [0, 1] \ (A ∪{0, 1})
such that dim(C ∩ α−1(Y )) = 1. As α|C is a Nash map, C ⊂ α−1(Y ). As α−1(Y ) is 
closed, Cl(C) ⊂ α−1(Y ). Notice that Cl(C) \ C ⊂ A ∪ {0, 1}. If Cl(C) \ C = {0, 1}, we 
have Cl(C) = [0, 1], so Im(α) ⊂ Y , which is a contradiction. Consequently, A 
= ∅ and 
(Cl(C) \ C) ∩A 
= ∅, so η(α) ∩ Y 
= ∅, against the hypothesis. Thus, α−1(Y ) is a finite 
set, as required. �
Proposition 7.8. Let S ⊂ R

n be a pure dimensional semialgebraic set and let M1, . . . , Mr

be the connected components of Reg(S). Let Z ⊂ R
n be an algebraic set such that Mi 
⊂ Z

for i = 1, . . . , r. The following assertions are equivalent:

(i) For each pair of points x1, x2 ∈ S there exists a continuous semialgebraic path
α : [0, 1] → S such that α(0) = x1, α(1) = x2 and η(α) ⊂ Reg(S) \ Z.

(ii) The indices i = 1, . . . , r can be reordered to have bridges Γi ⊂ S between Mi \Z and 

�i−1
j=1(Mj \ Z) for i = 2, . . . , r.

Proof. (ii) =⇒ (i) Let x1, x2 ∈ S. As S is pure dimensional, Reg(S) \ Z is dense in S
and we may assume x1 ∈ Cl(M1 \ Z) and x2 ∈ Cl(M� \ Z) for some � = 1, . . . , r. By 
the Nash curve selection lemma there exist Nash paths αk : (−1, 1) → R

n such that 
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Fig. 10. Sketch of proof of implication (ii) =⇒ (i) in Proposition 7.8.

α1((−1, 0)) ⊂ M1 \ Z, α2((−1, 0)) ⊂ M� \ Z and αk(0) = xk for k = 1, 2. Consider the 
points yk := αk(−1

2 ) for k = 1, 2. We proceed by induction on �.
If � = 1, then y1, y2 ∈ M1 \ Z. As M1 is a connected Nash manifold, there exists a 

Nash path β : [0, 1] → M1 such that β(0) = y1 and β(1) = y2. Consider the continuous 
semialgebraic path α := (α1|[− 1

2 ,0])
−1 ∗ β ∗ α2|[− 1

2 ,0] that connects the points x1 and x2

and satisfies η(α) ⊂ {y1, y2} ⊂ Reg(S) \ Z and Im(α) ⊂ M1 ∪ {x1, x2} ⊂ S.
Assume that for each point y ∈ Mi for i = 2, . . . , � − 1 there exists a continuous 

semialgebraic path α : [0, 1] → S such that α(0) = x1, α(1) = y and η(α) ⊂ Reg(S) \ Z. 
Let γ : (−1, 1) → S be a Nash arc such that γ((−1, 1)) = Γ�, γ((−1, 0)) ⊂ ��−1

j=1(Mj \Z)
and γ((0, 1)) ⊂ M� \ Z. Let u := γ(−1

2 ) ∈ ��−1
j=1(Mj \ Z) and v := γ(1

2 ) ∈ M� \ Z. By 
induction hypothesis there exists a continuous semialgebraic path ρ1 : [0, 1] → S such 
that ρ1(0) = x1, ρ1(1) = u and η(ρ1) ⊂ Reg(S) \Z. As M� is a connected Nash manifold, 
there exists a Nash path ρ2 : [0, 1] → M� such that ρ2(0) = v and ρ2(1) = y2. Consider 
the continuous semialgebraic path α := ρ1 ∗ γ|[− 1

2 ,
1
2 ] ∗ ρ2 ∗ α2|[− 1

2 ,0] that connects the 
points x1 and x2 and satisfies η(α) ⊂ η(ρ1) ∪ {u, v, y2} ⊂ Reg(S) \Z and Im(α) ⊂ S, see 
Fig. 10.

(i) =⇒ (ii) If Reg(S) is connected, there is nothing to prove. Assume that the result 
is true if the number of connected components of Reg(S) is < r and let us check that 
the result is also true if the number of connected components of Reg(S) is r.

Let xi ∈ Mi \ Z for i = 1, . . . , r. By hypothesis one can construct a continuous 
semialgebraic path α : [0, 1] → S such that α(0) = x1, xi ∈ Im(α) for i = 2, . . . , r and 
η(α) ⊂ Reg(S) \ Z. By Lemma 7.7 Im(α) ∩ Z is a finite set.

We may reorder the connected components Mi in such a way that if i < j, then

ti := inf{t ∈ (0, 1) : α(t) ∈ Mi} < inf{t ∈ (0, 1) : α(t) ∈ Mj} =: tj .

Let us check: S′ := Cl(S \Cl(Mr)) ∩ S is pure dimensional, satisfies the hypothesis of (i) 
and Reg(S′) = �r−1

i=1 Mi. It is enough to show:

(a) Reg(S′) = �r−1
i=1 Mi is dense in S′. Consequently, S′ is pure dimensional.

(b) For each point x ∈ S′ there exists a continuous semialgebraic path β : [0, 1] → S′

such that β(0) = x1, β(1) = x and η(β) ⊂ Reg(S′) \ Z.
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Let us prove first (a). By Lemma 7.3 S
zar is irreducible because S is well-welded. As 

�r−1
i=1 Mi is a non-empty open subset of S, we conclude S′

zar = S
zar. Thus,

Reg(S′) = IntReg(Szar)(S
′ \ Sing(Szar)) ⊂ Reg(S) =

r�
i=1

Mi.

We deduce

r−1�
i=1

Mi ⊂ Reg(S′) ⊂ S′ ∩ Reg(S) = Cl(Reg(S) \ Cl(Mr)) ∩ Reg(S)

= Cl
( r�

i=1
Mi \ Cl(Mr)

)
∩

r�
i=1

Mi ⊂ Cl
( r−1�

i=1
Mi

)
∩

r�
i=1

Mi =
r−1�
i=1

Mi,

so Reg(S′) = �r−1
i=1 Mi.

As M1, . . . , Mr are the connected components of Reg(S), we have Mi ⊂ (Cl(Mi) \
Cl(Mr)) ∩ S, so Cl((Cl(Mi) \ Cl(Mr)) ∩ S) = Cl(Mi) for i = 1, . . . , r − 1. As S =⋃r

i=1 Cl(Mi) ∩ S,

S′ = Cl
( r⋃

i=1
Cl(Mi) ∩ S \ Cl(Mr)

)
∩ S = Cl

( r−1⋃
i=1

Cl(Mi) ∩ S \ Cl(Mr)
)
∩ S

=
r−1⋃
i=1

Cl((Cl(Mi) \ Cl(Mr)) ∩ S) ∩ S =
r−1⋃
i=1

Cl(Mi) ∩ S = Cl(Reg(S′)) ∩ S′,

so Reg(S′) is dense in S′.
Let us show next (b). As x ∈ S′, there exists an index 1 ≤ i ≤ r − 1 such 

that x ∈ Cl(Mi \ Z). By the Nash curve selection lemma there exists a Nash arc 
γ1 : (−1, 1) → R

n such that γ1((−1, 0)) ⊂ Mi \ Z and γ1(0) = x. Let si ∈ (0, ti+1) be 
such that α(si) ∈ Mi \Z. As Mi is a connected Nash manifold, there exists a Nash path
γ2 : [0, 1] → Mi such that γ2(0) = α(si) and γ2(1) = γ1(−1

2 ). The continuous semial-
gebraic path β := α|[0,si] ∗ γ2 ∗ γ1|[− 1

2 ,0] connects x1 with x and satisfies Im(β) ⊂ S′

and

η(β) ⊂ η(α|[0,si]) ∪ {α(si), γ1(−1
2 )} ⊂ Reg(S′) \ Z.

Consequently, S′ satisfies the desired conditions.
By induction hypothesis we may assume that there exist bridges Γi ⊂ S between 

Mi \ Z and �i−1
j=1(Mj \ Z) for i = 2, . . . , r − 1. Recall that Im(α) ∩ Z is a finite set. Let 

ε > 0 be such that the restriction α|(tr−ε,tr+ε) is a Nash map, α((tr, tr+ε)) ⊂ Mr \Z and 
α((tr − ε, tr)) ⊂ Mi \ Z for some i = 1, . . . , r − 1. It holds (after reparameterizing) that 
Γr := α((tr − ε, tr + ε)) is a bridge between �r−1

j=1 Mj \ Z and Mr \ Z, as required. �
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Corollary 7.9. Let S ⊂ R
n be a well-welded semialgebraic set and let Z ⊂ R

n be an 
algebraic set that does not contain S. Then for each pair of points x, y ∈ S there exists 
a continuous semialgebraic path α : [0, 1] → S such that α(0) = x, α(1) = y and 
η(α) ⊂ Reg(S) \ Z.

Proof. Let M1, . . . , Mr be the connected components of Reg(S). As S is well-welded, we 
can reorder the indices i = 1, . . . , r in such a way that there exist bridges Γi ⊂ S between 
Mi and �i−1

j=1 Mj for i = 2, . . . , r (see Corollary 7.6). Denote X = S
zar, which is an 

irreducible algebraic set not contained in Z. By Theorem 2.5 there exist a non-singular 
algebraic set X1 and a proper regular map f : X1 → X such that S ⊂ f(X1) and

f |X1\f−1(Sing(X)) : X1 \ f−1(Sing(X)) → X \ Sing(X)

is a diffeomorphism whose inverse map is also regular.
Denote Λi := Cl(f−1(Γi \ Sing(X))) ∩ f−1(Γi) and Ni := f−1(Mi) for i = 1, . . . , r. 

As Mi ⊂ X \ Sing(X), we have that Ni ⊂ X1 \ f−1(Sing(X)) is a Nash manifold. After 
shrinking Γi if necessary, we may assume by Lemma B.2 that Λi is a bridge between Ni

and �i−1
j=1 Nj such that Λi \�r

j=1 Nj = {qi} and f(qi) ∈ S for some qi ∈ X1.
Consider the algebraic set Z ′ := f−1(Z ∩ X) ⊂ X1. As X is irreducible, also X1

is irreducible. If Z ′ contains Ni, then Z ′ contains X1, so Z contains X, which is a 
contradiction. Consequently, Z ′ contains no Ni. As X1 is a Nash manifold, there exists by 
Lemma 2.9 a bridge Λ′

i between Ni\Z ′ and �i−1
j=1(Nj \Z ′) such that Λ′

i\�r
j=1 Nj = {qi}. 

Consequently, Γ′
i := f(Λ′

i) is a bridge between Mi \ Z and �i−1
j=1(Mj \ Z) such that 

Γ′
i \ Reg(S) = {f(qi)} ⊂ S. By Proposition 7.8 the result follows. �

7.C. Basic properties of well-welded semialgebraic sets II

We prove next the remaining announced properties of well-welded semialgebraic sets.

Corollary 7.10. Let S ⊂ R
n be a well-welded semialgebraic set. Then S is irreducible.

Proof. Denote d := dim(S). By [11, Lem.3.6] it is enough to prove that if f is a Nash 
function on S whose zero-set has dimension d, then f is identically zero.

Let f be a Nash function on S whose zero-set has dimension d. Let M1, . . . , Mr be 
the connected components of Reg(S). We may assume that f is identically zero only 
on M1, . . . , Mk. Observe that k ≥ 1 and assume by contradiction that k < r. Let 
T := {f = 0} ∩ �r

j=k+1 Mj , which is a semialgebraic set of dimension < d. Let Y
be the Zariski closure of T, which has dimension < d.

Pick points x1 ∈ �k
i=1(Mi \ Y ) and x2 ∈ �r

i=k+1(Mi \ Y ). By Corollary 7.9 there 
exists a continuous semialgebraic path α : [0, 1] → S such that α(0) = x1, α(1) = x2 and 
η(α) ⊂ Reg(S) \ Y . By Lemma 7.7 the inverse image α−1(Y ∩ S) is a finite set, so there 
exist ε > 0 and t0 ∈ (0, 1) such that α|(t0−ε,t0+ε) is a Nash map,
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Fig. 11. Semialgebraic set S := {(4x2 − y2)(4y2 − x2) > 0, y > 0} ∪ {(0, 0)} ⊂ R
2 and its set of regular 

points.

α((t0 − ε, t0)) ⊂
k�

i=1
(Mi \ Y ) and α((t0, t0 + ε)) ⊂

r�
i=k+1

(Mi \ Y ).

As f ◦α|(t0−ε,t0) is identically zero, f ◦α|(t0−ε,t0+ε) is identically zero, so α((t0, t0 +ε)) ⊂
T ⊂ Y , which is a contradiction. Consequently, k = r and f is identically zero, as 
required. �
Corollary 7.11. Let S1 ⊂ R

m and S2 ⊂ R
n be semialgebraic sets. Assume that there exists 

a surjective Nash map f : S1 → S2 and that S1 is well-welded. Then S2 is well-welded.

Proof. Let y1, y2 ∈ S2 and x1, x2 ∈ S1 be such that f(xi) = yi. Let Y be the Zariski 
closure of f−1(Sing(S2)), which has dimension < dim(S1) because S1 is irreducible. By 
Corollary 7.9 there exists a continuous semialgebraic path α : [0, 1] → S1 such that 
α(0) = x1, α(1) = x2 and η(α) ⊂ Reg(S1) \ Y . The (continuous) semialgebraic map 
β := f ◦ α satisfies β(0) = y1, β(1) = y2 and η(β) ⊂ f(f−1(S2 \ Sing(S2))) = Reg(S2). 
Consequently, S2 is well-welded. �
Example 7.12. There exist pure dimensional, irreducible semialgebraic sets that are not 
well-welded. Let

S := {(4x2 − y2)(4y2 − x2) > 0, y > 0} ∪ {(0, 0)} ⊂ R
2,

which is a pure dimensional irreducible semialgebraic set, see Fig. 11. Let us check that 
it is not well-welded.

