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Abstract
LetF be a category of subanalytic subsets of real analytic manifolds that is closed under basic
set-theoretical operations (locally finite unions, difference and product) and basic topological
operations (taking connected components and closures). Let M be a real analytic manifold
and denoteF(M) the family of the subsets ofM that belong to the categoryF. Let f : X → R

be a subanalytic function on a subset X ∈ F(M) such that the inverse image under f of each
interval of R belongs to F(M). Let Max( f ) be the set of local maxima of f and consider
its level sets Maxλ( f ) := Max( f ) ∩ { f = λ} = { f = λ}\Cl({ f > λ}) for each λ ∈ R.
In this work we show that if f is continuous, then Max( f ) = ⊔

λ∈R Maxλ( f ) ∈ F(M) if
and only if the family {Maxλ( f )}λ∈R is locally finite in M . If we erase continuity condition,
there exist subanalytic functions f : X → M such that Max( f ) ∈ F(M), but the family
{Maxλ( f )}λ∈R is not locally finite in M or such that Max( f ) is connected but it is not
even subanalytic. We show in addition that if F is the category of subanalytic sets and
f : X → R is a (non-necessarily continuous) subanalytic map f that maps relatively
compact subsets of M contained in X to bounded subsets of R, then Max( f ) ∈ F(M) and
the family {Maxλ( f )}λ∈R is locally finite in M . An example of this type of functions are
continuous subanalytic functions on closed subanalytic subsets of M . The previous results
imply that if F is either the category of semianalytic sets or the category of C-semianalytic
sets and f is the restriction to an F-subset of M of an analytic function on M , then the
family {Maxλ( f )}λ∈R is locally finite in M and Max( f ) = ⊔

λ∈R Maxλ( f ) ∈ F(M). We
also show that if the category F contains the intersections of algebraic sets with real analytic
submanifolds and X ∈ F(M) is not closed in M , then there exists a continuous subanalytic
function f : X → R with graph belonging to F(M ×R) such that inverse images under f of
the intervals of R belong to F(M) but Max( f ) does not belong to F(M). As subanalytic sets
are locally connected, the set of non-openness points of a continuous subanalytic function
f : X → R coincides with the set of local extrema Extr( f ) := Max( f ) ∪ Min( f ). This
means that if f : X → R is a continuous subanalytic function defined on a closed set
X ∈ F(M) such that the inverse image under f of each interval of R belongs to F(M),
then the set Op( f ) of openness points of f belongs to F(M). Again the closedness of X
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2 J. F. Fernando

in M is crucial to guarantee that Op( f ) belongs to F(M). The type of results stated above
are straightforward if F is an o-minimal structure of subanalytic sets. However, the proof of
the previous results requires further work for a category F of subanalytic sets that does not
constitute an o-minimal structure.

Keywords Subanalytic set · Semianalytic set · C-seminalytic set · Weak category ·
Subanalytic function · Semianalytic function · C-semianalytic function · Analytic function ·
Locally normal crossing analytic function · Local maxima · Local minima · Local extrema

Mathematics Subject Classification 32B20 · 26E05 · 14P15 (primary); 54C30 · 03C64
(secondary)

1 Introduction

Let X be a topological space and let f : X → R be a real function. We say that f has a local
maximum (resp. local minimum) at x0 ∈ X if there exists an open neighborhood W ⊂ X of
x0 such that f (x0) ≥ f (x) (resp. f (x0) ≤ f (x)) for each x ∈ W . If f (x0) > f (x) (resp.
f (x0) < f (x)) for each x ∈ W\{x0}, we say that f has a strict local maximum (resp. strict
local minimum) at x0. We use local extrema to refer indistinctly to local maxima or local
minima. A point x0 ∈ X is a global maximum (resp. global minimum) of f if f (x0) ≥ f (x)
(resp. f (x0) ≤ f (x)) for each x ∈ X . If f (x0) > f (x) (resp. f (x0) < f (x)) for each
x ∈ X\{x0}, we say that f has a strict globalmaximum (resp. strict globalminimum) at x0.We
denoteMax( f ) the set of local maxima of f whereasMin( f ) refers to the set of local minima
of f . Observe that Min( f ) = Max(− f ), so it is enough to study the properties of the set of
local maxima to understand both sets. To lighten the exposition we will state the results only
for the set of local maxima. The union Extr( f ) := Max( f )∪Min( f ) = Max( f )∪Max(− f )
is the set of local extremaof f . In the followingwedenoteMaxλ( f ) := Max( f )∩{ f = λ} for
each λ ∈ R. For each λ ∈ R the level set Maxλ( f ) coincides with the set { f = λ}\Cl({ f >

λ}), see Lemma 2.1. We have Max( f ) = ⊔
λ∈R Maxλ( f ) and Maxλ( f ) 	= ∅ if and only if

λ ∈ f (Max( f )). We use the symbol 
 to denote pairwise disjoint unions.
Let X , Y be topological spaces and let S ⊂ X be a subset. We use the following notation:

let Cl(S), Int(S) and ∂(S)(:= Cl(S)\ Int(S)) denote respectively the closure, interior and
boundary of S in X . A map f : S → Y is X -compact if f (K ∩ S) is a relatively compact
subset of Y for each compact subset K ⊂ X . A relevant example of X -compact maps is that
of continuous maps f : S → Y on closed subsets S of X . We say that a family S := {Si }i∈I
is locally isolated in X if for each point x ∈ X there exists an open neighborhood Ux ⊂ X
of x such that Ux meet at most one of the members of S.

The study of local extrema of real functions of different types (continuous, differentiable,
analytic, subanalytic, etc.) definedon several types of spaces (topological spaces, open subsets
of affine spaces, real analytic manifolds, subanalytic sets, etc.) is long and rich and we refer
the reader for instance to [3,4,7,12,24] for further information. The approach in these articles
is mainly from the local viewpoint (and concerns the behavior of a function in a small
neighborhood around a local extrema) but there is an important lack of information about
the properties of the set of local extrema from a global viewpoint. In this paper we analyze
for some categories F of subanalytic sets, satisfying mild properties, the belonging to the
category F of the sets of local maxima, local minima and local extrema of the functions
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On the set of local extrema of a subanalytic function 3

whose graphs belong to F and satisfy some mild additional conditions. We focus mainly in
the categories F of subanalytic, semianalytic y C-semianalytic sets.

1.1 Semianalytic, C-semianalytic and subanalytic sets and functions

Let M be a real analytic manifold. A subset S ⊂ M is semianalytic if each point of M admits
a neighborhood U such that S ∩ U can be described as a finite Boolean combination of
analytic equalities and inequalities, where the involved functions are analytic (and possibly
only) on U . We say that Z ⊂ M is C-analytic, if it is the common zero set of finitely many
real analytic functions on M . A subset S ⊂ M is a basic C-semianalytic set if it admits a
description of the type

S := {x ∈ M : f (x) = 0, g1(x) > 0, . . . , gr (x) > 0}
where the functions f , gi : M → R are analytic on M . We say that S ⊂ M is a C-
semianalytic set [1] if it satisfies one of the following equivalent conditions:

(1) S is the union of a countable locally finite family of basic C-semianalytic sets.
(2) For each point x ∈ M there exists an open neighborhood Ux ⊂ M such that S ∩ Ux is

a finite union of basic C-semianalytic sets.

Recall that X ⊂ M is subanalytic if each point of M admits a neighborhood U such that
X ∩ U is a projection of a relatively compact semianalytic set (that is, there exist a real
analytic manifold N and a relatively compact semianalytic subset A of M × N such that
X ∩U = π(A), where π : M × N → M is the projection onto the first factor).

Semianalytic sets (andmore generally subanalytic sets) were introduced by Łojasiewicz in
[26,27] and were developed later by many authors: Bierstone–Milman [5,6], Hironaka [19–
22], Gabrielov [14], Hardt [17,18], Galbiati [15], Pawłucki [30], Denkowska [11], Stasica
[32], Kurdyka [25], Parusiński [29], Shiota [31] among others. These sets have many and
wide applications in complex and real analytic geometry. Whereas the family of complex
analytic sets is stable under proper holomorphic maps between complex analytic spaces
(Remmert’s Theorem [28, VII.§2.Thm.2]), an analogous property does not hold in the real
analytic setting. The image of a real analytic set under a proper real analytic map is not
even in general a semianalytic set. This fact promoted the introduction of subanalytic sets
by Łojasiewicz [26] in the 1960s. In fact, subanalytic sets are characterized as the images of
semianalytic sets under proper analytic maps [5].

In [1] we introduced, amalgamating the notions of C-analytic sets and semianalytic sets,
the concept ofC-semianalytic set. Our aimwas to find a family of semianalytic sets ‘globally
defined’ in the sense of Cartan and Hironaka that enjoy a good behavior with respect to
basic set-theoretical, topological and algebraic operations. In fact, in [1, Theorem 1.5] we
characterize subanalytic sets as images of basic C-semianalytic sets under proper analytic
maps.

Let P be a property concerning C-semianalytic sets. We say that P is a C-property if the
set of points of a C-semianalytic set X satisfying P is a C-semianalytic set. For example,
in [1] we showed that the set of points for which the dimension of the C-semianalytic set X
is a fixed integer k is again a C-semianalytic set, that is, ‘to be a point of dimension k’ is a
C-property. We also proved in [1] that the set of points of non-coherence of a C-analytic set
is C-semianalytic, that is, ‘to be a point of non-coherence’ (or ‘to be a point of coherence’)
are C-properties. In this work we show that the set of local maxima, local minima and local
extrema of the restriction to a C-semianalytic subset of a real analytic manifold M of a real
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4 J. F. Fernando

analytic function on M is a C-semianalytic set (Corollary 1.4). This means that ‘to be a local
maximum, a local minimum or a local extremum’ of the restriction to a C-semianalytic set
of a global analytic function are C-properties.

1.1.1 Weak categories

Let M be the class of all real analytic manifolds. A weak category (of subanalytic sets)
F := {F(M)}M∈M is a collection of families F(M) of subanalytic subsets of M such that
the following conditions are satisfied for each M, N ∈ M:

• M ∈ F(M).
• If S1, S2 ∈ F(M), then S1\S2 ∈ F(M).
• If {Si }i∈I ⊂ F(M) is a locally finite family in M , then

⋃
i∈I Si ∈ F(M).

