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On the positive extension property and Hilbert’s
17th problem for real analytic sets

By José F. Fernando® at Madrid

Abstract. In this work we study the Positive Extension (2¢&) property and Hilbert’s
17th problem for real analytic germs and sets. A real analytic germ X of R has the 2¢
property if every positive semidefinite analytic function germ on X, has a positive semi-
definite analytic extension to R(; analogously one states the & property for a global real
analytic set X in an open set Q of R". These #& properties are natural variations of Hil-
bert’s 17th problem. Here, we prove that: (1) A real analytic germ X, < R] has the 26
property if and only if every positive semidefinite analytic function germ on Xj is a sum
of squares of analytic function germs on Xp; and (2) a global real analytic set X of
dimension < 2 and local embedding dimension < 3 has the 2& property if and only if it
is coherent and all its germs have the & property. If that is the case, every positive semi-
definite analytic function on X is a sum of squares of analytic functions on X. Moreover,
we classify the singularities with the 2¢& property.

1. Introduction and statement of the main results

In the study of positive semidefinite functions and sums of squares one main prob-
lem is whether or not every positive semidefinite function is a sum of squares of functions
of the same class. As is well known, the interest on these questions comes from Hilbert’s
17th problem, and has been one streamline of research in real algebra and geometry.
The history of the topic is long and rich, and we refer the reader to [BCR], [ChDLR] and
[Sch]. In the relevant case of analytic functions, we refer to [BKS], [Rz1] and [Jw2] for clas-
sical results, and for more recent progress, to [ADR], [ABFR1], [Fe5], [ABFR2] and
[ABFR3].

In the analytic setting, there are always two complementary viewpoints: (a) the local
one, germs, which involves real algebra and real spectra in essential ways; and (b) the global
one, sets, for which complex classical analysis ((GuRo]) and Cartan’s Theorems A and B
([Ca]) play a crucial role.

*) Author supported by Spanish GAAR MTM2005-02865 and GAAR Grupos UCM 910444,
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Local approach.

(1.1) Analytic germs. We recall some notation and terminology. Let Xy = Rj be
a real analytic (set) germ (at the origin of R”, to simplify notations); we denote by ((Xj)
the ring of germs of analytic functions on Xj. For instance, ¢(Rf) is the ring R{x} of
convergent power series in the variables x = (xi,...,x,). As X, c Rj, we have
0(Xo) = R{x}/ #(Xp), where #(Xp) is the ideal of all analytic function germs vanishing
on Xy. The embedding dimension of Xy is the minimum number of generators of the maxi-
mal ideal of the local ring O(Xy). A germ fy € O(Xy) is positive semidefinite if it is = 0 on
Xo; and (X)) is the set of all positive semidefinite analytic function germs on Xj. We de-
note by X(Xj) (resp. X,(Xo)) the set of all sums of (resp. p) squares of elements of ((Xj).
Recall also that an analytic germ Xj is unmixed if all its irreducible components have the
same dimension and it is mixed otherwise.

Clearly, (X)) < #(Xp) and the question, commonly known as Hilbert’s 17th
problem for the analytic ring (X)), consists of determining whether the equality
P(Xo) = Z(Xo) holds. If 2(Xy) = Z(X)) for a germ Xj, we will say that X has # = X. Re-
ferring to this, in [Fe3] we proved that if (X)) = Z(X)), then dim X;, < 2. Moreover, in
[Sch], 3.9, the author characterizes the 1-dimensional analytic germs for which 2 = %;
and, in [Fe2] we determined the full list of all the analytic surface germs Xp of Rj with
% = X. Notice also that if we consider meromorphic instead of analytic function germs,
2 = X holds always true, see [ABR], VIII.2.9.

On the other hand, recall that the analytic function germs on an analytic germ X
of Rj are the restrictions of the analytic function germs of Rj. Thus, it could be
P(Xy) + Z(Xo) because there exist positive semidefinite analytic function germs on R;
which are not sums of squares in ((Rj). Hence, to avoid this disturbance we look at a
more general property. Namely, an analytic germ X, < R has the Positive Extension
(2&) property, if the following assertion holds true:

Local 228 property. Every positive semidefinite analytic function germ f; on Xj is
the restriction to X of a positive semidefinite analytic function germ on Rg.

In relation with this, see [BP], §5. Although the 2& property actually refers to the em-
bedding Xy < Ry, it is in fact intrinsic and does not depend on how the analytic germ is em-
bedded in the Euclidean space. On the other hand, clearly # = X implies #¢&, hence what
matters is the converse. Now, for dimension ¢ = 3 it is easy to find analytic germs with the
P& property, for which 2 + ¥ ([Fe3]). An immediate example is Xy = Rj, R, ..., but
there are also singular examples. For instance, Xp = {x411 =0} u{x; =---=x, =0} in
[R(‘)’“ for d = 3. Thus, the interesting dimensions are 1 and 2. Our main result concerning
this is the following:

Theorem 1.2. Let Xy & IRS be a real analytic germ. If Xy has the P& property, then
Xy is (equivalent to) one among:

Curve germs of Rg with the & property
(i) x=0,y=0(aline)

(i) xy =0,z =0 (two tranversal lines)

(i) xy =0, xz =0, yz = 0 (three independent lines)
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Unmixed surface germs of RS with the 22& property

iv) z =0 (plane)

v) z? —x*— y° =0 (Brieskorn’s singularity)

(

(

(vi) 22-x3—xp*=0
(vii) z2—-x*—»*=0
(viii) z2 — x? = 0 (two transversal planes)

(ix) z?—x?— y? =0 (cone)

(x) z?—x?—y*¥ =0, k = 3 (deformations of two planes)

(xi) z? — x?y = 0 (Whitney’s umbrella) (non-coherent)
(xii) 22—x2y+y*=0

(xiii) z2 — x%y — (=1)*y* = 0, k = 4 (deformations of Whitney’s umbrella)

Mixed surface germs of RS with the & property

(xiv) zx =0, zy = 0 (union of a plane and a transversal line)

In what follows, this table of analytic germs will be called the List.