Observe first that Sing(S) = {(0, 0)}. Pick the points x := (1, 1), y := (−1, 1) ∈ S and 
assume that S is well-welded. There exists a continuous semialgebraic path α : [0, 1] → S

such that α(0) = x, α(1) = y and η(α) ⊂ S \{(0, 0)}. Consider the open semialgebraic sets 
A1 := Reg(S) ∩{x > 0} and A2 := Reg(S) ∩{x < 0}, which satisfy S = A1∪A2∪{(0, 0)}. 
Let t0 := inf(α−1(A2)) > 0. Note that α(t0) = (0, 0) and there exists ε > 0 such that

(i) α((t0 − ε, t0)) ⊂ A1, α((t0, t0 + ε)) ⊂ A2,
(ii) α′(t) 
= 0 and α(t) 
= α(t0) for all t ∈ (t0 − ε, t0 + ε) \ {t0}.
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The tangent line to Im(α|(t0−ε,t0+ε)) at α(t0) is the line generated by the vector

w = lim
t→t0

α(t) − α(t0)
(t− t0)k

where 2k is the order of the series ‖α‖2 at t0. Note that

w = lim
t→t+0

α(t) − α(t0)
(t− t0)k

∈ Cl(A1) \ {(0, 0)},

w = lim
t→t−0

α(t) − α(t0)
(t− t0)k

∈ Cl(A2 ∪ −A2) \ {(0, 0)},

which is a contradiction because Cl(A1) ∩ Cl(A2 ∪ −A2) = {(0, 0)}. Thus, S is not 
well-welded. �
7.D. Alternative description of well-welded semialgebraic sets

We describe next well-welded semialgebraic sets using piecewise analytic paths instead 
of continuous semialgebraic paths. We say that a continuous path α : [0, 1] → R

n is 
piecewise analytic if there exists a finite set A′ ⊂ (0, 1) such that α|(0,1)\A′ is an analytic 
map. Let A be the smallest set with the previous property and define η(α) = α(A).

Lemma 7.13. Let S ⊂ R
n be a semialgebraic set. Then the following assertions are equiv-

alent:

(i) S is well-welded.
(ii) For each pair of points x, y ∈ S there exists a piecewise analytic path α : [0, 1] → S

such that α(0) = x, α(1) = y and η(α) ⊂ Reg(S).

Proof. The implication (i) =⇒ (ii) is immediate. For the converse, we proceed as follows.
Let M1, . . . , Mr be the connected components of Reg(S). An analytic bridge between 

Mi and Mj is the image Λ of an analytic arc α : (−1, 1) → R
n such that α((−1, 0)) ⊂ Mi

and α((0, 1)) ⊂ Mj . Proceeding as in the proof of Proposition 7.8 we can reorder the 
indices i = 1, . . . , r in such a way that there exist analytic bridges Λi ⊂ S between Mi and 

�i−1
j=1 Mj for i = 2, . . . , r. By Lemma 2.9 we can substitute the analytic bridges Λi ⊂ S

by (Nash) bridges Γi ⊂ S between Mi and �i−1
j=1 Mj for i = 2, . . . , r. By Corollary 7.6

S is well-welded. �
The following two results are the counterpart of Lemmas 7.1 and 7.2 for analytic 

paths. As the proofs are pretty similar to those of Lemmas 7.1 and 7.2, we leave the 
details to the reader.
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Lemma 7.14. Let S ⊂ R
n be a semialgebraic set that is connected by analytic paths. Then 

S is well-welded.

Lemma 7.15. Let S ⊂ R
n be a pure dimensional semialgebraic set. Assume that there 

exists an analytic path α : [0, 1] → S whose image meets all the connected components of 
Reg(S). Then S is well-welded.

7.E. Strict transforms of well-welded semialgebraic sets

We prove next that as it happens with irreducible arc-analytic sets [28, Thm.2.6] the 
strict transform of a well-welded semialgebraic set under a sequence of blow-ups is a 
well-welded semialgebraic set of its same dimension.

Lemma 7.16. Let X ⊂ R
m and Z ⊂ Y ⊂ R

n be algebraic sets. Let f : X → Y be a proper 
regular map such that the restriction f |X\f−1(Z) : X \ f−1(Z) → Y \ Z is bijective. Let 
S ⊂ Y be a well-welded semialgebraic set of dimension d such that S 
⊂ Z. Then the strict 
transform S1 := Cl(f−1(S \Z)) ∩ f−1(S) of S under f is a well-welded semialgebraic set 
of dimension d.

Proof. The proof is conducted in several steps:

7.E.1. We may assume Y = S
zar and X = X \ f−1(Z)

zar
.

Let Y ′ := S
zar, Z ′ = S

zar ∩ Z and X ′ = f−1(Y ′ \ Z ′)
zar

. Consider the proper regular 
map f ′ := f |X′ : X ′ → Y ′. The restriction f ′|X′\f ′−1(Z′) : X ′ \ f ′ −1(Z ′) → Y ′ \ Z ′ is 
bijective because X ′ \ f ′ −1(Z ′) = f−1(Y ′ \ Z ′).

7.E.2. We claim: S1 is pure dimensional. As the restriction f |X\Z : X \ f−1(Z) →
Y \ Z is proper and bijective, it is a semialgebraic homeomorphism. As S \ Z is pure 
dimensional of dimension d, also f−1(S \ Z) is pure dimensional of dimension d. As 
f−1(S \Z) ⊂ S1 ⊂ Cl(f−1(S \Z)), we conclude that S1 is pure dimensional of dimension 
d as well.

7.E.3. Observe that dim(X) = dim(Y ) = d and dim(Z) < d. The algebraic set

Z1 := f(Sing(X) ∪ Sing(S1)) ∪ Sing(Y )
zar ∪ Z

has by [4, Thm.2.8.8] dimension < d. We claim: f−1(Z1) has dimension < d.
As the restriction f |X\Z : X\f−1(Z) → Y \Z is bijective, dim(f−1(Z1\Z)) = dim(Z1\

Z) < d by [4, Thm.2.8.8]. If f−1(Z) has dimension d, it contains an irreducible component 
of X, which is a contradiction because X = X \ f−1(Z)

zar
. Thus, dim(f−1(Z)) < d, so 

dim(f−1(Z1)) < d.
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7.E.4. The restriction f |X\f−1(Z1) : X \ f−1(Z1) → Y \ Z1 is a bijective proper 
regular map between the Nash manifolds X \ f−1(Z1) and Y \ Z1. Let C be the set of 
critical points of f |X\f−1(Z1), which is by [4, Thm.9.6.2 & Lem.9.6.3] a semialgebraic set 
of dimension < d. Let Z2 := Z1 ∪ f(C)

zar
, which is an algebraic set of dimension < d. 

Again f−1(Z2) = f−1(Z2 \Z) ∪f−1(Z) has dimension < d. Consequently, the restriction 
map f |X\f−1(Z2) : X \ f−1(Z2) → Y \ Z2 is a Nash diffeomorphism between the Nash 
manifolds X \ f−1(Z2) and Y \ Z2.

7.E.5. As S1 has dimension d, Sing(S1) has dimension < d and f(Sing(S1))
zar

has 
dimension < d. Define Z3 := f(Sing(S1))

zar ∪ Z2 and observe that f−1(Z3) = f−1(Z3 \
Z) ∪ f−1(Z) is an algebraic set of dimension < d.

7.E.6. Let M1, . . . , Mr be the connected components of Reg(S). By Proposition 7.8
and Corollary 7.9, we may reorder the indices 1, . . . , r in such a way that for each 
j = 2, . . . , r there exists a bridge Γj ⊂ S between Mj \ Z3 and �j−1

k=1(Mk \ Z3). We 
have Γj \Reg(S) = {pj} for j = 2, . . . , r. Shrinking each bridge Γj , we may assume that 
Γj ∩ Z3 ⊂ {pj} for j = 2, . . . , r.

7.E.7. Let Ci1, . . . , Cisi be the connected components of Mi \Z3. As Γi ∩Z3 ⊂ {pi}, 
we may assume that Γi is a bridge between Ci1 and �i−1

k=1�sk
j=1 Ckj . As Mi is a connected 

Nash manifold, we may construct using Lemmas 2.9 and 6.2 bridges Γij ⊂ Mi between 
Cij and �j−1

k=1 Cik.

7.E.8. Denote the connected components of Reg(S) \ Z3 with N1, . . . , Ns. By 7.E.6
and 7.E.7 we may assume that there exist bridges Λj ⊂ S between Nj and �j−1

k=1 Nk such 
that the intersection Λj ∩ Z3 is either the empty-set or a singleton for j = 2, . . . , s.

Denote Λ′
j := Cl(f−1(Λj \ Z)) ∩ f−1(Λj) ⊂ S1. By Lemma B.2 Λ′

j ∩ f−1(Z) is either 
the empty-set or a singleton {zj} and the curve germ Λ′

j,zj
is irreducible. Denote N ′

j :=
f−1(Nj). As S \Z3 is Nash diffeomorphic to f−1(S \Z3), it holds that N ′

1, . . . , N
′
s are the 

connected components of the Nash manifold f−1(S \Z3). Shrinking Λ′
j , we may assume 

that it is a bridge between N ′
j and �j−1

i=1 N ′
i for j = 2, . . . , s.

7.E.9. As Sing(S1) ⊂ f−1(Z3), we have S1 \ f−1(Z3) ⊂ Reg(S1). Note that

S1 \ f−1(Z3) = f−1(S \ Z3) =
s�

j=1
N ′

j

because Z ⊂ Z3, f−1(S \ Z) ⊂ S1 ⊂ f−1(S) and

f−1(S \ Z3) = f−1(S \ Z) \ f−1(Z3) ⊂ S1 \ f−1(Z3) ⊂ f−1(S \ Z3).



J.F. Fernando / Advances in Mathematics 331 (2018) 627–719 689
Let M ′
1, . . . , M

′
� be the connected components of Reg(S1). As Sing(S1) ⊂ f−1(Z3),

s�
j=1

N ′
j = S1 \ f−1(Z3) ⊂ Reg(S1) =

��
k=1

M ′
k,

so each N ′
j is contained in some M ′

k. As dim(f−1(Z3)) < d, we have Reg(S1) ⊂
Cl(�s

j=1 N
′
j). Thus, for each k = 1, . . . , � there exists 1 ≤ j ≤ s such that N ′

j ⊂ M ′
k. 

Define

j(k) := min{j = 1, . . . , s : N ′
j ⊂ M ′

k}

and note that j(k1) 
= j(k2) if k1 
= k2. We may assume j(k1) < j(k2) if k1 < k2. Observe 
that Λ′

j(k) ⊂ S1 is a bridge between M ′
k and �k−1

i=1 M ′
i . We conclude by Corollary 7.6

that S1 is well-welded, as required. �
Corollary 7.17. Let Y ⊂ X ⊂ R

n be algebraic sets and let S ⊂ X be a well-welded 
semialgebraic set of dimension d such that S 
⊂ Y . Let (B(X, Y ), π) be the blow-up of X
with center Y and let S1 := Cl(π−1(S \Y )) ∩π−1(S) be the strict transform of S under π. 
Then S1 is a well-welded semialgebraic set of dimension d.

8. Well-welded semialgebraic sets as Nash images of Euclidean spaces

In this section we prove Theorem 1.4. The most difficult part, implication (vii) =⇒ (i), 
is approached in two steps. We prove first that each well-welded semialgebraic set is the 
image under a Nash map of a ‘checkerboard set’ of its same dimension. Afterwards we 
show that a checkerboard set of dimension d is the image under a Nash map of its set of 
regular points, which is a connected Nash manifold of dimension d and consequently a 
Nash image of Rd by Theorem 6.1. We define the boundary of a semialgebraic set S ⊂ R

n

as ∂S := Cl(S) \ Reg(S). It holds Sing(S) ⊂ ∂S.

8.A. Checkerboard sets

A pure dimensional semialgebraic set S ⊂ R
n is a checkerboard set (see Fig. 12) if it 

satisfies the following properties:

• S
zar is a non-singular real algebraic set.

• ∂S
zar is a normal-crossings divisor of Szar.

• Reg(S) is connected.

Remark 8.1. The difference S \ ∂Szar is a union of connected components of Szar \ ∂Szar.
Observe that S \ ∂S

zar = Cl(S) \ ∂S
zar = Reg(S) \ ∂S

zar. Consequently, S \ ∂S
zar is 

an open and closed subset of Szar \ ∂S
zar, so it is a union of connected components of 

S
zar \ ∂Szar.
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Fig. 12. Checkerboard set S, its closure Cl(S), its Zariski closure S
zar, ∂S and the Zariski closure of ∂S.

Each checkerboard set is a well-welded semialgebraic set by the following result.

Lemma 8.2. Let X ⊂ R
n be a non-singular algebraic set and let Y ⊂ X be a normal-

crossings divisor. Let C ⊂ X \ Y be a union of connected components of X \ Y and let 
S ⊂ X be a semialgebraic set such that C ⊂ S ⊂ Cl(C). Then S is well-welded if and only 
if S is connected.

Proof. The ‘only if’ implication is straightforward. We prove next the ‘if’ implication.
Let C1, . . . , Cr be the connected components of C. We claim: there exist points 

p2, . . . , pr ∈ Y ∩ S such that, after reordering indices, pi ∈ S ∩ Cl(Ci) ∩
⋃i−1

j=1 Cl(Cj)
for i = 2, . . . , r.