• If S ∈ F(M) and T ∈ F(N ), then S × T ∈ F(M × N ).
• If S ∈ F(M), then its connected components and its closure Cl(S) in M belong to
F(M).

The previous properties guarantee that if S, S1, S2 ∈ F(M), then Int(S), ∂S, S1∩S2 ∈ F(M).
We say that a weak category F contains algebraic intersections if for each real analytic

submanifold M ⊂ R
n where n ≥ 1, the intersection M ∩ X ∈ F(M) for each algebraic

set X ⊂ R
n . The conditions satisfied by a weak category F guarantee that if F contains

algebraic intersections, it also contains semialgebraic intersections, that is, for each real
analytic submanifoldM ⊂ R

n wheren ≥ 1 the intersectionM∩S ∈ F for each semialgebraic
set S ⊂ R

n . If F is either the category of subanalytic, semianalytic or C-semianalytic sets, F
is a weak category that contain algebraic intersections, as it containsC-analytic sets. This fact
has further consequences: if N is a closed analytic submanifold of M , then N is a C-analytic
subset of M and

F(N ) = {Y ∈ F(M) : Y ⊂ N } ⊂ F(M). (1.1)

Proof By Cartan’s Theorem B the analytic functions on N are the restrictions to N of global
analytic functions on M . Thus, if F is either the category of semianalytic or C-semianalytic
sets, (1.1) holds. Assume next F is the category of subanalytic sets. If X ∈ F(N ), there
exist an analytic map f : N ′ → N where N ′ ∈ M and a semianalytic set S of N ′ such
that the restriction f |Cl(S) : Cl(S) → N is proper and f (S) = X . As N is closed in M ,
the restriction f |Cl(S) : Cl(S) → M of the analytic map f : N ′ → N ⊂ M is also proper
and X ∈ F(M), so F(N ) ⊂ F(M). Conversely, if Y ∈ F(M), there exist an analytic map
g : M ′ → M where M ′ ∈ M and a semianalytic set T of M ′ such that the restriction
g|Cl(T ) : Cl(T ) → M is proper and g(T ) = Y . Let h be an analytic equation of N in M .
Define T ′ := {h ◦ g = 0} = g−1(N ), which is a C-analytic subset of M ′. Observe that
g|Cl(T∩T ′) : Cl(T ∩ T ′) → N is proper and g(T ∩ T ′) = Y ∩ N , so Y ∩ N ∈ F(N ). 



Whitney’s immersion theoremprovides immersions as analytic submanifolds of Euclidean
spaces for the real analytic manifolds. This fact makes that if F is either the category of
subanalytic, semianalytic or C-semianalytic sets, F = {Fm := F(Rm)}m≥1 and if M ⊂ R

m

is a closed analytic submanifold, F(M) = {X ∈ F(Rm) : X ⊂ M}. For a (non-necessarily
immersed) real analytic manifold M we consider an analytic immersion ϕ : M ↪→ R

m such
that ϕ(M) is a closed analytic submanifold of R

m and it holds F(M) = {ϕ−1(X) : X ∈
F(Rm) and X ⊂ ϕ(M)}.

Given a subset X ⊂ M and a real analytic manifold N an F-map is a map f : X → N
whose graph is an F-subset of M × N . In case F is the weak category of subanalytic sets,
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On the set of local extrema of a subanalytic function 5

we say that f is a subanalytic map and we proceed analogously with semianalytic and
C-semianalytic categories.

For a careful study of more restrictive categories of subanalytic sets (analytic-geometric
categories [34]) that satisfy stronger properties (for instance, the image under proper F-map
of an F-set is an F-set) that assures the existence of Whitney’s stratifications or subanalytic
triangulations, we refer the reader to [31,34].

1.2 Main results

In this work we analyze the properties of the set Max( f ) (resp. Min( f ) and Extr( f )) for a
subanalytic function f : X → R on a subanalytic subset X of a real analytic manifold M .
Our main results are the following.

Theorem 1.1 Let F be a weak category and let f : X → R be a continuous subanalytic
function on X ∈ F(M) such that the inverse images under f of intervals of R belong to
F(M). The following assertions are equivalent:

(i) Max( f ) ∈ F(M).
(ii) The family of the connected components of Max( f ) is locally finite in M.
(iii) The family {Maxλ( f )}λ∈R is locally finite in M.
(iv) The family {Maxλ( f )}λ∈R is locally isolated in M.

Ifwe are under the hypotheses ofTheorem1.1, the setsMaxλ( f ) = { f = λ}\Cl({ f > λ})
belong to F(M) (see the definition of weak category) whereas we can only assure that the
connected components of Max( f ) belong to F(M) if Max( f ) ∈ F(M). If we erase the
continuity condition, we show in Examples 2.11 (i) and 3.1 that the previous result does not
remain true. If F is the weak category of subanalytic sets, we obtain the following.

Theorem 1.2 Let f : X → R be an M-compact subanalytic function. Then the inverse
images under f of intervals of R are subanalytic subsets of M and the family {Maxλ( f )}λ∈R
is locally finite in M.Consequently, each setMaxλ( f ) = { f = λ}\Cl({ f > λ}) andMax( f )
are subanalytic subsets of M.

If f : X → R is a continuous subanalytic function on a closed subanalytic subset of
M , then f is M-compact and we have the following lemma, which is a key result to prove
Theorems 1.1 and 1.2.

Lemma 1.3 Let f : X → R be a continuous subanalytic function on a closed subanalytic
subset of M. Then the family {Maxλ( f )}λ∈R is locally finite in M and each set Maxλ( f )
andMax( f ) are subanalytic subsets of M.

If F is either the weak category of semianalytic or C-semianalytic sets we have the
following.

Corollary 1.4 Let F be either the weak category of semianalytic or C-semianalytic sets and
let f : X → R be the restriction to X ∈ F(M) of an analytic function on M. Then the family
{Maxλ( f )}λ∈R is locally finite in M andMax( f ) and each setMaxλ( f ) belong to F(M).

Proof As f is the restriction to X of an analytic function onM , it is anM-compact subanalytic
function and the inverse images under f of intervals of R belong to F(M). In particular, the
setsMaxλ( f ) = { f = λ}\Cl({ f > λ}) ∈ F(M). ByTheorem1.2 the family {Maxλ( f )}λ∈R
is locally finite in M and Max( f ) = ⊔

λ∈R Maxλ( f ) ∈ F(M), as required. 
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6 J. F. Fernando

In order to prove the sharpness of our results we show the following.

Proposition 1.5 Let F be a weak category that contains algebraic intersections and
let X ∈ F(M) be not closed in M. Then there exists a continuous F-function f :
X → R such that the inverse images under f of intervals of R are subanalytic
subsets of M but the families {Maxλ( f )}λ∈R, {Minλ( f ) = Max−λ(− f )}

λ∈R and
{Extrλ( f ) = Maxλ( f )∪Max−λ(− f )}

λ∈R are not locally finite in M. Consequently, the sets
Maxλ( f ),Minλ( f ),Extrλ( f ) ∈ F(M) for each λ ∈ R whereas the sets Max( f ), Min( f )
and Extr( f ) do not belong to F(M).

1.3 Semialgebraic case and o-minimal structures

A first case one analyzes concerns the semialgebraic setting and more general o-minimal
structures. A semialgebraic set S ⊂ R

n is a subset of R
n that can be described as a finite

Boolean combination of polynomial equalities and inequalities whereas a semialgebraic
function f : S → R is a function whose graph is a semialgebraic subset of R

n+1. Tarski-
Seidenberg’s theorem states that the projection of a semialgebraic set is again semialgebraic.

We recall next the definition of an o-minimal structure.

Definition 1.6 An o-minimal structure on the field R of real numbers is a collection S :=
{Sn}n∈N of familiesSn of subsets of R

n satisfying:

(1) Sn contains all the algebraic subsets of R
n .

(2) Sn is a Boolean algebra.
(3) If A ∈ Sm and B ∈ Sn , then A × B ∈ Sm+n .
(4) If π : R

n × R → R
n is the natural projection and A ∈ Sn+1, then π(A) ∈ Sn .

(5) S1 consists precisely of all the finite unions of points and intervals of any type.

The elements ofSn are called definable subsets of R
n and a map is called definable if its

graph is a definable set. The concept of o-minimal structure arose within the framework of
Model Theory. Briefly, we fix a language L of symbols that represent functions, relations and
constants of R, and that contain the symbols for the ordered field structure of R. The atomic
formulas of L are those of the form f1(x1, . . . ,xn)R f2(x1, . . . ,xn) where f1 and f2 are
compositions of the functions in L and R is a relation in L . A first order formula is written
with a finite number of conjunctions, disjunctions, and universal or existencial quantifiers on
some of the variables of the atomic formulas. An L-structure on R is an interpretation of the
symbols in L and the subsets described by the first order formula are called definable. Then,
we say that such an L-structure is o-minimal if every definable (possibly with parameters)
subset of R is a finite union of intervals and points.

As a consequence of Tarski–Seidenberg’s theorem, semialgebraic sets constitute an o-
minimal structure and in fact it is contained in each o-minimal structure onR. The categories
of semialgebraic sets and definable sets in o-minimal structures enjoy similar properties. For
instance, each definablemap is piecewise continuous [33, Thm.3.2.11] andwe have definable
choice [33, Prop.6.1.2].

Lemma 1.7 LetS be an o-minimal structure. Let S ⊂ R
n be a definable set and f : S → R

a definable function. Then the setMax( f ) of local maxima of f is a definable subset of R
n.

In addition, f (Max( f )) is a finite set.
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On the set of local extrema of a subanalytic function 7

Proof The set Max( f ) can be described as the set of points x ∈ S for which there exists
ε > 0 satisfying f (x) ≥ f (y) for each y ∈ S ∩ {‖y − x‖ < ε}. Thus, Max( f ) is clearly a
definable subset of R

n .
Suppose next that f (Max( f )) is an infinite set.Byproperty (5) inDefinition 1.6 there exists

an infinite open subinterval I ⊂ f (Max( f )). By definable choice there exists a definable
map α : I → Max( f ) such that f (α(t)) = t for each t ∈ I and by [33, Thm.3.2.11] we may
assume in addition (after shrinking I ) that α is continuous. Fix t0 ∈ I . As α(t0) is a local
maximum, there exists an open neighborhood U of α(t0) such that f (x) ≤ f (α(t0)) = t0
for each x ∈ U . As α is continuous, α−1(U ) is open and contains t0, hence there exists t1 ∈
α−1(U ) such that t0 < t1. But α(t1) ∈ U , so t1 = f (α(t1)) ≤ t0, which is a contradiction.
Thus, f (Max( f )) is a finite set, as required. 



