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Abstract. Let Y ⊂ Rn be a triangulable set and let r be either a positive integer or r = ∞. We say
that Y is a Cr-approximation target space, or a Cr-ats for short, if it has the following universal
approximation property: For each m ∈N and each locally compact subset X of Rm, each continuous
map f : X → Y can be approximated by Cr maps g : X → Y with respect to the strong Whitney
C0 topology. Taking advantage of new approximation techniques we prove: if Y is weakly Cr tri-
angulable, then Y is a Cr-ats. This result applies to relevant classes of triangulable sets, namely:
(1) every locally compact polyhedron is a C∞-ats, (2) every set that is locally Cr equivalent to a
polyhedron is a Cr-ats (this includes Cr submanifolds with corners of Rn) and (3) every locally
compact locally definable set of an arbitrary o-minimal structure is a C1-ats (this includes locally
compact locally semialgebraic sets and locally compact subanalytic sets). In addition, we prove: if Y
is a global analytic set, then each proper continuous map f : X → Y can be approximated by proper
C∞ maps g : X → Y . Explicit examples show the sharpness of our results.

1. Introduction, main theorems and corollaries. Approximation is a tool
of great importance in many areas of mathematics. It allows to understand objects
and morphisms of a certain category taking advantage of the corresponding prop-
erties of objects and morphisms in other categories that enjoy a better behavior and
are dense inside the one we want to study.

In the geometrical context a remarkable example of an approximation result
with thousand of applications concerns Whitney’s approximation theorem [W] for
continuous maps whose target space is a Cr submanifolds Y of Rn for either a
positive integer r or r = ∞. An important fact is the existence of a system of Cr

tubular neighborhoods of Y in Rn (together with the corresponding Cr retractions
onto Y ). Whitney’s approximation theorem can be used for instance to prove the
existence of a unique C∞ manifold structure on each differentiable manifold of
class Cr for each positive integer r (see [H3]).

This paper deals with the problem of approximating continuous maps by dif-
ferentiable maps when the target space Y ⊂Rn may have “singularities”. Actually,
we require that Y is at least triangulable.

The special case when the target space Y ⊂Rn is a Nash set was already treated
by Coste, Ruiz and Shiota in [CRS1]. In fact, they approximate real analytic maps
on a compact Nash manifolds by a very restrictive class of approximating maps,
the so-called Nash maps, see [BCR, Ch. 8]. Recall that a function f : Rn → R is
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(real) Nash if it is of class Cω (that is, real analytic) and algebraic over the real
polynomials, that is, there exists a non-zero polynomial P ∈ R[x1, . . . ,xn,y] such
that P (x,f(x)) = 0 for each x ∈ Rn. In addition, Y ⊂ Rn is a Nash set if there
exist a Nash function f on Rn such that Y = {f = 0}. A Nash set X ⊂ Rm that
is in addition a smooth manifold is called a Nash manifold. A map F : Rm → Rn

is Nash if its components are Nash functions. The Nash maps f : X → Y are
the restrictions from X to Y of Nash maps F : Rm → Rn such that F (X) ⊂ Y .
The authors proved in [CRS1, Thm 0.0] a global version of Artin’s approximation
theorem [Ar], which implies the following:

THEOREM 1.1. [CRS1] Let Y ⊂ Rn be a Nash set and let X ⊂ Rm be any
compact Nash manifold. Then every real analytic map f :X → Y can be uniformly
approximated by (real) Nash maps g : X → Y .

The proof of the previous theorem is based on a deep result on commutative
algebra: the so-called general Néron desingularization, see the survey [CRS2] for
further references. Lempert proved in [Le] the counterpart of Theorem 1.1 for the
complex setting taking advantage again of the general Néron desingularization:

THEOREM 1.2. [Le] Let Y ⊂ Cn be a complex algebraic set and let X be
any holomorphically convex compact subset X of a complex algebraic subset of
Cm. Then every holomorphic map f : X → Y can be uniformly approximated by
complex Nash maps g : X → Y .

In [BP] the authors provide a simpler proof of the previous statement based on
strategies with a more geometric flavor.

Our main results in this work (Theorems 1.6 and 1.15) are of a different nature.
We show: if Y ⊂Rn belongs to a wide class of triangulable sets including differen-
tiable manifolds, polyhedra, semialgebraic sets, subanalytic sets and definable sets
of an o-minimal structure, then Y enjoys the following approximation property as
target space: Let X ⊂ Rm be any locally compact set. Then each continuous map
f : X → Y can be approximated by arbitrarily close Cr maps g : X → Y for ei-
ther suitable positive integers r or r= ∞, with respect to the strong C0 topology of
C0(X,Y ). As the set C0

∗(X,Y ) of proper maps between X and Y is an open sub-
set of C0(X,Y ) (see [H3, Ch. 2., Thm. 1.5]), the above Cr approximation property
implies the “proper Cr approximation target space property”. We will revisit the
latter property when dealing with C-analytic sets in Section 1.B below.

The preceding approximation by Cr maps is always possible if Y ⊂ Rn is a
Cr submanifold with boundary (even if it has corners) or if Y is a locally compact
polyhedron. Our proofs introduce new approximation strategies that make use of a
variant of the general simplicial approximation theorem, a “shrink-widen” covering
and approximation technique and Cr weak retractions. Our constructions provide
also certain relative versions of the preceding approximation results, that is, results
of the following form: if in addition X ′ ⊂X is non-empty and f |X ′ is a Cr map,
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there exist arbitrarily close Cr maps g : X → Y to f with respect to the strong C0

topology of C0(X,Y ) such that g|X ′ = f |X ′ . Examples 1.20 show that we have to
be quite restrictive with the hypotheses about X ′ (even if Y is as simple as a Cr

manifold with non-empty boundary).
In the literature there are many celebrated results concerning the existence of

obstructions to approximate homeomorphisms between differentiable manifolds by
diffeomorphisms. This obstruction theory is a central topic in differential topology,
which was mainly developed by names like Milnor, Thom, Munkres and Hirsch in
the fifties and sixties [H1, H2, Mi1, M1, M2, M3, Th]. We refer the reader also to
[DP, HM, IKO, MP, Mu] for some recent developments. Additional obstructions
where found by Milnor in [Mi2] when he constructed two homeomorphic compact
polyhedra which are not PL homeomorphic. Our results state that there are no
obstructions to approximate continuous maps f : X → Y by differentiable maps
g : X → Y when Y admits a “good” triangulation. Of course, one cannot expect
that the approximating map g is a diffeomorphism or a PL homeomorphism if the
map f we want to approximate is a homeomorphism. In fact, the approximating
maps g we construct in this paper are far from being injective (see Remark 3.12).

1.A. Weakly Cr triangulable sets. We assume in the whole article that
every subset of Rn is endowed with the relative Euclidean topology (where n ∈
N := {0,1,2, . . .}).

Let Y ⊂ Rn be a (non-empty) set. We say that Y is triangulable if it is home-
omorphic to a locally compact polyhedron of some Rq. A locally compact polyhe-
dron of Rq is defined as the realization |L| of a locally finite simplicial complex L
of Rq. For related notions concerning simplicial complexes we refer the reader to
[Hu, M5].

Let X ⊂ Rm be a (non-empty) locally compact set and let C0(X,Y ) be the
set of all continuous maps from X to Y . We endow C0(X,Y ) with the strong
(Whitney) C0 topology. A fundamental system of neighborhoods of f ∈ C0(X,Y )
in such a topology is given by the sets

N (f,ε) =
{
g ∈ C0(X,Y ) : ‖g(x)− f(x)‖n < ε(x) ∀x ∈X

}
,

where ‖ ·‖n denotes the Euclidean norm of Rn and ε : X → R+ := {t ∈R : t > 0}
is a strictly positive continuous function on X.

Denote N∗ := N \ {0} the set of all positive integers and fix r ∈ N∗ ∪ {∞}.
A map g : X → Y is a Cr map if there exist an open neighborhood U ⊂ Rm of
X (in which X is closed) and a differentiable map G : U → Rn of class Cr (in
the standard sense) such that g(x) = G(x) for each x ∈X. Denote Cr(X,Y ) the
subset of C0(X,Y ) of all Cr maps from X to Y .

Definition 1.3. Let r ∈ N∗ ∪ {∞}. A triangulable set Y ⊂ Rn is a Cr-
approximation target space or a Cr-ats for short if Cr(X,Y ) is dense in



970 J. F. FERNANDO AND R. GHILONI

C0(X,Y ) for each locally compact subset X of each Euclidean space Rm, where
m ∈N is any natural number.

If Y ⊂ Rn is a Cr-ats, it is triangulable, so by [Ha, Cor.3.5] it is an absolute
neighborhood retract. This implies that if X ⊂ Rm is an arbitrary locally compact
set, f ∈ C0(X,Y ) and g ∈ Cr(X,Y ) is any close enough approximation of f , then
g is homotopic to f (see [Ha, Thm.4.1]). Thus, close enough approximations of f
are also homotopic between them. In fact, Cr(X,Y ) is not only dense in C0(X,Y )
but it is also “homotopically dense” in C0(X,Y ) in the following sense: for each
f ∈ C0(X,Y ) and each strictly positive continuous function ε : X → R+ there
exists g ∈N (f,ε)∩ Cr(X,Y ) that is homotopic to f .

A natural question consists of determining if homotopic maps of Cr(X,Y ) and
Cr homotopic maps of Cr(X,Y ) coincide. In case X is a locally compact set and
Y is a Cr submanifold with boundary, then homotopic maps of Cr(X,Y ) are also
Cr homotopic maps of Cr(X,Y ) (see [ORR, Ch. III, Thm. 8.3]). The proof of this
result uses the following Cr approximation result relative to a closed subset X ′ of
X (when Y ⊂ Rn is a Cr submanifold with boundary).

THEOREM 1.4. [ORR, Ch. III, Thm. 6.1] Let X ⊂ Rm be a locally compact
set, let r ∈ N∗ ∪ {∞} and let Y ⊂ Rn be a Cr submanifold with boundary. Let
X ′ ⊂X be a closed set and let f : X → Y be a continuous map such that f |W is
a Cr map for some neighborhood W ⊂X of X ′. Then there exists g ∈ Cr(X,Y )
arbitrarily close to f in the strong C0 topology such that g coincides with f in a
neighborhood of X ′ in X.

In this work we analyze when a triangulable set Y ⊂ Rn is a Cr-ats. Clas-
sical examples of Cr-ats are the Cr submanifolds of Euclidean spaces. Indeed,
if Y is any Cr submanifold of Rn, then it is triangulable ( Cr triangulable indeed)
by Cairns-Whitehead’s triangulation theorem [Ca]. In addition, by Whitney’s ap-
proximation theorem one can approximate each continuous map f : X → Y by an
arbitrarily close Cr map g∗ : X →Rn and then one can use a Cr tubular neighbor-
hood ρ : U → Y of Y in Rn to define the Cr map g : X → Y , x +→ g(x) = ρ(g∗(x))
arbitrarily close to f in the strong C0 topology of C0(X,Y ).

If Y ⊂Rn is an arbitrary triangulable set, a serious difficulty arises: Y does not
have Cr tubular neighborhoods in Rn (recall that r ≥ 1)! An easy counterexample
is the Cr triangulable set Y := {xy= 0}⊂R2. If there were a C1 retraction ρ :U →
Y , then d0ρwould be the identity on R2 and the origin should be an interior point of
Y by the inverse function theorem, which is a contradiction. In fact, (boundaryless)
Cr submanifolds of Euclidean spaces can be characterized by the existence of Cr

retractions, namely: if a subset of an Euclidean space can be covered by local Cr

retractions, it is a (boundaryless) Cr submanifold (see [Mic, Thm. 1.15]).
In order to overcome this problem concerning the lack of Cr tubular neighbor-

hoods (when Y is not a boundaryless Cr submanifold of Rn), we introduce the key
concept of weakly Cr triangulable set.
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Fix r ∈N∗ ∪{∞} for a while.

Definition 1.5. We say that Y ⊂ Rn is weakly Cr triangulable if there exist a
locally finite simplicial complex L of some Rq and a homeomorphism Ψ : |L|→ Y
such that the restriction Ψ|ξ : ξ→ Y is a Cr map for each simplex ξ ∈ L.

Our first main result reads as follows.

THEOREM 1.6. Every weakly Cr triangulable set is a Cr-ats.

A natural matter that arises from the preceding statement is to reveal large and
relevant families of weakly Cr triangulable sets. A first relevant example is the
collection of Cr submanifolds with boundary of Rn (also treated in [ORR, Ch. III,
Thm. 6.1]):

COROLLARY 1.7. Every Cr submanifold with boundary of Rn is a Cr-ats.

Another important example is given by the family of locally compact polyhe-
dra itself. Indeed, each locally compact polyhedron is weakly C∞ triangulable by
definition. Consequently:

COROLLARY 1.8. Every locally compact polyhedron is a C∞-ats.

Let Y ⊂ Rn be a triangulable set, let L be a locally finite simplicial complex
of some Rq and let Ψ : |L|→ Y be a homeomorphism between the realization |L|
of L and Y . Given w ∈ L the star St(w,L) of w in L is the union of the interiors of
those simplices of L that have w as a vertex [M5, §2, p. 11]. Recall that the interior
of a simplex σ is defined as σ with its proper faces removed [M5, §1, p. 5].

Recall that Y ⊂ Rn is said to be Cr triangulable if there exists a homeomor-
phism Ψ : |L|→Y between the realization |L| of a locally finite simplicial complex
of some Rq and Y such that:

• the restriction Ψ|ξ : ξ→ Y is a Cr map for each simplex ξ of L and
• the map dwΨ : St(w,L)→ Rn, y +→ dw(Ψ|ξ)(y−w) (where ξ is a simplex

of L such that y ∈ ξ) is a homeomorphism onto its image for each w ∈ L.
Every Cr triangulable set is weakly Cr triangulable by definition. For further ref-
erence concerning Cr triangulations see for instance [Ca], [M4, §II.8] and [Sh,
§I.3, pp. 72–94].

A set Y ⊂ Rn is called locally Cr equivalent to a polyhedron, or locally Cr

polyhedral for short, if for each point x ∈ Y there exist two open neighborhoods
U and V of x in Rn, a Cr diffeomorphism φ : U → V and a locally compact
polyhedron P of Rn such that x ∈ P , φ(x) = x and φ(U ∩Y ) = V ∩P . In [Sh,
Prop. I.3.13] Shiota proved that every locally Cr polyhedral set is Cr triangulable.
We deduce:

COROLLARY 1.9. Every Cr triangulable set is a Cr-ats. In particular, every
locally Cr polyhedral set is a Cr-ats.
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A celebrated family of locally Cr polyhedral sets is the collection of Cr sub-
manifolds with corners of Euclidean spaces, which includes the above mentioned
collection of Cr submanifolds with boundary of Euclidean spaces. A subset Y ⊂
Rn is a Cr submanifold with corners of dimension d if for each point x ∈ Y there
exist an integer k ∈ {0, . . . ,d} and open neighborhoods U ⊂ Rn of x and V ⊂ Rn

of the origin together with a Cr diffeomorphism ϕ : U → V such that ϕ(U ∩Y ) =
V ∩{x1 ≥ 0, . . . ,xk ≥ 0,xd+1 = 0, . . . ,xn = 0}⊂Rn, see [Jo, Me1, Me2]:

COROLLARY 1.10. Every Cr submanifold with corners of Rn is a Cr-ats.