We proceed by induction on r. If r = 1, the claim is clear. Assume the result true 
if the number of connected components of C is < r and let us see that it is also true 
when it is equal to r. As S is connected, there exists a continuous semialgebraic path 
α : [0, 1] → S whose image meets all the connected components Ci. We may reorder the 
indices 1, . . . , r in such a way that if i < j, then

ti := inf{t ∈ (0, 1) : α(t) ∈ Cl(Ci) ∩ S} ≤ inf{t ∈ (0, 1) : α(t) ∈ Cl(Cj) ∩ S} =: tj .

Consider the semialgebraic set S′ := Cl(S \ Cl(Cr)) ∩ S. It holds: S′ is connected.
As C1, . . . , Cr are the connected components of C, we have Cl(Ci) = Cl(Cl(Ci) \Cl(Cr))

for i 
= r. Consequently,

S′ = Cl(S \ Cl(Cr)) ∩ S =
r−1⋃
i=1

Cl(Cl(Ci) \ Cl(Cr)) ∩ S =
r−1⋃
i=1

Cl(Ci) ∩ S (8.1)

Consider the connected semialgebraic set T := α([0, tr]). Observe that T ⊂ S′ and 
T ∩ Cl(Ci) 
= ∅ for i = 1, . . . , r − 1. Consequently, S′ is connected.

As S′ \ Y = �r−1
i=1 Ci, there exist by induction hypothesis points p2, . . . , pr−1 ∈ Y ∩ S′

such that, after reordering indices, pi ∈ S ∩Cl(Ci) ∩
⋃i−1

j=1 Cl(Cj) for i = 2, . . . , r− 1. As 
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S = S′ ∪ (Cl(Cr) ∩ S) is connected and S′ and Cl(Cr) ∩ S are closed in S, there exists 
pr ∈ S′ ∩ Cl(Cr). By (8.1) there exists 1 ≤ i ≤ r − 1 such that pr ∈ Cl(Ci) ∩ Cl(Cr) ∩ S. 
Notice that Cl(Ci) ∩Cl(Cr) ⊂ Y because C is a union of connected components of X \Y . 
Thus, the claim follows.

Next we prove: S0 := C ∪ {p2, . . . , pr} is a well-welded semialgebraic set.
Fix i = 2, . . . , r and let 1 ≤ j ≤ i − 1 be such that pi ∈ Cl(Cj) ∩Cl(Ci) ⊂ Y . As Y is a 

normal-crossings divisor of X, there exists an open semialgebraic neighborhood U ⊂ X

of pi and a Nash diffeomorphism ψ : U → R
d such that ψ(0) = pi and ψ(U ∩ Y ) =

{x1 · · ·xs = 0}. We may assume

{x1 > 0, . . . , xs > 0} ⊂ ψ(Ci ∩ U) and {ε1x1 > 0, . . . , εsxs > 0} ⊂ ψ(Cj ∩ U)

where εk = ±1 for k = 1, . . . , s. Consider the Nash curve β := (β1, . . . , βd) : (−1, 1) → R
d

where

βk(t) =
{
t if εk = −1
t2 if εk = 1

for k = 1, . . . , s and βk(t) = 0 for k = s + 1, . . . , d. Observe that

β((−1, 0)) ⊂ {ε1x1 > 0, . . . , εsxs > 0} and β((0, 1)) ⊂ {x1 > 0, . . . , xs > 0}.

Consider the Nash curve γ := ψ−1 ◦ β : (−1, 1) → Ci ∪ Cj ∪ {pi} that satisfies 
γ((−1, 0)) ⊂ Cj and γ((0, 1)) ⊂ Ci. Thus, Γi := γ((−1, 1)) ⊂ S is a bridge between 
Cj and Ci. By Corollary 7.6 S0 is well-welded.

As S0 ⊂ S ⊂ Cl(S0), we conclude by Lemma 7.4 that S is well-welded, as required. �
The following result will allow us to lighten the presentation of the proof of implication 

(vii) =⇒ (i) of Theorem 1.4.

Lemma 8.3. Let S ⊂ R
n be a pure dimensional semialgebraic set of dimension d. Suppose 

that Sth(S) is connected, there exists a Nash manifold M of dimension d that contains S

and the smallest Nash subset Y of M that contains (Cl(S) ∩ M) \ Sth(S) is a Nash 
normal crossings divisor of M . Then there exists a Nash embedding ϕ : M ↪→ R

m for 
some m ≥ 1 such that ϕ(S) is a checkerboard subset of Rm, Reg(ϕ(S)) = ϕ(Sth(S)) and 
Sing(ϕ(S)) = ϕ(NSth(S)).

Proof. As S is connected, we may assume that M is connected. By Lemma C.1 there 
exists a Nash embedding ϕ : M ↪→ R

m such that

(i) ϕ(M) is a connected component of its Zariski closure V in Rm that is a non-singular 
real algebraic set of dimension d.
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(ii) The Zariski closure X of ϕ(Y ) in Rm is a normal crossing divisor of V such that 
ϕ(M) ∩X = ϕ(Y ).

Observe that ϕ(S)
zar

= ϕ(M)
zar

= V . By Remark 2.2 and Lemma 2.3 we deduce 
ϕ(Sth(S)) = Sth(ϕ(S)) = Reg(ϕ(S)) and ∂ϕ(S) = Cl(ϕ(S)) \ Reg(ϕ(S)) = ϕ((Cl(S) ∩
M) \ Sth(S)). Thus, ϕ(Y ) is the smallest Nash subset of ϕ(M) that contains ∂ϕ(S), so 
∂ϕ(S)

zar
is X, which is a normal crossing divisor of V = ϕ(S)

zar
. Consequently, ϕ(S) is 

a checkerboard subset of Rm, Reg(ϕ(S)) = ϕ(Sth(S)) and Sing(ϕ(S)) = ϕ(NSth(S)), as 
required. �
8.B. Well-welded semialgebraic sets as Nash images of checkerboard sets

Our purpose next is to prove that a well-welded semialgebraic set is the image under 
a proper surjective regular map of a checkerboard set of its same dimension.

Theorem 8.4. Let S ⊂ R
n be a well-welded semialgebraic set of dimension d and denote 

X := S
zar. Then there exist a checkerboard set T ⊂ R

m of dimension d and a proper 
regular map f : Y := T

zar → X such that f(T) = S.

Remark 8.5. As f is proper, if S is in addition bounded, then T is also bounded.

The proof of Theorem 8.4 is quite involved and requires some preliminary work.

Proposition 8.6. Let X ⊂ R
n be a non-singular algebraic set of dimension d and let 

Z ⊂ X be a normal-crossings divisor. Let S ⊂ X be a connected semialgebraic set such 
that C := S \ Z is a union of connected components of X \ Z and C ⊂ S ⊂ Cl(C). Then 
there exist a checkerboard set T ⊂ R

m of dimension d and a proper surjective regular 
map f : Y := T

zar → X such that the restriction f |Y \f−1(Z) : Y \ f−1(Z) → X \ Z is a 
regular diffeomorphism and f(T) = S.

Proof of Proposition 8.6 when S is closed. Let M1, . . . , Ms be the connected components 
of the Nash manifold Reg(S) and define R :=

⋃
i�=j Cl(Mi) ∩ Cl(Mj). Notice that

R = {x ∈ S : Reg(S)x 
⊂ Mi,x ∀i = 1, . . . , s} ⊂ {x ∈ S : Reg(S)x is not connected}.

The irreducible components of Z are non-singular. Denote them with Z1, . . . , Zr.

8.B.1. We claim: each irreducible component of A := R
zar is an irreducible component 

of some intersection Zi1 ∩ · · · ∩ Zi� .
As R ⊂ Z, also A ⊂ Z. Let A1 be an irreducible component of A and let R1 := R ∩A1. 

Let A2, . . . , Ar be the remaining irreducible components of A. Observe that
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R1 \
r⋃

j=2
Aj = R \

r⋃
j=2

Aj 
= ∅ and dim(A1) = dim
(
R1 \

r⋃
j=2

Aj

)
= dim(R1)

because A is the Zariski closure of R. In addition, we have A1 ∩ Reg(A) = Reg(A1) ∩
Reg(A) and R1 ∩ Reg(R) = A1 ∩ Reg(R) = Reg(R1) ∩ Reg(R).

Assume that A1 ⊂ Zk exactly for k = 1, . . . , �. Note that � ≤ d. Pick a point

x ∈ R1 ∩ Reg(R) \
r⋃

j=�+1

Zj ⊂ Reg(A).

As Z is a normal-crossings divisor of X, the intersection Z1 ∩ · · · ∩ Z� is a non-singular 
algebraic set and there exists an open semialgebraic neighborhood U ⊂ X \

⋃r
j=�+1 Zj of 

x equipped with a Nash diffeomorphism u : U → R
d such that u(x) = 0 and u(Z ∩U) =

{x1 · · ·x� = 0}. We may assume in addition:

• R ∩ U = A ∩ U = A1 ∩ U = R1 ∩ U is a connected closed submanifold of U .
• u(Zi ∩ U) = {xi = 0} for i = 1, . . . , �.
• Sx ∩M1,x 
= ∅ and Sx ∩M2,x 
= ∅.

As C is a union of connected components of X \ Z, we have that u(C ∩ U) is a union 
of sets of the type {ε1x1 > 0, . . . , ε�x� > 0} where εi = ±1. Consider the projection 
π : R

� × R
d−� → R

�, (x, y) �→ x and observe that u(C ∩ U) = π(u(C ∩ U)) × R
d−�. 

Consequently, S = Cl(C) satisfies u(S ∩ U) = π(u(S ∩ U)) × R
d−�. As Reg(S)x is not 

connected, Reg(π(u(S ∩ U)))0 is not connected. Consequently, for each y ∈ (Z1 ∩ · · · ∩
Z�) ∩ U the germ Reg(S)y is not connected. As Sx ∩M1,x 
= ∅ and Sx ∩M2,x 
= ∅, we 
deduce Sy ∩M1,y 
= ∅ and Sy ∩M2,y 
= ∅ for each y ∈ (Z1 ∩ · · · ∩ Z�) ∩ U . Thus,

A1 ∩ U ⊂ (Z1 ∩ · · · ∩ Z�) ∩ U ⊂ R ∩ U = A1 ∩ U.

As Z1 ∩ · · · ∩Z� is pure dimensional, we conclude that dim(A1) = dim(Z1 ∩ · · · ∩Z�). As 
A1 is irreducible, it is an irreducible component of Z1 ∩ · · · ∩ Z�.

8.B.2. Next, we prove: dim(R) ≤ dim(X) − 2. Assume by contradiction that 
dim(R) = dim(X) − 1. Let x ∈ Reg(Z) ∩ Reg(R). There exists an open semialgebraic 
neighborhood U ⊂ X of x such that U ∩ Z is Nash diffeomorphic to {x1 = 0}, so Cx

is either Nash equivalent to {x1 > 0} or to {x1 > 0} ∪ {x1 < 0}. Consequently, Sx is 
either Nash equivalent to {x1 ≥ 0} or to Rd. But in both cases Reg(S)x is connected, 
a contradiction.

8.B.3. Let A1 be an irreducible component of A and let (Y1, f1) be the blow-up of 
X with center A1. Denote T1 := Cl(f−1

1 (S \A1)) and observe that f1(T1) = S because f
is proper and surjective and S \ A1 is dense in S because S is pure dimensional. Let us 
prove:
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• f−1
1 (Z) is a normal-crossings divisor of Y1.

• T1 \ f−1
1 (Z) is a union of connected components of Y1 \ f−1

1 (Z).
• T1 is connected.
• Reg(T1) has at most s − 1 connected components.

Assume that A1 ⊂ Zk exactly for k = 1, . . . , �. As A1 is an irreducible component of 
Z1∩· · ·∩Z�, the inverse image f−1

1 (Z) is a normal-crossings divisor of Y1. As X \A1 and 
Y1 \f−1

1 (A1) are Nash diffeomorphic, also X \Z and Y1 \f−1
1 (Z) are Nash diffeomorphic. 

As C is a union of connected components of X \ Z, the inverse image f−1
1 (C) is a union 

of connected components of Y1 \ f−1
1 (Z). Consequently, f−1

1 (C) is closed in Y1 \ f−1
1 (Z)

and f−1
1 (C) = Cl(f−1

1 (C)) \ f−1
1 (Z). Let us check: T1 = Cl(f−1

1 (C)).
We have

T1 = Cl(f−1
1 (S \A1)) = Cl(f−1

1 (C)) ∪ Cl(f−1
1 ((S \ C) \A1)).

As Cl(f−1
1 ((S \ C) \A1)) ⊂ f−1

1 (Z), it holds

T1 \ f−1
1 (Z) = Cl(f−1

1 (C)) \ f−1
1 (Z) = f−1

1 (C).

As f−1
1 (S \ A1) and S \ A1 are Nash diffeomorphic and S \ A1 is pure dimensional, 

also f−1
1 (S \ A1) is pure dimensional, so T1 = Cl(f−1

1 (S \ A1)) is pure dimensional. As 
dim(f−1

1 (Z)) = d − 1 = dim(T1) − 1, we deduce T1 = Cl(T1 \ f−1
1 (Z)) = Cl(f−1

1 (C)).
By Lemma 8.2 S is well-welded, so T1 is by Lemma 7.16 well-welded and therefore 

connected. It only remains to check that Reg(T1) has at most s −1 connected components.
As dim(A1) ≤ dim(Mi) − 2, the differences Mi \A1 are connected Nash manifolds, so 

the same happens with the sets f−1
1 (Mi \A1). Observe that

s⋃
i=1

f−1
1 (Mi \A1) ⊂ Reg(T1) ⊂ T1 = Cl(f−1

1 (C))

= Cl(f−1
1 (Reg(S) \A1)) = Cl

( s⋃
i=1

f−1
1 (Mi \A1)

)
=

s⋃
i=1

Cl(f−1
1 (Mi \A1)), (8.2)

so Reg(T1) has at most s connected components. Let us check that in fact it has at 
most s − 1. This follows from equality (8.2) if we prove that Cl(f−1

1 (M1 ∪M2) \ A1) is 
connected.