As we have pointed out above the analytic germs Xy < RS with 2 = X have been al-
ready characterized. More precisely:

(1) In [Sch], 3.9, the author determines the analytic curves germs X, < R” for which
% = X and proves that it is enough one square to represent a positive semidefinite analytic
function on such an Xj. For n = 3, the curve germs with £ = X are those in the List.

(2) In [Rz3], it is proved that if an unmixed analytic surface germ X, = Rj has
P(Xy) = Z2(Xo), then it is (equivalent to) one of the germs in the List. Using this, in [Fe2]
and [FR] it is shown that an unmixed analytic surface germ Xy < [Rig has # = X, and in fact
P =%,, if and only if X, belongs to the List.

(3) Finally, by [Fe4], 3.1, a mixed analytic surface germ with 2 = X, and in fact with
the # = X, property, is the union of a plane and a tranversal line.

Putting all together we conclude the following:

Theorem 1.3. Let Xy & RS be a real analytic germ. Then the following assertions are
equivalent:

(a) 2(Xo) = 2x(Xo).

(b) 2(Xo) = Z(Xo).

(c) Xo has the P& property.

(

d) Xo belongs to the List.
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Global approach.

(1.4) Global analytic sets. Let Q < R” be an open set and (g the (coherent) sheaf of
analytic function germs on Q. We denote by 0(Q) = H°(Q, (g) the ring of global analytic
functions on Q. A set X = Q is global analytic, if there exist global analytic functions
Siyoooy fr : Q — Rsuch that X = {f; =0,..., f, = 0}, or equivalently, if X is the zero set
of a coherent sheaf of ideals on Q ([Ca]). For such sets we consider the coherent sheaf
of ideals ¢, = #(X)0q, generated by the ideal #(X) < 0(Q) of all global analytic func-
tions on  vanishing on X. This sheaf 7, is the biggest coherent sheaf of ideals with zero
set X (see [Cal). But #, may well be smaller than the sheaf of function germs vanishing
on X. When both sheafs are equal, that is, 7y . = #(X,) for all x € X, the set X is called
coherent.

In any case, Oy = Oq/ ¢y is the sheaf of global analytic function germs on X and
O(X) = H(X,0x) = 0(Q)/ #(X) is the ring of global analytic functions on X. A positive
semidefinite (global) analytic function on X is an element f € ((X) such that f(x) = 0 for
all x € X. We denote by 2(X) the set of all the analytic functions which are positive semi-
definite on X and by X(X) (resp. Z,(X)) the set of all sums of (resp. p) squares of the
ring O(X). Similarly to the local case, we will say that X has £ =ZX if the equality
2(X) = Z(X) holds. Moreover, X has the Positive Extension (&) property, if the follow-
ing assertion holds true:

Global & property. Every positive semidefinite analytic function f on X is the re-
striction to X of a positive semidefinite analytic function on Q.

Again, if # = X for X, then X has the 2¢& property and what matters is the converse.
First of all, we prove:

Theorem 1.5. Let X be a global analytic set in an open set Q < R" with
P(X) =2(X). Then:

(a) X has dimension < 2 and it is coherent.
(b) The germs X have 2 =X for all x € X.

Once more, for dimension d = 3 it is easy to find global analytic sets, even singular,
with the 2¢& property for which clearly 2 + X. To progress further, recall that the local
embedding dimension of an analytic set X is the number

sup{embdim(X,) : x € X'}.
Then we will prove:
Theorem 1.6. Let Q < R” be an open set and let X be a global analytic set in Q of
dimension < 2 and local embedding dimension < 3. Then the following assertions are equiva-
lent:

(@) 2(X) = Ze(X).

(b) 2(X) = X(X).
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(c) X has the & property.
(d) X is coherent and all the germs X belong to the List.

The previous result gives in fact a criterion to determine if a global analytic set X in
an open set Q = R® has 2 = X and/or the 2¢& property. One just checks that its singular-
ities are in the List, Whitney’s umbrella excepted (because it is non-coherent).

Actually, one can show (see Section 2) that for Whitney’s umbrella the positive semi-
definite analytic function f(x,y,z) = x> —x+ (y + 1)2 cannot be positively extended to
R3. However, the 2 = X and 2¢& properties are almost local for a real coherent analytic
set X of dimension < 2 and local embedding dimension < 3, that is, both properties are
local for those analytic sets which do not have singularities equivalent to Whitney’s um-
brella.

The article is organized as follows. In Section 2 we get several local consequences of
the 2 = X and/or the 2& property for the germs at the points of a real analytic set having
such properties. In Sections 3 and 4 we respectively prove local results for dimensions 1 and
2 from which it follows 1.2. The next step is to study what happens with respect to both
properties around the set of non-isolated singular points of an analytic set. This is ap-
proached in Section 5. The next section is devoted to prove 1.6. Finally, in Section 7, we
formulate two conjectures (one local and the other one global) for analytic curves and pro-
pose some open questions referring the 2 = X and 26 properties.

2. Local consequences of the global properties

The purpose of this section is to show that if a global analytic set X has either # = X
and/or the 2& property, then the germs at all its points have almost such properties. We
begin with the £ = X property whose behaviour is, as we have stated in 1.5, the expectable
one.

(2.1) Local consequences of the global 22 = X property. Before proving 1.5 we need
some preliminary results:

Lemma 2.2. Let Xy < Ry be an analytic germ of dimension = 1. An analytic function
germ h € O(Xy) is positive semidefinite on X if and only if for every half-branch curve germ
Yo = Xo, with parametrization o : {t > 0} — Y, we have ho o = 0.