Another well-known family of locally Cr polyhedral sets arises when consid-
ering subsets Y of a Cr submanifold M of dimension d of some Rn with the fol-
lowing property: for each point x ∈ Y there exists an open neighborhood W ⊂M
of x endowed with a Cr diffeomorphism ψ : W →Rp that maps x to the origin and
satisfies that ψ(Y ∩W ) is a union of coordinate vector subspaces of Rp. Inside the
preceding family appears unions of locally finite families of Cr submanifolds of
M that meet transversally (in the preceding sense). Sets obtained in this way are
called sets with (only) Cr monomial singularities [BFR, FGR]. A particular case
concerns Cr normal-crossing divisors, that is, unions of locally finite families of
Cr hypersurfaces of M that meet transversally.

A very relevant class of triangulable sets is certainly the one of subanalytic sets,
which includes semialgebraic sets. See [BCR, BM1, Sh] for basic facts concerning
the geometry of these sets. Let us recall the main definitions.

A set Y ⊂ Rn is semialgebraic if it admits a description as a finite Boolean
combination of polynomial equalities and inequalities. The set Y is called locally
semialgebraic if the intersection Y ∩B is semialgebraic for each compact ball B
of Rn.

Let U ⊂ Rn be a (non-empty) open set. A set Y ⊂ U is analytic if for each
point x∈U there exists an open neighborhood V ⊂U of x such that Y ∩V = {f1 =
0, . . . ,fr = 0}= {f 2

1 + · · ·+f 2
r = 0} for some real analytic functions fi∈ Cω(V,R).

More generally, a set Y ⊂ U is semianalytic if for each point x ∈ U there exists an
open neighborhood V ⊂ U of x such that Y ∩V is a finite Boolean combination
of real analytic equalities and inequalities on V . The subanalytic sets are roughly
speaking the images of semianalytic sets under proper real analytic maps. More
precisely, Y ⊂ U is a subanalytic set if there exist an open subset W of some Rp, a
real analytic map f :W →U and a semianalytic set T ⊂W such that the restriction
f |ClW (T ) : ClW (T )→ U is proper and f(T ) = Y . Here ClW (T ) is the closure of
T in W . Locally semialgebraic sets are semianalytic and hence subanalytic.

The Hironaka-Hardt triangulation theorem [Hi, Hr] asserts that each locally
finite family Y := {Yi}i∈I of subanalytic subsets of Rn is “ Cω triangulable on
open simplices” in the following sense [Hr, Thms. 1 & 2]: there exist a locally
finite simplicial complex L of some Rq and a homeomorphism Ψ : |L|→ Rn such
that:
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• the image Ψ(ξ0) of each open simplex ξ0 of L is a Cω submanifold of Rn,
• each restriction Ψ|ξ0 : ξ0 →Ψ(ξ0) is a Cω diffeomorphism.
• each subanalytic set Yi is the (disjoint) union of some of the images Ψ(ξ0).
Unfortunately, this result does not ensure that a subanalytic subset Y of Rn is

weakly Cr triangulable for some r ∈ N∗ ∪{∞}.
The weakly Cr triangulability of semialgebraic and subanalytic sets is not yet

known for r ≥ 2. However, the situation is completely different for r = 1. In-
deed, in [OS] the authors have proved recently that every locally compact locally
semialgebraic set Y has a triangulating homeomorphism Ψ : |L| → Y such that
Ψ ∈ C1(|L|,Y ). In particular, Y is weakly C1 triangulable. See [CP] for further
information concerning the regularity of Ψ.

As it is commented by the authors of [OS] in the first paragraph of the intro-
duction, it is straightforward to check that the techniques developed in [OS] extend
to the subanalytic case. It turns out that locally compact subanalytic sets are weakly
C1 triangulable as well. We deduce:

COROLLARY 1.11. Every locally compact subanalytic set is a C1-ats. In par-
ticular, each locally compact locally semialgebraic set is a C1-ats.

Let us recall next the definition of o-minimal structure.

Definition 1.12. An o-minimal structure (on the field R) is a collection S :=
{Sn}n∈N∗ of families of subsets of Rn satisfying:

• Sn contains all the algebraic subsets of Rn.
• Sn is a Boolean algebra.
• If A ∈Sm and B ∈Sn, then A×B ∈Sm+n.
• If π :Rn×R→Rn is the natural projection and A∈Sn+1, then π(A)∈Sn.
• S1 consists precisely of all the finite unions of points and intervals of any

type.

The elements of
⋃

n∈N∗ Sn are called definable sets of S. As a consequence of
Tarski-Seidenberg theorem, semialgebraic sets constitute an o-minimal structure,
which is in fact contained in each o-minimal structure. The collection of “global”
subanalytic sets is precisely the collection of definable sets in the remarkable o-
minimal structure Ran, see [Wi]. We refer the reader to [vD, vdDM] for further
information on the celebrated theory of o-minimal structures. As in the semialge-
braic case, we say that a set Y ⊂Rn is a locally definable set of S if the intersection
Y ∩B is a definable set of S for each compact ball B of Rn.

Also in the o-minimal setting it is straightforward to adapt the constructions
developed in [OS, CP] to show that every locally compact locally definable sets of
any o-minimal structure is weakly C1 triangulable (see the first paragraph of the
introduction of [OS]). We deduce the following extension of Corollary 1.11:

COROLLARY 1.13. Every locally compact locally definable set of an arbitrary
o-minimal structure is a C1-ats.
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1.B. C-analytic sets. Now, we focus on a quite significant subclass of sub-
analytic sets, the one of C-analytic sets (also known as global analytic sets [C]).
We do not know if C-analytic sets are weakly Cr triangulable for some r ≥ 2,
but we develop an alternative approximation strategy to prove in Theorem 1.15 an
analogous result to Theorem 1.6 (with r = ∞) under the additional assumption that
the involved maps are proper.

Let U ⊂Rn be a (non-empty) open set. A set Y ⊂ U is said to be a C-analytic
subset of U if there exist finitely many global real analytic functions f1, . . . ,fr ∈
Cω(U,R) such that

Y = {f1 = 0, . . . ,fr = 0}= {f 2
1 + · · ·+ f 2

r = 0}.

By the term C-analytic set we mean a C-analytic subset of an open subset of some
Rn. Real algebraic sets and Nash sets are particular examples of C-analytic sets.

Let X ⊂ Rm be a locally compact set, let Y ⊂ Rn be a set and let C0
∗(X,Y )

be the set of all proper continuous maps from X to Y endowed with the relative
topology inherited from the strong C0 topology of C0(X,Y ). Given r ∈N∗ ∪{∞},
we set Cr

∗(X,Y ) := Cr(X,Y )∩ C0
∗(X,Y ).

Definition 1.14. Let r ∈ N∗ ∪ {∞}. A triangulable set Y ⊂ Rn is a Cr
∗-

approximation target space or a Cr
∗-ats for short if Cr

∗(X,Y ) is dense in
C0
∗(X,Y ) for each locally compact subset X of each Euclidean space Rm, where

m ∈N is any natural number.

Our second main result reads as follows.

THEOREM 1.15. Every C-analytic set is a C∞
∗ -ats.

1.C. Sharpness. The results presented above provide families of triangu-
lable sets Y ⊂ Rn for which Cr(X,Y ) is dense in C0(X,Y ) where r ∈ N∗ ∪{∞}
and X ⊂ Rm is an arbitrary locally compact set. If s > 0 is any positive integer
such that s < r, one may ask whether Cr(X,Y ) is also dense in Cs(X,Y ) at least
in the case X is a Cs submanifold of Rm, where Cs(X,Y ) is endowed with the
relative topology induced by the strong (Whitney) Cs topology of Cs(X,Rn) via
the natural inclusion Cs(X,Y ) ↪→ Cs(X,Rn).

The following example points out that there is no hope to obtain general state-
ments if s > 0.

Example 1.16. Let X := {(x,y) ∈R2 : x2 +y2 = 1} be the standard circle, let
s∈N∗ and let Y := {(x,y,z) ∈X×R : z3−y3s+1 = 0}. Note that Y is not a Cs+1

submanifold of R3.
Consider the Cs map f :X→ Y , (x,y) +→ (x,y,ys+1/3). Such a map cannot be

C1 approximated (and hence Cs approximated) by maps in Cs+1(X,Y ). Suppose
on the contrary that there exists a Cs+1 map g := (g1,g2,g3) : X → Y arbitrarily
close to f in the strong C1 topology. Thus, g∗ := (g1,g2) : X →X is arbitrarily C1
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close to the identity map on X, hence g∗ is a Cs+1 diffeomorphism by the inverse
function theorem. As g3 = gs+1/3

2 , it follows that (g3◦g−1
∗ )(x,y) = ys+1/3 is a Cs+1

function on X, which is a contradiction. Indeed, such a function is not of class Cs+1

locally at (±1,0). This proves that Cs+1(X,Y ) is not dense in Cs(X,Y ).

If s= 0, it is also sharp our choice r ∈ N∗ ∪{∞}, that is, we cannot choose in
general r = ω.

Example 1.17. Let Y := {xy = 0} ⊂ R2 and let f : R→ Y be the continuous
map defined by f(t) := (0, t) if t < 0 and f(t) := (t,0) if t≥ 0. Then f cannot be
approximated by real analytic maps g= (g−,g+) :R→ Y . Otherwise, g± would be
a real analytic function on R vanishing identically locally at ±∞ and nowhere zero
locally at ∓∞, which is impossible by the principle of analytic continuation. The
reader may compare this “negative” example with the “positive” approximation
theorem [BFR, Thm. 1.7], which is a key result for the proof of the main theorem
of [Fe].

Similar examples appeared in our manuscript [FG].

1.D. An unexpected by-product. The techniques involved in the proof of
Theorem 1.6 reveal another approximation property of each locally compact poly-
hedron P that has interest by its own. We fix a convention: The set C0(P,R+) of
strictly positive continuous functions on P is endowed with the partial ordering !
defined by ε! δ if ε(w)≤ δ(w) for each w ∈ P . Note that C0(P,R+) is a directed
set with such an ordering.

COROLLARY 1.18. Let K be a locally finite simplicial complex of Rp and
let P := |K| ⊂ Rp be its underlying locally compact polyhedron. Then there ex-
ists a net {ιε}ε∈C0(P,R+) in C∞(P,P ) that depends only on K, converges in the

Moore-Smith sense to the identity map on P in C0(P,P ) and satisfies the follow-
ing universal property:

(∗) Let r ∈ N∗ ∪ {∞}, let Y ⊂ Rn be any weakly Cr triangulable set and
let f ∈ C0(P,Y ) be such that f |σ ∈ Cr(σ,Y ) for each σ ∈ K. Then the net
{f ◦ ιε}ε∈C0(P,R+) converges in the Moore-Smith sense to f in C0(P,Y ) and each
composition f ◦ ιε belongs to Cr(P,Y ).

Remark 1.19. If in the preceding statement K is a finite simplicial complex,
the net {ιε}ε∈C0(P,R+) can be replaced by a sequence {ιk}k∈N in C∞(P,P ) with
the same universal property.

1.E. Smooth relative approximations. A natural question that arises
when dealing with approximation problems concerns the existence of relative
versions.

Fix r ∈N∗ ∪{∞}.
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Let X ′ ⊂X ⊂ Rm be non-empty sets such that X is locally compact and X ′

is closed in X, let Y ⊂ Rn be a set and let f : X → Y be a continuous map whose
restriction f |X ′ : X ′ → Y to X ′ is a Cr map. Are there Cr maps g : X → Y that
approximate f and satisfy g|X ′ = f |X ′?

As it is well known [M4, p. 42, Ex. (a)]: If Y admits a system of Cr tubular
neighborhoods in Rn (that is, Y is a boundaryless Cr submanifold of Rn), then
relative approximation is always possible. We sketch here a proof of the previous
fact to stress once more the crucial role played by Cr retractions onto Y .

Sketch of proof. Let f ∈ C0(X,Y ) be such that f |X ′ is a Cr map. Let (V,ρ)
be a Cr tubular neighborhood of Y in Rn, where ρ : V → Y is a Cr retraction.
By Whitney’s approximation theorem there exists g0 ∈ Cr(X,Y ) close to f in
the strong C0 topology. Let f1 : X → Rn be a Cr extension of f |X ′ to a small
enough open neighborhood U ⊂X of X ′. Let {θ,1−θ} be a Cr partition of unity
associated to {U,X \X ′}. Then g1 := θf1+(1−θ)g0 : X →Rn is close to f in the
strong C0 topology and g1|X ′ = f |X ′ . We may assume in addition g1(X)⊂ V and
g := ρ◦g1 is close to ρ◦f = f in the strong C0 topology (see Lemma 2.1 below).
Observe that g|X ′ = g1|X ′ = f |X ′ , as required. "

For more general spaces Y , which do not have Cr retractions of open neigh-
borhoods of Y in Rn onto Y , the situation is more restrictive with both X ′ and
the restriction f |X ′ . Let us see some enlightening counterexamples concerning Cr

manifolds Y with non-empty boundary.

Examples 1.20. Let Y be a Cr submanifold of Rn with non-empty boundary.
Let D(Y ) be the double of Y . Denote TyY the tangent space of Y at the point
y ∈ Y . Let h : Y →R be a Cr equation of the boundary ∂Y of Y such that {h> 0}
equals the interior Y \∂Y of Y and dyh : TyY → R is surjective for each y ∈ ∂Y .
A well-known way to endow D(Y ) with a Cr structure is to identify it with the
boundaryless Cr manifold M := {(x,t) ∈ Y ×R : t2 = h(x)}. We also identify Y
with M ∩{t≥ 0}. Denote π :Rn×R→R the projection (x,t) +→ t, which satisfies
π(Y )⊂ [0,+∞) and π(∂Y ) = {0}.

(i) Let X ′ ⊂X ⊂ Rm be non-empty sets and let f : X → Y be a continuous
map such that the restriction f |X ′ : X ′ → Y is a Cr map. Assume that there exists
a continuous path β : [−1,1] →X such that β([0,1]) ⊂X ′, the restriction β|[0,1] :
[0,1]→X is a Cr map, f(β(0))∈ ∂Y and the derivative (π◦f ◦β)′(0) of π◦f ◦β
at 0 is strictly positive. Recall that π(Y )⊂ [0,+∞) and π(∂Y ) = {0}. Consider the
continuous map

f ∗ : [−1,1]→ [0,+∞), t +→ π(f(β(t))).