Recall that A1 is an irreducible component of Z1 ∩ · · · ∩ Z�. Pick a point

x ∈ Reg(R) ∩A1 \
r⋃

j=�+1

Zj ⊂ Reg(A).

We may assume x ∈ Cl(M1) ∩Cl(M2). Let U ⊂ X \
⋃r

j=s+1 Zj be an open semialgebraic 
neighborhood of x such that R ∩ U = A ∩ U = A1 ∩ U that is equipped with a Nash 
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diffeomorphism u : U → R
d such that u(A1 ∩U) = {x1 = 0, . . . , x� = 0} and u(Z ∩U) =

{x1 · · ·x� = 0} ⊂ R
d. In particular,

Cl(M1) ∩ Cl(M2) ∩ U ⊂ R ∩ U = A1 ∩ U.

Observe that C ∩U is a union of sets of the type Qε := {ε1x1 > 0, . . . , ε�x� > 0} where 
ε := (ε1, . . . , ε�) ∈ {−1, +1}�, that is, there exists F ⊂ {−1, +1}� such that

C ∩ U =
⋃
ε∈F

Qε.

Denote Qε := {ε1x1 ≥ 0, . . . , ε�x� ≥ 0}. Observe that Reg(S) ∩U is not connected because 
it has at least two connected components E1 := u(M1 ∩ U) and E2 := u(M2 ∩ U). Let 
Qε ⊂ E1 and Qε′ ⊂ E2. We have

Qε ∩ Qε′ ⊂ Cl(E1) ∩ Cl(E2) ⊂ u(R ∩ U) = u(A1 ∩ U).

As dim(A1∩U) = d −�, we deduce ε′ = −ε. This means in addition that u(M1∩U) = Qε

and u(M2∩U) = Q−ε and we assume ε = (1, . . . , 1). In fact, S ∩U = (Cl(M1) ∪Cl(M2)) ∩U
and

u(S ∩ U) = {x1 ≥ 0, . . . , x� ≥ 0} ∪ {−x1 ≥ 0, . . . ,−x� ≥ 0}.

This is so because if x ∈ Cl(Mj) for j 
= 1, we have u(Mj ∩ U) = Qε′′ for some ε′′ ∈
{−1, 1}s. As we have seen ε′′ = −ε, so Mj = M2.

Let y ∈ f−1
1 (x). There exists an open semialgebraic neighborhood V ⊂ Y1 of y and a 

Nash diffeomorphism v : V → R
d such that v(y) = 0 and u ◦ f1 ◦ v−1 : Rd → R

d is given 
by

(x1, . . . , xd) �→ (x1, x1x2, . . . , x1x�, xs+1, . . . , xd).

Consequently,

(u ◦ f1 ◦ v−1)−1(C ∩ U) = {x1 > 0, x1x2 > 0, . . . , x1x� > 0}
∪ {x1 < 0, x1x2 < 0, . . . , x1x� < 0}
= {x1 > 0, x2 > 0, . . . , x� > 0} ∪ {x1 < 0, x2 > 0, . . . , x� > 0}
= {x1 
= 0, x2 > 0, . . . , x� > 0},

see Fig. 13. Therefore T1 contains Cl(v({x1 
= 0, x2 > 0, . . . , x� > 0})) = Cl(v({x2 > 0,
. . . , x� > 0})) and

f1(v({x1 > 0, x2 > 0, . . . , x� > 0}) = (M1 \A1) ∩ U,

f1(v({x1 < 0, x2 > 0, . . . , x� > 0}) = (M2 \A1) ∩ U.
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Fig. 13. Behavior of unions of two quadrants under blow-up.

Thus, Reg(Cl(f−1
1 ((M1 ∪M2) \ A1))) ⊂ Reg(T1) is connected, so Reg(T1) has by (8.2)

at most s − 1 connected components.

8.B.4. We repeat recursively the previous process until we obtain T and f satisfying 
the conditions in the statement, as required. �
Proof of Proposition 8.6 for the general case. Let S0 := Cl(S) = Cl(C). By Proposition 8.6
for the closed case there exist a checkerboard set T0 and a proper surjective regular map 
f0 : Y0 := T0

zar → X such that Z0 := f−1
0 (Z) is a normal-crossings divisor of Y0, the 

restriction f0|Y0\Z0 : Y0 \Z0 → X \Z is a regular diffeomorphism, T0 = Cl(f−1
0 (C)) and 

f0(T0) = S0. Let T1 := f−1
0 (S) ∩ T0 be the strict transform of S under f0. As S is by 

Lemma 8.2 well-welded, also T1 is by Lemma 7.16 well-welded, so T1 is connected. If 
Reg(T1) is connected, we are done, so we assume that Reg(T1) is not connected. Observe 
that f−1

0 (C) is dense in T1. Let N1, . . . , Ns be the connected components of Reg(T1). As 
T1 is connected, we suppose Cl(N1) ∩ Cl(N2) ∩ T1 
= ∅.

8.B.5. We may assume: there exist q ∈ Cl(N1) ∩Cl(N2) ∩T1 and an open semialgebraic 
neighborhood U ⊂ Y0 of q equipped with a Nash diffeomorphism u : U → R

d such that 
u(q) = 0,

{x1 > 0, . . . , x� > 0} ⊂ u(N1 ∩ U) and {x1 < 0, . . . , x� < 0} ⊂ u(N2 ∩ U).

Pick a point p ∈ Cl(N1) ∩ Cl(N2) ∩ T1 and let e := dim(Cl(N1)p ∩ Cl(N2)p). We 
distinguish two situations depending on the value of e:
Case 1. e < d − 1. Let A1 be an irreducible component of the Zariski closure A of 
Cl(N1) ∩ Cl(N2) of maximal dimension passing through p. Let Z01, . . . , Z0� be all the 
irreducible components of Z0 that contain A1. Proceeding similarly to the proof 8.B.1
one shows that A1 is an irreducible component of Z01 ∩ · · · ∩ Z0�. Note that e = d − �. 
Consider the blow-up (Y ′

0 , f1) of Y0 with center A1. Define T′
0 := Cl(f−1

1 (T0 \ A1)). 
Proceeding similarly to the proof of 8.B.3 one shows:

(i) f−1
1 (Z0) is a normal-crossings divisor of Y ′

0 .
(ii) T′

0 \ f−1
1 (Z0) is a union of connected components of Y ′

0 \ f−1
1 (Z0).

(iii) T′
0 is connected.
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In addition, it holds:

(iv) For each point z ∈ f−1
1 (p) ∩T′

0, we have dim(Cl(f−1
1 (N1))z∩Cl(f−1

1 (N2))z) = d −1.

Denote the union of the irreducible components of Z0 that do not contain A1 with Z ′
0. 

To prove (iv) pick

x ∈ Reg(Cl(N1) ∩ Cl(N2)) ∩A1 \ Z ′
0 ⊂ Reg(A)

close to p. Let U ⊂ Y0 be an open semialgebraic neighborhood of x equipped with a 
Nash diffeomorphism u : U → R

d such that u(x) = 0, u(A ∩ U) = {x1 = 0, . . . , x� = 0}
and u(Z0 ∩ U) = {x1 · · ·x� = 0}. We may assume in addition:

• Cl(N1) ∩ Cl(N2) ∩ U = A ∩ U is a connected closed submanifold of U .
• u(Z0i ∩ U) = {xi = 0} for i = 1, . . . , �.

Assume Q1 := {x1 > 0, . . . , x� > 0} ⊂ u(N1 ∩ U) and Qε := {ε1x1 > 0, . . . , ε�x� > 0} ⊂
u(N2 ∩ U) for some ε := (ε1, . . . , ε�) ∈ {−1, +1}�. As

Cl(Q1) ∩ Cl(Qε) ⊂ u(Cl(N1) ∩ Cl(N2) ∩ U) = u(A ∩ U) = {x1 = 0, . . . , x� = 0},

we have ε = (−1, . . . , −1), Q1 = u(N1 ∩ U) and Qε = u(N2 ∩ U).
Let y ∈ Y ′

0 be a point close to z such that f1(y) = x. There exists an open semialgebraic 
neighborhood V ⊂ Y ′

0 of y and a Nash diffeomorphism v : V → R
d such that u ◦f1 ◦v−1 :

R
d → R

d is given by

(x1, . . . , xd) �→ (x1, x1x2, . . . , x1x�, x�+1, . . . , xd).

We have

(u ◦ f1 ◦ v−1)−1(Q1 ∪ Qε) = {x1 > 0, x1x2 > 0, . . . , x1x� > 0}
∪ {x1 < 0, x1x2 < 0, . . . , x1x� < 0}
= {x1 > 0, x2 > 0, . . . , x� > 0} ∪ {x1 < 0, x2 > 0, . . . , x� > 0}
= {x1 
= 0, x2 > 0, . . . , x� > 0}.

So Cl(f−1
1 (N1)) ∩ Cl(f−1

1 (N2)) ∩ V contains v−1({x1 = 0}), which has dimension d − 1. 
Consequently, dim(Cl(f−1

1 (N1))z ∩ Cl(f−1
1 (N2))z) = d − 1.

We assume in what follows e = d − 1.
Case 2. e = d − 1. Consider the blow-up (Y ′

0 , f1) of Y0 with center {p} ⊂ T1. Consider 
the strict transform T′

1 := Cl(f−1
1 (T1 \ {p})) ∩ f−1

1 (T1). We have:

• f−1
1 (Z0) is a normal-crossings divisor of Y ′

0 .
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• T′
1 \ f−1

1 (Z0) is a union of connected components of Y ′
0 \ f−1

1 (Z0).
• T′

1 is connected (use the argument described above involving Lemmas 8.2 and 7.16).

As dim(Cl(N1)p ∩ Cl(N2)p) = d − 1, we assume there exists an open semialgebraic 
neighborhood U of p in Y0 and a Nash diffeomorphism u : U → R

d such that u(p) = 0, 
u(Z0 ∩ U) = {x1 · · ·x� = 0} and

R1 := {x1 > 0, x2 > 0 . . . , x� > 0} ⊂ u(N1 ∩ U), (8.3)

R2 := {x1 < 0, x2 > 0 . . . , x� > 0} ⊂ u(N2 ∩ U). (8.4)

Consider the Nash path germ α(t) := u−1(t, t2, · · · , t2) ⊂ N1 ∩ U and observe that

q := lim
t→0+

f−1
1 (α(t)) ∈ f−1

1 (p) ∩ Cl(f−1
1 (T1 \ {p})) ⊂ Cl(f−1

1 (T1 \ {p})) ∩ f−1
1 (T1) = T′

1.

(8.5)

Thus, there exists an open semialgebraic neighborhood V ⊂ Y ′
0 of q and a Nash dif-

feomorphism v : V → R
d such that v(q) = 0 and u ◦ f1 ◦ v−1 : R

d → R
d is given 

by

(x1, . . . , xd) �→ (x1, x1x2, . . . , x1xd).

We have

(u ◦ f1 ◦ v−1)−1(R1 ∪ R2 ∪ {0})
= {x1 > 0, x1x2 > 0, . . . , x1x� > 0} ∪ {x1 < 0, x1x2 > 0, . . . , x1x� > 0} ∪ {x1 = 0}
= {x1 > 0, . . . , x� > 0} ∪ {x1 < 0, . . . , x� < 0} ∪ {x1 = 0},

see Fig. 13. Consequently, 8.B.5 holds true.

8.B.6. Observe that q /∈ Ni for i = 1, . . . , s. Consider the blow-up (Y ′
0 , f1) of Y0 with 

center {q} ⊂ T1 and the strict transform T′
1 := Cl(f−1

1 (T1 \ {q})) ∩ f−1
1 (T1). We have:

• f−1
1 (Z0) is a normal-crossings divisor of Y ′

0 .
• T′

1 \ f−1
1 (Z0) is a union of connected components of Y ′

0 \ f−1
1 (Z0).

• T′
1 is connected by Lemmas 7.16 and 8.2.

Let us check that Reg(T′
1) has at most s − 1 connected components. It holds

s⋃
i=1

f−1
1 (Ni) ⊂ Reg(T′

1) ⊂ T′
1 = Cl(f−1

1 (Reg(T1) \ {q})) ∩ f−1
1 (T1)

= Cl
( s⋃

f−1
1 (Ni)

)
∩ f−1

1 (T1) =
s⋃

Cl(f−1
1 (Ni)) ∩ f−1

1 (T1), (8.6)

i=1 i=1
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so Reg(T′
1) has at most s connected components. Let us check that in fact it has at most 

s − 1.
Proceeding similarly to (8.5) we find a point

y ∈ f−1
1 (q) ∩ Cl(f−1

1 (T1 \ {q})) ⊂ Cl(f−1
1 (T1 \ {p})) ∩ f−1

1 (T1) = T′
1.

Thus, there exist an open semialgebraic neighborhood V ⊂ Y ′
0 of y and a Nash dif-

feomorphism v : V → R
d such that v(y) = 0 and u ◦ f1 ◦ v−1 : R

d → R
d is given 

by

(x1, . . . , xd) �→ (x1, x1x2, . . . , x1xd).

Consequently, if R1 is defined as in (8.3), then −R1 = {x1 < 0, x2 < 0, . . . , x� < 0} and

(u ◦ f1 ◦ v−1)−1((R1 ∪ −R1 ∪ {0}) = {x1 > 0, x1x2 > 0, . . . , x1x� > 0}

∪ {x1 < 0, x1x2 < 0 . . . , x1x� < 0} ∪ {x1 = 0}

= {x2 > 0, . . . , x� > 0} ∪ {x1 = 0},

see Fig. 13. So T′
1 contains v({x2 > 0, . . . , x� > 0}) and

f1(v({x1 > 0, x2 > 0 . . . , x� > 0}) ⊂ N1 ∩ U,

f1(v({x1 < 0, x2 > 0 . . . , x� > 0}) ⊂ N2 ∩ U.