Proof- Indeed, the only if condition is clearly true. To prove the converse we proceed
as follows. Suppose that 1 ¢ 2(Xp). Then the germ {/ < 0} N X} is non empty and open in
Xo; hence, it has dimension = 1. Thus, by the curve selection lema [ABR], VIL.4, there ex-
ists a half-branch curve germ Y; through the origin such that Yy = {h < 0} n X)), against
our hypothesis. Therefore, 7 € #(X), as wanted. []

Lemma 2.3. Let X be an analytic set in an open set Q < R". Fix a point a € X and let
Ja € O(RY) be an analytic function germ which is positive semidefinite on X,. Then, for every
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integer m = 1 there exists a polynomial g,, € R[x] = R[xy, ..., x,| such that g,, € ?(X) and
the order at a of the function germ f; — gm o € O(RY) is = m.

Proof.  First, to simplify notations we assume ¢ = (. Fix an integer m = 1. We set
G = 7" (fo) + (xf + -+ x)"
where j>"(fy) is the jet of degree 2m of fy. We claim that: g,, € 2(Xp).

Indeed, let o : {# > 0} — X; be a half-branch curve germ and consider the analytic
series

Gm oo =j"(fo) oo+ (af + - +o)" € Rz}

We can write fy = j?"(fo) + hyms1 where hy,1 € R{x} is an analytic series of
order = 2m + 1. Thus,

Jooa= jzm(fo) oo+ hypyy 0

where @ (hyyi1 00) = (2m+ Do(||«||]) and ||of| = y/o? + -+ - + o2 € R{s}. Recall that o(.)
gives the order of the involved series. Next, we distinguish two cases:

(@) r=ow(fooua) < 2mw(||«|). Since fy oo > 0 for > 0, we get that
fooo=at" +a ™+, a >0.
Hence, j>"(fy) o« = fo 0 o — hypyy 0 o0 = a,t” + - - > 0 because
@ (o1 0 0) 2 (2m + Dox([|ol]) > 2mas(lof]) = r.

Therefore, we conclude that

1

gm0 o= 7" (fo) oo+ (o 4+ F o)™ > 0.
(b) r=w(/*"(fo) o o) = w(fo o) > 2ma(||«)). Since
o((of + -+ o)™) = 2mos(||a]),

we have that

gmoo=j"(fo)oa+ (o +---+o;)" >0.

Thus, by 2.2, the polynomial germ g,, is positive semidefinite on Xj. Hence, there ex-
ists ¢ > 0 such that g, = 0 on X n B,(0). We write g,, = > a,x". If ||x| = ¢ we have
||x [v|<2m

7” > 1 and therefore
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> awx’

v|<2m

1

) 2

< Xl s X lal IXI™ =
[v|<2m v|<2m €

= 2 lafx']

v|<2m

|Gm ()| =

1
= Xl 32 Jav] iy = Monllxl| ™"

[v|=2m g2
for certain real number M,, > 0. Hence, the polynomial
gn(X) = G (%) + Myu(x7 + - +x,)" € R[]
has the desired properties:
() o(fo = gm) = o(fo — 7" (fo) = (M + 1)(x] +--- + x7)") = 2m, and
(i) gm € 2(X).
Indeed, if p € X n B,(0) it is clear that g,,(p) = 0 and if p € R"\B,(0) we conclude

that g, (p) = Gm(p) + Ml P = — [ (p)| + Mol p[|*" = 0, as wanted. [0

Lemma 2.4. Let X be a global analytic set of dimension = 3 in an open set Q < R".
Then 2(X) + Z(X).

Proof. 1Indeed, let a € X be a non-singular point such that dim(X,) = 3. To sim-
plify the notation we suppose @ =0. By the Jacobian Criterion ([JP], 4.3.10) there
exist analytic function germs fi,..., f,—3 € R{x} such that #(Xy) = (fi,...,fs—3) and

rk <% (O)) = n — 3. Thus, after a linear change of coordinates (which is an analytic global
J

change), we can assume that f; = x; + ¢;(x,_2, X1, x,) where g; € mﬁ N R{xp—2, Xn—1,Xn},
for i=1,...,n—3. Now, we choose a positive semidefinite homogeneous polynomial
h € R[x,—2, x,—1, X,] which is not a sum of squares. We can take, for instance, Motzkin’s
polynomial

h(Xu—2, Xn1Xn) = Xy Xy X XX — 3, Xy,

(see [BCR], 6.4.20). One can check that he 2(X) but hye 2(Xy)\X(Xo). Hence, if
P(X) =Z(X) we would deduce that i € (X)), a contradiction. Thus, we conclude that
2(X)+£Z(X). O

Now, we are ready to prove 1.5.

Proof of Theorem 1.5. First, by 2.4, we have dim X < 2. Next, we claim that: If
ae X and f, € O(X,) is positive semidefinite on X,, then f, is a sum of squares in the ring
A4 = 0(Ry)/ 7 (X)O(RY).

Indeed, we may assume, to simplify notation, that a = 0. Since #Z(X)R{x} is a fi-
nitely generated ideal, there exist analytic functions Ay,...,h € #(X) which generate
J(X)R{x}. By 2.3, for each integer m = 1 there exists g,, € R[x| such that g,, € 2(X) and
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gm — fo € m", where m, denotes the maximal of R{x}. Since Z(X) = XZ(X), for each

no

m = 0 there exist ayy, ..., %, » € O(Q) such that
Gm = 03y + -+ o, mod #(X).
Considering germs at the origin in the previous equality, we get that
G0 = o+ + 0 o mod #(X)R{x}.

Since Xo = Z(#(X)R{x}) and dim X, < 2, by [Fel], 1.4, and [Fe3], 1.1, there exists an
integer p = 1 such that each sum of squares in 4 = R{x}/ #(X)R{x} can be written as
a sum of p squares in 4. Hence, for every m =1 there exist analytic function germs
Bim,os -+ s Bom, 0> Am.05 - - - 5 Arm,0 € R{x} such that

9m,0 = ﬁ%m’() + - +ﬁp2m70 + /Ilnuohl +---+ /1rm70hr-

That is, the equation
fo=Yi4+ Y+ Zihi+- 4+ Zsly

has a solution modm," for all m = 1. By M. Artin’s Approximation Theorem ([Ar], [Ku
et al.]), we conclude that f; is a sum of squares in A.