By Lemma 1.7 the family {Maxλ( f )}λ∈R is finite for each definable function f . Anal-
ogously, the sets of local minima, strict local maxima, strict local minima, global maxima,
global minima, strict global maxima, strict global minima, local extrema, strict local extrema,
global extrema and strict global extrema of f are definable subsets of R

n and their images
under f are finite sets.

In the subanalytic setting it is also possible to find a category that constitutes an o-minimal
structure. A restricted analytic function in n-variables is a function f : [− 1, 1]n → R that
admits an analytic continuation to an open neighborhood of [− 1, 1]n ofR

n . A global suban-
alytic subset ofRn is a subset X ⊂ R

n such that there exists a semialgebraic homeomorphism
g : R

n → (− 1, 1)n satisfying that g(X) is a subanalytic subset of R
n . The collection of

global subanalytic sets is precisely the collection of definable sets in the o-minimal structure
Ran generated by the set F̃an of restricted analytic functions [10,35]. Thus, if X ⊂ R

n is a
global subanalytic set and f : X → R is a definable function of the o-minimal structure
Ran, the sets of local maxima, local minima, strict local maxima, strict local minima, global
maxima, global minima, strict global maxima, strict global minima, local extrema, strict local
extrema, global extrema and strict global extrema of f are global subanalytic subsets of R

n

and their images under f are finite sets.
However,we point out that further work is required for general weak categories like those

of subanalytic, semianalytic or C-semianalytic sets.

1.4 Structure of the article

The article in organized as follows. In Sect. 2 we present some preliminaries concerning
local extrema of real functions, basic properties about subanalytic, semianalytic and C-
semianalytic sets and functions and some enlightening examples. In Sect. 3 we prove the
main results of this article and we analyze the properties of the set of openness points of
a subanalytic function. In Sect. 4 we study local extrema of real analytic functions on real
manifolds that are locally normal crossings (Theorem 4.5) and we take advantage of local
uniformization of a continuous subanalytic function f : X → R on a closed subanalytic
subset X of a real analytic manifold M to provide an alternative description as subanalytic
subsets of M of the sets Maxλ( f ) for λ ∈ R, that does not involve closures (Corollary 4.7).
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8 J. F. Fernando

2 Basic facts, tools and examples

In this section we present some preliminaries we need along the article in orden to lighten
the proofs of the involved results. We begin analyzing some basic properties of local extrema
of real functions.

2.1 Local extrema of real functions

Let us see next some basic results concerning local extrema of real functions. We use here
the letters X , Y , Z to denote topological spaces.

Lemma 2.1 (Alternative description of local maxima) Let f : X → R be a function and let
λ ∈ R. ThenMaxλ( f ) = { f − λ = 0}\Cl({ f − λ > 0}).
Proof Pick x0 ∈ Maxλ( f ). Then there exists an open neighborhood V x0 ⊂ X of x0 such that
f (x) ≤ f (x0) = λ for each x ∈ V x0 , that is, V x0 ⊂ { f −λ ≤ 0}, so V x0 ∩{ f −λ > 0} = ∅.
Thus, x0 ∈ { f − λ = 0}\Cl({ f − λ > 0}). The converse inclusion is clear. 


Remarks 2.2 Let f : X → R be a real function.

(i) Let ϕ : Y → X be continuous map. Let x0 ∈ X be a local maximum of f and let
y0 ∈ Y be such that ϕ(y0) = x0. As ϕ is continuous, y0 is a local maximum of f ◦ ϕ.

(ii) If x0 ∈ Max( f ) ∩ Min( f ), then there exists an open neighborhood V x0 ⊂ X such
that f (y) ≤ f (x0) ≤ f (y) for each y ∈ V x0 , that is, f |V y is constant.

Lemma 2.3 Let f : X → R be a function and let x0 ∈ X. Let π : Y → X be a surjective
continuous closedmap. Then x0 is a localmaximumof f if and only if each point y ∈ π−1(x0)
is a local maximum of f ◦ π .

Proof The only if part follows from the continuity of f (Remark 2.2). To prove the if part
we proceed as follows. Assume f (x0) = 0, so ( f ◦ π)(y) = 0 for each y ∈ π−1(x0). Thus,
for each y ∈ π−1(x0) there exists an open neighborhood V y ⊂ Y such that ( f ◦ π)(z) ≤ 0
for each z ∈ V y . Consequently, ( f ◦ π)(z) ≤ 0 for each z ∈ V := ⋃

y∈π−1(x0) V
y . As V is

an open neighborhood of π−1(x0) in Y , the difference T := Y\V is a closed subset of Y . As
π is closed, π(T ) is a closed subset of X that does not contain x0. Thus, U := X\π(T ) is
an open neighborhood of x0 such that π−1(U ) = Y\π−1(π(T )) ⊂ Y\T = V , so f (U ) =
( f ◦ π)(π−1(U )) ⊂ ( f ◦ π)(V ) ⊂ (−∞, 0], whereas f (x0) = 0. Consequently, x0 is a
local maximum of f , as required. 


Lemma 2.4 (Reduction to the closed case) Let f : X → Z be a map on a subset X of a
locally compact Hausdorff topological space Y and let λ ∈ R. Let	 ⊂ X×Z ⊂ Y×Z be the
graph of f and let 	 be the closure of 	 in Y × Z. Let π1 : Y × Z → Y and π2 : Y × Z → Z
be the projections onto the first and the second factors of Y × Z and let ρ := π2|	 : 	 → Z
be the restriction of π2 to 	. We have:

(i) π1(	\	) = Cl(X)\X and π1(	) = X.
(ii) The map ρ := π2|	 : 	 → Z is continuous.
(iii) If f is Y -compact, the restriction π1|	 : 	 → Y is a proper map.

Assume in what follows Z = R. We have:

(iv) Maxλ( f ) = π1(Maxλ(ρ)) ∩ X = π1(Maxλ(ρ) ∩ 	) for each λ ∈ R.
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On the set of local extrema of a subanalytic function 9

(v) If f is Y -compact and the family {Maxλ(ρ)}
λ∈R is locally finite in Y × R, the family

{Maxλ( f )}λ∈R is locally finite in Y .
(vi) Max( f ) = π1(Max(ρ)) ∩ X = π1(Max(ρ) ∩ 	).

Proof Statements (i) and (ii) are straightforwardly proved.
(iii) Let K ⊂ Y be a compact set and let us check: π−1

1 (K ) ∩ 	 is a compact subset of 	.
This will prove that π1|	 is proper.

Let K ′ be another compact subset of Y that contains K in its interior. Then the closure
C := Cl( f (K ′ ∩ X)) is a compact subset of Z . Pick a point (y, z) ∈ π−1

1 (K ) ∩ 	 and let
V × W ⊂ Y × Z be an open neighborhood of (y, z). Then y = π1(y, z) ∈ K and we may
assume that V ⊂ K ′. As (y, z) ∈ 	, there exists x ∈ X such that (x, f (x)) ∈ 	 ∩ (V × W ).
Observe that (x, f (x)) ∈ K ′ ×C . Thus, each open neighborhood of (y, z) meets the closed
set K ′ × C , so (y, z) ∈ K ′ × C . Consequently, π−1

1 (K ) ∩ 	 is a closed subset of Y × Z
contained in the compact subset K ′ ×C . Hence, π−1

1 (K ) ∩ 	 is a compact subset of Y × Z .
(iv) We prove next: Maxλ( f ) = π1(Maxλ(ρ)) ∩ X .
Pick x0 ∈ Maxλ( f ) and let us prove x0 ∈ π1(Maxλ(ρ)) ∩ X . There exists an open

neighborhood V x0 ⊂ Y of x0 such that f (x0) ≥ f (x) for each x ∈ X ∩ V x0 . We distinguish
two cases:
Case 1: If x0 ∈ X\Cl(Cl(X)\X), we may assume Cl(Cl(X)\X) ∩ V x0 = ∅. Thus,

	 ∩ (V x0 × R) = 	 ∩ (V x0 × R) = {(x, f (x)) : x ∈ X ∩ V x0}.

If (y, t) ∈ 	∩(V x0 ×R), we have ρ(y, t) = π2(y, f (y)) = f (y) ≤ f (x0) = ρ(x0, f (x0)),
so the point (x0, f (x0)) ∈ Maxλ(ρ) and x0 ∈ π1(Maxλ(ρ)) ∩ X .
Case 2: Assume next that x0 ∈ Cl(Cl(X)\X) and pick (y, t) ∈ 	 ∩ (V x0 × R), then
y ∈ Cl(X) ∩ V x0 . Let (x, f (x)) ∈ 	 be close to (y, t). Then x ∈ X ∩ V x0 , so f (x) ≤
f (x0). Consequently, t ≤ f (x0) and ρ(y, t) = π2(y, t) = t ≤ f (x0) = ρ(x0, f (x0)), so
(x0, f (x0)) ∈ Maxλ(ρ) and x0 ∈ π1(Maxλ(ρ)) ∩ X .

Conversely, let x0 ∈ π1(Maxλ(ρ)) ∩ X . Then there exists (x0, t0) ∈ Maxλ(ρ). As
π1(x0, t0) ∈ X , then (x0, t0) ∈ 	 and t0 = f (x0). As (x0, f (x0)) ∈ Maxλ(ρ), there
exist an open neighborhood Wx0 ⊂ Y of x0 and ε > 0 such that if (x, t) ∈ 	 ∩
(Wx0 × ( f (x0) − ε, f (x0) + ε)), then t = ρ(x, t) ≤ ρ(x0, f (x0)) = f (x0). In addi-
tion, if (x, t) ∈ 	 ∩ (Wx0 × ( f (x0) − ε, f (x0) + ε)), it holds f (x) = t ≤ f (x0). Thus,
f (x) = t ≤ f (x0) for each x ∈ X ∩ Wx0 , so x0 ∈ Maxλ( f ).
By (i) we have π1(Maxλ(ρ)) ∩ X = π1(Maxλ(ρ) ∩ 	).
(v) Let x0 ∈ X and let ξ0 := (x0, f (x0)) ∈ 	 be the unique point in 	 such that

π1(ξ0) = x0. As the family {Maxλ(ρ)}
λ∈R is locally finite, there exists an open neighborhood

V ξ0 ⊂ 	 such that V ξ0 meets only finitely manyMaxλ(ρ). As f is Y -compact, the restriction
π1|	 : 	 → Y is a proper map. Then C := π1(	\V ξ0) is a closed subset of Y that does not
contain x0. Thus, Ux0 := Y\C is an open neighborhood of x0 in Y .