Thus, Reg(Cl(f−1
1 (N1∪N2)) ∩f−1

1 (T1)) ⊂ Reg(T′
1) is connected, so Reg(T′

1) has by (8.6)
at most s − 1 connected components.

8.B.7. We repeat recursively the previous process until we obtain T and f satisfying 
the conditions in the statement, as required. �

We are ready to prove Theorem 8.4.

Proof of Theorem 8.4. Let X be the Zariski closure of S. By Theorem 2.5 there exist a 
non-singular algebraic set X ′ and a proper regular map f : X ′ → X such that the restric-
tion f |X′\f−1(Sing(X)) : X ′ \ f−1(Sing(X)) → X \Sing(X) is a biregular diffeomorphism. 
The strict transform S′ := Cl(f−1(S \ Sing(X))) ∩ f−1(S) is by Lemma 7.16 well-welded 
and f(S′) = S. So we may assume from the beginning that X is non-singular.

Let Z be the Zariski closure of R := Cl(S) \ Reg(S). By Theorem 2.7 there exist a 
non-singular algebraic set X ′ and a proper surjective regular map f : X ′ → X such that 
f−1(Z) is a normal-crossings divisor of X ′ and the restriction f |X′\f−1(Z) : X ′\f−1(Z) →
X \Z is a biregular diffeomorphism. The strict transform S′ := f−1(S) ∩Cl(f−1(S \Z))
is by Lemma 7.16 well-welded and f(S′) = S. Even more S \Z = Cl(S) \Z = Reg(S) \Z
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is a closed and open subset of X \ Z, so C := f−1(S \ Z) is a closed and open subset of 
X ′ \ f−1(Z). Consequently, C is a union of connected components of X ′ \ f−1(Z).

Thus, we may assume from the beginning:

• The Zariski closure of S is non-singular.
• The Zariski closure of Cl(S) \ Reg(S) is contained in a normal-crossings divisor Z.
• S \ Z is a union of connected components of X \ Z.
• S is connected (and so well-welded by Lemma 8.2).

By Proposition 8.6 there exist a checkerboard set T ⊂ R
m and a proper surjective 

regular map f : Y := T
zar → X such that f(T) = S, as required. �

8.C. Proof of Theorem 1.4

The implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) and (i) =⇒ (ii) =⇒ (v) =⇒ (vi) are 
straightforward. As quoted in the Introduction, only the proof of the non-completely 
trivial implication (ii) =⇒ ‘S is pure dimensional’ requires a comment and it is shown in 
Corollary 6.3. The implication (iii) =⇒ (vii) is proved in Lemma 7.1 whereas (v) =⇒ (vii) 
follows from Lemma 7.2. In addition, (iv) =⇒ (vii) is shown in Lemma 7.14 and 
(vi) =⇒ (vii) in Lemma 7.15. To finish we prove (vii) =⇒ (i), that is, a well-welded 
semialgebraic set of dimension d is a Nash image of Rd. By Theorem 8.4 we may as-
sume: S is a checkerboard set. Let M0 := S

zar, which is a Nash manifold, and let Z be the 
smallest Nash subset of M0 that contains ∂S, which is a Nash normal crossings divisor 
of M0 (because its irreducible components as a Nash set are connected components of 
the irreducible components of ∂Szar as an algebraic set). By Remark 8.1 the difference 
S \ ∂Szar = Reg(S) \ ∂Szar is a union of connected components of M0 \ ∂S

zar. As ∂Szar

is a normal crossings divisor of M0, we conclude that ∂S = Cl(S) \ Reg(S) is a pure 
dimensional semialgebraic set of dimension d −1. To get a general idea on how this proof 
works see Fig. 15. The proof is conducted in several steps.

8.C.1. Step 1. Initial preparation. Let Z1, . . . , Zs be the irreducible components of Z
as a Nash subset of M0. Let B ⊂ ∂S ⊂ Z be a semialgebraic set. For each i = 1, . . . , s let 
Bi be the closure of the set of points of dimension < dim(B) of the intersection B ∩ Zi. 
Denote B∗ := B \

⋃s
i=1 Bi and observe that B∗ is pure dimensional open semialgebraic 

subset of B and dim(B \ Sth(B∗)) < dim(B). We claim: if A is a connected component 
of Sth(B∗), then for each i = 1, . . . , s either A ∩ Zi = ∅ or A ⊂ Zi.

Fix i = 1, . . . , s such that A ∩Zi 
= ∅ and pick a point p ∈ A ∩Zi. Then p ∈ (B ∩Zi) \Bi, 
so p is a point of dimension dim(B) of B ∩ Zi. As dim(B \ Sth(B∗)) < dim(B), we 
deduce p ∈ Sth(B∗) is a point of dimension dim(Sth(B∗)) = dim(B) of Sth(B∗) ∩ Zi. 
As A is the connected component of Sth(B∗) that contains p, we have dim(A ∩ Zi) =
dim(Sth(B∗) ∩ Zi) = dim(Sth(B∗)) = dim(A). As A is a connected Nash manifold and 
Zi a Nash subset of M0, we conclude by the identity principle A ⊂ Zi.
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8.C.2. Step 2. Construction of the bad subset T of S and a suitable partition of T
into Nash manifolds of different dimensions. As Szar is a non-singular real algebraic set 
and S is pure dimensional, Reg(S) = Sth(S) and Sing(S) = NSth(S) by Remark 2.2. In 
particular, ∂S = Cl(S) \ Sth(S). Let G be the set of points of Sing(S) of local dimension 
< d − 1. Define the bad subset of S as:

T := NSth(NSth(S)) ∪ (Cl(G) ∩ S) ⊂ Z,

which is a semialgebraic set of dimension < d − 1. Define R0 := T, Rk := Rk−1 \ Tk and 
Tk := Sth(R∗

k−1) ⊂ Rk−1 for k ≥ 1 (see 8.C.1 for the definition of R∗
k−1 from Rk−1). 

Each semialgebraic set Tk is a Nash manifold (and an open subset of Rk−1) and each 
semialgebraic set Rk is a closed subset of T. In addition, if 1 ≤ k < j,

Cl(Tj) ∩ Tk = Cl(Tj) ∩ T ∩ Tk ⊂ Rj−1 ∩ Tk ⊂ Rk ∩ Tk = ∅. (8.7)

Observe that dim(Rk+1) < dim(Rk) for k ≥ 0 (if Rk 
= ∅), so Rd−1 = ∅. Consequently,

T = T1 � R1 = T1 � T2 � R2 = · · · =
d−1�
k=1

Tk,

S = Sth(S) � (NSth(S) \ T) � T.

8.C.3. Step 3. The difference S \ T is a Nash manifold with boundary the difference 
NSth(S) \ T and interior Sth(S).

It holds that NSth(S) \ T is either empty or a Nash manifold of dimension d − 1. 
Assume NSth(S) \ T 
= ∅ and pick a point x ∈ NSth(S) \ T. As NSth(S) ⊂ Z and Z
is a normal-crossings divisor, there exists an open semialgebraic neighborhood U of x
in M0 equipped with a Nash diffeomorphism u : U → R

d such that u(x) = 0 and 
u(Z ∩ U) = {x1 · · ·xr = 0} for some 1 ≤ r ≤ d. As NSth(S) \ T is a Nash manifold of 
dimension d − 1, we may assume u((NSth(S) \ T) ∩ U) = {x1 = 0}. As Sth(S) \ Z is a 
union of connected components of M0 \Z, the Nash manifold Sth(S) is connected and S
is pure dimensional, we may assume u(S ∩U) = {x1 ≥ 0}. Consequently, S \ T is a Nash 
manifold with boundary NSth(S) \ T and interior Sth(S).

8.C.4. Step 4. Define G := {1 ≤ k ≤ d − 1 : Tk 
= ∅} and �(S) := #G. We 
prove next by induction on �(S) the following: There exist a connected Nash manifold 
H with boundary ∂H and a surjective Nash map f : H → S such that Int(H) is Nash 
diffeomorphic to Sth(S). Once this will be done, recall that H is by Theorem 1.5 a Nash 
image of Rd, so also S will be a Nash image of Rd and the proof will be finished.

If �(S) = 0 (or equivalently T = ∅), then S = S \ T is by 8.C.3 a Nash manifold with 
boundary and it is enough to take H := S and f := idS. Assume statement 8.C.4 true 
for �(S) − 1 and let us check that it is also true for �(S).
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8.C.5. Write � := �(S) and observe that Tk = ∅ if and only if k ≥ � +1. As T� is locally 
compact (because it is a Nash manifold), the semialgebraic set C := Cl(T�) \T� is closed. 
By (8.7) C does not meet Tj for 1 ≤ j ≤ �, so C ∩T = ∅. As T is a closed subset of S and 
C ⊂ Cl(T) \T, we have S ∩C = ∅. Let M := M0\C, which is a Nash manifold of dimension 
d that contains S. Observe that T� is a closed Nash submanifold of M of dimension e < d. 
Let (M̃+, π+) be the drilling blow-up of M with center T� and let (M̂, ̂π) be the twisted 
Nash double of (M̃+, π+). By 5.B.1 π−1

+ (T�) is a closed non-singular Nash hypersurface 
of the Nash manifold M̂ . Denote E := Cl(π−1

+ (Z \ T�)) ∩ M̃+ and K := π−1
+ (T�) ∩ E, 

which are closed semialgebraic subsets of M̂ . Observe that E = π−1
+ (Z \ T�) �K. Define

S′1 := π−1
+ (S) ∩ Cl(π−1

+ (S \ T�)) and S1 := S′1 \K.

It holds S1 \ π−1
+ (Z) = π−1

+ (S \ Z) and (S1 \ E) ∩ π−1
+ (T�) = S1 ∩ π−1

+ (T�). Denote 
M ′ := M̂ \K, which is a Nash manifold, and Z ′ := (E \K) � (π−1

+ (T�) ∩ S1).

8.C.6. We claim: Z ′ is the smallest Nash subset of M ′ that contains the semialgebraic 
set ∂S1 := (Cl(S1) ∩M ′) \NSth(S1) and it is a Nash normal crossings divisor of M ′. In 
addition, Sth(S1) is a connected Nash manifold of dimension d. Once this is proved, we 
deduce by Lemma 8.3 that, up to a suitable Nash embedding of M ′, the semialgebraic 
set S1 is a checkerboard set such that Reg(S1) = Sth(S1) and Sing(S1) = NSth(S1).

As π+|M̃+\π−1
+ (T�) : M̃+ \ π−1

+ (T�) → M \ T� is a Nash diffeomorphism, we have:

• E \K = π−1
+ (Z \ T�) is the smallest Nash subset of M̃+ \ π−1

+ (T�) that contains the 
semialgebraic set ∂S1 \ π−1

+ (T�) = π−1
+ (∂S \ T�), because Z \ T� is the smallest Nash 

subset of M \ T� that contains ∂S \ T�. To prove this last fact recall that ∂S is pure 
dimensional of dimension d − 1 and dim(T�) < d − 1.

• E \ K = π−1
+ (Z \ T�) is a Nash normal crossings divisor of M̃+ \ π−1

+ (T�) because 
Z \ T� is a Nash normal crossings divisor of M \ T�.

As M̃+\π−1
+ (T�) is an open and closed semialgebraic subset of M ′\π−1

+ (T�), we deduce 
that E \K is the smallest Nash subset of M ′ \ π−1

+ (T�) that contains the semialgebraic 
set ∂S1 \ π−1

+ (T�) and it is a Nash normal crossings divisor of M ′ \ π−1
+ (T�). As E \K is 

a closed semialgebraic subset of M ′, we conclude by [34, Prop.II.5.3] that E \ K is the 
smallest Nash subset of M ′ that contains the semialgebraic set ∂S1 \π−1

+ (T�) and a Nash 
normal crossings divisor of M ′.

8.C.7. Let us check: (π−1
+ (T�) ∩S1) is a closed non-singular Nash hypersurface of M ′. 

As (π−1
+ (T�) ∩ S1) ∩ (E \K) = ∅, this will show that Z ′ is the smallest Nash subset of 

M ′ that contains ∂S1 = π−1
+ (∂S \ T�) � (π−1

+ (T�) ∩ S1) and it is a Nash normal crossings 
divisor of M ′.
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We have Sth(S) ⊂ S \ T�, so Sth(S) = Sth(S \ T�). As π−1
+ (T�) = ∂M̃+ and 

dim(S1) = dim(M̃+), we have S1∩π−1
+ (T�) ⊂ NSth(S1) and Sth(S1) = Sth(S1 \π−1

+ (T�)). 
As π+|M̃+\π−1

+ (T�) is a Nash diffeomorphism,

Sth(S1) = Sth(π−1
+ (S \ T�)) = π−1

+ (Sth(S \ T�)) = π−1
+ (Sth(S)),

which is a connected Nash manifold of dimension d. Consequently, NSth(S1) =
π−1

+ (NSth(S) \ T�) ∪ (S1 ∩ π−1
+ (T�)) and ∂S1 = π−1

+ (∂S \ T�) � (π−1
+ (T�) ∩ S1). As M̃+ is 

a Nash manifold with boundary π−1
+ (T�), the difference M̃+ \ E is a Nash manifold with 

boundary π−1
+ (T�) \ E = π−1

+ (T�) \K.
Observe that S \Z = Cl(S) \Z = Sth(S) \Z is a closed an open subset of M0\Z = M\Z

(see Remark 8.1). As π−1
+ (T�) ∩ Sth(S1) = ∅,

π−1
+ (S \ Z) = π−1

+ (Sth(S) \ Z) = Sth(S1) \ π−1
+ (Z) = Sth(S1) \ E

is a union of connected components of π−1
+ (M\Z) = (M̃+\E) \π−1

+ (T�), that is, Sth(S1) \E
is a union of connected components of the interior Int(M̃+ \ E) of the Nash manifold 
with boundary M̃+ \E. Thus, the closure D of Sth(S1) \E in M̃+ \E is a Nash manifold 
with boundary D ∩ (π−1

+ (T�) \K).