Note that f ∗|[0,1] is a Cr map, f ∗(0) = 0 and (f ∗)′(0)> 0. It follows immediately
that there exists no Cr map g : X → Y such that g|X ′ = f |X ′ (or better g|β([0,1]) =
f |β([0,1])). Otherwise, the Cr map g∗ : [−1,1] → [0,+∞), t +→ π(g(β(t))) would
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coincide with f ∗ on [0,1], so (g∗)′(0) = (f ∗)′(0) > 0, so g∗ would be strictly in-
creasing locally at t = 0 in [−1,1]. This is impossible because g∗(0) = f ∗(0) = 0
and g∗ ≥ 0 on the whole interval [−1,1]. Consequently, there exists no Cr exten-
sion of f ∗|[0,1] to [−1,1] whose image is contained in [0,+∞) and there exists no
Cr extension from X to Y of f |X ′ . In particular, there exists no Cr approximation
g of f such that g|X ′ = f |X ′ .

(i′) An easy example in which the obstruction described in (i) appears is the
following: X := [−1,1], X ′ := [0,1], Y := {(x,y) ∈ R2 : y ≥ 0} and f : X → Y
is given by f(t) := (t,0) if t ∈ [−1,0), f(t) := (0, t) if t ∈ X ′ = [0,1] and β :
[−1,1]→X is the identity map.

(ii) We keep the notations fixed above concerning the Cr submanifold Y of Rn

with non-empty boundary. Suppose that Y has dimension d. Consider the continu-
ous map

f1 : D(Y )→ Y, (x,t) +→ (x, |t|).
We claim: f1|Y = idY (which is Cr), but f1|Y admits no Cr extension to D(Y )
whose image is contained in Y . This implies that there exists no Cr approximation
g of f1 such that g|Y = f1|Y .

Pick a point y0 ∈ ∂Y . Let ε> 0, let Bn(0,ε2) be the open ball of Rn centered at
0 with radius ε2 and let U ⊂Rn be an open neighborhood of y0 endowed with a Cr

diffeomorphism u := (u1, . . . ,un) :U →Bn(0,ε2) such that u(y0)= 0, u(U ∩Y )=
Bn(0,ε2)∩{x1 ≥ 0,xd+1 = 0, . . . ,xn = 0} and u1(x) = h(x) for each x ∈ U ∩Y .
Consider the Cr diffeomorphism

u∗ : U ∗ := U ×R→Bn(0,ε2)×R, (x,t) +→ (u(x), t)

such that u∗(y0,0) = (0,0) and

u∗(D(Y )∩U ∗) = (Bn(0,ε2)×R)∩{x1 = t2,xd+1 = 0, . . . ,xn = 0}=: M∗.

Consider the path α : (−ε,ε)→M∗, t +→ (t2,0, . . . ,0, t) and define the function

f ∗
1 : (−ε,ε)→ R, t +→ π(f1((u

∗)−1(α(t)))) = |t|.

Observe that f ∗
1 |[0,ε) : [0,ε)→ R, t +→ t is a Cr function, but there exists no exten-

sion of f ∗
1 |[0,ε) to (−ε,ε) whose image is contained in π(Y )⊂ [0,+∞). In particular,

there exists no Cr extension of f1|Y to D(Y ) whose image is contained in Y , as
required.

In order to avoid the obstruction described in the preceding examples, in [ORR,
Ch. III, Thm. 6.1] (see Theorem 1.4 above) the authors slightly modify classical
relative approximation statement and ask (as a stronger hypothesis) that the restric-
tion of the continuous function f to a small enough open neighborhood W ⊂ X
of X ′ is a Cr map. Then they take advantage of the existence of Cr tubular neigh-
borhoods of Y \∂Y in Rn and of Cr collars of ∂Y in Y . In this way, they obtain
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a Cr approximation g of f which coincides with f on a neighborhood W ′ ⊂ W
of X ′. Since g = f on a neighborhood W ′ ⊂ W of X ′, it seems not possible to
integrate the constructions in [ORR, Ch. III, Thm. 6.1] with our approximation
method to achieve more general situations, unless f is constant on W (see Remark
3.12 below).

Suppose next X ′ is a discrete and closed subset of X. Our next result states
that Cr approximation of continuous maps f : X → Y relative to X ′ is possible.

THEOREM 1.21. Let X ⊂Rm be a locally compact set, let X ′ be a discrete and
closed subset of X, let Y ⊂Rn be a weakly Cr triangulable set and let f : X → Y
be a continuous map. If f(X ′) is discrete and closed in Y , then there exists g ∈
Cr(X,Y ) arbitrarily close to f in the strong C0 topology such that g|X ′ = f |X ′ .

The latter result implies straightforwardly some properties of weakly Cr tri-
angulable sets Y concerning connectedness and homotopy. Fix y0 ∈ Y and denote
πp(Y,y0) the pth homotopy group of the pointed space (Y,y0) for each p ∈N∗. We
understand the elements of πp(Y,y0) as the homotopy classes of continuous maps
(Sp,N)→ (Y,y0), where Sp is the standard p-sphere and N is its north pole. The
path-connected components of Y coincide with its Cr path-connected components
and each element of πp(Y,y0) has a representative of class Cr.

COROLLARY 1.22. Let Y ⊂Rn be a weakly Cr triangulable set. We have:
(i) Each continuous path γ : [0,1]→ Y can be approximated in the strong C0

topology by Cr paths α : [0,1]→ Y such that α(0) = γ(0) and α(1) = γ(1).
(ii) Every element of πp(Y,y0) can be represented by a Cr map.

The preceding corollary holds for r = ∞ if Y is a locally compact polyhedron
and for r = 1 if Y is a locally compact locally definable set in an arbitrary o-
minimal structure.

Theorem 1.21 can still be extended: the crucial property to have approxima-
tions relative to X ′ is that f(X ′) has no accumulation points in Y . Before entering
into details, we introduce the following definition.

Definition 1.23. Let X ′ ⊂ X ⊂ Rm be sets such that (X is non-empty and)
X ′ is closed in X. The pair (X,X ′) is weakly∗ Cr triangulable if there exist a
locally finite simplicial complex K of some Rp, a subcomplex K ′ of K and a
homeomorphism Φ : |K| → X such that Φ(|K ′|) = X ′ and the restriction Φ|σ0 :
σ0 →X is a Cr map for each open simplex σ0 of K. We say that X is weakly∗ Cr

triangulable if so is the pair (X, /0).

Let X ′ ⊂X ⊂ Rm be such that X is locally compact and X ′ is closed in X.
The pair (X,X ′) is a subanalytic pair if both X and X ′ are subanalytic subsets of
Rm. Analogously, if S is an o-minimal structure (on the field R), the pair (X,X ′)
is a locally definable pair of S if both X and X ′ are locally definable sets of
S. By Hironaka-Hardt’s triangulation theorem a subanalytic pair is a weakly∗ C∞
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triangulable pair, whereas by [Sh, Ch. II, Thm. II’] a locally definable pair is a
weakly∗ C∞ triangulable pair.

The announced extension of Theorem 1.21 is the following.

THEOREM 1.24. Let (X,X ′) be a weakly∗ Cr triangulable pair, let Y ⊂ Rn

be a weakly Cr triangulable set and let f : X → Y be a continuous map such
that f(X ′) is discrete and closed in Y . Then, there exists g ∈ Cr(X,Y ) arbitrarily
close to f in the strong C0 topology such that g|X ′ = f |X ′ .

As an immediate consequence of the preceding result, one deduces the follow-
ing:

COROLLARY 1.25. Let (X,X ′) be either a subanalytic pair or a locally de-
finable pair of an arbitrary o-minimal structure S, let Y ⊂ Rn be a set and let
f : X → Y be a continuous map such that f(X ′) is discrete and closed in Y . We
have:

(i) If (X,X ′) is a subanalytic pair and Y is a locally compact polyhedron,
there exists g ∈ C∞(X,Y ) arbitrarily close to f in the strong C0 topology such
that g|X ′ = f |X ′ .

(ii) If (X,X ′) is a locally definable pair of S and Y is a locally compact
locally definable set of S, there exists g ∈ C1(X,Y ) arbitrarily close to f in the
strong C0 topology such that g|X ′ = f |X ′ .

1.F. Structure of the article. In Section 2 we collect a couple of prelimi-
nary results concerning spaces of continuous maps. In the first part of Section 3 we
present our variant of the general approximation theorem and our “shrink-widen”
covering and approximation technique. In the second part we combine these re-
sults with the ones in Section 2 to prove Theorem 1.6. We provide also the proof of
Corollary 1.18 and the relative approximation Theorem 1.24 (from which follow
readily the other results in Section 1.E). Section 4 is devoted to prove Theorem
1.15, which involves the proof of the existence of Cr weak retractions and the
immersion of C-analytic sets as singular sets of coherent C-analytic sets homeo-
morphic to Euclidean spaces. Weaker and purely semialgebraic versions of some
results presented in this article appeared in our preceding manuscript [FG].

Acknowledgments. The authors are indebted to the anonymous referee for very
valuable suggestions to improve the presentation of this article. This article has
been mainly written during a couple of one month research stays of the first author
in the Dipartimento di Matematica of the Università di Trento. The first author
would like to thank this department for the invitation and the very pleasant working
conditions.

2. Preliminaries on spaces of continuous maps. In this short section we
collect a couple of results useful for the sequel. First we fix two notations we will
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use freely throughout the manuscript. Let S,T ⊂ Rq be such that S ⊂ T . Denote
respectively ClT (S) and IntT (S) the closure of S in T and the interior of S in T .
The following result is well known and its proof follows straightforwardly from
[H3, §2.5. Ex.10, pp. 64–65] using standard arguments.

LEMMA 2.1. Let X ⊂ Rm, X ′ ⊂ Rm′
, Y ⊂ Rn and Y ′ ⊂ Rn′

be locally com-
pact sets, let f : Y → Y ′ be an arbitrary continuous map and let g : X →X ′ be a
proper continuous map. Then the maps

f∗ : C0(X,Y )→ C0(X,Y ′), h +→ f ◦h

and

g∗ : C0(X ′,Y )→ C0(X,Y ), h +→ h◦g

are continuous.

As a consequence, we deduce:

COROLLARY 2.2. Let X ⊂ Rm and Y ⊂ Rn be locally compact sets. Then
there exist closed subsets X ′ of Rm+1 and Y ′ of Rn+1 such that:

• X ′ is homeomorphic to X and Y ′ is homeomorphic to Y ,
and the following property holds for each r ∈N∗ ∪{∞}:

• Cr(X,Y ) is dense in C0(X,Y ) if and only if Cr(X ′,Y ′) is dense in
C0(X ′,Y ′).

In addition, if Y is a C-analytic subset of some open subset U of Rn, then
there exists also a C-analytic subset Y ′′ of R2n+1 homeomorphic to Y such that
C∞
∗ (X,Y ) is dense in C0

∗(X,Y ) if and only if C∞
∗ (X

′,Y ′′) is dense in C0
∗(X

′,Y ′′).

Proof. As X ⊂ Rm and Y ⊂ Rn are locally compact (or equivalently locally
closed) sets, the differences ClRm(X)\X and ClRn(Y )\Y are respectively closed
in Rm and in Rn. Let θ : Rm → R and ξ : Rn → R be C∞ functions such that
θ−1(0) = ClRm(X)\X and ξ−1(0) = ClRn(Y )\Y . Define X ′ := {(x,t)∈X×R :
t= 1/θ(x)} and Y ′ := {(y,t) ∈ Y ×R : t= 1/ξ(y)} and consider the homeomor-
phisms Θ :X ′ →X and Ξ : Y → Y ′ given by Θ(x,t) := x and Ξ(y) := (y,1/ξ(y)).
The sets X ′ and Y ′ are respectively closed in Rm+1 and in Rn+1. By Lemma 2.1
the map H : C0(X,Y )→ C0(X ′,Y ′) given by H :=Θ∗ ◦Ξ∗ is a homeomorphism.
As Θ, Θ−1, Ξ and Ξ−1 are C∞ maps, we deduce H(Cr(X,Y )) = Cr(X ′,Y ′) for
each r ∈N∗ ∪{∞}, so the first part of the statement is proved.

Let us prove the second part. By Whitney’s embedding theorem for the real
analytic case [Na, 2.15.12], there exists a real analytic embedding ϕ : U → R2n+1

such that M := ϕ(U) is a closed real analytic submanifold of R2n+1. By Cartan’s
Theorem B real analytic functions on M are restrictions to M of real analytic
functions on R2n+1. Thus, Y ′′ := ϕ(Y ) is a C-analytic subset of R2n+1. Denote
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Φ : Y → Y ′′ the restriction of ϕ from Y to Y ′′ and H ′ : C0(X,Y )→ C0(X ′,Y ′′)
the homeomorphism H ′ := Θ∗ ◦Φ∗. We conclude H ′(C0

∗(X,Y )) = C0
∗(X

′,Y ′′)
and H ′(C∞

∗ (X,Y )) = C∞
∗ (X

′,Y ′′), as required. "

Remark 2.3. Let X ⊂ Rm and let Y ⊂ Rn be (non-empty) sets such that X
is locally compact. Consider a locally finite covering {C'}'∈L of X by non-empty
compact sets and a family {ε'}'∈L of positive real numbers. Making use of a suit-
able C0 partition of unity on X, one shows the existence of a strictly positive
continuous function ε : X → R+ such that maxC!(ε)≤ ε' for each 3 ∈ L. This im-
plies that a fundamental system of neighborhoods of f ∈ C0(X,Y ) for the strong
C0 topology of C0(X,Y ) is given by the sets

N (f,{C'}'∈L,{ε'}'∈L)

:= {g ∈ C0(X,Y ) : ‖g(x)− f(x)‖n < ε' ∀3 ∈ L, ∀x ∈ C'},

where {C'}'∈L runs over the locally finite coverings of X by non-empty compact
sets and {ε'}'∈L runs over the families of positive real numbers with the same set
L of indices.

3. Proofs of Theorem 1.6 and Corollary 1.18. In this section we develop
first all the machinery we need to prove Theorem 1.6:

• a variant of the general simplicial approximation theorem (that appears in
Section 3.A),

• a “shrink-widen” covering and approximation technique (that appears in
Section 3.B),
and after we approach its proof (see Section 3.C). Finally, we prove Corollary 1.18
and Theorems 1.21 and 1.24 (see Sections 3.D, 3.E, and 3.F) in the required or-
der. A weaker “finite” version of the “shrink-widen” covering and approximation
technique, that we present here in Section 3.B, is contained in our manuscript [FG].

3.A. A variant of the general simplicial approximation theorem. Given
a locally finite simplicial complex K of some Rp, a subdivision K ′ of K is a locally
finite simplicial complex K ′ of Rp such that |K ′|= |K| and each simplex of K ′ is
a subset of some simplex of K. A particular case of subdivision of K is the first
barycentric subdivision sd(K) of K. We denote sdk(K) := sd(sdk−1(K)) the kth
barycentric subdivision of K for k ≥ 1, where sd0(K) :=K.