In particular, we have 2(X,) = Z(X,) for every a € X, that is, the statement (b) holds.
To end, it remains to check that X is coherent.

Indeed, suppose that X is not coherent. Then, there exists a point @ € X, which may
be assumed to be the origin, and an analytic function germ %y € #(Xp)\ 7 (X)R{x}. Next,

we will show that g € (| m¥ = {0} where m, is the maximal ideal of 4, against the con-
keN

dition /1y € #(Xo)\ 7 (X)R{x}.

Since hy € 2(X)), by the previous claim, sy = h%_yo + -+ hio in A. Thus, h; o € my
and so Ay € mi. Furthermore, since /o € #(Xy) which is a real radical ideal, the func-
tion germ h; € #(Xo), hence h; e 2(Xy). Again, h;o= h1'21.0 + - +hi2,,‘_.0 in A where

hijo € my and hy o € #(X), thus i e m¥. Repeating this, we conclude that sy e () mk.
keN
L

Next, we proceed with the 2& property. Before that we need to introduce an addi-
tional property for analytic germs. We say that an analytic germ Xy = R} has the 26+
property if every analytic function germ which is strictly positive on X;\{0} has a positive
semidefinite analytic extension to Rj. Clearly, an analytic germ which has the 2 property
also has the & property.

(2.5) Local consequences of the global 22& property. Let X be a global analytic set in
an open set Q = R". If X has the P& property, then the analytic germs X, have the 2&*
property for all x € X.

Before proving this, we would like to justify the introduction of the & property.
The kind of statement one expects to have is the following:
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(%) PE for X = P& for all the germs X,.

The natural strategy to prove (x) should be the following. Let x € X and assume that
x is a singular point of X. If the germ X is not singular, it trivially has the 2& property.
Next, take a positive semidefinite analytic function germ £, on X, which vanishes at x; oth-
erwise there is nothing to prove. Since X has the 2¢& property, we should extend f, to a
positive semidefinite analytic function on X. In general a representant of f, cannot be ex-
tended even if X is a curve. For instance,

Example 2.6. Let X : x2 — y?> — »3 = 0 which is an analytic curve in R2. The ana-
Iytic function germ fo = y(x + y/1 + ) is positive semidefinite on X,. However, it cannot
be extended analytically to X because f is identically 0 on one of the branches of X, and
these branches form part of a loop of X.

Thus, we should extend positively to X a suitable modification g, of one of the repre-
sentatives of f,. Clearly, the zero set of g, must be the germ at x of a global analytic subset
of X, and the most natural choice is to ask that {g, = 0} = {x}. Next, using that X has the
P& property we conclude that g, can be extended to a positive semidefinite analytic func-
tion germ on RY.

Now, we would like to use this to prove that f, can also be extended positively to RZ.
However, if f and g, do not generate the same ideal of ((Xy), it seems a difficult matter to
determine if f, can be extended positively to R?. This is essentially because two extensions
f1  and f2 . to RY of two positive semidefinite analytlc germs fi , and f> . on X, have no
relatlon even if f1 « — fo,x € m,, where m, is the maximal ideal of ((X\) and r is a large
integer. Note that if f is a positive semidefinite analytic extension to [RE” of a posmve semi-
definite analytic germ f, on Xy and ¢gi ,. .., ds x € #(Xy), then f + g1 L+t g2 isalso
a positive semidefinite analytic extension of fx to RY. 7

After all these considerations, we prove 2.5:

Proof of 2.5. Let ae X be a point and f, € O(X,) be an analytic function germ
such that f, is strictly positive on X,\{a}. To simplify the notation we assume that
a = 0. Choose a representative of fy in R{x} and denote it again by fy. Since f; is strictly
positive on X,\{0} there exist analytic functions #,...,/0€ #(Xo) such that
{fo = 07}11,0 = 0, e ,hr,o = O} = {0} Hence, if

770:f02+hl2,0+"'+hr2,o€R{x}

we have {n, = 0} = {0}. By Lojasiewicz’s inequality ([To], V.4), there exists an integer
m = 1 such that

Mo(x) > (x7 + -+ x7)"

on R§\{0}. By 2.3, there exists g € R[x] such that g € 2(X) and w(go — fy) = 2m + 2. Since
g€ ?(X) and X has the 2& property, there exists a positive semidefinite analytic func-
tion §: Q — R such that g|, = g. In particular, there exists an analytic function germ
hy € #(Xp) such that g, = go + ho. Let us see that Fy = fo + ho + 1, is a positive semidefin-
ite analytic function germ on Rj. For that, by 2.2, it is enough to check that if o : Ry — R}
is a parametrization then Fyoa = 0.
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Indeed, we distinguish two cases:
(1) o((fo + ho) o a) = (2m + 2)e(||a||) where |Jof| = y/oif + - - + a2 € R{z}. Then
Foou=(fo+h)oa+nyoau=(fo+ho)oaut|af* > 0.

(2) o((fo+ ho) o) < (2m+2)ew(|2l|). Since w(go— fo) =2m+2, there exists
o € m2"*+2 such that fy = go + {o. Hence,

(fo+hy)oa="Cyoa+ (go+hy)oa=C_you+gyoa>0,

because gyoa =0, w(lyoa) = (2m+ 2)w(||«|) and o((fo + ho) o o) < (2m+ 2)w(||«]]).
Thus,

Fooa=(fo+ho)ooa+mnyoa>0.