We have π−1
1 (Ux0)∩	 = 	\π−1

1 (π1(	\V ξ0)) ⊂ V ξ0 . Let λ ∈ R be such thatUx0 meets
Maxλ( f ) = π1(Maxλ(ρ) ∩ 	). Then π−1

1 (Ux0) ⊂ V ξ0 meets

π−1
1 (π1(Maxλ(ρ) ∩ 	)) = Maxλ(ρ) ∩ 	

(the last equality holds because π1|	 : 	 → X is bijective and π1(	\	) = Cl(X)\X ).
Consequently, there are finitely many λ ∈ R such that Ux0 meets π1(Maxλ(ρ) ∩ 	) =
Maxλ( f ). We conclude that the family {Maxλ( f )}λ∈R is locally finite in Y .
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10 J. F. Fernando

(vi) As Max(ρ) = ⊔
λ∈R Maxλ(ρ) and Max( f ) = ⊔

λ∈R Maxλ( f ), we have

Max( f ) =
⊔

λ∈R

Maxλ( f ) =
⊔

λ∈R

π1(Maxλ(ρ)) ∩ X

= π1

⎛

⎝
⊔

λ∈R

Maxλ(ρ)

⎞

⎠ ∩ X = π1(Max(ρ)) ∩ X .

In addition, the equality π1(Max(ρ)) ∩ X = π1(Max(ρ) ∩ 	) follows from statement (i). 



Lemma 2.5 (Locally isolated description of local maxima) Let f : X → R be a continuous
function on a topological space X and assume that the family {Maxλ( f )}λ∈R is locally finite.
We have:

(i) If x ∈ Cl(Max( f )), there exists an open neighborhood V x that meets onlyMax f (x)( f ).
In particular, the family {Maxλ( f )}λ∈R is locally isolated in X.

(ii) Assume in addition that the family {Minλ( f )}λ∈R is locally finite. If x0 ∈ X is a local
maximum of f , there exists an open neighborhoodU ⊂ X of x0 such thatExtr( f )∩U =
Max( f ) ∩U = Max f (x0)( f ) ∩U = { f − f (x0) = 0} ∩U.

(iii) For each λ ∈ R there exists and open neighborhood V ⊂ X of { f = λ} such that
Max( f ) ∩ V = Maxλ( f ).

Proof (i) Assume x ∈ Cl(Max( f )) = ⊔
λ∈R Cl(Maxλ( f )) ⊂ ⊔

λ∈R{ f = λ} and write
μ := f (x). Then x belongs only to Cl(Maxμ( f )). LetU ⊂ X be an open neighborhood of x
that meets only finitely many of the sets Maxλ( f ), say for the distinct valuesμ, λ1, . . . , λr ∈
R. Then each open neighborhood V x ⊂ U\⋃r

i=1{ f = λi } of x meets only Maxμ( f ).
(ii) Writeμ := f (x0) and letU0 ⊂ X be an open neighborhood of x0 such that Max( f )∩

U0 = Maxμ( f ) ∩ U0. As Maxμ( f ) = { f = μ}\Cl({ f > μ}), the difference V :=
U0\Cl({ f > μ}) ⊂ X is an open neighborhood of x0 such thatMax( f )∩V = { f = μ}∩V .
By (i) and the previous argument (applied to − f ) we find an open neighborhood W ⊂ X of
x0 such that either Min( f ) ∩ W = Minμ( f ) ∩ W = ∅ or Min( f ) ∩ W = Minμ( f ) ∩ W =
{ f = μ} ∩ W . If we define U := V ∩ W , we have Extr( f ) ∩U = { f − f (x0) = 0} ∩U =
Max( f ) ∩U = Max f (x0)( f ) ∩U , as required.

(iii) Fix λ ∈ R and pick x ∈ Zλ := { f = λ}. By (i) there exists an open neighborhood
V x ⊂ X of x such that Max( f )∩V x = Maxλ( f )∩V x . Define V := ⋃

x∈X V x and observe
that Max( f ) ∩ V = Maxλ( f ), as required. 



2.2 Basic properties of F-maps

We study next some basic properties of F-maps where F is a weak category. We will focus
mainly in the cases when F is either the subanalytic, semianalytic or C-semianalytic cat-
egories. Contrary to what happens in the semialgebraic case, the composition of F-maps
needs not to be an F-map. Consider for instance the subanalytic subset X := R\{0} of R

and the subanalytic functions f : X → R, x �→ 1/x and g : R → R, y �→ sin(y). The
composition g ◦ f : X → R, x �→ sin( 1x ) is not a subanalytic function.

Let M, N , P denote real analytic manifolds. We recall next for the sake of complete-
ness well-known sufficient conditions to guarantee that the composition of two subanalytic
functions is subanalytic.
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On the set of local extrema of a subanalytic function 11

Lemma 2.6 Let f : X ⊂ M → N and g : Y ⊂ N → P be subanalytic maps such that
f (X) ⊂ Y . Assume that either f is M-compact or the inverse image under g of each compact
subset of P under g is relatively compact in N. Then g ◦ f is subanalytic.

Proof Let 	 f := {(x, f (x)) : x ∈ X} and 	g := {(y, g(y)) : y ∈ Y } be the graphs of f
and g. The set

T := (	 f × 	g) ∩ {(x, u, y, v) ∈ M × N × N × P : u = y}
is a subanalytic subset of M × N × N × P . Thus, Z := {(x, f (x), g( f (x))) : x ∈ X}
is a subanalytic subset of M × N × P . Consider the projection π : M × N × P →
M × P, (x, u, v) �→ (x, v). If we prove that the restriction π |Cl(Z) is proper, 	g◦ f = π(Z)

is a subanalytic subset of M × P and g ◦ f is subanalytic. Let K ⊂ M × P be a compact
set and let us check that π−1(K ) ∩Cl(Z) is compact. Let K1 be a compact subset of M and
let K2 be a compact subset of P such that K ⊂ Int(K1) × Int(K2). One can check:

π−1(K ) ∩ Cl(Z) ⊂ K1 × Cl( f (K1 ∩ X)) × K2,

π−1(K ) ∩ Cl(Z) ⊂ K1 × Cl(g−1(K2)) × K2.

These inclusions imply under the hypothesis of the statement thatπ−1(K )∩Cl(Z) is compact,
as required. 



Remark 2.7 If either f is continuous and X is closed in M or g is proper, then g ◦ f is
subanalytic (because the hypotheses of Lemma 2.6 are fulfilled).

Similarly, inverse images ofF-sets underF-maps need not to beF-sets (see Example 2.11).
If F is the category of subanalytic sets, a sufficient condition to guarantee that the inverse
image under a subanalytic function f : X ⊂ M → N of a subanalytic subset of N is a
subanalytic subset of M is that f is M-compact. Let us recall next how this is easily proved.

Lemma 2.8 Let X ⊂ M be a subanalytic set and let f : X → N be an M-compact
subanalytic map. Then f −1(Y ) is a subanalytic subset of M for each subanalytic subset Y
of N.

Proof Denote 	 f the graph of f and consider the projection ρ : M × N → M onto the
first factor. As f is subanalytic, Cl(	 f ) is a subanalytic subset of M × N . Observe that
f −1(Y ) = ρ(	 f ∩ (M × Y )) and 	 f ∩ (M × Y ) is a subanalytic subset of M × N . As
the restriction ρ|Cl(	 f ) : 	 f → M, (x, y) �→ x is by Lemma 2.4 proper, f −1(Y ) is a
subanalytic subset of M . 



If X ⊂ M is a closed subanalytic set and f : X → N is a continuous subanalytic function,
f is an M-compact subanalytic map. Thus, f −1(Y ) is a subanalytic subset of M for each
subanalytic subset Y of N . In the semianalytic and the C-semianalytic categories, we can
guarantee that the inverse image of an F-set under an F-map is an F-set if we limit our scope
to the restrictions to elements of F(M) of analytic maps f : M → N . However, the behavior
with respect to the fibers is always net.

Lemma 2.9 Let F denote either the subanalytic, semianalytic or C-semianalytic categories.
Let X ⊂ M and let f : X → N be a F-map. Then the fibers of f are F-sets.
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12 J. F. Fernando

Proof Assume first that F is the category of subanalytic sets and let p ∈ N . Let ρ : M ×
N → M be the projection onto the first factor, which is an analytic function. It holds that
f −1(p) = ρ(	 f ∩ (M × {p})). If we prove that the restriction

ρ|Cl(	 f ∩(M×{p})) : Cl(	 f ∩ (M × {p})) → M

is proper, f −1(p) is a subanalytic subset of M .
We have Cl(	 f ∩ (M × {p})) ⊂ M × {p}. Let K be a compact subset of M . Then

ρ−1(K ) ∩ Cl(	 f ∩ (M × {p})) ⊂ K × {p} is a closed subset of a compact set, so it is a
compact subset of M × N . Consequently, ρ|Cl(	 f ∩(M×{p})) is a proper map.

Assume next F is the category of semianalytic sets. Let p ∈ N and let (x, y) ∈ M × N .
As the graph 	 f is a semianalytic set, there exist open neighborhoods V of x and W of p
and finitely many analytic functions gi , fi j ∈ O(V × W ) such that

	 f ∩ (V × W ) =
⋃

i

{ fi1 > 0, . . . , fis > 0, gi = 0}.

Thus, f −1(p) ∩ V = ⋃
i { fi1(x, p) > 0, . . . , fis(x, p) > 0, gi (x, p) = 0}, where

gi (x, p), fi j (x, p) ∈ O(V ). Consequently, f −1(p) is a semianalytic subset of M .
If F is the category of C-semianalytic sets, the proof is similar. 