Let L be a locally finite simplicial complex of some Rq and let F : |K|→ |L|
be a continuous map. A simplicial map F • : |K| → |L| is said to be a simplicial
approximation of F if F (St(v,K)) ⊂ St(F •(v),L) for each vertex v of K . If w ∈
|L|, the carrier of w in L is the unique simplex τ ∈L such that w∈ τ 0. The classical
simplicial approximation theorem asserts:
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THEOREM 3.1. [Al] If K and L are finite simplicial complexes, there exists a
natural number k such that F has a simplicial approximation F • : |sdk(K)|→ |L|.
In addition, if w ∈ |K| and τ is the carrier of F (w) in L, then F •(w) ∈ τ .

As an immediate consequence:

COROLLARY 3.2. If K and L are finite simplicial complexes and ε > 0 is
a positive real number, then there exist two natural numbers κ and 3 and a sim-
plicial map F ∗ : |sdκ(K)| → |sd'(L)| such that ‖F ∗(w)−F (w)‖q < ε for each
w ∈ |sdκ(K)|= |K|.

We need to extend the latter result for locally finite simplicial complexes K
and L with respect to the strong C0 topology of C0(|K|, |L|).

Let K and L be arbitrary locally finite simplicial complexes and let
F : |K| → |L| be a continuous map. We say that F satisfies the star condi-
tion (relative to K and L) if for each vertex v of K there exists a vertex w of L
such that F (St(v,K)) ⊂ St(w,L).

LEMMA 3.3. [M5, Lem. 14.1(a)(b)] If the continuous map F : |K|→ |L| sat-
isfies the star condition, then it has a simplicial approximation F • : |K|→ |L|.

Given two coverings A and B of |K|, we say that B refines A if for each B ∈B,
there exists A ∈A such that B ⊂A. If v is a vertex of K, the closed star St(v,K)
of v in K is defined as the closure of St(v,K) in |K|. Observe that St(v,K) is the
union of all simplices of K having v as a vertex. In particular, it is the realization
of a simplicial subcomplex of K.

THEOREM 3.4. [M5, Thm. 16.4] Let K be a locally finite simplicial complex
and let A be an open covering of |K|. Then there exists a subdivision K ′ of K such
that the collection of closed stars St(v,K ′), where v ranges over the vertices of K ′,
refines A.

If we define A as the collection of F−1(St(w,L)), where w ranges over the
vertices of L, then there exists by Theorem 3.4 a subdivision K ′ of K whose closed
stars refines A. Consequently, F satisfies the star condition relative to K ′ and L
and Lemma 3.3 implies:

THEOREM 3.5. (General simplicial approximation [M5, Thm. 16.5]) Given a
continuous map F : |K|→ |L| between locally compact polyhedra, there exists a
subdivision K ′ of K such that F has a simplicial approximation F • : |K ′|→ |L|.

As pointed out above, we need a suitable version of the preceding theorem that
takes into account, not only simplicial approximation, but also strong C0 approxi-
mation: as Corollary 3.2 does with respect to the classical simplicial approximation
Theorem 3.1. To do this, we introduce the notion of weakly simplicial map.
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Definition 3.6. Let K and L be locally finite simplicial complexes and let F :
|K|→ |L| be a continuous map. Suppose |K|⊂Rp and |L|⊂Rq. We say that F is
weakly simplicial if, for each simplex σ ∈K, there exist a simplex ξσ ∈ L and an
affine map Aσ : Rp → Rq such that F (σ)⊂ ξσ and F (x) =Aσ(x) for each x ∈ σ.

Observe that each weakly simplicial map F : |K|→ |L| is uniquely determined
by their values on the vertices of K. Evidently, each simplicial map is weakly
simplicial. On the contrary, the map F : {0}→ [−1,1], 0 +→ 0 is an easy example
of a weakly simplicial map between polyhedra of R which is not simplicial, if
[−1,1] is the realization of the simplicial complex K := {{−1},{1}, [−1,1]}.

Our variant of the general simplicial approximation Theorem 3.5 is the follow-
ing.

THEOREM 3.7. (Weakly simplicial approximation) Let K and L be locally
finite simplicial complexes and let F : |K| → |L| be a continuous map. Assume
|L|⊂ Rq. Then, for each strictly positive continuous function ε : |K|→ R+, there
exist a subdivision K ′ of K and a weakly simplicial map F ∗ : |K ′|→ |L| such that

‖F ∗(w)−F (w)‖q < ε(w) for each w ∈ |K ′|= |K|.

In addition, if w ∈ |K| and τ is the carrier of F (w) in L, then F ∗(w) ∈ τ .

Proof. The proof is conducted in several steps:

Step I. Initial preparation. Assume the simplicial complex K is infinite, be-
cause if K is finite the result follows from the classical simplicial approximation
Theorem 3.1.

Denote P := |K|⊂Rp the realization of K . It turns out that P is locally com-
pact, but not compact. Choose a sequence {Pn}n∈N of compact subsets of P such
that for each n ∈ N∗:

• Pn := |Kn| is the realization of a finite subcomplex Kn of K.
• IntP (Pn) is compatible with Kn, that is, it is the union of the interiors of

some of the simplices of Kn.
• Pn−1 ! IntP (Pn), where P0 := /0.
•
⋃

n∈NPn = P .
The compact sets Pn can be constructed as follows. Let θ : Rp → R be a

continuous function such that θ−1(0) = ClRn(P ) \P and consider the map θ∗ :
Rp \ θ−1(0) → Rp+1, x +→ (x,1/θ(x)), which is a homeomorphism onto its im-
age and satisfies θ∗(P ) is a closed subset of Rp+1. For each r > 0 denote B(r) :=
P ∩ (θ∗)−1(Bp+1(0,r)) and B(r) := P ∩ (θ∗)−1(Bp+1(0,r)), where Bp+1(0,r) is
the open ball of Rp+1 with center the origin and radius r and Bp+1(0,r) is its
closure in Rp+1. Take a strictly increasing sequence of natural numbers {mn}n∈N∗

such that B(m1) 1= /0 and consider the collection of compact subsets {B(mn)}n∈N∗

of P .
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For each n ∈ N∗ define Vn as the collection of the vertices v of K whose
open stars St(v,K) meet B(mn). Let Kn be the subcomplex of K consisting of all
simplices σ such that Vn contains a vertex of σ, and all their faces. Define Pn :=
|Kn|. Observe that Pn =

⋃
v∈Vn

St(v,K) and B(mn)⊂ IntP (Pn). We may assume
that Pn ⊂B(mn+1) (changing mn+1 by a bigger integer if necessary). Set K0 := /0,
P0 := |K0|= /0 and P−1 := /0. The compact sets Pn satisfy the required conditions.
Only the second property requires some comments. Pick a point x ∈ IntP (Pn) and
let σ ∈Kn be the carrier of x. Let us check: σ0 ⊂ IntP (Pn). Once this is proved,
IntP (Pn) is the union of the interiors of some of the simplices of Kn.

The star St(σ,K) is the union of the interiors of all the simplices λ ∈K that
have σ as one of their faces. As x ∈ IntP (Pn), there exists an open ball Bp(x,δ)
centered at x and radius δ> 0 such that Bp(x,δ)∩P ⊂Pn. Observe that Bp(x,δ)∩
P meets all the simplices λ ∈ K that have σ as one of their faces. As Pn is the
realization of the simplicial subcomplex Kn, the simplices λ ∈K that have σ as
one of their faces belong to Kn. Consequently, St(σ,K) ⊂ Pn and as it is an open
subset of P , we conclude σ0 ⊂ St(σ,K)⊂ IntP (Pn).

For each n ∈ N let Un be an open subset of P such that

Pn ! Un ⊂ ClP (Un)⊂ IntP (Pn+1).

We set U−1 = U−2 := /0. Let {εn}n∈N be the non-increasing sequence of positive
real numbers

εn := min
w∈Pn

{ε(w)} > 0 for each n ∈ N∗

and set ε0 := ε1.

Step II. Construction of a suitable covering. For each n ∈N let Ln := sd'n(L)
be an iterated barycentric subdivision of L such that 3n ≤ 3n+1 and:
(3.1)
The diameters of all simplices ξ of Ln with ξ∩F (Pn \ IntP (Pn−1)) 1= /0 are < εn.

For each vertex v of Ln consider the open star St(v,Ln) of v in Ln and define
the open subset Vn,v of |K| given by

Vn,v := F−1(St(v,Ln)
)
∩
(

IntP (Pn)\ClP (Un−2)
)
.

We claim: A := {Vn,v : n ∈ N, v is a vertex of Ln} is an open covering of P .
Pick a point x0 ∈ P . Then there exists n ∈N such that

x0 ∈ Int(Pn)\ Int(Pn−1)⊂ IntP (Pn)\ClP (Un−2).

In addition, F (x0) ∈ |L| = |Ln|. As {St(v,Ln) : v is a vertex of Ln} is an open
covering of |L|, there exists a vertex v of Ln such that F (x0) ∈ St(v,Ln), so x0 ∈
Vn,v, as claimed.
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By Theorem 3.4 there exists a subdivision K ′ of K such that the collection of
closed stars St(u,K ′), where u ranges over the vertices of K ′, refines A. Observe
that K ′ induces subdivisions K ′

n of Kn for each n ∈N∗.

Step III. Construction of the weakly simplicial map. For each n ∈ N, let us
consider the finite subcomplex Tn of K defined by

Tn :=
{
σ ∈K ′

n : σ ⊂ Pn \ IntP (Pn−1)
}
.

We claim: |Tn| = Pn \ IntP (Pn−1) and consequently |Tn−1| ∩ |Tn| = Pn−1 \
IntP (Pn−1).

Let x∈ Pn \ IntP (Pn−1), let σ be the carrier of x in K ′
n and let τ be the carrier

of x in Kn. It holds σ ⊂ τ . It is enough to check: τ ⊂ Pn \ IntP (Pn−1). As Pn =
|Kn|, we have τ ∈Kn, so τ ⊂ Pn. As IntP (Pn−1) is the union of the interiors of
some of the simplices of Kn−1, either τ 0 ⊂ IntP (Pn−1) or τ ∩ IntP (Pn−1) =∅. As
x ∈ τ 0 \ IntP (Pn−1), we conclude τ ∩ IntP (Pn−1) =∅ and the claim follows.

We construct inductively weakly simplicial maps F ∗
n : |Tn|→ |Ln| satisfying:

F ∗
n||Tn |∩|Tn−1| = F ∗

n−1||Tn|∩|Tn−1| and for each vertex u of Tn it holds:
• If u ∈ IntP (Pn) \ IntP (Pn−1), we have two possibilities: either F ∗

n(u) is a
vertex of Ln such that F (St(u,K ′))⊂ St(F ∗

n(u),Ln) or it is a vertex of Ln+1 such
that F (St(u,K ′))⊂ St(F ∗

n(u),Ln+1).
• If u∈Pn\IntP (Pn), we have only one possibility: F ∗

n(u) is a vertex of Ln+1

such that F (St(u,K ′))⊂ St(F ∗
n(u),Ln+1).

Fix a vertex u of Tn and consider the following two cases:

Case 1. If u ∈ Pn \ IntP (Pn), there exists a vertex v of Ln+1 such that
F (St(u,K ′))⊂ St(v,Ln+1).

Case 2. If u ∈ IntP (Pn) \ IntP (Pn−1), then u is a point of IntP (Pn) \
ClP (Un−2). In addition, u can also belong to IntP (Pn+1) \ClP (Un−1) because
IntP (Pn)\ClP (Un−1) 1= /0. In any case, there exist:

• a vertex v ∈ Ln such that F (St(u,K ′))⊂ St(v,Ln) and/or
• a vertex v′ ∈ Ln+1 such that F (St(u,K ′))⊂ St(v′,Ln+1).

Consequently, with this procedure we cannot construct a priori a simplicial map,
because the vertices v,v′ could not belong to the same iterated barycentric subdi-
vision of L. This is why we construct inductively a weakly simplicial map.

As |T0| = P0 = ∅, in the first induction step we have nothing to do. Let n ≥
1 and assume we have already constructed the map F ∗

n−1 satisfying the required
conditions. We construct next the map F ∗

n and to that end we define first F ∗
n on the

vertices of Tn.
Fix u a vertex of Tn and suppose first u ∈ Pn−1 \ IntP (Pn−1). As

Pn−1 \ IntP (Pn−1) = |Tn−1|∩ |Tn|,
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u is a vertex of the simplicial subcomplex Tn−1 ∩ Tn. We define F ∗
n(u) :=

F ∗
n−1(u). By induction hypothesis F ∗

n(u) = F ∗
n−1(u) is a vertex of Ln such that

F (St(u,K ′))⊂ St(F ∗
n(u),Ln).

Suppose next u ∈ IntP (Pn) \ Pn−1. As IntP (Pn) \ Pn−1 ⊂ IntP (Pn) \
IntP (Pn−1), there exists a vertex v ∈ Ln such that F (St(u,K ′)) ⊂ St(v,Ln)
and/or there exists a vertex v′ ∈ Ln+1 such that F (St(u,K ′)) ⊂ St(v′,Ln+1) (as
pointed out above). Choose one of the mentioned vertices v or v′ and define either
F ∗
n(u) := v or F ∗

n(u) := v′.
Finally, if u ∈ Pn \ IntP (Pn), we choose a vertex v ∈ Ln+1 such that

F (St(u,K ′))⊂ St(v,Ln+1) and define F ∗
n(u) = v.

Pick a simplex σ of Tn. We claim: if σ has vertices u1, . . . ,ur, there exists a
simplex ξ ∈ Ln such that the points v1 := F ∗

n(u1), . . . ,vr := F ∗
n(ur) belong to ξ.

If v is a vertex of Ln, then St(v,Ln+1) ⊂ St(v,Ln). After rearranging the in-
dices if necessary, we assume that for some s ∈ {1, . . . ,r} it holds:

• {v'} ∈ Ln and F (St(u',K ′))⊂ St(v',Ln) if 3 ∈ {1, . . . ,s},
• {v'} ∈ Ln+1 \Ln and F (St(u',K ′))⊂ St(v',Ln+1) if 3 ∈ {s+1, . . . ,r},

where the latter case is omitted if s= r.
Pick a point x ∈ σ0 and let ξ be the carrier of F (x) in Ln. As x ∈⋂r

'=1 St(u',K ′), it holds

F (x) ∈
r⋂

'=1

F (St(u',K ′))⊂
s⋂

'=1

St(v',Ln)∩
r⋂

'=s+1

St(v',Ln+1).

Thus, v1, . . . ,vs are vertices of ξ and vs+1, . . . ,vr are vertices of the iterated
barycentric subdivision sd'n+1−'n(ξ̂ ) of the simplicial complex ξ̂ constituted by
the simplex ξ and all its faces. Consequently, v1, . . . ,vr ∈ ξ, as claimed.

We keep the notations already introduced and define F ∗
n : |Tn|→ |Ln| (simplex

by simplex) as one can expect: Let λ1, . . . ,λr > 0 be such that x=
∑r

i=1λiui ∈ σ0

(where u1, . . . ,ur are the vertices of σ) and
∑r

i=1λi = 1. Then

F ∗
n(x) :=

r∑

i=1

λiF
∗
n(ui) ∈ ξ.