8.C.8. We claim: S1 \ E is the closure of Sth(S1) \ E in M̃+ \ E.
As S \Z = Cl(S) \Z and T� ⊂ Z∩S, we have Cl(S) \(Z\T�) = S \(Z\T�) = (S \Z) ∪T�. 

As π−1
+ (Cl(S) \ (Z \ T�)) \K is a closed subset of M̃+ \ E = (π−1

+ (M \ (Z \ T�)) \K that 
contains π−1

+ (S \ Z), we deduce

S1 \ E = S′1 \ E = (π−1
+ (S \ (Z \ T�)) ∩ Cl(π−1

+ (S \ T�))) \K
= (π−1

+ (Cl(S) \ (Z \ T�)) ∩ Cl(π−1
+ (S \ Z))) \K ⊂ (M̃+ \ E) ∩ Cl(π−1

+ (S \ Z))

is the closure of π−1
+ (S \ Z) in M̃+ \ E.

8.C.9. Thus, S1 \ E is a Nash manifold with boundary S1 ∩ π−1
+ (T�). As S1 \ E is a 

closed subset of M̃+ \ E, the intersection (S1 \ E) ∩ π−1
+ (T�) = S1 ∩ π−1

+ (T�) is a closed 
subset of (M̃+\E) ∩π−1

+ (T�) = π−1
+ (T�) \K, which is itself a closed subset of M ′ = M̂ \K. 

Consequently, S1 ∩ π−1
+ (T�) is a closed non-singular Nash hypersurface of M ′.

8.C.10. We check next: �(S1) = �(S) − 1.
As NSth(S1) = π−1

+ (NSth(S) \T�) ∪(S1∩π−1
+ (T�)), the restriction map π+|M̃+\π−1

+ (T�) :

M̃+ \ π−1
+ (T�) → M \ T� is a Nash diffeomorphism and S1 ∩ π−1

+ (T�) is a Nash manifold 
of dimension d − 1, we deduce NSth(NSth(S1)) = π−1

+ (NSth(NSth(S)) \ T�) and the set 
G′ of points of NSth(S1) of dimension < d − 1 is π−1

+ (G \ T�). We claim: the bad subset 
T′ := NSth(NSth(S1)) ∪ (Cl(G′) ∩ S1) of S1 equals π−1

+ (T \ T�) =
⋃s−1

k=1 π
−1
+ (Tk). We have 

to prove: Cl(G′) ∩ S1 = π−1
+ ((Cl(G) ∩ S) \ T�).
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Fig. 14. Behavior of the surjective Nash map π+|S1 : S1 → S.

As G′ = π−1
+ (G \ T�) ⊂ Cl(π−1

+ (Z \ T�)) ∩ M̃+ = E, also Cl(G′) ∩ M̃+ ⊂ E. Thus,

Cl(G′) ∩ S1 = (Cl(G′) ∩ π−1
+ (S) ∩ Cl(π−1

+ (S \ T�))) \ (π−1
+ (T�) ∩ E)

= Cl(G′) ∩ E ∩ (π−1
+ (S) \ π−1

+ (T�)) = Cl(G′) ∩ π−1
+ (S \ T�).

As π+|M̃+\π−1
+ (T�) is a Nash diffeomorphism and G′ = π−1

+ (G \ T�), it holds

Cl(G′) ∩ S1 = Cl(G′) ∩ π−1
+ (S \ T�) = π−1

+ (Cl(G) ∩ S \ T�),

as claimed. Therefore, T′ = π−1
+ (T \ T�).

Decompose T′ = �d−1
k=1 T

′
k following the algorithm proposed in 8.C.2. As π+|M\T�

is a Nash diffeomorphism and Tk ∩ T� = ∅ if k 
= �, we deduce T′
k = π−1

+ (Tk) for 
k = 1, . . . , � − 1 and T′

k = ∅ for k = �, . . . , d − 1. As T′
�−1 
= ∅, we conclude

�(S1) = #{1 ≤ k ≤ d− 1 : T′
k 
= ∅} = �(S) − 1.

8.C.11. We claim: π+(S1) = S, see Fig. 14.
As S1 = (π−1

+ (S) ∩ Cl(π−1
+ (S \ T�))) \ K and K = π−1

+ (T�) ∩ E, we have S \ T� ⊂
π+(S1) ⊂ S. Thus, to prove π+(S1) = S, it is enough to show T� ⊂ π+(S1). Pick a point 
a ∈ T�. As Z\C is a Nash normal crossing divisor of M , there exists an open semialgebraic 
neighborhood U ⊂ M of a equipped with a Nash diffeomorphism u : U → R

d such that 
u(a) = 0 and u(U ∩ Z) = {xt · · ·xd = 0} for some t ≤ d. By 8.C.1 and the definition 
of T� (see 8.C.2) the connected component Ta

� of T� that contains a is contained in the 
irreducible components of Z that contain a. Thus, u(Ta

� ∩ U) ⊂ {xt = 0, . . . , xd = 0}. 
Shrinking U is necessary, we may assume Ta

� ∩ U = T� ∩ U is a closed subset of U and 
by 2.C.3 we may modify u in order to have u(T� ∩U) = {xe+1 = 0, . . . , xd = 0} for some 
1 ≤ e +1 ≤ t. Consider coordinates (xe+1, . . . , xd) in Rd−e. By 5.A.5 there exists a Nash 
diffeomorphism Φ : Re × [0, +∞) × S

d−e−1 → V := π−1
+ (U) such that

u ◦ π+ ◦ Φ : Re × [0,+∞) × S
d−e−1 → R

d, (y, ρ, w) �→ (y, ρw).

Observe that Φ−1(E ∩ V ) = R
e × [0, +∞) × (Sd−e−1 ∩ {xt · · ·xd = 0}). We may assume
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Fig. 15. Sketch of proof of the implication (vii) =⇒ (i) of Theorem 1.4.

{xt > 0, . . . , xd > 0} ⊂ u((S \ Z) ∩ U).

Let w0 ∈ {xt > 0, . . . , xd > 0} ⊂ R
d−e be a unitary vector. We have (u ◦π+◦Φ)(0, ρ, w0) =

ρw0 ∈ u((S \ Z) ∩ U) for each ρ ≥ 0, so in particular (u ◦ π+ ◦ Φ)(0, 0, w) = 0. Thus,

Φ(0, 0, w) ∈ (π−1
+ ((S \ (Z \ T�)) ∩ U) ∩ Cl(π−1

+ ((S \ Z) ∩ U))) \ E ⊂ S1,

so a ∈ π+(S1). Consequently, T� ⊂ π+(S1).

8.C.12. We have proved that S1 is (up to a suitable Nash embedding of M ′) a checker-
board set such that �(S1) = �(S) −1 and Sth(S1) is Nash diffeomorphic to Sth(S) via π+. 
By induction hypothesis there exist a connected Nash manifold H with boundary and 
a surjective Nash map f1 : H → S1 such that Int(H) is Nash diffeomorphic to Sth(S1), 
which is itself Nash diffeomorphic to Sth(S) via π+. Thus, f := π+ ◦ f1 : H → S is a 
surjective Nash map and Int(H) is Nash diffeomorphic to Sth(S), as required. �
9. Nash path-connected components of a semialgebraic set

To take advantage of the full strength of Theorem 1.4 applied to an arbitrary semial-
gebraic set S we introduce the Nash path-components of a semialgebraic set. Recall that 
by Theorem 1.4 Nash path-connected and well-welded semialgebraic sets coincide.

Definition 9.1. A semialgebraic set S ⊂ R
n admits a decomposition into Nash path-

connected components if there exist semialgebraic sets S1, . . . , Sr ⊂ S such that:
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(1) Each Si is Nash path-connected.
(2) If T ⊂ S is a Nash path-connected semialgebraic set that contains Si, then Si = T.
(3) Si 
⊂

⋃
j �=i Sj .

(4) S =
⋃r

i=1 Si.

Theorem 9.2. Let S ⊂ R
n be a semialgebraic set. Then S admits a decomposition into 

Nash path-connected components and this decomposition is unique. In addition, the Nash 
path-connected components of a semialgebraic set are closed in S.

Before proving Theorem 9.2 we need a preliminary result.

Lemma 9.3. Let S1, S2 ⊂ R
n be two well-welded semialgebraic sets of dimension d such 

that dim(S1 ∩ S2) = d. Then S := S1 ∪ S2 is well-welded.

Proof. Let xk ∈ Sk for k = 1, 2 and let y ∈ (S1∩S2) \Sing(S). As each Sk is well-welded, 
there exist by Corollary 7.9 continuous semialgebraic paths αk : [0, 1] → Sk such that 
αk(0) = xk, αk(1) = y and η(αk) ⊂ Reg(Sk) \ Sing(S)

zar
. The continuous semialgebraic 

path α := α1 ∗ α−1
2 connects the points x1 and x2 and satisfies

η(α) ⊂ η(α1) ∪ η(α2) ∪ {y} ⊂ Reg(S).

Consequently, S is well-welded, as required. �
Proof of Theorem 9.2. We divide the proof into two parts:
Existence. We proceed by induction on the dimension d of S. If d = 0, the Nash path-
connected components of S coincide with its connected components. Suppose the result 
true for dimension ≤ d − 1 and let us see that it is also true for dimension d.

Let S0 be the (semialgebraic) set of points of dimension d of S. Write S = S0∪T where 
T := S ∩ S \ S0

zar
. Observe that S0 and T are closed subsets of S and dim(T) ≤ d − 1. 

In addition, Tzar = S \ S0
zar

. Let M1, . . . , Mr be the connected components of Reg(S0). 
Observe that Cl(Mi) ∩ S is Nash path-connected for i = 1, . . . , r.

9.2.1. We claim: There exists a partition I1, . . . , I� of the set {1, . . . , r} such that

Sk :=
⋃
i∈Ik

Cl(Mi) ∩ S

is Nash path-connected for k = 1, . . . , � and for each J ⊂ {1, . . . , �} of cardinal ≥ 2 the 
semialgebraic set 

⋃
j∈J Sj is not Nash path-connected.

Define

F1 :=
{
I ⊂ {1, . . . , r} : 1 ∈ I and

⋃
Cl(Mi) ∩ S is Nash path-connected

}
.

i∈I
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Observe that F1 
= ∅. If J1, J2 ⊂ F1, then by Lemma 9.3 J1 ∪ J2 ∈ F1. Let I1 be the 
maximum of F1 ordered with respect to the inclusion. Denote K := {1, . . . , r} \ I1. By 
induction there exists a partition I2, . . . , I� of K such that Sk :=

⋃
i∈Ik

Cl(Mi) ∩ S is 
Nash path-connected for k = 2, . . . , � and for each J ⊂ {2, . . . , �} of cardinal ≥ 2 the 
semialgebraic set 

⋃
j∈J Sj is not Nash path-connected. It can be checked that the sets 

I1, . . . , I� satisfy the required properties.

9.2.2. Observe that S0 =
⋃�

i=1 Si and by Lemma 9.3 each intersection Si ∩ Sj has 
dimension ≤ d − 1 if i 
= j.

9.2.3. By induction hypothesis there exists a family T1, . . . , Tp of Nash path-
connected components of T. We may assume, after eliminating redundant Tj , that 
T1, . . . , Tm satisfy the following: S = S0∪

⋃m
j=1 Tj and Tj 
⊂ S0∪

⋃
k �=j Tk for j = 1, . . . , m.

9.2.4. Let us check that S1, . . . , S�, T1, . . . , Tm are a family of Nash path-connected 
components of S. By construction they satisfy conditions (1), (3) and (4) of Definition 9.1. 
Let us check that they also satisfy condition (2). In particular, by Lemma 7.4 a Nash 
path-connected component of S is a closed subset of S. We distinguish two possibilities 
accordingly to the different dimensions of the semialgebraic sets Si and Tj .

9.2.5. Let R ⊂ S be a Nash path-connected semialgebraic set that contains S1. As 
S1 has dimension d, also R has dimension d. As R is pure dimensional, it is contained in 
S0 =

⋃�
i=1 Si. We may assume that dim(R ∩ Si) = d exactly for 1 ≤ i ≤ s ≤ �. We claim: 

s = 1.
Otherwise, each union Sj ∪ R is Nash path-connected by Lemma 9.3 for j = 1, . . . , s. 

Consequently, by Lemma 9.3 R′ := R ∪
⋃s

j=1 Sj is Nash path-connected. On the other 
hand, dim(R ∩ Sj) < d for j = s + 1, . . . , �, so the semialgebraic set C′ :=

⋃�
j=s+1 R ∩ Sj

has dimension < d − 1 and satisfies

R′ = R ∪
s⋃

j=1
Sj =

s⋃
j=1

Sj ∪ C′

because R ⊂ S0 =
⋃�

i=1 Si. As R′ is pure dimensional,

Cl(R′) ∩ S = Cl(R′ \ C′) ∩ S = Cl
( s⋃

j=1
Sj

)
∩ S =

s⋃
j=1

Sj .

Consequently, 
⋃s

j=1 Sj is Nash path-connected, which contradicts 9.2.1.
As s = 1, it holds dim(R ∩ Sj) < d for 2 ≤ j ≤ �. Thus, the semialgebraic set 

C :=
⋃�

j=2 R ∩ Sj has dimension < d and satisfies R = S1 ∪ C. As R is pure dimensional,
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S1 ⊂ R ⊂ Cl(R) ∩ S = Cl(R \ C) ∩ S = Cl(S1 \ C) ∩ S = S1.

Consequently, S1 = R.