Remark 2.10 Let F be a weak category of subanalytic sets. There are continuous maps
between real algebraic manifolds such that the inverse image of each F-set is an F-set, but
such maps are not even subanalytic. Let f : R → R be any strictly increasing continuous
function whose graph is not a subanalytic subset of R×R, so f provides a homeomorphism
between R and an open interval of R. Observe that the inverse image of an interval is again
an interval. If S is an F-subset of R, it is a locally finite union of points and intervals. Thus,
the same happens with its pre-image under f . Consequently, f is a function such that the
inverse image of each F-subset of R is an F-subset of R but f is not itself subanalytic. In
fact, the inverse image of each semialgebraic subset of R under f is a semialgebraic subset
of R and f is not semialgebraic.

Wepresent next someexamples to enlighten someparticularities ofF-maps that differ from
the net behavior of semialgebraic maps or more generally definable maps of an o-minimal
structure.

Examples 2.11 (i) For each integer m ≥ 1 consider the C-semianalytic set Xm := {mx ≥
y > (m − 1)x > 0}. Observe that X := ⊔

m≥1 Xm = {x > 0,y > 0} is a C-semianalytic

subset of M := R
2. Consider the function f : X → R such that f |Xm = (−1)mm. The

graph

	 f =
⊔

m≥1

Xm × {(− 1)mm}

is a C-semianalytic subset of R
3, because it is a locally finite union of basic C-semianalytic

sets. Thus, f is a C-semianalytic function, but it is not M-compact, because f ((0, 1]2) = Z.
Observe that Y := f −1((0,+∞)) = ⊔

k≥1 X2k is not a subanalytic subset of R
2 because

its family of connected components is not locally finite in R
2. However, the restriction g :=

f |Y : Y → R is still a C-semianalytic function, because its graph 	g = ⊔
k≥1 X2k × {2k}

is a C-semianalytic subset of R
3. The sets Min( f ) = ⊔

k≥1 Int(X2k) 
 ⊔
k≥1 X2k−1 and
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On the set of local extrema of a subanalytic function 13

Max( f ) = ⊔
k≥1 X2k 
 ⊔

k≥1 Int(X2k−1) are not subanalytic subsets of R
2, again because

their families of connected components are not locally finite in R
2.

Consider also the continuous function

g : X =
⊔

k≥1

(X2k ∪ X2k−1) → R, (x, y) �→
{

y
x − k if (x, y) ∈ X2k,

k − 1 if (x, y) ∈ X2k−1,

whose graph is 	 := ⊔
k≥1(	2k ∪ 	2k−1) where

	2k−1 := X2k−1 × {k − 1} and 	2k := {2kx ≥ y > (2k − 1)x > 0,xz = y − kx}.
As the family {	2k−1, 	2k}k≥1 is locally finite in R

3, the graph of g is a C-semianalytic
subset of R

3. Thus, g is C-semianalytic, but it is not M-compact because it maps X ∩ [0, 1]2
to [0,+∞). The sets Min(g) = ⊔

k≥1 X2k−1 and Max(g) = ⊔
k≥1 Y2k−1, where

Y2k−1 := (Cl(X2k−1) ∩ X\X2k−1) ∪ Int(X2k−1),

are not subanalytic because the families of their connected components are not locally finite
in R

2.
Let Y := X ∩ {y ≤ 1} and consider the subanalytic function

h : Y → R, (x, y) �→
{
g(x, y) if (x, y) ∈ X ∩ {y < 1},
k if (x, y) ∈ (X2k+1 ∪ X2k) ∩ {y = 1} for k ≥ 1.

The graph of h is the subanalytic subset of R
3 given by

(	 ∩ ((X ∩ {y < 1}) × R)) ∪
⋃

k≥1

((X2k+1 ∪ X2k) ∩ {y = 1} × {k}),

so h is subanalytic (although it is not continuous). Observe that Max(h) = {x > 0,y =
1} ∪ ⊔

k≥1 Y2k−1 ∩ {y < 1} is a connected set. However, Max(h) it is not a subanalytic

subset of R
2. Otherwise Max(h) ∩ {y < 1} = ⊔

k≥1(Y2k−1 ∩ {y < 1}) will be subanalytic,
but it is not because the family of its connected components is not locally finite in R

2. Thus,
Max(h) is not subanalytic although it is connected (contrast this with Theorem 1.1 where the
continuity of the subanalytic function is assumed).

(ii) Consider the analytic map g : R
2 → R

3, (x1, x2) �→ (x1, x1x2, x1ex2) and the
subanalytic subset X := g([−1, 1]2\{x1 = 0}) = g([−1, 1]2)\{(0, 0, 0)} of R

3 (Osgood’s
example), which is not a semianalytic subset of R

2. Define the continuous function

f : X → R, (x1, x2, x3) �→ x2
x1

and note that

f ◦ g : [−1, 1]2\{x1 = 0} → R, (x1, x2) �→ x2.

The graph of f is

	 f := {(x1, x1x2, x1ex2 , x2) : (x1, x2) ∈ [−1, 1]2\{x1 = 0}},
= {x2 = x1x4,x3 = x1e

x4 , 0 < |x1| ≤ 1, |x2| ≤ 1, },
which is a C-semianalytic subset of R

4. Thus f is a C-semianalytic function, whereas its
domain X is not even a semianalytic set. Observe that f (X) = ( f ◦ g)([−1, 1]2\{x1 =
0}) = [−1, 1]. In addition, the inverse image under f of an interval I of R is a semianalytic
subset of R

3 if and only if I ∩ [−1, 1] is a singleton.
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14 J. F. Fernando

If λ ∈ R, then the fiber f −1(λ) is either the empty set if λ /∈ [−1, 1] or theC-semianalytic
set {x1 · (1, λ, eλ) : 0 < |x1| ≤ 1} otherwise. Let I ⊂ R be an interval and denote
J := I ∩ [−1, 1]. We have f −1(I ) = f −1(J ) = f −1(Int(J )) 
 f −1(∂ J ). As ∂ J is a finite
set, f −1(∂ J ) is a C-semianalytic subset of R

3. Observe that Int(J ) := (a, b) ⊂ [−1, 1]
where a ≤ b and

f −1((a, b)) = g(( f ◦ g)−1(a, b))

= g(([−1, 1]\{0}) × (a, b))={(x1, x1x2, x1ex2) : 0 < |x1|≤1, a < x2 < b},
which is a subanalytic subset of R

3 of dimension 2 if a < b because it is the image of a
semianalytic set under the proper analytic map g|[−1,1]2 . Let us check that f −1((a, b)) is

not a semianalytic subset of R
3 if a < b. We claim: If G(u, v, w) is an analytic function

in three variables on a neighborhood of the origin such that G(x1, x1x2, x1ex2) = 0 for
(x1, x2) ∈ ([−1, 1]\{0}) × (a, b) with x close to 0, then G = 0.

WriteG(u, v, w) = ∑
j≥0 G j (u, v, w)whereG j (u, v, w) is a homogeneous polynomial

of degree j . Then for each fixed y ∈ (a, b) we have

0 = G(x1, x1x2, x1e
x2) =

∑

j≥0

G j (x1, x1x2, x1e
x2) =

∑

j≥0

x j
1G j (1, x2, e

x2)

for 0 < |x1| ≤ 1 close to 0. Therefore,G j (1, x2, ex2) = 0 for each j ≥ 0 and each y ∈ (a, b),
so each G j = 0 and G = 0. Consequently, the smallest real analytic set containing (the germ
at the origin of) f −1((a, b)) is thewholeR

3, so the 2-dimensional subanalytic set f −1((a, b))
is not semianalytic.

(iii) Let λ : N → Q be a bijection such that λ(0) = 0 and denote λn := λ(n). Consider
the sequence

μn :=
{

λk if n = 2k,

min{λk, λk+1} − 1 if n = 2k + 1

for each n ≥ 0. Let f : [0,+∞) → R be the continuous subanalytic function whose graph
is the polygonal that connects orderly the points (n, μn) for n ≥ 0 and let us extend it
(continuously and subanalytically) to R defining f (x) = −x for each x < 0. Observe that
Max( f ) = {2k : k ∈ N} and f (Max( f )) = Q, which is a dense countable subset of R.
Contrast this example with Lemma 1.7.

3 Proof of themain results

In this section we prove the main results of this work (Theorems 1.1, 1.2, Lemma 1.3 and
Proposition 1.5). We begin by showing Lemma 1.3, that is, if f : X → R is a continuous
subanalytic function on a closed subanalytic subset X of a real analytic manifold M , then
the family {Maxλ( f )}λ∈R is locally finite in M and each set Maxλ( f ) and Max( f ) are
subanalytic subsets of M .

Proof of Lemma 1.3 Let φ : M ↪→ R
p be an analytic immersion of M as a closed analytic

submanifold of R
p and let us identify M with φ(M). Thus, X is a closed subanalytic subset

of R
p and f : X → R is an M-compact function. Consider the analytic diffeomorphism

ψ : R → (−1, 1), t �→ t√
1+t2

. As f is M-compact, the composition ψ ◦ f : X → (−1, 1)
is a continuous subanalytic function, so we may assume in what follows | f | < 1. Denote
	 ⊂ R

p+1 the graph of f , which is a subanalytic subset of R
p+1.
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Let m ≥ 1 be an integer and consider the hypercube [−m,m]n for each n ≥ 1. Consider
the homothety hm : R

p → R
p of center the origin and ratio 1

m , which maps the hypercube
[−m,m]p onto the hypercube [− 1, 1]p and the analytic diffeomorphism

ϕ : R
p → (− 1, 1)p, x := (x1, . . . , xp) �→

⎛

⎝ x1
√
1 + x21

, . . . ,
xp

√
1 + x2p

⎞

⎠ .