Thus, F ∗
n transforms (affinely) each simplex of Tn onto a convex polyhedron con-

tained in a simplex of Ln (if s< r we cannot assure that F ∗
n(σ) is a simplex because

vs+1, . . . ,vr are not vertices of ξ). In addition, if τ is the carrier of F (x) in L, then
F ∗
n(x) ∈ ξ ⊂ τ . Define

F ∗ : |K|→ |L|, x +→ F ∗
n(x) if x ∈ Tn.

The previous map is well defined, continuous and weakly simplicial because
F ∗
n||Tn|∩|Tn−1| = F ∗

n−1||Tn|∩|Tn−1 | and each F ∗
n is continuous and weakly simplicial.

By construction F ∗(x) belongs to the carrier τ of F (x) in L for each x ∈ |K|.
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Step IV. Approximation. Pick x ∈ |Tn|= Pn \ IntP (Pn−1). Let σ be the carrier
of x in K ′ (or equivalently in K ′

n) and let ξ be the carrier of F (x) in Ln. The
intersection ξ ∩F (Pn \ IntP (Pn−1)) is non-empty because it contains F (x). By
(3.1) the diameter of ξ is strictly smaller than εn. As F ∗(x) ∈ ξ, we have ‖F ∗(x)−
F (x)‖q < εn ≤ ε(x), as required. "

Remarks 3.8. (i) If in the statement of Theorem 3.7 H is a subcomplex of K
such that F (|H|) is contained in the set of vertices of L, then F ∗||H| = F ||H|.

Let C be a connected component of |H| and let v be the vertex of L such that
F (C)= {v}. If x∈C , then the carrier of F (x) is v, so the last assertion in Theorem
3.7 implies F ∗(x) = v = F (x). Consequently F ∗||H| = F ||H|, as claimed.

(ii) If F is proper in the statement of Theorem 3.7, then it is well known that
F ∗ can be chosen simplicial.

This result can be proven by combining the version of simplicial approximation
theorem presented in [B, Ch. 5, p. 223] with the following elementary fact that
follows from Lemma 2.1: if F : |K| → |L| is a proper continuous map and ε :
|K|→ R is a strictly positive function, then there exists a strictly positive function
δ : |L|→ R such that δ(F (x)) < ε(x) for each x ∈ |K|.

3.B. The “shrink-widen” covering and approximation technique. Let σ
be a simplex of Rp, let Bd(σ) be the boundary of σ and let σ0 be the interior of
σ. Recall that Bd(σ) is the union of proper faces of σ and σ0 is the open simplex
of Rp such that σ0 = σ \Bd(σ). Let bσ be the barycenter of σ. Given ε ∈ (0,1)
denote hε : Rp → Rp, x +→ bσ+(1− ε)(x− bσ) the homothety of Rp of center bσ
and ratio 1− ε and define the (1− ε)-shrinking σ0

ε of σ0 by σ0
ε := hε(σ0). Note

that ClRp(σ0
ε) = hε(σ) ⊂ σ0 for each ε ∈ (0,1) and σ0

ε tends to σ0 when ε→ 0. In
addition, σ0 =

⋃
ε∈(0,1)σ

0
ε and σ0

ε2
⊂ σ0

ε1
if 0 < ε1 ≤ ε2 < 1.

We fix the following notations for the rest of the subsection. Let r ∈ N∗ ∪{∞}
and let X ⊂ Rm be a locally compact set. Suppose X is Cr triangulable on open
simplices, that is, there exists a locally finite simplicial complex K of some Rp and
a homeomorphism Φ : |K| → X such that: the set Φ(σ0) is a Cr submanifold of
Rm and the restriction Φ|σ0 : σ0 → Φ(σ0) is a Cr diffeomorphism for each open
simplex σ0 of K. Define K0 := {Φ(σ0)}σ∈K and K := {Φ(σ)}σ∈K .

To lighten the notation the elements of K will be denoted with the letters s,t, . . .
while those of K0 with the letters s0,t0, . . . in such a way that ClRm(s0)= s. In other
words, if s=Φ(σ), then s0 =Φ(σ0). Moreover, we indicate s0

ε the (1−ε)-shrinking
of s0 = Φ(σ0) corresponding to σ0

ε via Φ, that is, s0
ε := Φ(σ0

ε).
Consider a Cr tubular neighborhood ρs0 : Ts0 → s0 of s0 in Rm and for each

η > 0 the open subset Ts0,η := {x ∈ Ts0 : ‖x−ρs0(x)‖m < η} of Rm. We write s0
ε,η

to denote the η-widening of s0
ε with respect to ρs0 , which is the open neighborhood

s0
ε,η := (ρs0)−1(s0

ε)∩ Ts0,η of s0
ε in Rm. If C is a closed subset of Rm such that

C ∩ClRm(s0
ε) = ∅, there exists η > 0 such that C ∩ClRm(s0

ε,η) = ∅ (recall that
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ClRm(s0
ε) is compact). Denote ρs0,ε,η := ρs0 |s0

ε,η
: s0
ε,η ∩X → s0

ε the Cr retraction

obtained restricting ρs0 from s0
ε,η ∩X to s0

ε.

LEMMA 3.9. Fix a strictly positive function η : K0 → R+. Then for each s0 ∈
K0 there exist a non-empty open subset Vs0 of s0 (a “shrinking” of s0), an open
neighborhood Us0 of Vs0 in X (a “widening” of Vs0) satisfying Vs0 = Us0 ∩ s0 and
a Cr retraction rs0 : Us0 → Vs0 such that:

(i) {Us0}s0∈K0 is a locally finite open covering of X.
(ii) ClRm(Us0)∩ t=∅ for each pair (s0,t) ∈K0 ×K satisfying s0 ∩ t=∅.
(iii) supx∈Us0

{‖x− rs0(x)‖m}< η(s0) for each s0 ∈K0.

Proof. Define d := max{dim(s0) : s0 ∈K0}≤m, where dim(s0) is the dimen-
sion of s0 as a Cr submanifold of Rm. Of course d coincides with the dimen-
sion of the semialgebraic set |K|, which is equal to max{dim(σ0) : σ ∈ K}. Let
K0

e := {s0 ∈K0 : dim(s0) ≤ e} for e ∈ {0,1, . . . ,d}. Let us prove by induction on
e ∈ {0,1, . . . ,d} that: For each s0 ∈K0

e there exist an open subset U e
s0 of X and a

Cr retraction res0 : U e
s0 → V e

s0 := U e
s0 ∩ s0 1=∅ such that:

(a)
⋃

s0∈K0
e
s0 ⊂

⋃
s0∈K0

e
U e
s0 .

(b) ClRp(U e
s0)∩ t=∅ for each pair (s0,t) ∈K0

e×K satisfying s0 ∩ t=∅.
(c) supx∈Ue

s0
{‖x− res0(x)‖m}< η(s0) for each s0 ∈K0

e.

Suppose first e= 0. Choose {v} ∈K0
0. As the family K is locally finite in X,

the union
⋃

t∈K,v 1∈t t is closed in X and it does not contain v. Consequently, there
exists η′v ∈ (0,η({v})) such that the open ball B(v,2η′v) of Rm of center v and
radius 2η′v does not meet

⋃
t∈K,v 1∈t t. Define U 0

{v} := B(v,η′v)∩X, V 0
{v} := {v}

and r0
{v} : U 0

{v} → V 0
{v}, x +→ v the constant map for each {v} ∈K0

0.
Fix e ∈ {0, . . . ,d−1} and suppose that the assertion is true for such an e. Pick

σ ∈K of dimension e+1 and consider the compact subset

Cσ := σ \Φ−1
( ⋃

τ∈K,τ⊂Bd(σ)

U e
Φ(τ 0)

)

of σ0 =
⋃
ε∈(0,1)σ

0
ε . Let ε(σ0)∈ (0,1) be such that Cσ ⊂ σ0

ε(σ0). If s=Φ(σ), define

ε(s0) := ε(σ0) and s0
ε(s0) := Φ(σ0

ε(σ0)). We have

⋃

s0∈K0
e+1

s0 ⊂
⋃

s0∈K0
e

U e
s0 ∪

⋃

s0∈K0
e+1\K0

e

s0
ε(s0).

If (s0,t) ∈ (K0
e+1 \K0

e)×K satisfies s0 ∩ t=∅, then ClRm(s0
ε(s0))∩ t=∅ because

ClRm(s0
ε(s0))⊂ s0. Let s0 ∈K0

e+1 \K0
e. As the family K is locally finite in X, there

exists η′(s0) ∈ (0,η(s0)) such that

ClRm

(
s0
ε(s0),η′(s0)∩X

)
∩ t=∅
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for each pair (s0,t) ∈ (K0
e+1 \K0

e)×K satisfying s0 ∩ t = ∅. For each s0 ∈ K0
e+1

define:
• V e+1

s0 := V e
s0 , U e+1

s0 := U e
s0 and re+1

s0 := res0 if s0 ∈K0
e and

• V e+1
s0 := s0

ε(s0), U
e+1
s0 := s0

ε(s0),η′(s0) ∩X and re+1
s0 := ρs0,ε(s0),η′(s0) if s0 ∈

K0
e+1 \K0

e.
The open sets U e+1

s0 , the non-empty sets V e+1
s0 and the retractions re+1

s0 :
U e+1
s0 → V e+1

s0 for s0 ∈K0
e+1 satisfy conditions (a) to (c), as required.

Define the open subsets Us0 := Ud
s0 of X and the Cr retractions rs0 := rds0

for each s0 ∈ K0
d = K0. Evidently properties (ii) and (iii) hold and the family

{Us0}s0∈K0 is a covering of X. It remains to show that such a family is locally
finite in X. Let x ∈X and let u0 be the unique element of K0 such that x∈ u0. For
each t ∈K and each s0 ∈ K0 define the finite set It := {s0 ∈ K0 : s0 ⊂ t} and the
set Js0 := {t ∈ K : s0 ⊂ t}. As the family K is locally finite in X, each set Js0 is
finite as well. If t ∈ K and s0 ∈K0 satisfies Us0 ∩ t 1= ∅, then t ∈ Js0 by property
(ii). In particular Us0 ⊂

⋃
t∈Js0

t.

Define the finite set Mu0 :=
⋃

t∈Ju0
It and the set Nu0 := {s0 ∈K0 : Uu0 ∩Us0 1=

∅}. Let us show: Nu0 is finite by showing that Nu0 ⊂Mu0 . This will complete the
proof. If s0 ∈Nu0 , then

∅ 1= Uu0 ∩Us0 ⊂
⋃

t∈Js0

(
Uu0 ∩ t

)
.

Thus, there exists t ∈ Js0 such that Uu0 ∩ t 1= ∅, so s0 ∈ It and t ∈ Ju0 , that is,
s0 ∈Mu0 , as required. "

LEMMA 3.10. Let L be a locally finite simplicial complex of Rq and let g ∈
C0(X, |L|). Suppose that for each t ∈K the restriction g|t0 belongs to Cr(t0, |L|)
and there exists ξt ∈ L such that g(t) ⊂ ξt. Then for each strictly positive continu-
ous function δ :X →R+, there exists h∈ Cr(X, |L|) with the following properties:

(i) For each t ∈K, there exists an open neighborhood Wt of t in X such that
h(Wt)⊂ ξt.

(ii) ‖h(x)− g(x)‖q < δ(x) for each x ∈X.

To prove this lemma and Proposition 4.1 below we need the following basic
topological result that we borrow from [ABF, Lem. 2.4].

LEMMA 3.11. Let T be a paracompact topological space, let {Tk}k∈N be a
locally finite family of subsets of T and for each k ∈ N let Vk ⊂ T be an open
neighborhood of Tk. Then there exist open neighborhoods Uk ⊂ T of Tk such that
Uk ⊂ Vk for each k ∈ N and the family {Uk}k∈N is locally finite in T .

Proof. For each x ∈ T let Bx ⊂ T be an open neighborhood of x that meets
only finitely many Tk. The family {Bx}x∈T is an open covering of T . As T is
paracompact, there exists a locally finite open covering {W'}'∈L of T , which is a
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refinement of {Bx}x∈T . Observe that each W' meets only finitely many Tk. For
each k ∈ N define U ′

k :=
⋃

W!∩Tk 1=∅W'. Note that Tk ⊂ U ′
k for each k ∈ N. We

claim: The family {U ′
k}k∈N is locally finite in T .

Fix a point x ∈ T and consider a neighborhood Vx ⊂ T of x that meets finitely
many W', say W'1 , . . . ,W'r . The union

⋃r
j=1W'j meets only finitely many Tk, say

Tk1 , . . . ,Tks . If k 1∈ {k1, . . . ,ks}, the intersection U ′
k∩Vx =∅. To finish it is enough

to define Uk := U ′
k ∩Vk for each k ∈ N. "

We are ready to prove Lemma 3.10.

Proof of Lemma 3.10. We will give the proof only in the case X is non-
compact (because if X is compact, the proof is similar, but easier). Choose a
sequence {Xn}n∈N of compact subsets of X such that for each n ∈ N:

• Xn is a finite union of elements of K, say Xn =
⋃

t∈Kn
t for some finite set

Kn ⊂K.
• Xn−1 ! IntX(Xn), where X−1 :=∅.
•
⋃

n∈NXn =X.
Let {δn}n∈N be the decreasing sequence of positive real numbers defined by

δn := min
x∈Xn

{δ(x)} > 0 for each n ∈ N.

Write ε−1 := 1. As the restriction g|Xn is uniformly continuous, for each n ∈ N
there exists εn ∈ (0,εn−1) such that

(3.2)
∥∥g(x′)− g(x)

∥∥
q
< δn for each pair x′,x ∈Xn with ‖x′ −x‖m < εn.

Fix s0 ∈K0. We claim: there exists a unique integer n := n(s0) ∈ N such that
s0 ⊂Xn \Xn−1.

Pick x ∈ s0 and let k ∈N be such that x ∈Xk =
⋃

t∈Kk
t. Thus, x ∈ t for some

t∈Kk, so x∈ s0∩t and s0 ⊂ t⊂Xk. This proves that if s0∩Xk 1=∅, then s0 ⊂Xk.
Note that n = n(s0) := min{k ∈ N : s0 ⊂ Xk} is the unique natural number such
that s0 ⊂Xn \Xn−1, as claimed.