Therefore, we deduce that Fj, is positive semidefinite on Rj. Finally, note that
Foly, = fo+ /¢ = fo(1 + fo). Hence,

A F)
fo_1+fo

€ O(Ryg)

is a positive semidefinite analytic function germ such that fo\ x, = Jo- Thus, X, has the PET
property forallae X. [

(2.7) Examples of non coherent surfaces. We finish this section with several exam-
ples of non coherent global analytic sets which do not have any of the two properties we
are studying, but whose germs at all their points have both properties. We begin with Whit-
ney’s umbrella.

Examples 2.8. (a) Let X :z2 — x?y = 0 be Whitney’s umbrella. By 1.5, we have
P(X) £2(X), since X is not coherent. Moreover, for each point x e X we have
P(X,) = Z(Xy); because for each x € X the germ X, is equivalent to one of the following
analytic germs of R? at the origin:

(i) x=0,y=0,
(iii) z2 — x> =0,
2

(iv) z2 —x%y =0.

Recall that all of them appear in the List and therefore, have 2 = X. Hence, the #¢& prop-
erty also holds for X, for all x € X.

Next, let us see that X does not have the 2& property. In fact, we see that for every
& > 0 the analytic surface Y = X n B,(0) does not have the 24 property.

Indeed, consider the analytic function
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2 2 2 2
B3 _¢ L R ¢
R - R, (x,y,z)r—><x 4) —|—<y+2> 6=~ 2x+<y+2>

which is = 0 on Y. Moreover, #(Y) is generated by the function z> — x%y which has order
2 at the point py = (0, —¢/2,0) while f has order 1 at such point. Thus, we conclude that f
cannot be extended to a positive semidefinite analytic function on B,(0) because if such ex-
tension existed, it would have even order at all its points, which is impossible for any ana-
lytic extension of f.

(b) In fact, proceeding analogously, one can check that if S is an analytic surface (in
an open set Q < R") which has a singularity equivalent to Whitney’s umbrella, then neither
2 =X nor #& hold for S. [

Moreover, for each embedding dimension there exist non coherent analytic surface
germs with the £ = X and 2¢& properties. However, any of its representatives have none
of them. For that, we recall certain examples already introduced in [Fe4].

Examples 2.9. The generalized Whitney’s umbrellas Y, o = R"!, n > 2, are the an-
alytic closures of the set germs parametrized by

P c (5,0) = (8,88, .. st" 1 E") = (X0, X1,y - e ey Xn1, X))
It can be checked that the ideal of Y, o is generated by the polynomials

S lsisj=sn-1,
XiXj — Xoxsx,l: i+ j=qn+¢ and {nggn— L
Moreover, Y, o consists of the union of the image of ¢, and the x,-axis. Hence, Y, ¢ is a
non coherent germ for all n > 2 (see [N], §V. Prop. 7). We find that the multiplicity of Y, o
is n and its embedding dimension n + 1.

These analytic surface germs have # = X ([Fed|, 4.4), hence the 2& property. The

first umbrella ¥, = R? is the classical Whitney umbrella x% = xgxz.

Again we have, proceeding similarly to example 2.8 (a), that each representative of
the germ Y, o does not have the ¢ property for alln =2 2. [

3. Local results for dimension one

In this section we study both properties for analytic curve germs. In [Sch], 3.9, the
author characterizes the analytic curve germs in Ry with 2 =X, which are those equi-
valent to a union of independent lines through the origin. As we will see along this section
the approach to the 2& property is quite more delicate. Our main result here is the follow-
ing:

Theorem 3.1. Let Xy < IRS be an analytic curve germ. The following assertions are
equivalent:
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(a) 2(Xo) = Z1(Xo).
(b) 2(Xo) = Z(Xo).
(c) Xo has the 2& property.
(d) Xo has the & property.
(e) Xo is equivalent to a union of independent lines in Rg.

The key result (3.9) to prove 3.1, that will be introduced later, implies the following
one for arbitrary embedding dimension:

Theorem 3.2. Let Xy = R} be an analytic curve germ with the 26" property and
embedding dimension n. Then Xy is either regular or a reducible curve germ whose tangent
cone is the union of r < n independent lines. Moreover, if r =n then Xy is equivalent to
the union of n independent lines through the origin and we may assume that
J(Xo) ={xixj: 1 2i<j=<n}

We need to introduce here several preliminary results.

Lemma 3.3. Let feR{x} =R{xi,...,x,} be an analytic series of order s = 1.
Then, there exists M > 0 such that | f| < M||x|".

Proof. Indeed, since w(f?) = 2s we can write /2 = Y. a,(x)x" for some analytic

series a, € R{x}, and so, near the origin we have v|=2s
2 2 (v 2
SOOI = X alxl"= X aollxl7l" =[xI7 3 alyl”
[v|=2s [v|=2s [v|=2s

where ¢, = 1 + |a,(0)] and y = x/||x||. The function > ¢,|y|" is bounded on the compact

[v|=2r
set || y]| = 1, say by M > 0, and we conclude |f]* < M| x||*, hence |f] < M||x|*, as wan-
ted. [

Lemma 3.4. Let Xy < R(j be an analytic germ of the dimension d. Then, after a linear
change of coordinates, the analytic function germs gy ;(x) = k(x? + - -+ + x3) — x? are posi-
tive semidefinite on Xy fori=d + 1,...,n and k large enough.

Proof. First, by Riickert’s parametrization (see [Rz2], 3.4) we may assume,
after a linear change of coordinates, that there exist Weierstrass polynomials
Pyiy,...,PyeR{xy,...,xs}[T] = R{x'}T] such that P;(x;) € #(Xp). Recall that a poly-
nomial F € R{x'}[T] is a Weierstrass polynomial if it is monic and its degree with respect
to the variable T is equal to its order as a series.