LetS := {Sn}n≥1 be the o-minimal structure Ran. Observe that

Xm := ϕ−1(hm(X ∩ [−m,m]p)) ∈ Sp

	m := (ϕ × idR)−1((hm × idR)(	 ∩ [−m,m]p+1)) ∈ Sp+1,

that is, Xm is a definable set and fm := f ◦h−1
m ◦ϕ : Xm → (−1, 1) is a definable function of

the o-minimal structure Ran. By Lemma 1.7 the set Max( fm) is a global subanalytic subset
of R

p and the family {Maxλ( fm)}
λ∈R is finite. Thus, Max( f |X∩(−m,m)p ) = Max( f ) ∩

(−m,m)p is a subanalytic subset of (−m,m)p and the family {Maxλ( f |X∩(−m,m)p ) =
Maxλ( f )∩(−m,m)p}

λ∈R is finite for eachm ≥ 1. Consequently, the family {Maxλ( f )}λ∈R
is locally finite in R

p .
As f is anM-compact subanalyticmap, the inverse image under f of the intervals ofR are

subanalytic subsets of M . Consequently, each set Maxλ( f ) = { f −λ = 0}\Cl({ f −λ > 0})
is a subanalytic subset of M . Hence, Max( f ) = ⊔

λ∈R Maxλ( f ) is a locally finite union of
subanalytic subsets of M , so Max( f ) is itself a subanalytic subset of M , as required. 



Proof of Theorem 1.2 As f is an M-compact subanalytic function, the inverse image of each
interval of R under f is a subanalytic subset of M (Lemma 2.8). Thus, each set Maxλ( f ) =
{ f −λ = 0}\Cl({ f −λ > 0}) is a subanalytic subset ofM . Let	 f ⊂ X×R ⊂ M×R be the
graph of f and let	 f be its closure inM×R. Letπ1 : M×R → M andπ2 : M×R → R be
the projections onto the first and the second factors of M × R and let ρ := π2|	 f

: 	 f → R

be the restriction of π2 to the closed subanalytic subset 	 f of M × R. As ρ : 	 f → R is
an analytic function on a closed subanalytic subset of M × R, we deduce by Lemma 1.3
that the family {Maxλ(ρ)}

λ∈R is locally finite in M × R. As f is an M-compact subanalytic
function, we deduce by Lemma 2.4 that the family {Maxλ( f )}λ∈R is locally finite in M .
Thus, Max( f ) = ⊔

λ∈R Maxλ( f ) is a subanalytic subset of M , as required. 



We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1 The implications (i)�⇒ (ii) and (iv)�⇒ (i) are immediate (becauseF is
a weak category of subanalytic sets, the family of the connected components of a subanalytic
subset of M is a locally finite family of subanalytic subsets of M and F(M) is closed for
locally finite unions). The implication (iii) �⇒ (iv) follows from Lemma 2.5. Let us prove
next the remaining implication (ii) �⇒ (iii).

Let 	 f ⊂ X × R ⊂ M × R be the graph of f and let 	 f be its closure in M × R. Let
π1 : M × R → M and π2 : M × R → R be the projections onto the first and the second
factors of M × R and let ρ := π2|	 f

: 	 f → R be the restriction of π2 to the closed

subanalytic subset 	 f of M × R. By Lemma 2.4 we have Maxλ( f ) = π1(Maxλ(ρ) ∩ 	)

for each λ ∈ R. By Lemma 1.3 the family {Maxλ(ρ)}
λ∈R is locally finite in M × R,

so in particular it is a countable family. Thus, the family {Maxλ( f )}λ∈R is countable and
f (Max( f )) = ⋃

λ∈R f (Maxλ( f )) is a countable subset of R.
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16 J. F. Fernando

Let C be a connected component of Max( f ). As f is continuous, f (C) ⊂ f (Maxλ( f ))
is connected, so it is a singleton. If we write f (C) = {λ}, we have C ⊂ Max( f ) ∩ { f =
λ} = Maxλ( f ).

Let {C j } j∈J be the collectionof the connected components ofMax( f ) = ⊔
λ∈R Maxλ( f ).

As each C j is contained in Maxλ j ( f ) for some λ j ∈ R, we deduce that each Maxλ( f ) is
a union of connected components of Max( f ). As the connected components of Max( f )
constitute a locally finite family of M and Maxλ( f ) ∩ Maxμ( f ) = ∅ if λ 	= μ, the family
{Maxλ( f )}λ∈R is locally finite in M , as required. 



We have seen in Example 2.11 (i) that the set of local maxima of a (non-continuous)
subanalytic function can be connected but not subanalytic. The following example shows
that the set of local maxima Max( f ) of a (non-continuous) subanalytic function f can be
connected and subanalytic whereas its family of level sets {Maxλ( f )}λ∈R is not locally finite
(contrast this with Theorem 1.1 where the continuity of f is assumed).

Example 3.1 Let F be a weak category that contains algebraic intersections. Let M ⊂ R
n

be a real analytic manifold and let X ∈ F(M) of dimension ≥ 1. Let p ∈ X be such that
dim(X p) = dim(X) and assume that p = 0 is the origin of R

n . Define Zm := { 1
m ≤

‖x‖ < 1
m−1 } for m ≥ 2 and Z1 := {‖x‖ ≥ 1}, which are elements of F(Rn). Observe

that
⊔

m≥1 Zm = R
n\{0}. Consider the C-semianalytic function f : R

n → R given by
f |Zm = m for m ≥ 1 and f (p) = 0. We have Max( f ) = R

n\{0} ∈ F(Rn) and

Maxλ( f ) =
{
Zm if λ = m for some m ≥ 1,

∅ otherwise.

The family {Maxλ( f )}λ∈R is not locally finite at the origin. Define g := f |X and observe
that Max(g) = Max( f ) ∩ X = X\{0} ∈ F(M) and

Maxλ(g) = Maxλ( f ) ∩ X =
{
Zm ∩ X if λ = m for some m ≥ 1,

∅ otherwise.

The family {Maxλ(g)}λ∈R is not locally finite at the origin.

We prove next Proposition 1.5.

Proof of Proposition 1.5 Define Z1 := {‖x‖ ≥ 1}, Zm := { 1
m ≤ ‖x‖ < 1

m−1 } for m ≥ 2 and
Z := R

n\{0} = ⊔
k≥1 Zk . Consider the function

g : Z → R, x �→
{
k − 1 if x ∈ Z2k−1,
1

‖x‖ − k if x ∈ Z2k

and observe that Z2k := {2k ≥ 1
‖x‖ > 2k − 1}. Thus, g is continuous and its graph is

	 := ⊔
k≥1(	2k ∪ 	2k−1), where

	2k−1 := Z2k−1 × {k − 1} and 	2k :=
{

2k ≥ 1

‖x‖ > 2k − 1,z = 1

‖x‖ − k

}

,

is a locally finite union of semialgebraic sets. As the family {	2k−1, 	2k}k≥1 is locally finite
in R

n , the graph of g is a C-semianalytic subset of R
n . Observe that g is not M-compact, as

it maps the compact set R
n\Z1 onto [0,+∞). The sets

Max(g) =
⊔

k≥1

Z2k−1,
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On the set of local extrema of a subanalytic function 17

Min(g) =
⊔

k≥1

(Cl(Z2k−1) ∩ Z\Z2k−1) ∪ Int(Z2k−1),

Extr(g) =
⊔

k≥1

Cl(Z2k−1) ∩ Z

are not subanalytic because the families of their connected components are not locally finite
in R

n .
Define gk := min{max{g, k}, k + 1} − k : R

n\{0} → [0, 1], which is a semialgebraic
function whose support is the punctured closed ball supp(gk) = B(0, 1

k )\{0}. The family
{supp(gk)}k≥1 is locally finite in R

n\{0}) and g := ∑
k≥1 gk . Let I ⊂ R be an upperly

bounded interval and let � ≥ 1 be such that I ⊂ (−∞, �]. Then g−1(I ) = (
∑2�+1

k=1 gk)−1(I )
is a semialgebraic set. If I ⊂ R is not upperly bounded, pick � ∈ I and write J :=
(−∞, �) ∩ I . Then I = J ∪ [�,+∞) and

g−1(J ∪ [�,+∞)) =
(
2�+1∑

k=1

gk

)−1

(J ) ∪ g−1([�,+∞))

=
(
2�+1∑

k=1

gk

)−1

(J ) ∪ B

(

0,
1

2� + 1

)

\{0}

is a semialgebraic set.
Denote ClM (·) := Cl(·) ∩ M . Pick a point p ∈ ClM (X)\X and assume that p = 0 is

the origin. Consider the restriction f := g|X : X → R whose graph belongs to F(M × R)

and the inverse image under f of each interval of R belongs to F(M). Consider also the
restriction h := h|ClM (X)\{0} : ClM (X)\{0} → R. The subanalytic set ClM (X)\{0} is a
closed subanalytic subset ofM\{0}. Then the family {Maxλ(h)}

λ∈R is locally finite inM\{0}
(analogously it happens with {Minλ(h)}

λ∈R and {Extrλ(h)}
λ∈R). Denote T the operators

Max, Min or Extr and Tλ the operators Maxλ, Minλ or Extrλ for λ ∈ R. Let us prove: The
family {Tλ( f )}λ∈R is not locally finite in M .

Observe that Tλ( f ) = Tλ(h) ∩ X for each λ ∈ R. Let {Ci }i∈I be the collection of the
connected components ofT( f ). As ClM (X)\{0} is closed in the real analyticmanifoldM\{0}
and h : ClM (X)\{0} → R is a continuous subanalytic function, {Tλ( f ) = Tλ(h)∩ X}

λ∈R is
by Theorem 1.2 a locally finite family in M\{0}, so it is a countable family. Thus, f (T( f )) =⊔

λ∈R f (Tλ( f )) is a countable subset of R. Let C be a connected component of T( f ). Then
f (C) is a connected subset of R contained in the countable set f (T( f )), so it is a singleton,
that is, f (C) = {λ} for some λ ∈ R and C ⊂ Tλ( f ) = T( f ) ∩ { f = λ}. Let {Ci }i∈I be
the collection of the connected components of T( f ). As

⊔
i∈I Ci = T( f ) = ⊔

λ∈R Tλ( f ),
each set Tλ( f ) is a union of some Ci .

Let us restrict to those values λ that are positive integers and use the letter k to denote
them instead of λ. We have

⊔
k≥1 Tk( f ) is a union of some of the sets Ci . If T( f ) is a

subanalytic subset of M , then the collection {Ci }i∈I is a locally finite family of subanalytic
subsets of M . Thus, the family {Tk( f )}k≥1 is a locally finite family of subanalytic subsets
of M . As Int(Z2k+1) ∩ X ⊂ Tk( f ) for each k ≥ 1, also the family {Int(Z2k+1) ∩ X}k≥1

of open subanalytic subsets of X is locally finite in M , but this is a contradiction because
Int(Z2k+1) ∩ X 	= ∅ for k large enough and {Int(Z2k+1) ∩ X)}k≥1 is not locally finite at the
origin. Consequently, T( f ) is not a subanalytic subset of M , as required. 
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18 J. F. Fernando

3.1 Strict local maxima of subanalytic functions

As a consequence of Theorem 1.2 we have the following.