Consider the strictly positive function η : K0 →R+, s0 +→ εn(s0)+1. By Lemma
3.9 for each s0 ∈K0 there exist an open subset Us0 of X with Vs0 := Us0 ∩ s0 1= ∅
and a Cr retraction rs0 : Us0 → Vs0 such that:

{Us0}s0∈K0 is a locally finite covering of X,

ClRm(Us0)∩ t=∅ for each pair (s0,t) ∈K0 ×K such that s0 ∩ t=∅,(3.3)

sup
x∈Us0

{
‖x− rs0(x)‖m

}
< εn(s0)+1 for each s0 ∈K0.(3.4)

Let {θs0 :X→ [0,1]}s0∈K0 be a Cr partition of unity subordinated to the locally
finite open covering {Us0}s0∈K0 of X. To prove the existence of such Cr partition of
unity one can proceed as follows. We may assume that X is a closed subset of Rm.
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The family {ClRm(Us0)}s0∈K0 is locally finite in Rm. By Lemma 3.11 there exists
a locally finite family {Ωs0}s0∈K0 of open subsets of Rm such that ClRm(Us0) ⊂
Ωs0 . Let Ω′

s0 ⊂ Ωs0 be an open subset such that Us0 =X ∩Ω′
s0. Let {Θ0}∪ {Θs0 :

X → [0,1]}s0∈K0 be a Cr partition of unity subordinated to the locally finite open
covering {Rm\X}∪{Ω′

s0}s0∈K0 of Rm. Now, it is enough to consider θs0 :=Θs0 |X
for each s0 ∈K0 in order to have the desired Cr partition of unity subordinated to
{Us0}s0∈K0 .

For each s0 ∈K0 the map

g ◦ rs0 : Us0 → Vs0 ⊂ s0 ⊂ s→ ξs, x +→ rs0(x) +→ g
(
rs0(x)

)

is a Cr map, so also the map Hs0 : X → Rq defined by

Hs0(x) :=

{
θs0(x) ·g

(
rs0(x)

)
if x ∈ Us0 ,

0 if x ∈X \Us0 ,

belongs to Cr(X,Rq). Consider the Cr map H :=
∑

s0∈K0 Hs0 : X → Rq.
Fix t ∈K and define Wt :=X \

⋃
s0∈K0, s0∩t=∅ ClRm(Us0). As the family K0 is

locally finite in X, we deduce that Wt is by (3.3) an open neighborhood of t in X.
We claim: H(Wt)⊂ ξt.

Pick x ∈Wt. If s0 ∈K0 and s0 ∩ t=∅, then θs0(x) = 0 because the support of
θs0 is contained in Us0 and x 1∈ClRm(Us0). If s0∩t 1=∅, then s0 ⊂ t, so we conclude

(3.5)
∑

s0∈K0, s0⊂t,
x∈Us0

θs0(x) = 1

and

(3.6) H(x) =
∑

s0∈K0, s0⊂t,
x∈Us0

θs0(x)g
(
rs0(x)

)
.

If s0 ∈K0 satisfies s0 ⊂ t and x∈Us0 , then rs0(x)∈ Vs0 ⊂ s0, so g(rs0(x)) ∈ ξt.
As ξt is a convex subset of Rq and each g(rs0(x)) ∈ ξt if s0 ⊂ t and x ∈ Us0 , we
conclude by means of (3.5) and (3.6) that H(x) ∈ ξt. Consequently, H(Wt)⊂ ξt,
as claimed.

As X =
⋃

t∈K t=
⋃

t∈KWt, we deduce H(X) is contained in |L| and h : X →
|L|, x +→H(x) is a Cr map that satisfies property (i).

It remains to prove (ii). Fix x ∈ Xn \Xn−1 for some n ∈ N. Denote u the
unique element of K such that x∈ u0. As u0∩Xn 1=∅, we have u0 ⊂Xn. Observe
that u0 ∩Xn−1 = ∅, because otherwise x ∈ u0 ⊂Xn−1, which is a contradiction.
Thus, u0 ⊂Xn \Xn−1, so n(u0) = n. If s0 ∈K0 satisfies x∈Us0 , then Us0 ∩u 1=∅
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and by (3.3) we have

s0 ⊂ u⊂ ClX(Xn \Xn−1)⊂Xn \ IntX(Xn−1)

⊂Xn \Xn−2 = (Xn \Xn−1)2 (Xn−1 \Xn−2),

where X−2 := ∅. Thus, n(s0) ∈ {n− 1,n}. Consequently, rs0(x) ∈ s0 ⊂ u ⊂Xn

and by (3.4) we have ‖x− rs0(x)‖m < εn(s0)+1 ≤ εn. Now inequality (3.2) implies
that

∥∥h(x)− g(x)
∥∥
q =

∥∥∥∥
∑

s0∈K0, x∈Us0

θs0(x)
(
g
(
rs0(x)

)
− g(x)

)∥∥∥∥
q

≤
∑

s0∈K0, x∈Us0

θs0(x)
∥∥g

(
rs0(x)

)
− g(x)

∥∥
q
< δn

≤ δ(x),

as required. "

Remark 3.12. We keep the notations of the preceding proof. If there exist t∈K

and w ∈ |L| such that g takes the constant value w on t, then by (3.5) and (3.6) the
Cr map h : X → |L| is constant on the open neighborhood Wt ⊂X of t and takes
the constant value w. In particular, this is always true if t = {v} for any vertex v
of K. As a consequence, if X has at least one accumulation point, then h is not
injective.

3.C. Proof of Theorem 1.6. Let X be a locally compact subset of some
Rm. We assume X is non-compact. If X is compact the proof is similar, but
easier. As Y ⊂ Rn is a weakly Cr triangulable set, there exist a locally finite
simplicial complex L of some Rq and a homeomorphism Ψ : |L| → Y such that
Ψ|ξ ∈ Cr(ξ,Y ) for each ξ ∈L. In particular, Y is locally compact in Rn. Consider a
continuous map f : X → Y and a strictly positive continuous function ε : X →R+.
We will show: There exists H ∈ Cr(X,Y ) such that ‖H(x)− f(x)‖n < ε(x) for
each x ∈X.

By the first part of Corollary 2.2, we can assume X is closed in Rm and Y is
closed in Rn.

The proof is conducted in several steps:

Step I. Initial preparation. As X is closed in Rm, Tietze’s extension theorem
guarantees the existence of a strictly positive continuous function E : Rm → R+

and a continuous map f̂ : Rm → Rn such that E(x) = ε(x) and f̂(x) = f(x) for
each x∈X. By [Ha, Cor. 3.5] Y is an absolute neighborhood retract. Consequently,
as Y is closed in Rn, there exists an open neighborhood W ⊂ Rn of Y and a con-
tinuous retraction ρ : W → Y . Consider the open neighborhood U := (f̂ )−1(W )
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of X in Rm and the continuous extension f̃ : U → Y, x +→ ρ(f̂(x)) of f . Renaming
U as X, E|U as ε and f̃ as f , we can assume that X is an open subset of Rm, so in
particular X is a C∞ manifold.

By the Cairns-Whitehead triangulation theorem X is “ C∞ triangulable on open
simplices”, that is, there exist a locally finite simplicial complex K of some Rp and
a homeomorphism Φ : |K|→X such that Φ(σ0) is a C∞ submanifold of Rm and
the restriction Φ|σ0 : σ0 → Φ(σ0) is a C∞ diffeomorphism for each open simplex
σ0 of K (see [Hu, Lemma 3.5 & p. 82]). Set P := |K|, K := {Φ(σ)}σ∈K and
K0 := {Φ(σ0)}σ∈K . Define Q := |L|⊂Rq.

Step II. Reduction to the weakly simplicial case. Choose a sequence {Xk}k∈N
of compact subsets of X such that

⋃
k∈NXk =X and Xk−1 ! IntX(Xk) for each

k ∈ N, where X−1 := ∅. Note that the family {Xk \Xk−1}k∈N is locally finite in
X.

Fix k ∈ N and consider the compact subsets Pk := Φ−1(Xk) of P and
Qk := Ψ−1(f(Xk)) of Q. Define εk := minx∈Xk{ε(x)} > 0 and µk :=
min{1,distRq (Qk,ClRq(Q) \ Q)} > 0, where distRq (Qk,∅) := +∞. Consider
the compact subset Vk of Q defined by

(3.7) Vk :=
{
z ∈Q : distRq(z,Qk)≤ µk/2

}
.

By the uniform continuity of Ψ on Vk there exists (for each k ∈N) δk > 0 such that

(3.8)
∥∥Ψ(z′)−Ψ(z)

∥∥
n < εk for each pair z′,z ∈ Vk with ‖z′ − z‖q < δk.

Consider the C0 map F :=Ψ−1 ◦f ◦Φ : |K|= P →Q= |L|. Applying Theo-
rem 3.7 to F we obtain, after replacing K by one of its subdivisions, that there
exists a weakly simplicial map F ∗ : |K|→ |L| such that

∥∥F ∗(w)−F (w)
∥∥
q

< min{µk/4,δk/2} for each k ∈ N and each w ∈ Pk \Pk−1,
(3.9)

where P−1 := ∅. Define the continuous maps g := Ψ−1 ◦ f = F ◦Φ−1 : X → |L|
and g∗ := F ∗ ◦Φ−1 : X → |L|. For each t ∈K the restriction Φ−1|t0 : t0 →Φ−1(t0)
is a C∞ diffeomorphism. Thus, as F ∗|Φ−1(t0) is an affine map, g∗|t0 ∈ C∞(t0, |L|).
As F ∗ is weakly simplicial and Φ−1(t) ∈K, there exists ξt ∈ L such that g∗(t) =
F ∗(Φ−1(t))⊂ ξt. By (3.9) we have:

∥∥g∗(x)− g(x)
∥∥
q

< min{µk/4,δk/2} for each k ∈ N and each x ∈Xk \Xk−1.
(3.10)
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The following commutative diagram summarizes the current situation.

X
f

g

g∗

Y

|K|

Φ ∼=

F

F ∗
|L|

Ψ∼=

ξ

Ψ|ξ

Step III. Construction of the approximating map. By Lemma 3.10 there exist
h∗ ∈ C∞(X, |L|) and for each t∈K an open neighborhood Wt ⊂X of t satisfying:

h∗(Wt)⊂ ξt for each t ∈K,(3.11)
∥∥h∗(x)− g∗(x)

∥∥
q

< min{µk/4,δk/2} for each k ∈ N and each x ∈Xk \Xk−1.
(3.12)

We define H :=Ψ◦h∗ : X → Y and claim: H ∈ Cr(X,Y ).
Recall that {Wt}t∈K is an open covering of X. By (3.11) the restriction h∗|Wt :

Wt→ ξt is a well-defined C∞ map for each t∈K. In addition, H|Wt =Ψ|ξt ◦h∗|Wt .
As both Ψ|ξt and h∗|Wt are Cr maps, H|Wt is also a Cr map. Consequently, H ∈
Cr(X,Y ), as claimed.

Next, by (3.10) and (3.12) we have
∥∥h∗(x)− g(x)

∥∥
q

< min{µk/2,δk} for each k ∈ N and each x ∈Xk \Xk−1.
(3.13)

Recall that g(Xk) =Ψ−1(f(Xk)) =Qk, so by (3.7) and (3.13) we have h∗(x)∈ Vk

for each x ∈Xk \Xk−1. Thus, by (3.8) and (3.13) we conclude

∥∥H(x)− f(x)
∥∥
n =

∥∥Ψ
(
h∗(x)

)
−Ψ

(
g(x)

)∥∥
n < εk ≤ ε(x),

for each x ∈Xk \Xk−1 and each k ∈ N. Thus, ‖H(x)− f(x)‖n < ε(x) for each
x ∈X, as required. "

3.D. Proof of Theorems 1.24. As the pair (X,X ′) is weakly∗ Cr triangu-
lable, there exists a locally finite simplicial complex K, a subcomplex K ′ of K and
a homeomorphism Φ : |K|→X such that Φ(|K ′|) =X ′. We repeat the preceding
proof of Theorem 1.6 with the following changes:

• We refine the triangulation Ψ : |L| → Y in such a way that each connected
component of f(X ′) is a vertex wk of L. Denote X ′

k := f−1({wk}) and observe
that X ′

k is a union of some connected components of X ′. Let K ′
k be the subcomplex

of K ′ such that Φ(|K ′
k|) =X ′

k.
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• Replace Step I with the last two sentences of such step. Namely: “Set P :=
|K|, K := {Φ(σ)}σ∈K and K0 := {Φ(σ0)}σ∈K . Define Q := |L|⊂Rq”.

• In Step II we apply Remark 3.8(i) to F := Ψ−1 ◦ f ◦Φ with H := K ′. The
reader should have in mind that F ||K ′

k| is constantly equal to the vertex wk of L, so
F is simplicial on K ′

k. Thus, we obtain g∗ : X → |L| such that g∗(x) = g(x) =wk

for each x ∈X ′
k.

Finally, by Remark 3.12 the Cr map h∗ : X → |L| that approximates g∗ is
constantly equal to wk on X ′

k. Consequently, the Cr map H : X → Y that approx-
imates f satisfies H(x) = Ψ(wk) = f(x) for each x ∈ X ′

k, so H|X ′ = f |X ′ , as
required. "

3.E. Proof of Theorem 1.21. Proceeding as in Step I of the proof of Theo-
rem 1.6 we can assume that X is an open subset of Rm. Thus, there exist a locally
finite simplicial complex K of some Rp and a homeomorphism Φ : |K|→X such
that the restriction Φ|σ0 : σ0 → X is a C∞ map for each open simplex σ0 of K .
Next, we refine the triangulation Φ in such a way that there exists a subcomplex
K ′ of K satisfying Φ(|K ′|) =X ′. This proves that (X,X ′) is a weakly∗ C∞ trian-
gulable pair. Now, we apply Theorem 1.24 to complete the proof. "

3.F. Proof of Corollary 1.18. Let K and P ⊂ Rp satisfy the conditions in
the statement and let ε : P → R+ be a strictly positive continuous function. Apply
Lemma 3.10 to X := P , Φ := idP , L :=K, g := idP and δ := ε. We obtain a map
ιε ∈ C∞(P,P ) and for each σ ∈K an open neighborhood Wσ ⊂ P of σ such that:

• ιε(Wσ)⊂ σ for each σ ∈K and
• ‖ιε(x)−x‖p < ε(x) for each x ∈X.

Thus, the net {ιε}ε∈C0(P,R+) converges to the identity map in C0(P,P ). Conse-

quently, by Lemma 2.1 if f ∈ C0(P,Y ), the net {f ◦ ιε}ε∈C0(P,R+) converges to

f in C0(P,Y ). In addition, if f |σ ∈ Cr(σ,Y ) for each σ ∈K, every composition
f ◦ ιε : P → Y is a Cr map, because so is the restriction (f ◦ ιε)|Wσ = f |σ ◦ ιε|Wσ

for each σ ∈K . "

Remark 3.13. If K is compact, the family of strictly positive constant func-
tions εn := 2−n is cofinal in C0(P,R+) and it is enough to construct (using again
Lemma 3.10) for each n ∈ N a map ιn ∈ C∞(P,P ) and for each σ ∈K an open
neighborhood Wσ ⊂ P of σ such that:

• ιn(Wσ)⊂ σ for each σ ∈K and
• ‖ιn(x)−x‖p < εn(x) := εn for each x ∈X.

Once this is done one proceeds as above.

4. Proof of Theorem 1.15. In this section we develop first all the machin-
ery we need to prove Theorem 1.15, which is inspired by some techniques con-
tained in [BR]:
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• the construction of C∞ weak retractions for an analytic normal-crossings
divisor X of a real analytic manifold M (that appears in Section 4.A),

• immersion of C-analytic sets as singular sets of coherent C-analytic sets
homeomorphic to Euclidean spaces (that appears in Section 4.B),
and after we approach its proof (see Section 4.C).