9.2.6. Let R ⊂ S be a Nash path-connected semialgebraic set that contains Tj . 
We claim: R ⊂ T. Assume this proved for a while. As Tj is a Nash path-connected 
component of T, we have R = Tj . Thus, the semialgebraic sets S1, . . . , S�, T1, . . . , Tm

satisfy condition (2) of Definition 9.1. Consequently, it is enough to prove: R ⊂ T.
As R is Nash path-connected, it is pure dimensional. As R 
⊂ S0 (because Tj 
⊂ S0) 

and S0 is a closed subset of S,

dim(R) = dim(R \ S0) = dim(R ∩ (S \ S0)) ≤ dim(R ∩ T) ≤ dim(R).

As R is Nash path-connected, it is irreducible. As dim(R ∩T) = dim(R), we have R
zar =

R ∩ T
zar ⊂ T

zar = S \ S0
zar

, so

R ⊂ S ∩ R
zar ⊂ S ∩ T

zar = S ∩ S \ S0
zar

=: T.

Uniqueness. Let {Si}ri=1 and {Rj}sj=1 be two families of semialgebraic sets satisfying the 
conditions of Definition 9.1. Assume s ≤ r.

Let x ∈ R1 
⊂
⋃s

j=2 Rj . As each Rj is a closed subset of S, the difference S \
⋃

j �=1 Rj =
R1 \

⋃
j �=1 Rj is an open neighborhood of x in S, so Sx = R1,x. In particular, S and 

R1 have the same dimension at x. As Sx = R1,x and dim(Sx) = max{dim(Si,x) : i =
1, . . . , r}, we assume dim(S1,x) = dim(Sx) = dim(R1,x). As S1,x = S1,x∩Sx = S1,x∩R1,x, 
we have dim(S1,x) = dim(R1,x) = dim(S1,x ∩ R1,x). As S1, R1 are pure dimensional, 
dim(S1) = dim(R1) = dim(R1 ∩ S1). By Lemma 9.3 S1 ∪ R1 is Nash path-connected, so 
by condition (2) S1 = S1 ∪ R1 = R1. Proceeding similarly with R2, . . . , Rs, we assume 
Ri = Si for i = 1, . . . , s. As S =

⋃s
i=1 Ri =

⋃s
i=1 Si, we deduce by condition (3) that 

r = s. Consequently, the families {Si}ri=1 and {Rj}sj=1 coincide, as required. �
Examples 9.4. (i) Let S := {x2z − y2 = 0} ⊂ R

3. The Nash path-connected components 
of S are S1 := S ∩ {z ≥ 0} and S2 := {x = 0, y = 0}.

(ii) Let S := S1 ∪ S2 ∪ S3 ⊂ R
3, where

S1 := [−1, 1] × [−2, 2] × {0}, S2 := [−2,−1] × {−1, 1} × [−1, 1],

& S3 := [1, 2] × {−1, 1} × [−1, 1].

The Nash path-connected components of S are S1, S2 ∩ {y = 1}, S2 ∩ {y = −1},
S3 ∩ {y = 1} and S3 ∩ {y = −1}. In contrast, X has three irreducible components 
[11, Rmk.4.4(iii)], which are S ∩ {z = 0}, S ∩ {y = 1} and S ∩ {y = −1}.
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10. Two relevant consequences of Main Theorem 1.4

In this section we prove Corollaries 1.7 and 1.8.

10.A. Proof of Corollary 1.7

By Theorem 1.4 it is enough to prove that S is well-welded. The proof is conducted 
in several steps.

10.2.1. As S is an irreducible semialgebraic set, Cl(S) is an irreducible arc-symmetric 
semialgebraic set. Let X be the Zariski closure of S and let π : X̃ → X be a resolution 
of the singularities of X (Theorem 2.5). By [28, Thm.2.6] applied to the irreducible 
arc-symmetric set Cl(S) there exists a connected component E of X̃ such that π(E) =
Cl(Reg(Cl(S))) = Cl(S) (recall that Cl(S) is pure dimensional). As π|

X̃\π−1(Sing(X)) :
X̃ \ π−1(Sing(X)) → X \ Sing(X) is a regular diffeomorphism and S \ Sing(X) is dense 
in Cl(S), we have Cl(π−1(S \ Sing(X)) = E. Let S̃ := π−1(S) ∩ Cl(π−1(S \ Sing(X))) =
π−1(S) ∩ E be the strict transform of S under π. We claim: S̃ is connected.

Otherwise, there exists a closed semialgebraic subset C ⊂ E such that S̃ ⊂ E \ C

and E \ C is not connected. As π is proper, C′ := π(C) is a closed subset of X. Ob-
serve that S ∩ C′ = ∅. Let Y be the smallest Nash subset of Rn \ C′ that contains S. 
As S is irreducible, also Y is irreducible. Observe that Y is an irreducible component 
of the Nash subset X \ C′ of Rn \ C′ and (Ỹ := π−1(Y ) ∩ E, π|Ỹ ) is a resolution of 
the singularities of Y . As Y is irreducible, also Ỹ is irreducible, so Ỹ ⊂ E \ C is con-
nected. As S̃ is dense in E, we conclude that Ỹ meets all the connected components 
of E \ C, which is a contradiction because Ỹ is connected but E \ C is not. Thus, S̃ is 
connected.

10.2.2. We prove next: S̃ is well-welded. Once this is done, S = π(S̃) is by Lemma 7.11
well-welded. As S̃ is a connected dense semialgebraic subset of the Nash manifold E, it is 
enough to check: If T is a connected dense semialgebraic subset of a Nash manifold M , 
then T is well-welded.

Let p ∈ T \ IntM (T), where IntM (T) denotes the interior of T in M . Let C1, . . . , Cr

be the connected components of IntM (T) whose closures contain p. Let L ⊂ M be a 
compact semialgebraic neighborhood of p. By [4, Thm.9.2.1 & Rmk.9.2.3] there exists a 
finite simplicial complex K and a semialgebraic homeomorphism Φ : |K| → L such that 
{p} and each semialgebraic set Ck∩L is a finite union of images Φ(σ0) where σ ∈ K and 
the restriction Φ|σ0 : σ0 → L ⊂ M is a Nash embedding for each σ ∈ K.

It holds that given two connected components Ci and Cj there exist finitely many 
connected components Ci1 , . . . , Cis such that Ci = Ci1 , Cj = Cis and Cl(Cik) ∩Cl(Cik+1) ∩L
contains the image under Φ of a simplex of dimension d − 1 that contains {p} as a 
vertex.
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10.2.3. To prove that T is well-welded, it is enough by Corollary 7.6 to show the 
following: Let C1 and C2 be two connected components of IntM (T) that contain p in 
their closure and Cl(C1) ∩ Cl(C2) ∩ L contains the image under Φ of a simplex σ of 
dimension dim(S) − 1 that contains {p} as a vertex. Then there exists an analytic 
path α : [−1, 1] → C1 ∪ C2 ∪ {p} such that α((−1, 0)) ⊂ C1, α((0, 1)) ⊂ C2 and 
α(0) = {p}.

Denote A0 := Φ(σ0). By the Nash curve selection lemma there exists a Nash path 
β : (−1, 1) → M such that β(0) = p and β((0, 1)) ⊂ A0. After a change of coordinates, 
we may assume by [4, Cor.9.3.10] that the projection ρ : Rd := R

d−1 ×R → R
d−1 × {0}

induces a Nash diffeomorphism ρ|A : A → ρ(A) where A is an open semialgebraic subset 
of A0 that contains p in its closure. Let φ : ρ(A) → R be a Nash function such that 
A = graph(φ). The Nash map

ϕ : Ω := ρ(A) × R → ρ(A) × R, (x′, xd) �→ (x′, xd − φ(x′))

induces a Nash diffeomorphism that maps A onto ρ(A) × {0}. In addition, we may 
assume that ϕ(C1 ∩ Int(L) ∩Ω) is an open semialgebraic subset of ρ(A) × (−∞, 0) whose 
boundary contains ρ(A) ×{0} and ϕ(C2 ∩ Int(L) ∩Ω) is an open semialgebraic subset of 
ρ(A) × (0, +∞) whose boundary contains ρ(A) × {0}. For each � ≥ 1 consider the Nash 
path

γ� : (−1, 1) → R
d, t �→ ((ρ ◦ β)(t2), t2�+1).

Observe that for � ≥ 1 large enough, we may assume γ�((−1, 0)) ⊂ ϕ(C1 ∩ Int(L) ∩ Ω), 
γ�(0) = (ρ(p), 0) and γ�((0, 1)) ⊂ ϕ(C2 ∩ Int(L) ∩ Ω). Thus, for � ≥ 1 large enough the 
Nash path

α� : (−1, 1) → R
d, t �→ β(t2) + (0, . . . , 0, t2�+1)

satisfies α�((−1, 0)) ⊂ C1, α�(0) = p and α�((0, 1)) ⊂ C2 because α�|(−1,1)\{0} = ϕ−1 ◦
γ�|(−1,1)\{0}, as required. �
10.B. Proof of Corollary 1.8

(i) By Theorem 1.4 there exists a Nash map f : R
d → R

n whose image is S. By 
Artin–Mazur’s description [4, Thm.8.4.4] of Nash maps there exist s ≥ 1 and a non-
singular irreducible algebraic set Z ⊂ R

d+n+s of dimension d, a connected component 
M of Z and a Nash diffeomorphism g : R

d → M such that the following diagram is 
commutative.
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Z R
d × R

n × R
s ≡ R

m

π2
π1

M

R
d

∼=g

f

f

R
n

S

We denote the projection of Rd × R
n × R

s onto the first space Rd with π1 and the 
projection of Rd × R

n × R
s onto the second space Rn with π2. Write m := d + n + s. 

By [29] applied to M and the union of the remaining connected components of Z there 
exist finitely many polynomials P1, . . . , P�, Q1, . . . , Q� ∈ R[x] := R[x1, . . . , xm] such that 
each Qj is strictly positive on Rm and

M = Z ∩
{ �∑

j=1
Pj

√
Qj > 0

}
.

Observe that M is the projection of the algebraic set

Y :=
{

(x, y, t) ∈ Z × R
� × R :

( �∑
j=1

Pjy
2
j

)
t2 − 1 = 0, y4

j −Qj = 0 for j = 1, . . . , �
}

under π : Rm × R
� × R → R

m, (x, y, t) �→ x.
Fix ε := (ε1, . . . , ε�, ε�+1) ∈ {−1, 1}�+1 and let Mε := Y ∩ {ε1y1 > 0, . . . , ε�y� > 0,

ε�+1t > 0}. Consider the Nash diffeomorphism

ϕε : M → Mε, x �→
(
x, ε1

4
√
Q1(x), . . . , ε� 4

√
Q�(x), ε�+1

1√∑�
j=1 Pj(x)

√
Qj(x)

)

whose inverse map is the restriction to Mε of the projection π.
Observe that {Mε}ε∈{−1,1}�+1 is the collection of the connected components of Y . As 

π(Mε) = M and using the diagram above, we deduce

(π2 ◦ π)(Mε) = π2(M) = (f ◦ π1)(M) = f(Rd) = S.

In addition, each Mε is Nash diffeomorphic to Rd and for ε 
= ε′ the polynomial map

φε,ε′ : Rm × R
� × R → R

m × R
� × R, (x, y, t) �→ (x, (ε · ε′) · (y, t))

induces an involution of Y such that φε,ε′(Mε) = Mε′ . We have denoted
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(ε · ε′) · (y, t) := (ε1ε′1y1, . . . , ε�ε
′
�y�, ε�+1ε

′
�+1t).

As Z is non-singular, also Y is non-singular. Let X be the irreducible component of Y
that contains M(1,...,1). Then k := m + � + 1 − n and the non-singular algebraic set X
satisfy the requirements in the statement.

In addition, each connected component of X is Nash diffeomorphic to Rd and it has 
finitely many. Thus, X is Nash diffeomorphic to Rd × {1, . . . , s}, where s is the number 
of connected components of X.

(ii) Let S1, . . . , Sr be the Nash path-components of S, which satisfy S =
⋃r

i=1 Si. 
By (i) there exist m ≥ 1 and for each i = 1, . . . , r a non-singular algebraic set Xi ⊂ R

m

that is Nash diffeomorphic to a disjoint union of affine subspaces of Rd+1 (all of them 
affinely equivalent to Rdi where di := dim(Si) ≤ d = dim(S)) and satisfies π(Xi) = Si, 
where π : Rn × R

m−n → R
n, (x, y) �→ x is the projection onto the first n coordinates. 

Consider the pairwise disjoint union X := �r
i=1 Xi × {i} ⊂ R

m+1 and the projection 
π′ : Rn × R

m+1−n × R → R
n, (x, y, t) �→ x. Then X is a non-singular algebraic set, 

which is Nash diffeomorphic to a pairwise disjoint union of affine subspaces of Rd+1 and 
satisfies π(X) = S, as required. �

The following example shows that Corollary 1.8 is somehow sharp.

Example 10.1. Let X ⊂ R
n be a real algebraic curve Nash diffeomorphic to R. Let 

π : Rn → R be a linear projection. Then π(X) is not a proper open interval of R.
Notice that Y := ClRPn(X) = X ∪ {p∞} where p∞ is a certain point of the hyper-

plane of infinity of RPn. Observe that π is the restriction to Rn of a central projection
Π : RPn ��� RP

1 with center a projective subspace L of H∞(R) of dimension n − 2.
If p∞ /∈ L, then Π(Y ) is a compact subset of RP1 and Π(p∞) is the point at infinity 

of RP1. Thus, π(X) is a closed semialgebraic subset of R.
If p∞ ∈ L, we assume by contradiction that π(X) is a proper open interval of R. Then 

Y has at least two different tangents at p∞. However, as X is Nash diffeomorphic to R, 
the analytic germ Yp∞ has only one branch, which is a contradiction. Thus, π(X) is not 
a proper open interval of R.

Remark 10.2. Let S := (0, 1) ⊂ R. By Corollary 1.8 there exist n > 0 and an algebraic set 
X ⊂ R

n+1 whose connected components are Nash diffeomorphic to R and a projection 
π : R

n+1 → R such that π(X) = (0, 1). By Example 10.1 we know that X is not 
connected.