Corollary 3.2 (Strict local maxima) Let f : X → R be an M-compact subanalytic function
on a subanalytic subset X of a real analytic manifold M. Let T ⊂ X be the set of strict local
maxima of f . Then T is a discrete subset of M.

Proof Let x0 ∈ T and let λ0 = f (x0). It holds x0 ∈ Maxλ0( f ) and as it is a strict local
maxima, it is an isolated point, so x0 is a connected component of Maxλ0( f ). As the family
{Maxλ( f )}λ∈R is by Theorem 1.2 locally finite and the family of the connected components
of each Maxλ( f ) is locally finite, we conclude that T is a locally finite union of points. This
means that T is a discrete subset of M , as required. 


Remark 3.3 Let f : M → R be an analytic function on a real analytic manifold M ⊂ R

n

and let H be the set of critical points x ∈ M of f such that the Hessian of f at x is negative
definite. Then f is M-compact and H is contained in the set T of strict local maxima of f .
In particular H is a discrete subset of M .

Again the condition that f is M-compact in Corollary 3.2 is not superfluous.

Example 3.4 Let X := (0, 1] ⊂ R and let f : X → R be the continuous function whose
graph is the polygonal through the points {( 1

2k−1 , 2k−3), ( 1
2k , 2k) : k ≥ 1} ordered in terms

of their first coordinates, that is,

f (x) :=
{

− 6k(2k − 1)x + 8k − 3 if 1
2k ≤ x ≤ 1

2k−1 ,

2k(2k + 1)x − 1 if 1
2k+1 ≤ x ≤ 1

2k .

The graph of f is aC-semianalytic set because it is the union of the two locally finite families
of basic C-semianalytic sets

{ 1

2k
≤ x ≤ 1

2k − 1
, y = − 6k(2k − 1)x + 8k − 3

}

k≥1
,

{ 1

2k + 1
≤ x ≤ 1

2k
, y = 2k(2k + 1)x − 1

}

k≥1

of R
2. Thus, f is C-semianalytic, but f is not M-compact because f ((0, 1]) = (0,+∞).

It holds Max( f ) = { 1
2k : k ≥ 1}, which is not a discrete subset of M .

3.2 Non-openness points of continuous subanalytic functions

Open maps play an important role in analysis. Some classic theorems state the openness of
various regularmaps, for instance, the Banach openness principle concerning linear operators
(in functional analysis), and the open map theorem dealing with holomorphic functions
(in complex analysis). To decide if a map is open is in general a difficult question. This
problem was studied in [8] and later a complete answer was provided in [16] for Nash maps
f : R

n → R
n . The previous result was extended in [23] to analytic maps.

Recall that a function f from a topological space X into a topological space Y is open if
it maps open sets onto open sets. We say that f is open at a point x ∈ X if f (x) belongs to
Int( f (U )) for each open neighborhood U ⊂ X of x . Plainly, f is open if and only if it is
open at every point x ∈ X . In [3] it is proved the following result.
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On the set of local extrema of a subanalytic function 19

Corollary 3.5 (Non-openness points, [3]) If X is a locally connected space and a function
f : X → R is continuous, then the set of points of local extrema of f coincides with the set
of its non-openness points.

Let M be a real analytic manifold. As each subanalytic set X ⊂ M is locally connected
[5], Lemma 1.3 applies and we conclude that both the sets of non-openness points NOp( f ) =
Extr( f ) and of openness points Op( f ) = X\Extr( f ) of a continuous subanalytic function
f : X → R on a closed semianalytic subset X of M are subanalytic subsets of M . More
generally, if F is a weak category of subanalytic sets and f : X → R is a continuous
subanalytic function on a closed set X ∈ F(M) such that the inverse images of the intervals
ofR belong toF(M), thenOp( f ) = X\Extr( f ) ∈ F(M) andNOp( f ) ∈ F(M). In particular,
the previous applies if F is either the category of semianalytic or C-semianalytic subsets of
M . If f is a non-constant analytic function and X is an irreducible C-analytic set [13], then
dim(Extr( f )) ≤ dim(X) − 1 and Int(Op( f )) is a dense open C-semianalytic subset of the
(C-semianalytic) set of points of maximal dimension of X .

If X ∈ F(M) is not closed in M , there exists by Proposition 1.5 a continuous subanalytic
function f : X → R whose graph is an F-set, the inverse images under f of the intervals of
R belong to F(M) and Extr( f ) /∈ F(M), because it is not even a subanalytic subset of M .
Thus, Op( f ) = X\Extr( f ) /∈ F(M) (and it is not even a subanalytic subset of M).

4 Locally normal crossings real analytic functions

As usual we denote O(M) the ring of real analytic functions on a real analytic manifold M .
In the analytic case, the local extrema of an analytic function f : M → R are contained in
its set of critical points. A point x ∈ M is critical for f if there exists a chart ϕ : M → R

m

such that ϕ(x) = 0 and ∇( f ◦ ϕ−1)(0) := (
∂( f ◦ϕ−1)

∂x1
(0), . . . , ∂( f ◦ϕ−1)

∂xm
(0)) = 0. As one can

expect the previous definition does not depend on the chosen chart. The set of critical points
of f in M will be denoted C( f ). It is easily checked that it is a closed subset of M .

Remarks 4.1 (i) If we restrict our target to analytic functions on real analytic manifolds,
we can even restrict to the case of analytic functions on open subsets of R

n using tubular
neighborhoods. Let (�, ρ) be an analytic tubular neighborhood of M in R

n . If x0 ∈ M is
a local maximum of f , then the points y ∈ ρ−1(x0) are local maxima of f ◦ ρ. As f ◦ ρ

is constant on each fiber of ρ, each extremal point y0 of f ◦ ρ provides a extremal point
x0 := ρ(y0) of f . In fact, the setMax( f ) of localmaxima of f coincideswith the intersection
Max( f ◦ρ)∩ M . Thus, we could focus on analytic functions defined on open subsets of R

n .
(ii) If f : � → R is an analytic function on an open set � ⊂ R

n , the set of critical points
of f is C( f ) = { ∂ f

∂x1
= 0, . . . , ∂ f

∂xn
= 0}.

(iii) If X is a connected real analytic manifold (or more generally a pure dimensional
irreducible C-semianalytic set [13]) and f is a non-constant analytic function on X , then
Max( f ) ∩ Min( f ) = ∅ by Remark 2.2 (ii) and the identity principle.

A particular case of (real) analytic functions for which it is easy to characterize local
extrema is that of locally normal crossings analytic functions.

Definition 4.2 (Local normal crossings, [5, Def. 4.3]) Let f ∈ O(M) be an analytic function
that is not constant on any connected component of M . We say that f is locally normal
crossings if each point x0 of M admits a coordinate neighborhood U , with coordinates
x := (x1, . . . ,xm), such that f (x) = xα1

1 · · · xαm
m h(x) for each x ∈ U , where h ∈ O(U ), h

vanishes nowhere in U and each αi ≥ 0.
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20 J. F. Fernando

The following result allows to improve the description of locally normal crossings analytic
functions.

Lemma 4.3 Let W ⊂ R
m be an open neighborhood of the origin and let g ∈ O(W ) be an

analytic function that vanishes nowhere on W. Define h := xα
mg for some α ≥ 1. Then there

exists an analytic change of coordinates

ψ : U → V ⊂ W , (y1, . . . ,ym) �→ (y1, . . . ,ym−1,ymum)

on a small open neighborhood V of the origin, where um ∈ O(U ) vanishes nowhere on U,
such that (h ◦ ψ)(y1, . . . ,ym) = ±yα

m and ψ keeps invariant the coordinate hyperplanes.

Proof Let a := g(0) and assume that a > 0. We write b := 1
α
√
a
. Consider the analytic

equation

F(y1, . . . ,ym,t) := (b + t)αg(y1, . . . ,ym−1,ym(b + t)) − 1.

Observe that F(0, 0) = bαa − 1 = 0 and

∂F

∂t
= α(b + t)α−1g(y1, . . . ,ym−1,ym(b + t))

−(b + t)α
∂g

∂ym
(y1, . . . ,ym−1,ym(b + t))ym .

Thus, ∂F
∂t (0, 0) = αbα−1a = α

b 	= 0. By the implicit function theorem there exists ξ ∈ R{y}
such that ξ(0) = 0 and F(y, ξ(y)) = 0. Consider the local change of coordinates

ψ : (y1, . . . ,ym) �→ (y1, . . . ,ym−1,ym(b + ξ))

around the origin. We have

(h ◦ ψ)(y1, . . . ,ym) = yα
m(b + ξ)αg(y1, . . . ,ym−1,ym(b + ξ)) = yα

m .

In addition, ψ keeps invariant the coordinate hyperplanes, as required. 


Let us study next from the local point of view the sets of critical points and local extrema

of locally normal crossings analytic functions.

Lemma 4.4 Let W ⊂ R
m be a connected open set, let h ∈ O(W ) be an analytic function that

vanish nowhere on W and let α1, . . . , αr ≥ 2 be positive integers, where 1 ≤ r ≤ m. Define
f := xα1

1 · · ·xαr
r xr+1 · · ·xdh ∈ O(W ), where r ≤ d ≤ m, and assume that α1, . . . , α� are

even whereas α�+1, . . . , αr are odd. Then there exists an open neighborhood U ⊂ W of
X := ⋃r

i=1{xi = 0} such that set of critical points of f |U is

⋃

r+1≤i< j≤d

{xi = 0,x j = 0} ∪
r⋃

i=1

{xi = 0}.