A weaker and purely semialgebraic version of the arguments used in this sec-
tion is contained in our manuscript [FG].

4.A. C∞ weak retractions. In this subsection we construct C∞ weak re-
tractions ρ : W → X of open neighborhoods W of an analytic normal-crossings
divisor X of a real analytic manifold M (Proposition 4.1). C∞ weak retractions
ρ : W →X are C∞ maps that are arbitrarily close to the identity idX on X in the
strong C0 topology. As we have already commented, if X is not a C∞ manifold,
we cannot expect that ρ is a retraction onto X, that is, there is no hope to have
ρ|X = idX .

Let M ⊂ Rm be a d-dimensional real analytic manifold and let X be a C-
analytic subset of M . We say that X is an analytic normal-crossings divisor of M
if:

• for each point x ∈ X there exists an open neighborhood U ⊂ M of x and
a real analytic diffeomorphism ϕ : U → Rd such that ϕ(x) = 0 and ϕ(X ∩U) =
{x1 · · ·xr = 0} for some r ∈ {1, . . . ,d} and

• the (C-analytic) irreducible components [WB] of (the C-analytic set) X are
non-singular analytic hypersurfaces of M .

In the next result we establish the existence of C∞ weak retractions ρ :W →X.

PROPOSITION 4.1. ( C∞ weak retractions) Let X be an analytic normal-
crossings divisor of a real analytic manifold M and let U be an open neighborhood
of idX in C0(X,X). Then there exist an open neighborhood W of X in M and a
C∞ map ρ : W →X such that ρ|X ∈ U .

Proof. Assume that M is a real analytic submanifold of some Rm. Choose a
strictly positive continuous function ε : X → R+ such that

(4.1)
{
g ∈ C0(X,X) : ‖g(x)−x‖m < ε(x) ∀x ∈X

}
⊂ U .

As X is closed in M , we can extend by Tietze’s extension theorem ε to a positive
continuous function on M that we denote again ε.

Let {Xj}j∈J be the family of the irreducible components of X (see [WB]).
Such a family is locally finite in M , so J is countable and we assume J = N. If J
is finite, the proof is similar but easier.

For each j ∈ N denote πj : Ej → Xj the normal bundle of Xj in M , where
Ej ⊂ Xj ×Rm ⊂ Rm ×Rm = R2m. Proceeding as the authors do in the proof
of [BR, Lem. 2.5] one shows that there exists a C∞ tubular neighborhood map
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φj : Ej ↪→M of Xj compatible with the other Xk in the following sense: for each
x ∈ Ej and each k ∈ N\{j} the image φj(x) ∈Xk if and only if φj(πj(x)) ∈Xk.
Define Ωj := φj(Ej) for each j ∈ N. By Lemma 3.11 we may assume that the
family {Ωj}j∈N is locally finite in M .

Fix j ∈ N and let ηj : Xj → R+ be a strictly positive C∞ function. Choose a
C∞ function f : R→ [0,1] such that f(t) = 0 if |t| ≤ 1/4 and f(t) = 1 if |t| ≥ 1.
Consider the map

hj : Ej → Ej , (x,w) +→
(
x,f

(
‖w‖2

m/η2
j (x)

)
w
)

and the composition ψj := φj ◦hj ◦φ−1
j :Ωj →Ωj , which is a C∞ map that extends

by the identity to a C∞ map Ψj : M →M . Denote

Wj := φj
({

(x,w) ∈ Ej : ‖w‖m < ηj(x)
})

⊂Ωj ,

W ∗
j := φj

({
(x,w) ∈ Ej : ‖w‖m < ηj(x)/2

})
⊂Wj .

We have:
• Ψj(W ∗

j ) =Xj .
• Ψj(y) = y for each y ∈M \Wj .
• Ψj(Xk)⊂Xk for each k.
• Ψj is arbitrarily close to the identity on M if ηj is small enough.

Only the last assertion requires a further comment. As Ψj is the identity on M \Wj

and φj is a real analytic embedding (in particular a proper map onto its image), by
Lemma 2.1 it is enough to show that hj can be chosen arbitrarily close to idEj . Pick
(x,w) ∈ Ej . We have:

hj(x,w)− (x,w) =
(
0,
(
f
(
‖w‖2

m/η2
j (x)

)
−1

)
w
)
,

∣∣f
(
‖w‖m/ηj(x)

)
−1

∣∣
{
≤ 1 if ‖w‖m < ηj(x),

= 0 if ‖w‖m ≥ ηj(x).

Consequently,
∥∥hj(x,w)− (x,w)

∥∥
2m =

∣∣f
(
‖w‖m/ηj(x)

)
−1

∣∣‖w‖m < ηj(x),

so hj is arbitrarily close to idEj and Ψj is arbitrarily close to idM , provided ηj is
small enough. In particular, the restriction Ψj|X : X → X is arbitrarily close to
idX .

We claim: If the functions ηj are small enough, the countable composition
ρ : M → M , ρ := · · · ◦Ψj ◦ · · · ◦Ψ0 is a well-defined C∞ map and the restriction
ρ|X : X →X belongs to U .

As M is Hausdorff, second countable and locally compact (hence also para-
compact) and the family {Ωj}j∈N is locally finite in M , there exists an open cover-
ing {U'}'∈N of M such that each closure ClM (U') of U' in M is compact and
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only meets finitely many Ωj and the family {ClM (U')}'∈N is locally finite in
M . Let {V'}'∈N be a shrinking of {U'}'∈N that is an open covering of M and
satisfies K' := ClM (V') ⊂ U' for each 3 ∈ N. For each 3 ∈ N, denote s' ∈ N
the cardinality of the set of all j ∈ N such that Ωj ∩ ClM (U') 1= ∅. Note that
distRm(K',M \U')> 0 and pick ε' ∈ R with 0 < ε' < distRm(K',M \U'). Bear-
ing in mind Remark 2.3, for each j ∈ N we choose ηj small enough to have

∥∥Ψj(x)−x
∥∥
m <

ε'
s'+1

for each 3 ∈ N and each x ∈ ClM (U').

Fix 3 ∈ N with s' > 0. Write {j ∈N : Ωj ∩ClM (U') 1=∅}= {j1, . . . , js!} and
assume j1 < · · · < js! . Let us check: ‖(Ψjk ◦ · · · ◦Ψj1)(y)− y‖m < kε!

s!+1 for each
y ∈K' and each k ∈ {1, . . . ,s'}. In particular,

(4.2) (Ψjk ◦ · · · ◦Ψj1)(y) ∈ U'

for each k ∈ {1, . . . ,s'}.
We proceed by induction on k. If k = 1 the result is true by construction.

Assume the result true for k− 1 and let us check that it is also true for k. Pick
a point y ∈K'. As ‖(Ψjk−1 ◦ · · ·◦Ψj1)(y)−y‖m < (k−1)ε!

s!+1 < ε', we have (Ψjk−1 ◦
· · ·◦Ψj1)(y) ∈ U', so

∥∥Ψjk

(
(Ψjk−1 ◦ · · · ◦Ψj1)(y)

)
− (Ψjk−1 ◦ · · · ◦Ψj1)(y)

∥∥
m <

ε'
s'+1

.

Thus, we deduce
∥∥(Ψjk ◦ · · · ◦Ψj1)(y)−y

∥∥
m

≤
∥∥Ψjk

(
(Ψjk−1 ◦ · · · ◦Ψj1)(y)

)
− (Ψjk−1 ◦ · · · ◦Ψj1)(y)

∥∥
m

+
∥∥(Ψjk−1 ◦ · · ·◦Ψj1)(y)−y

∥∥
m <

ε'
s'+1

+
(k−1)ε'
s'+1

=
kε'

s'+1
.

By (4.2) and the fact that Ψj |M\Ωj
= idM\Ωj

, we have

(Ψjs ◦ · · · ◦Ψ0)(y) = (Ψjs ◦ · · · ◦Ψj1)(y) ∈ U' for each y ∈K'.

As U' ⊂
⋂

j>js
(M \Ωj), we conclude

ρ(y) = (Ψjs ◦ · · ·◦Ψ0)(y) = (Ψjs ◦ · · · ◦Ψj1)(y).

It follows that

‖ρ(y)−y‖m < ε' for each 3 ∈ N and each y ∈K' = ClM (V').

In particular, as {V'}'∈N is an open covering of M , the composition ρ turns out to
be a well-defined C∞ map, which is arbitrarily close to idM in C0(M,M) if the
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values ε' are chosen small enough. We may assume in addition

(4.3) ‖ρ(y)−y‖m < ε(y) for each y ∈M.

We claim: ρ maps the open neighborhood

W :=
⋃

j∈N
(Ψj−1 ◦ · · ·◦Ψ0)

−1(W ∗
j )⊂M

of X onto X, where Ψj−1 ◦ · · · ◦Ψ0 denotes idM if j = 0.
Indeed, pick y ∈ W and let j ∈ N be such that y ∈ (Ψj−1 ◦ · · · ◦Ψ0)−1(W ∗

j ).
Define z ∈W ∗

j by z := (Ψj−1 ◦ · · ·◦Ψ0)(y). We have

ρ(y) =
(
(· · · ◦Ψj+1)◦Ψj ◦ (Ψj−1 ◦ · · ·◦Ψ0)

)
(y) = (· · · ◦Ψj+1)

(
Ψj(z)

)
.

As Ψj(z) ∈ Ψj(W ∗
j ) = Xj and Ψk(Xj) ⊂ Xj for each k, we have ρ(y) =

(· · · ◦Ψj+1)(Ψj(z)) ∈ Xj ⊂ X, so we conclude ρ(W ) ⊂ X. Thus, the corre-
sponding restriction ρ : W →X is a well-defined C∞ map. By (4.1) and (4.3) the
restriction ρ|X belongs to U , as required. "

4.B. Immersions of C-analytic sets as singular sets. The following result
is a C-analytic version of Lemma 2.2 in [BR], which is crucial for the proof of
Theorem 1.15. Recall that a C-analytic set Y ⊂Rn is coherent if the ideal Jy (that
is, the stalk of the sheaf of ideals J := J (Y )CωRn at y) coincides with the ideal
of germs of real analytic functions on Rn whose zero sets contain the germ Yy for
each y ∈ Y .

LEMMA 4.2. (C-analytic sets as singular sets) Let Y be a C-analytic subset
of Rn. Denote (x,y1,y2) the coordinates of Rn×R×R= Rn+2. Then there exists
an irreducible coherent C-analytic subset Z of Rn+2 such that Sing(Z) = Y ×
{(0,0)} and the restriction to Z of the projection π : Rn+2 → Rn+1, (x,y1,y2) +→
(x,y1) is a homeomorphism. In addition, the restriction π|Z\(Y ×{(0,0)}) : Z \ (Y ×
{(0,0)})→ Rn+1 \ (Y ×{0}) is an analytic diffeomorphism.

Proof. Let f ∈ Cω(Rn) be a global analytic equation of Y and consider the real
analytic function g(x,y1,y2) := f(x)2 + y2

1 − y3
2 ∈ Cω(Rn+2). Define Z := {g =

0}. Given (x,y1) ∈ Rn+1, the formula y2 = (f(x)2 + y2
1)

1/3 provides the unique
solution to the equation g(x,y1,y2) = 0. Hence, π|Z : Z → Rn+1 is a homeomor-
phism and the restriction π|Z\(Y ×{(0,0)}) : Z \ (Y × {(0,0)}) → Rn+1 \ (Y × {0})
is an analytic diffeomorphism.

Let p := (p0,p1,p2) ∈ Z . If p 1∈ Z ∩ {f(x) = 0,y1 = 0} = Y × {(0,0)}, then
it is a regular point of Z , because ∂g

∂y2
(p) 1= 0. As a consequence, the germ Zp is

irreducible and coherent.
Suppose now p = (p0,0,0) ∈ Y × {(0,0)}. Let us prove: The ideal J (Zp) of

analytic germs vanishing identically on Zp is generated by g. Consequently, Zp is
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coherent and

Sing(Z) = Z ∩{∇g(x,y1,y2) = 0}= {f(x) = 0,y1 = 0,y2 = 0}= Y ×{(0,0)}.

After a translation we may assume p= (0,0,0) and we change f by f(x+p0)
(but keep the notation f to simplify notation). As f(0) = 0, the convergent series
g is a distinguished polynomial of degree 2 with respect to the variable y1. Pick
h ∈ J (Zp) and divide it by g using Rückert division theorem. There exist analytic
series q ∈ R{x,y1,y2} and a,b ∈R{x,y2} such that

(4.4) h(x,y1,y2) = q(x,y1,y2)g(x,y1,y2)+a(x,y2)y1 + b(x,y2).

Changing y1 by −y1 we obtain

(4.5) h(x,−y1,y2) = q(x,−y1,y2)g(x,y1,y2)−a(x,y2)y1 + b(x,y2).

Adding equations (4.4) and (4.5), we obtain

h(x,y1,y2)+h(x,−y1,y2) =
(
q(x,y1,y2)+ q(x,−y1,y2)

)
g(x,y1,y2)+2b(x,y2).

Observe that Z is symmetric with respect to the variable y1, that is, (x,y1,y2) ∈ Z
if and only if (x,−y1,y2) ∈Z . Consequently, h(x,y1,y2)+h(x,−y1,y2)∈J (Zp)
and we deduce that b(x,y2) ∈ J (Zp). Assume by contradiction that b(x,y2) 1= 0.
Then b(x,y2) ∈ (J (Zp)∩R{x,y2})\{0} and by [Rz, II.2.3] the ideal J (Zp) has
height ≥ 2. This means that the dimension of the germ Zp is ≤n+2−2=n, which
is a contradiction because, as Z is homeomorphic to Rn+1, we have dim(Zp) =
n+1. Thus, b= 0 and

h(x,y1,y2) = q(x,y1,y2)g(x,y1,y2)+a(x,y2)y1.

As h,g ∈ J (Zp), we have a(x,y2)y1 ∈ J (Zp). Assume by contradiction that
a(x,y2) 1= 0. Then

a(x,y2)
2f(x)2 −a(x,y2)

2y3
2

= a(x,y2)
2g(x,y1,y2)−a(x,y2)

2y2
1 ∈

(
J (Zp)∩R{x,y2}

)
\{0}.

Analogously to what we have inferred from the assumption b 1= 0, we also achieve a
contradiction in this case. We conclude that h= qg. Thus, J (Zp) = gR{x,y1,y2},
as claimed.

To finish we have to prove: g is irreducible in R{x,y1,y2}. This means that
the ideal J (Zp) is prime and the analytic germ Zp is irreducible. Note that local
irreducibility (at each point p ∈ Z) together with the connectedness of Z imply
global irreducibility.