Fixi=d+1,...,nand let r; > 0 be the degree of the polynomial P;. We write

1

P i
Pi(xi) = x[z + ai,r,-—lxl'l + -+ aix; + ajp,

where each g;; € R{x'} = R{xy,...,x4} and w(a;) = r; — j for 0 < j < r;. By 3.3, there is
M > 0 such that |a;| < M||x'||"" for all i, ;.
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Now, for each integer kK = 1 we consider the quadratic form
gri = K23 4 x3) = xF = KX
and will prove that for k large enough the series gy ; is positive semidefinite on Xj.

In fact, otherwise, X, would contain a sequence x*) = (x’® z()) — 0 such that
gx(x%)) < 0, that is,

0 < kpy < XM, where p = [|[x'®)]].

Since P; € #(Xo), we have P,-(x<k)) = 0, and consequently

ri—1

2|a,,< ©)|x*)/

(k>|"i ri—1 1
ri— k) ri
<sz " |f<Mz e~ MRS o
]:

k
semidefinite on X for k large enough, as wanted. []

. 1 1 L . ..
But \xﬁk)]r’ >0, and we get 1 < M <—+ ~+F), a contradiction. Thus, g; x is positive

Remark 3.5. In particular, if Xy = R{ is an analytic germ with the 26" property,
then the analytic function germ h = k(x? + -+ x2) — x2+ (x2 + --- + x2)?, is strictly
positive on X\ {0} for k large enough. Thus, we deduce, that

(7 (Xo)) = min{o(f) : [ € #(Xo)} £2

Otherwise, w(#(Xo)) =3 and there exists an analytic function germ f € #(Xp) such
that s+ f is positive semidefinite in R and w(f) = 3. In particular, its initial form
In(h+ f) = In(h) = k(x} + - -+ + xJ) — x2 is a positive semidefinite quadratic form, a con-
tradiction. []

In what follows, we focus our attention on curve germs. Let Xy = Rj be an irreduc-
ible curve germ. Recall that a parametrization ¢ : Ry — Xy of Xy is primitive if there
do not exist another parametrization y : Ry — Xp of Xy, and an integer p = 2 such that
o(t) =y (). If o = (¢,...,0,) : Ro — X is primitive, we define the multiplicity m(Xy) of
Xo by

=m(Xo) = min{w(y,) :i=1,...,n}.
The tangent line to X is the straight line parametrized by ¢ +— fv, where v = (0) and
W = @/t". A rutinary checking shows that the multiplicity of X, and its tangent line do

not depend on the chosen primitive parametrization of Xj.

If X) is an analytic curve germ we define its tangent cone as the union of the tangent
lines to all the irreducible components of Xj.
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Lemma 3.6. Let Xy be an analytic curve germ. If f € #(Xo)\{0} then the initial form
In(f) of f is identically 0 on the tangent cone to X.

Proof.  First, we write Xo = Xj ouU---U X, o as the union of its irreducible compo-
nents.

Fix i=1,...,r and let o; : Ry — X; ¢ be a primitive parametrization of X;o. Let m;
be the multiplicity of X; o, f; = o;/t™ and v; = f;(0) € R". Recall that v; generates the tan-
gent line to X; o. Let us check that In(f)(v;) = 0.

We write /' = > fi, where each f; is either 0 or a homogeneous polynomial of de-
k=ko
gree k and fi, = In(f). Since f o a; = 0, we get

= 3 filt™B) = > ("o + ;)
k=ko k=ko

where y; € (1)R{¢}". In particular, this shows that In(f)(v;) = f,(v;) = 0. Therefore In(f)
vanishes on the tangent cone to Xy, as wanted. []

0=/ou=f("F)

Next, we see a method to construct analytic function germs on X, which are strictly
positive on Xp\{0}. In fact, we denote by 21 (Xy) = (X)) the set of all the strictly positive
function germs on X;\{0}.

Lemma 3.7. Let Xy be an analytic curve germ and let vy, ...,v, € R" be generators
of the tangent lines to the irreducible components X o, ..., X0 of Xo. Let f € R[x1,...,x,]
be a homogeneous polynomial of even degree such that f(v;) >0 for i=1,...,n Then,
f € ,@+(X0).

Proof.  First, note that 27 (Xy) = (| 2% (X,0). Thus, it is enough to check that
i=1

fe?(Xio) fori=1,...,r. Note that if o; : Ry — X ¢ is a primitive parametrization of
Xi.0, then f e 2(Xio)" if and only if f o« e R{r}\{0} is a positive semidefinite series,
that is, f o o;(t) = axt* + - - -, for some as, > 0.

Next, we write m; = m(X; o) and f5; = o;/¢™. Since f is homogeneous of even degree,
say 2/, we get

foult) = £Uf o fy = 2 (f (1) + (1)

for certain analytic series &; € R{z}. Since f(v;) > 0, we conclude that f o o; € R{¢}\{0} is
positive semidefinite, and we are done. []

Proposition 3.8. Let Xy = R” be an irreducible curve germ with the 2&" property.
Then Xy is a regular curve germ.

Proof. 1If Xj is regular, there is nothing to prove. Thus, we may assume that Xj is
singular and that its embedding dimension is n. Thus, in particular a)( 2 (Xo)) > 2. After a
change of coordinates we may assume that the tangent line to Xpis L : x, =0,...,x, =0.
Let o be a primitive parametrization of Xj. After a new change of coordinates that keeps
invariant the line L, we may assume that
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k k: kn
a(t) = ("uy, Puy, ..., " uy),
where uy, ..., u, € R{t} are units and 2 < k; < k < -+ < k,, are positive integers.

If some k; is even, then x;u;(0) is strictly positive on X\{0} but cannot be extended
positively to Rj. Thus, we may assume that every k; is odd. Then the function germ
f = x1xu1(0)uy(0) is strictly positive on Xp\{0}. Since X, has the 26" property, there ex-
ists an analytic function germ g € #(Xj) such that /" + ¢ is positive semidefinite on Rj. In
particular, its initial form In(f + g) is positive semidefinite on R”. We have two possibil-
ities:

(1) In(g)(xl,xz,O, - ,0) = —xleul(O)uz(O). We claim that &y + ky = 3k;.