Appendix A. Miscellanea of C2 semialgebraic diffeomorphisms between intervals

We present examples of S2 diffeomorphisms between intervals required in Section 4
and 5.
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Fig. A.16. Graph of f1.

Fig. A.17. Graph of f2.

Examples A.1. (i) The function f1 : [ 14 , 1) → [0, 1) given by

f1(x) :=

⎧⎪⎪⎨⎪⎪⎩
5
12 (4x− 1) if 1

4 ≤ x ≤ 1
2 ,

1
3 (64x4 − 160x3 + 144x2) − 17x + 9

4 if 1
2 ≤ x ≤ 3

4 ,
x if 3

4 ≤ x ≤ 1

is an S2 diffeomorphism such that f1|[ 34 ,1) = id[ 34 ,1), see Fig. A.16.
(ii) The function f2 : [ 12 , 1) → [0, 1) given by

f2(x) :=

⎧⎪⎪⎨⎪⎪⎩
11
6 (2x− 1) if 1

2 ≤ x ≤ 5
8 ,

2048(x
4

3 − 11x3

12 + 15x2

16 ) − 863x + 144 if 5
8 ≤ x ≤ 3

4 ,
x if 3

4 ≤ x ≤ 1

is an S2 diffeomorphism such that f2|[ 3 ,1) = id[ 3 ,1), see Fig. A.17.

4 4
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Fig. A.18. Graph of f3.

(iii) The function f3 : (−1, 1) → (−1, 0) given by

f3(x) :=

⎧⎪⎪⎨⎪⎪⎩
x if −1 < x ≤ −1

2 ,
1
5 (16x4 + 16x3 + x− 1) if −1

2 ≤ x ≤ 0,
1
5 (x− 1) if 0 ≤ x < 1

is an S2 diffeomorphism such that f3|(−1,− 1
2 ] = id(−1,− 1

2 ], see Fig. A.18.

Appendix B. Strict transform of Nash arcs under blow-up

We recall here that the strict transform of an irreducible Nash curve germ under 
a sequence of blow-ups is again an irreducible Nash curve germ. We analyze first the 
images under Nash parameterization germs.

Lemma B.1. Let g := (g1, . . . , gn) : R0 → R
n
0 be an analytic map germ such that the 

germs g({t > 0}0) and g({t < 0}0) are different. Then Im(g) is an irreducible analytic 
curve germ. In addition, if g is Nash, then Im(g) is an irreducible Nash curve germ.

Proof. Let G : C0 → C
n
0 be the complex analytic map germ induced by g. As G is not 

identically zero, G−1(0) = {0}. By [5, Thm.3.4.24] G is a finite analytic map germ. Using 
a finite representative of G : C0 → C

n
0 and Remmert’s Theorem [32, Thm.VII.2.2] we 

deduce that Z0 := G(C0) is a 1-dimensional analytic germ. Consequently, X0 := Z0∩R
n
0

is an irreducible analytic curve germ. Let θ : C0 → Z0 be a normalization of Z0 that is 
invariant under conjugation. As X0 is coherent, θ(R0) = X0. There exists an analytic map 
germ F : C0 → C0 such that G = θ ◦ F . As G and θ are invariant under conjugation, 
also F is invariant under conjugation. Then F is a univariate analytic function germ 
of order k ≥ 1 with real coefficients. As g({t > 0}0) and g({t < 0}0) are different, 
k is odd and g(R0) = X0 is an irreducible analytic curve germ. The Nash case is now 
straightforward. �
Lemma B.2. Let Γ0 ⊂ R

n
0 be an irreducible Nash curve germ and let Γ be a representative. 

Let f : M → N be a Nash map between Nash manifolds and let Z ⊂ M and Y ⊂ N ⊂
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R
n be Nash subsets such that 0 ∈ Y . Assume that Γ0 ⊂ N , Γ0 
⊂ Y , the restriction 

f |f−1(Γ)∩Z : f−1(Γ) ∩Z → Γ is proper and the restriction f |f−1(Γ\Y )∩Z : f−1(Γ \Y ) ∩Z →
Γ \ Y is bijective. Denote Λ := Cl(f−1(Γ \ Y ) ∩ Z) ∩ f−1(Γ) ∩ Z. Then there exists a 
point p ∈ f−1(0) ∩Z such that Λp is an irreducible Nash curve germ, Λp∩f−1(Y ) = {p}
and f(Λp) = Γ0.

Proof. We may assume Γ ∩Y = {0} and Γ = Im(γ) where γ : (−1, 1) → N is a Nash arc 
such that γ(0) = 0 and γ is a homeomorphism onto its image. We claim: Λ ∩f−1(Y ) ∩Z

is a singleton {p} and Λp is an irreducible Nash curve germ.
The map g := f |Λ : Λ → Γ is proper. Thus, the restriction g|Λ\g−1(0) : Λ \ g−1(0) →

Γ \ {0} is proper and bijective, so it is a semialgebraic homeomorphism. As g is proper, 
g−1(0) 
= ∅. Let p ∈ g−1(0) and observe that p ∈ Cl(g−1(γ((0, 1)))) ∪Cl(g−1(γ((−1, 0)))).

Assume p ∈ T := Cl(g−1(γ((0, 1)))). Let X1,p be the smallest Nash germ that contains 
Tp. Observe that X1,p ∩ f−1(Y )p = {p} and γ((0, 1))0 ⊂ f(X1,p) ⊂ Γ0. As f |f−1(Γ\Y ) :
f−1(Γ \Y ) → Γ \Y is bijective, f(X1,p) is by Lemma B.1 a Nash germ. Thus, f(X1,p) = Γ0
and p ∈ Cl(g−1(γ((−1, 0)))). As Γ is semialgebraically homeomorphic to (−1, 1), we 
conclude Λ \ g−1(0) is semialgebraically homeomorphic to (−1, 1) \ {0}. Consequently, 
Λ ∩ f−1(Y ) = {p} is a singleton and Λp = X1,p is an irreducible Nash curve germ, as 
required. �
Appendix C. Algebraic structure of a Nash normal crossing divisor

As an application of classical algebraization Artin–Mazur’s result for Nash functions 
[4, §8.4], we show that if Y is a Nash normal crossing divisor of a Nash manifold M ⊂ R

n, 
there exists a Nash immersion of M in some affine space Rm such that M is a union of 
some connected components of its Zariski closure V in Rm (a non-singular real algebraic 
subset of Rm), the Zariski closure X of Y in Rm is a normal crossings divisor of V and 
M ∩X = Y .

Lemma C.1. Let M ⊂ R
n be a Nash manifold of dimension d and let Y ⊂ M be a Nash 

normal crossings divisor of M . Then up to a suitable Nash embedding of M in some 
affine space Rm we may assume:

(i) M is a union of connected components of its Zariski closure V in Rm, which is in 
addition a non-singular real algebraic subset of Rm of pure dimension d.

(ii) The Zariski closure X of Y in Rm is a normal crossings divisor of V and M∩X = Y .

Proof. Let Y1, . . . , Yr be the irreducible components of Y as a Nash subset of M , 
which are non-singular Nash hypersurfaces of M in general position. As N (M) is 
a noetherian ring, there exist finitely many Nash functions gij ∈ N (M) such that 
I(Yi) = (gi1, . . . , gi�)N (M). Let y ∈ Y and assume (after reordering the indices i
if necessary) that y ∈ Yi exactly for i = 1, . . . , e. As Y is a Nash normal crossings 
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divisor of M , we may assume (after reordering the indices j if necessary) that the lin-
ear forms dyg11, . . . , dyge1 : TyM → R are linearly independent and Y coincides with 
{g11 · · · ge1 = 0} in some neighborhood of y in M , see [17, Prop.5.1].

By Artin–Mazur’s description of Nash functions [4, §8.4] M is up to a Nash diffeo-
morphism an open and closed subset of a non-singular real algebraic set V0 ⊂ R

m of 
pure dimension d, which is in addition the Zariski closure of M , and the Nash functions 
gik are restrictions to M of polynomial functions Gik on V0. Consider the real algebraic 
sets

X0i := {x ∈ V0 : Gi1(x) = 0, . . . , Gi�(x) = 0} and X0 := X01 ∪ · · · ∪X0r.

The obstructions for X0 to be a Nash normal crossings divisor of V0 concentrate out-
side M , because X0i ∩M = Yi for i = 1, . . . , r and Y is a Nash normal crossings divisor. 
In addition, X0 ∩M = Y1 ∪ · · · ∪ Yr = Y .

C.1.1. We claim: There exists an algebraic subset Z of V0 satisfying the following:

(1) M ∩ Z = ∅.
(2) Pick x ∈ X0 \ Z and suppose (after reordering the indices i if necessary) that x ∈

X0i exactly for i = 1, . . . , e. Then we may assume (after reordering the indices 
j if necessary) that the linear forms dxG11, . . . , dxGe1 : TyV0 → R are linearly 
independent and there exists an open Zariski neighborhood U of x in V0 \ Z such 
that X0 ∩ U = {G11 · · ·Ge1 = 0} ∩ U .

Assume statement C.1.1 proved for a while and let h ∈ R[x] := R[x1, . . . , xm] be a 
polynomial equation of Z in Rm. Consider the algebraic sets

V := {(x, y) ∈ V0 × R : yh(x) = 1} and X := {(x, y) ∈ X0 × R : yh(x) = 1},

which are biregularly equivalent to the constructible sets V0 \ Z and X0 \ Z via the 
projection onto the first m coordinates. Using [5, Cor.4.3.18] the reader can check readily 
that V is a non-singular algebraic subset of Rm+1 that, up to a Nash diffeomorphism, 
contains M as an open and closed subset and X is a normal crossing divisor of V such 
that X ∩M = Y .

C.1.2. Let Z0 be the union of the singular sets Sing(Yi
zar) for i = 1, . . . , r and all 

the irreducible components of X0 different from Y1
zar

, . . . , Yr
zar (which are irreducible 

algebraic sets because Y1, . . . , Yr are irreducible Nash sets). The irreducible components 
of X0 different from Y1

zar
, . . . , Yr

zar do not meet M because: X0 ∩ M = Y and for 
each y ∈ Y we assume y ∈ Yi exactly for i = 1, . . . , e (after reordering the indices i if 
necessary), the linear forms dyg11, . . . , dyge1 : TyM → R are linearly independent (after 
reordering the indices j if necessary) and Y coincides with {g11 · · · ge1 = 0} in some 
neighborhood of y in M (recall that gij = Gij |M for each pair of indices i, j). We have
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Yi ⊂ Yi
zar ∩M ⊂ X0i ∩M = Yi and Sing(Yi

zar) ∩M ⊂ Sing(X0i) ∩M = ∅.

Consequently, Z0 ∩M = ∅.
For each i = 1, . . . , r let Gi1, . . . , Gi�, Gi,�+1 . . . , Gis be a system of generators of the 

ideal IR(Yi) = IR(Y zar) of polynomials in R[x] vanishing identically on Yi. Let P1, . . . , Ps

be a system of generators of the ideal IR(M) = IR(V0) of polynomials in R[x] vanishing 
identically on M . As V0 is non-singular and has dimension d, the rank

rk{dxP1, . . . , dxPs} = m− d

for each x ∈ V0. Denote Ir := {1, . . . , r} and for each non-empty subset I ⊂ Ir define

ZI :=
{
x ∈
⋂
i∈I

Yi
zar : rk{dxGij , dxPj : TxR

m → R : i ∈ I, j = 1, . . . , s} < m− d + #I
}

⊂ X0,

where #I denotes the cardinal of I, and observe that Y ∩ ZI = ∅. Thus, Z := Z0 ∪⋃
∅�=I⊂Ir

ZI is an algebraic subset of X0 ⊂ V0. If x ∈ X0 \ Z, we define Ix := {i ∈ Ir :
x ∈ Yi

zar}. Let us check: Z ∩M = ∅ and for each x ∈ X0 \ Z the rank

rk{dxGij , dxPj(x) : TxR
m → R : i ∈ Ix, j = 1, . . . , s} = m− d + #Ix

and there exists an open Zariski neighborhood U of x in V0 such that X0 ∩ U =
{G1j1 · · ·Grjr = 0} ∩ U for some indices 1 ≤ j1, . . . , jr ≤ s (depending on x).

Observe first that

M ∩ Z = M ∩
⋃

∅�=I⊂Ir

ZI = M ∩X0 ∩
⋃

∅�=I⊂Ir

ZI = Y ∩
⋃

∅�=I⊂Ir

ZI = ∅.

Fix a point x ∈ X0 \ Z. As x /∈ ZIx , we have

rk{dxGij , dxPj : TxR
m → R : i ∈ Ix, j = 1, . . . , s} = (m− d) + #Ix.

We may assume (after reordering the indices i, j if necessary) that Ix := {1, . . . , e} and

rk{dxG11, . . . , dxGe1, dxP1, . . . , dxPm−d : TxR
m → R} = (m− d) + e. (C.1)

Let Zx be the union of the irreducible components of the real algebraic set {G11 · · ·Ge1 =
0} different from Y1

zar
, . . . , Ye

zar and observe that {G11 · · ·Ge1 = 0} \Zx = (
⋃e

i=1 Yi
zar) \

Zx. Condition (C.1) guarantees that x /∈ Zx. Consider the open Zariski neighborhood

U := {y ∈ V0 : rk{dyG11, . . . , dyGe1, dyP1, . . . , dyPm−d : TyR
m → R} = (m− d) + e}

\
(
Zx ∪ Z ∪

r⋃
Yi

zar)

i=e+1
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of x in V0 \ Z. Observe that X0 ∩ U = (
⋃e

i=1 Yi
zar) ∩ U = {G11 · · ·Ge1 = 0} ∩ U , as 

required. �
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