As g is a distinguished polynomial with respect to y1, it is enough to prove
the irreducibility of g in R{x,y2}[y1]. As g is a monic polynomial with respect
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to y1, if it is reducible, there exists polynomials of degree one y1 + a1,y1 + a2 ∈
R{x,y2}[y1] such that g = (y1 +a1)(y1 +a2). If we make x= 0, we have

y2
1 −y3

2 = g(0,y1,y2) =
(
y1 +a1(0,y2)

)(
y1 +a2(0,y2)

)

= y2
1 +

(
a1(0,y2)+a2(0,y2)

)
y1 +a1(0,y2)a2(0,y2),

so a2(0,y2) = −a1(0,y2) and y3
2 = a1(0,y2)2, which is a contradiction. Conse-

quently, g is irreducible in R{x,y1,y2}, as required. "

4.C. Proof of Theorem 1.15. Let X ⊂ Rm be a locally compact set and
let Y be a C-analytic set. We must prove that C∞

∗ (X,Y ) is dense in C0
∗(X,Y ).

By the second part of Corollary 2.2, we can assume X is closed in Rm and Y is a
C-analytic subset of some Rn. We assume X is non-compact. If X is compact the
proof is similar, but easier. Denote π : Rn+2 → Rn+1 the projection onto the first
n+ 1 coordinates. By Lemma 4.2 there exists an irreducible coherent C-analytic
subset Z of Rn+2 such that Sing(Z) = Y × {(0,0)} ⊂ {xn+1 = 0,xn+2 = 0} and
the restriction ψ := π|Z : Z → Rn+1 is a homeomorphism.

As Z is a coherent analytic subset of Rn+2, then the pair (Z, CωRn+2 |Z) (with
the analytic structure induced by the one of Rn+2) is a (coherent) real analytic
space. By [BM2, §13] there exist a real analytic manifold Z ′ ⊂ Rq and a proper
real analytic map φ : Z ′ → Z such that the restriction

φ|Z ′\φ−1(Sing(Z)) : Z ′ \φ−1(Sing(Z))→ Z \Sing(Z)

is a real analytic diffeomorphism and Y ′ := φ−1(Sing(Z)) = φ−1(Y ×{(0,0)}) is
an analytic normal-crossings divisor of Z ′.

Let f ∈ C0
∗(X,Y ) and let ε : X → R+ be a strictly positive continuous func-

tion. As X is non-compact and f is proper, f(X) is unbounded in Rn. In this
way, there exists an exhaustion {L'}'∈N of Rn+1 by compact sets such that L'−1 !
IntRn+1(L') and (L' \L'−1)∩ (f(X)×{0}) 1=∅ for each 3 ∈N, where L−1 :=∅.
As Y is closed in Rn and f is proper, K' := (f,0)−1(L' ∩ (Y × {0})) is a com-
pact subset of X for each 3 ∈ N. Define the non-empty compact sets N' := L' \
IntRn+1(L'−1) and H' :=K' \ IntX(K'−1) for each 3 ∈ N, where K−1 := ∅. Note
that X =

⋃
'∈NH' and (f,0)(H')⊂N' for each 3∈N. Define δ' := minH!(ε/6)>

0 and choose a strictly positive continuous function δ : Rn+1 → R+ such that
maxN!(δ) ≤ δ' for each 3 ∈ N (see Remark 2.3). Observe that δ ◦ (f,0) : X → R
satisfies

δ ◦ (f,0)≤ ε/6 on X.

Indeed, maxH!(δ ◦ (f,0))≤ maxN!(δ)≤ δ' = minH!(ε/6) for each 3 ∈ N.
By Lemma 2.1 the map

C0(X,Rn+1)→ C0(X,R), g +→ δ ◦g
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is continuous. Thus, there exists a strictly positive continuous function γ :X →R+

such that: if f1 ∈ C0(X,Rn+1) satisfies ‖f1 − (f,0)‖n+1 < γ, then |δ ◦ f1 − δ ◦
(f,0)|< ε/6. In particular,

(4.6) δ ◦f1 < ε/3 on X.

Consider the proper surjective map ψ ◦φ : Z ′ → Rn+1, which satisfies (ψ ◦
φ)(Y ′) = Y ×{0}. Denote (ψ ◦φ)′ : Y ′ → Y ×{0} the restriction of ψ ◦φ from Y ′

to Y ×{0}. Using Lemma 2.1 again we deduce that the map

C0(Y ′,Y ′)→ C0(Y ′,Y ×{0}
)
, g +→ (ψ ◦φ)′ ◦g

is continuous. Let ζ : Y ′ →R+ be a strictly positive continuous function such that:
if g ∈ C0(Y ′,Y ′) satisfies ‖g− idY ′‖q < ζ , then ‖(ψ◦φ)′ ◦g−(ψ◦φ)′ ◦ idY ′‖n+1 <
δ ◦ (ψ ◦φ)′. By Proposition 4.1 there exists an open neighborhood W ⊂ Z ′ of Y ′

and a C∞ weak retraction ρ : W → Y ′ such that ‖ρ|Y ′ − idY ′‖q < ζ , so ‖(ψ ◦φ)′ ◦
ρ|Y ′ − (ψ ◦φ)′ ◦ idY ′‖n+1 < δ ◦ (ψ ◦φ)′. Define the open neighborhood W ′ ⊂ W
of Y ′ by setting

W ′ :=
{
z ∈W :

∥∥(ψ ◦φ)
(
ρ(z)

)
− (ψ ◦φ)(z)

∥∥
n+1 < δ

(
(ψ ◦φ)(z)

)}
.

Consider the closed subset C ′ := Z ′ \W ′ of Z ′, which does not meet Y ′ =
(ψ ◦φ)−1(Y ×{0}). As ψ ◦φ : Z ′ → Rn+1 is proper, C := (ψ ◦φ)(C ′) is a closed
subset of Rn+1, which does not meet Y ×{0}. Let η : Y ×{0}→R+ and η′ : X →
R+ be the strictly positive continuous functions given by

η(y,0) := distRn+1

(
(y,0),C

)
/2 if y ∈ Y and η′ := η ◦ (f,0).

Define the strictly positive continuous function ξ :X→R+ as ξ :=min{γ,η′,ε/3}/
2. The map f ′ := (f,ξ) : X → Rn+1 satisfies

(4.7)
∥∥f ′ − (f,0)

∥∥
n+1 = ξ < min{γ,η′,ε/3} ≤ ε

3

and δ ◦f ′ < ε/3 on the whole X (see (4.6)). Consider the continuous function

f ′′ := (φ|Z ′\Y ′)−1 ◦ψ−1|Rn+1\{xn+1=0} ◦f ′ :

X → Rn+1 \{xn+1 = 0}→ Z \
(
{Y }×{(0,0)}

)
→ Z ′ \Y ′

and observe that f ′(x) = (ψ ◦φ)(f ′′(x)) for each x ∈X.
We claim: f ′′(X)⊂W ′.
If x ∈X, then (ψ ◦φ)(f ′′(x)) = (f(x),ξ(x)). Thus,
∥∥(ψ ◦φ)

(
f ′′(x)

)
−
(
f(x),0

)∥∥
n+1 = ξ(x)≤ η′(x)< distRn+1

((
f(x),0

)
,C

)
,

so (ψ ◦φ)(f ′′(x)) 1∈ C . Consequently, f ′′(x) 1∈ C ′ = Z ′ \W ′, that is, f ′′(x) ∈W ′.
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In addition, we have:

(4.8)
∥∥(ψ ◦ψ)

(
ρ
(
f ′′(x)

))
− f ′(x)

∥∥
n+1 <

ε(x)

3
for each x ∈X.

Indeed, pick x ∈X. As f ′′(x) ∈W ′ and (δ ◦f ′)(x)< ε(x)/3, it holds
∥∥(ψ ◦ψ)

(
ρ
(
f ′′(x)

))
− f ′(x)

∥∥
n+1 =

∥∥(ψ ◦ψ)
(
ρ
(
f ′′(x)

))
− (ψ ◦ψ)

(
f ′′(x)

)∥∥
n+1

< δ
(
(ψ ◦φ)

(
f ′′(x)

))
= (δ ◦f ′)(x)<

ε(x)

3
.

The following commutative diagram summarizes the situation we have
achieved until the moment.

W ′

ρ

Y ′

φ

Z ′

φ

Y ×{(0,0)} = Sing(Z)

ψ

Z

ψ

Rn+2

π

Y ×{0} Rn+1

ψ−1

X

(f,0)

f ′:=(f,ξ)

f ′′

Rn+1 \{xn+1 = 0}

φ|−1
Z\Sing(Z)◦ψ

−1|Rn+1\{xn+1=0}

Proceeding as in Step I of the proof of Theorem 1.6, we deduce that there exists
an open neighborhood U ⊂ Rm of X and a continuous extension F ′′ : U → Z ′ of
f ′′. The inverse image U0 := F ′′−1(W ′) is an open neighborhood of X in U and
the restriction, F ′′|U0 : U0 → W ′ is a continuous map between the real analytic
manifolds U0 and W ′. We substitute U by U0 and F ′′ by F ′′|U0 , but we keep the
original notation to ease the writing. Let H0 : U → W ′ be a real analytic map
arbitrarily close to F ′′ in C0(U,W ′), which exists by Whitney’s approximation
theorem. The restriction h0 := H0|X : X → W ′ is a real analytic map arbitrarily
close to f ′′ in C0(X,W ′). Consider the C∞ map h : X → Y such that (h,0) :=
(ψ ◦φ)′ ◦ρ|W ′ ◦h0. As the map

C0(X,W ′)→ C0(X,Y ), g +→ (ψ ◦φ)′ ◦ρ|W ′ ◦g

is continuous, we may assume

(4.9)
∥∥(h(x),0

)
− (ψ ◦φ)′

(
ρ
(
f ′′(x)

))∥∥
n+1 <

ε(x)

3
for each x ∈X.
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Given any x ∈X we deduce by (4.7), (4.8) and (4.9),

∥∥h(x)− f(x)
∥∥
n

=
∥∥(h(x),0

)
−
(
f(x),0

)∥∥
n+1 ≤

∥∥(h(x),0
)
− (ψ ◦φ)′

(
ρ
(
f ′′(x)

))∥∥
n+1

+
∥∥(ψ ◦φ)′

(
ρ
(
f ′′(x)

))
− f ′(x)

∥∥
n+1 +

∥∥f ′(x)−
(
f(x),0

)∥∥
n+1

<
ε(x)

3
+
ε(x)

3
+
ε(x)

3
= ε(x).

Thus, we have found a C∞ map h : X → Y that is arbitrarily close to f . In the
same vein of [H3, Thm. II.1.5] one easily shows that C0

∗(X,Y ) is an open subset
of C0(X,Y ), so we can assume that h is in addition proper, as required. "

Remarks 4.3. (i) In the preceding proof we have used that the continuous map
f : X → Y ⊂ Rn, we want to approximate, is proper exactly when we need to
find for a strictly positive continuous function ε : X →R+ another strictly positive
continuous function δ : Rn+1 → R+ such that δ ◦ (f,0)< ε/6.

(ii) The techniques we have developed in this section cannot be adapted to
guarantee relative approximation. Let us summarize the principal points of the
proof of Theorem 1.15 (we keep all the notations already introduced there). We
begin moving the image of the map f we want to approximate outside Y , but in-
side a small neighborhood of Y in Rn+1 (we have constructed the map f ′). This
movement is crucial to make the rest of our construction work but keeps off relative
approximation.

Recall that Y ×{(0,0)} is the singular set of an irreducible coherent C-analytic
subset Z of Rn+2, which is in addition homeomorphic to Rn+1 (via the projection
of Rn+2 to Rn+1 that forgets the last coordinate). Once this is done, we lift the
image of f ′ to Z \ Sing(Z). Next, we use resolution of singularities to change
Y ×{(0,0)} = Sing(Z) by an analytic normal-crossings divisor Y ′ contained in a
real analytic manifold Z ′. We denote φ : Z ′ → Z the (proper) resolution map and
consider f ′′ the composition of the lift of f ′ with (φ|Z ′\Y ′)−1. The image of f ′′ is
contained in Z ′ \Y ′.

We extend f ′′ continuously to an open neighborhood U0 ⊂ Rm of X such that
its image is contained in a small neighborhood W ′ ⊂ Z ′ of Y ′ endowed with a C∞

weak retraction ρ : W → Y . The previous extension F ′′ : U0 →W ′ is a continuous
map between submanifolds of Euclidean spaces, so here Whitney’s approximation
theorem works and provides a C∞ approximation H0 : U0 →W ′ close to F ′′. We
can even assume that the images of H0 and F ′′ are contained in Y ′ ⊂ W ′. Now,
we compose h0 := H0|X with (ψ ◦ φ)′ ◦ ρ to obtain the C∞ approximating map
h : X → Y of the continuous map f : X → Y .

There are some difficulties to achieve relative approximation results:
(1) We have moved the image of f off Y to construct F ′′ and we have lost the

control of the restrictions of f to subsets X ′ of X.
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(2) In case Y is an analytic normal-crossings divisor of a real analytic manifold
Z , we can skip the first part of the proof and keep the image of f inside Y . Then,
we extend f continuously to an open neighborhood U0 ⊂ Rm of X such that its
image is contained in a small neighborhood W ⊂Z of Y endowed with a C∞ weak
retraction ρ :W → Y . But now we have to deal with ρ, which is not a true retraction
and moves the points of Y . Thus, if X ′ ⊂X satisfies that f(X ′) is not contained
in the set of fixed points of ρ, then it seems difficult to assure that the restriction to
X ′ of the C∞ approximation behaves as f on X ′.

(iii) The previous remark does not mean that in the framework of C-analytic
sets relative approximation is not possible (see the example below). What we have
pointed out is that our techniques are not a good tool to approach relative approxi-
mation and new ideas are needed.

Example 4.4. Let X ′ := [−1,0]⊂X := [−1,1]⊂ R and let Y := {xy = 0}⊂
R2. Consider the continuous map

f : X → Y, t +→
{
(t,0) if t ∈ [−1,0],

(0, t) if t ∈ [0,1],

which is C∞ on X ′. Fix ε ∈ (0,1) and let θ1,θ2 : [−1,1] → [0,1] be C∞ bump
functions such that:

• θ1|[−1,0] = 1 and θ1|[ ε8 ,1] = 0.
• θ2|[−1, ε2 ]

= 0 and θ1|[ε,1] = 1.
Define

g : X → Y, t +→






(
tθ1(t),0

)
if t ∈

[
−1,

ε

4

]
,

(
0, tθ2(t)

)
if t ∈

[ε
4
,1
]
,

which is a C∞ function. Observe that g coincides with f outside the interval [0,ε].
We have

∥∥f(t)− g(t)
∥∥

2 =






∥∥(0, t)−
(
tθ1(t),0

)∥∥
2 = |t|

√
1+ θ2

1(t)< ε if t ∈
[
0,
ε

2

]
,

∥∥(0, t)−
(
0, tθ2(t)

)∥∥
2 = |t||1− θ2(t)|< ε if t ∈

[ε
2
,ε
]
,

so g is a C∞ approximation of f such that g|X ′ = f |X ′ .
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