Indeed, g = In(g) + h, where h € R{x} = R{xy,...,x,} is an analytic function germ
of order = 3. Since k; < kr < -+ <k, and In(g)(x1,x2,0,...,0) = —x1xu; (0)u2(0), we
have that w(In(g) o ) = ky + k>. On the other hand,

o(hoa) = w(h) -min{w(w),i=1,...,n} = 3k;.
Therefore, since g o « = 0, we deduce that ky + k> = w(In(g) o o) = w(ho o) = 3k;.

Thus, since k; + ky = 3k, we have ky = 2k; and for M > 0 large enough we deduce
that f; = x» + Mx} € 2% (Xp) is strictly positive on Xp\{0}, but cannot be extended posi-
tively to R{, a contradiction.

(ii) In(g)(x1,0,...,0) = «>x? for some o > 0. If this is the case, g cannot vanish on
Xy, a contradiction.

Thus, we conclude that Xj is a regular curve germ. []

Now, we are to prove the technical result announced at the beginning of the section,
which summarizes all the information we know about a curve germ Xy = Rjj with the 26+
property. The full statement of this result, and not only 3.2, will be crucial to prove 3.1.

Theorem 3.9. Let Xy = R} be an analytic curve germ with the & property and
embedding dimension n. Then:

(@) There exists a quadratic form q € ¢ (Xo) of rank n and signature n — 1, that is, q is
equivalent to X3 + -+ + x2_| — x2.

(b) The tangent cone to X is the union of s < n independent lines Ly, ..., L, More-
over, after a change of coordinates, we may assume that L; is generated by the vector
e, =1(0,...,0,1,0,...,0) whose ith coordinate is 1 and all the others are 0. Then, for
each 1 £i< j<s there exists an analytic series ¢; € §(Xo) whose initial form is
In(¢;) = xix; + ®; where ®; is a quadratic form identically 0 on the set
{Xs41 =0,...,x, = 0} (which is the linear subspace of R" generated by the lines Ly, ..., Ly).

(c) If s =n, Xy is equivalent to the union of n independent lines and we may assume
that #(Xo) = {x;x;: 1 i< j<n}



16 Fernando, Positive extension property for real analytic sets
(d) If s < n— 1 we have the following extra information:

(i) If the initial form q = In(f') of a series f € (X)) is a positive semidefinite qua-
dratic form q, then it is identically 0 on the vectorial subspace of R" generated by the tangent
cone to Xy (hence, q has rank < n — s) and g = [ — q is an analytic series of order 3.

(i) There exists an analytic series [ € #(Xo) whose initial form is a positive semi-
definite quadratic form.

The general strategy to prove 3.9 consists, roughly speaking, of finding for an X, not
satisfying any of such conditions a positive semidefinite analytic function germ f € ((Xp)
of order 1. Obviously such an f cannot be extended positively to Ry and X, cannot have
the & property.

Proof of Theorem 3.9. First, we write Xy = Xj o U --- U X, as the union of its irre-
ducible components. For each f € R{x} of order = 2, let In(f) stand for the initial form of
f and

o — {Inm if (/)

2,
0 if w(f) = 3.

The proof runs in several steps:

Step 1. After a change of coordinates, we may assume that

xf+~-+x,371 —xﬁef(Xo).

Indeed, by 3.4, we may assume that the function germs kx2 — x? € 2(X)) for k > 0
large enough and i =1,...,n — 1. Thus,

(n— l)kxﬁ — (xl2 + .- +x5,1) = Z(kx2 — xl.z) € 2(Xy)

-1 "
for k large enough. Hence,
f=mx2— (x4 x2 )+ (P +x2)7 wherem = (n— 1)k,
is strictly positive on Xo\{0}. Since X, has the 26" property there exists g € #(Xp) such
that f 4 g is positive semidefinite on Rj. In particular, if go = q(g), then the quadratic

form

mxﬁ—(xf+~-~+x3,l)+cm

is positive semidefinite on R”. Thus,
ql(xlv o ,Xn,]) = —(X12 + +X571) +q0(X], v ,X”,1,0>
is positive semidefinite on R"~'. By the spectral theorem, there exists an orthogonal basis

for the usual scalar product of R"! that diagonalizes ¢ (X1,...,%xn-1,0). Thus, after a suit-
able linear change of coordinates, we may assume that
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2 2 2 2
Q1(X1, e 7xn—1) = _(xl +eeet xnfl) + (alxl +ee a"—lxnfl)7

for certain real numbers ay,...,a,_1 = 1. Since X has embedding dimension n, we have
#(Xo) = m2. Hence, by classification of singularities (see [JP], 9.2.12), we may assume,
after a new change of coordinates, that

g=xi++x_ —xr e J(Xo),

for some k = 2; recall that X has dimension 1. Now, if k =2/ + 1 is odd, then

x% N +x3_1 = x’%/H_
Hence, x, € 2(Xy) and x, + (x} + -+ + x2) is strictly positive on X;\{0} but it cannot be
extended positively to Ry, a contradiction.

On the other hand, if k = 2/ = 4 is even, then

il S \/xF A X2 = |l S

Hence, x| + x2 € 2(Xy) and x; + x2 + (x} + - + x2) is strictly positive on Xp\{0} but it
cannot be extended positively to R, a contradiction.

Therefore, k = 2 and we deduce x7 + -+ +x2_| — x2 € #(Xy), which proves (a). [
Step 2. Consider Q ={q(f): fe #(Xo)} and C = {xe R" : g¢(x) =0Vq e Q}. We
claim that: C is the tangent cone to Xj.