In addition, if g takes (only) positive values on W, the set of local maxima of f is

�⋃

i=1

{xi = 0} ∩ {x�+1 · · ·xd < 0}

whereas the set of local minima of f is

�⋃

i=1

{xi = 0} ∩ {x�+1 · · ·xd > 0}.
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Proof Pick a point x ∈ X and assume that x ∈ {xi = 0} exactly for the indices i = 1, . . . , s ≤
�, i = � + 1, . . . , k ≤ r and i = r + 1, . . . , e ≤ d (in order to clarify, note that x /∈ {xi = 0}
for the indices i = s + 1, . . . , �, i = k + 1, . . . , r and i = e + 1, . . . , d). Define

gx := (
x

αs+1
s+1 · · ·xα�

�

) (
x

αk+1
k+1 · · ·xαr

r

)
(xe+1 · · ·xd)h.

By Lemma 4.3 for each point there exist an open neighborhood Ux ⊂ W of x , an open
neighborhood Vx ⊂ R

m of the origin and a change of coordinates ψx : Vx → Ux that maps
the origin to x , keeps invariant the coordinate hyperplanes through x and satisfies

fx := ( f ◦ ψx )(y1, . . . ,ym) = ± (yα1
1 · · ·yαs

s )(y
α�+1
�+1 · · ·yαk

k )(yr+1 · · ·ye).

The sign corresponding to fx is+ if gx (x) > 0 and− if gx (x) < 0.DefineU := ⋃
x∈X Ux ⊂

W . The set of critical points of f |U coincides with the union of the critical points of fx for
each x ∈ X . We have

∂ fx
∂yi

=

⎧
⎪⎨

⎪⎩

αi
fx
yi

if i = 1, . . . , s or i = � + 1, . . . , k,
fx
yi

if i = r + 1, . . . , e,

0 if i = s + 1, . . . , �, i = k + 1, . . . , r or i = e + 1, . . . ,m,

so the set of critical points of fx is

{∂ fx
∂y1

= 0, . . . ,
∂ fx
∂ym

= 0
}

=
s⋃

i=1

{yi = 0} ∪
k⋃

i=�+1

{yi = 0} ∪
⋃

r+1≤i< j≤e

{yi = 0,y j = 0}.

Thus, the set of critical points of f |U is

⋃

r+1≤i< j≤d

{xi = 0,x j = 0} ∪
r⋃

i=1

{xi = 0}.

Assume x ∈ ⋃d
i=�+1{xi = 0}. We can suppose that either x ∈ {x�+1 = 0} or x ∈ {xr+1 =

0}. If x ∈ {x�+1 = 0}, we write λt := (λ1, . . . , λ�,t, λ�+2, . . . , λm) and

f (x + λt) = tα�+1

�∏

i=1

(xi + λi )
αi

r∏

i=�+2

(xi + λi )
αi

d∏

i=r+1

(xi + λi ) · h(x + λt).

Pick λ1, . . . , λ�, λ�+2, . . . , λm ∈ R small enough such that

a :=
�∏

i=1

(xi + λi )
αi

r∏

i=�+2

(xi + λi )
αi

d∏

i=r+1

(xi + λi ) 	= 0

and the sign of h(x + λt) coincides with that of h(x) around t = 0. Thus, f (x + λt) =
atα�+1h(x + λt), which changes sign around t = 0. As f (x) = 0, this means that f does
not have a local extremum at x . If x ∈ {xr+1 = 0}, the discussion is analogous. This means
that the set of local extrema of f |U is contained in

⎛

⎝
⋃

r+1≤i< j≤d

{xi = 0,x j = 0} ∪
r⋃

i=1

{xi = 0}
⎞

⎠ \
d⋃

i=�+1

{xi = 0}

=
�⋃

i=1

{xi = 0} ∩ {x�+1 · · ·xd 	= 0}.
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Assume that g only takes positive values onW and let x ∈ ⋃�
i=1{xi = 0}∩{x�+1 · · ·xd 	= 0}.

Let us check that x is either a local maximum or a local minimum of f . If x ∈ {x�+1 · · ·xd <

0}, we may assume that x ∈ {xi = 0} exactly if i = 1, . . . , s ≤ � and

( f ◦ ψx ) = −yα1
1 · · ·yαs

s .

As the exponents α1, . . . , αs are all even, the point x is a local maximum of f . Analogously,
if x ∈ {x�+1 · · ·xd > 0}, the point x is a local minimum of f , as required. 



Weuse the previous lemma to describe the sets of local extrema of locally normal crossings
analytic functions.

Theorem 4.5 Let M be a real analytic manifold and let f ∈ O(M) be a locally normal
crossing real analytic function. Then, there exist real analytic functions h, g ∈ O(M) such
thatMax0( f ) = {h = 0} ∩ {g < 0} andMin0( f ) = {h = 0} ∩ {g > 0}.
Proof Let {Zi }i∈I be the collection of the irreducible components of the coherent hypersur-
face Z = { f = 0}. Observe that each Zi is a hypersurface of M . For each i ∈ I denotemi the
multiplicity of f along the hypersurface Zi (recall that the multiplicity along a hypersurface
is a discrete valuation [2, p.300]). Denote

I+ := {i ∈ I : mi is even},
I− := {i ∈ I : mi is odd}.

Let Z+ := ⋃
i∈I+ Zi and Z− := ⋃

i∈I− Zi . Write mi := 2ki for each i ∈ I+ and let hx,i
be a local generator of the ideal I(Zi,x ) of germs at x of analytic functions on M vanishing
identically on Zi,x . Consider the coherent sheaf of ideals

Fx :=
{∏

i∈I+: x∈Zi h
ki
x,iOM,x if x ∈ Z+,

OM,x otherwise.

By [9] there exist finitely many global sections h1, . . . , hr ∈ O(M) that generates the sheaf
of ideals F. Observe that h := h21 + · · · + h2r divides f , that is, there exists an analytic
function g ∈ O(M) such that f = gh. Note that {g = 0} = Z+ and g changes sign at each
point x ∈ Z+. By Lemma 4.4 there exists an open neighborhood U ⊂ M of Z such that

Max( f ) ∩U = Max0( f ) = {h = 0} ∩ {g < 0},
Min( f ) ∩U = Min0( f ) = {h = 0} ∩ {g > 0},

as required. 


Amain tool in the study of continuous subanalytic functions on closed subanalytic subsets

of a real analytic manifold M is local uniformization [5, §4]. If we combine [5, Thm. 0.1,
Cor. 4.9, Lem. 5.3] we have the following result.

Theorem 4.6 (Local uniformization, [5]) Let X ⊂ M be a closed subanalytic subset and
let f : X → R be a continuous subanalytic function. For each λ ∈ R there exist a real
analytic manifold Nλ and a proper surjective real analytic map πλ : Nλ → X ⊂ M such
that ( f − λ) ◦ πλ is an analytic map on Nλ that is locally normal crossings.

The previous result allows us to provide an alternative description, that does not involve
closures, of the level sets Maxλ( f ) of a continuous subanalytic function f : X → R on
a closed subanalytic subset X of a real analytic manifold M . Of course this description
preserves the subanalyticity in M of each set Maxλ( f ).
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Corollary 4.7 Let X ⊂ M be a closed subanalytic subset and let f : X → R be a continuous
subanalytic function. Fix λ ∈ R and let Nλ be a real analytic manifold. Let πλ : Nλ →
X ⊂ M be a proper surjective real analytic map such that ( f − λ) ◦ πλ is an analytic map
on Nλ that is locally normal crossings. Then for each λ ∈ R there exist analytic functions
hλ, gλ ∈ O(Nλ) such that

Maxλ( f ) = { f = λ}\πλ({ f ◦ πλ = λ}\Max( f ◦ πλ))

= { f = λ}\πλ({ f ◦ πλ = λ}\{hλ = 0, gλ < 0}). (4.1)

Proof By Lemma 2.3 a point x ∈ Zλ := { f = λ} is a local maximum if and only if each
point y ∈ π−1

λ (x) belongs to Maxλ( f ◦ πλ). Thus,

Zλ\Maxλ( f ) = πλ({ f ◦ πλ = λ}\Max( f ◦ πλ)),

or equivalently,

Maxλ( f ) = { f = λ}\πλ({ f ◦ πλ = λ}\Max( f ◦ πλ)).

By Theorem 4.5 there exist analytic functions hλ, gλ ∈ O(Nλ) such that Max( f ◦ πλ) =
{hλ = 0, gλ < 0} and the last equality in (4.1) holds, as required. 
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29. Parusiński, A.: Lipschitz properties of semi-analytic sets. Ann. Inst. Fourier (Grenoble) 38(4), 189–213

(1988)
30. Pawłucki, W.: Sur les points réguliers d’un ensemble semi-analytique. Bull. Polish Acad. Sci. Math.

32(9–10), 549–553 (1984)
31. Shiota, M.: Geometry of subanalytic and semialgebraic sets. In: Progress in Mathematics, vol. 150,

Birkhäuser Boston Inc., Boston (1997)
32. Stasica, J.: Smooth points of a semialgebraic set. Ann. Polon. Math. 82(2), 149–153 (2003)
33. Van den Dries, L.: Tame Topology and O-minimal Structures. London Mathematical Society Lecture

Note Series, vol. 248, Cambridge University Press, Cambridge (1998)
34. van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84(2), 497–

540 (1996)
35. Wilkie, A.J.: Lectures on elimination theory for semialgebraic and subanalytic sets. In: O-minimality

and Diophantine Geometry, London Mathematical Society Lecture Note series, vol. 421, Cambridge
University Press, Cambridge, pp. 159–192 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Affiliations

José F. Fernando1

B José F. Fernando
josefer@mat.ucm.es

1 Departamento de Álgebra, Geometría y Topología, Facultad de Ciencias Matemáticas, Universidad
Complutense de Madrid, 28040 Madrid, Spain

123

Author's personal copy

http://perso.univ-rennes1.fr/michel.coste/Lojasiewicz.pdf
http://orcid.org/0000-0002-5448-1984

	On the set of local extrema of a subanalytic function
	Abstract
	1 Introduction
	1.1 Semianalytic, C-semianalytic and subanalytic sets and functions
	1.1.1 Weak categories

	1.2 Main results
	1.3 Semialgebraic case and o-minimal structures
	1.4 Structure of the article

	2 Basic facts, tools and examples
	2.1 Local extrema of real functions
	2.2 Basic properties of mathfrakF-maps

	3 Proof of the main results
	3.1 Strict local maxima of subanalytic functions
	3.2 Non-openness points of continuous subanalytic functions

	4 Locally normal crossings real analytic functions
	References