Indeed, let L; be the tangent line to the curve germ X; fori =1,...,r. By 3.6, it is
r
clear that the tangent cone |J L; to X is contained in C.
i=1

r
Next, we check that C= J L;. Since xi+---+x2 | —x2€e #(Xo), we have
i=1
x} 44+ x2_, — x2 € Q. Hence, the set C, which is the zero set of a family of homoge-
neous equations, is the cone over C; = C n{x, = 1}. Let {p;} = L; n {x, = 1} be the in-
tersection point of the tangent line to X; o with the hyperplane x,, = 1.

Suppose that there exists a point pp e Cy = {x} + - +x2 , =1,x, =1} = S"2 dif-
ferent from py, ..., p,. After a linear change of coordinates that preserves S”~2 we may as-
sume that po = (1,0,...,0,1).

Note that x; = 1, x, = 1 defines the tangent affine subspace to S" 2 at the point
po=(1,0,...,0,1). Moreover, the function (1 —x;)(2+4 x;) is positive semidefinite
on S"2 and only vanishes at the point py. Let § >0 be small enough such that
f=(1-0—x1)(24 x;) is strictly positive at the points py,..., p,. However, note that

S (po) <0.

Therefore, f is not positive semidefinite on Cj, but it is strictly positive at the points
Pty pr. Thus, F = ((1 —6)x, — x1)(2x, 4+ x1) is a quadratic form strictly positive, out-
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side the origin, on the lines Li,...,L, through the origin determined by the points
pi1,- -, pr- Recall that the tangent cone to X is the union of these lines. Hence, by 3.7, F
defines a strictly positive analytic function germ on Xp\{0}. Since X, has the 26" prop-
erty, there exists an analytic function g € #(Xj) such that F + g is positive semidefinite on
Rg. Thus, q(F + g) = F + q(g) is a positive semidefinite quadratic form on R”. However,
since po € C we get

q(F +9g)(po) = F(po) +q(g9)(po) = F(po) <0,

.
a contradiction. Thus, C = |J L.
i=1

Remark. In the following step, we will perform new linear changes of coordinates,
that will transform the quadratic form x? + - -+ + x2 | — x2 € #(Xp) into a quadratic form
g of rank n and signature n — 1, as stated in (i). We point out here that the quadratic form
X+ +x2_; — x2 obtained in Step 1 has been used just to prove that C is the tangent

cone to X and will not be used any more along the proof.
Step 3. The tangent cone C to Xy is the union of s < r independent lines.

Let W be the vectorial subspace of R” generated by C and s = dim . We may as-
sume, after a new linear change of coordinates, that the tangent lines Ly, ..., L; generate W

(@)
and that L; is generated by the vector ¢; = (0,...,0,1,0,...,0) for 1 <i <.

Let Qo = {q(f)(x1,...,X5,0,...,0): f e #(Xo)}. We claim that: Q¢ is a vectorial
space of dimension d = s(s — 1)/2, hence, {x;x; : 1 £ j < k < s} is a basis of Q.

,
Assume this claim true for a moment. Since C = |J L; < W = {x;11 =0,...,x, =0}

i=1
and C is the zero set of Q, we deduce that C is the intersection of the zero set of Qy and W.

S
On the other hand, by the claim, such intersection is equal to |J L;. Hence, s = r and C is
i=1
the union of s independent lines, which proves statement (b). Thus, we turn to prove our
claim.

First, note that dimQy < s(s — 1)/2. Suppose that d =dimQ < s(s —1)/2 and
consider a basis {¢i,...,q4} of Q. Since each quadratic form ¢, vanishes on the lines
L; = L[e;], we deduce that the correspondent coefficients of ¢, to the monomials x7,.. ., x?
are all zero. Thus, we write

_ i
qr = AyXiXk
<k

for some /1/./',{ € R. For each 1 < j < k < s consider the linear form

d
‘
Ajk = /Zl jLjkﬂ/



Fernando, Positive extension property for real analytic sets 19

. . . -1 . .
in the variables x = (y,, ..., u,). Note that since d < s(s 5 ) the previous linear forms are
dependent. Thus, there exist 1 < jy < ko < s such that
Niko = 22 s
J<k,

(k) * (o, ko)
for certain o € R.

Next, foreach i = 1,...,r choose a vector v; that generates the tangent line L; to Xj o.
Consider the quadratic form

ﬁoko = Nz(zxko + szjo)xjo + Z sz

1=5j<s,

J=+Jo
for N, M > 1. Note that if M is large enough fjx,(v;) >0 fori=1,...,rand all N > 1.
Thus, by 3.7, the quadratic form fj, is strictly positive on Xo\{0}. Since X, has the 26"
property, there exists gy € #(Xo) such that Fjx, = fik, + g~ 18 positive semidefinite on
Rg. Thus, q(Fjk,) = fik, +9(gn) is a positive semidefinite quadratic form. Substituting
Xsr1 =0,...,x, =0, we deduce that

fiko +algn) (X1, -+, X,,0,...,0)

is a positive semidefinite quadratic form. Note that q(gn)(x1,...,X;,0,...,0) € Q. Hence,
there exists m = (my,...,my) € R such that

d
qlgn) (X1, ...y X5,0,...,0) = > 2myqy
/=1

and therefore

d d d
0= fioko + /Z:l 2meq, = f/'oko + /Zl 2my Y ijixjxk = /.[/oko +>22 <Z ml}"]i) X)Xk

Jj<k Jj<k /=1

= N2k, + MPx5,) x5, + 27 + >0 2A% (m)x;xi
il <k

is a positive semidefinite quadratic form. Let 4 = (ai); <; s <, be the real symmetric matrix
such that
X1
O(x1y. vy Xg) = (x1,...,x5)A4
Xs
Since Q is positive semidefinite, all the ordered 2 minors ajay — ajzk are =20 for
1 £j<kZs. Thus,
1 — Ay (m)? if jo+j<Kk,
0 < ajage — az, = N2M? — Aju(m)® if jo=j <k =+ ko,
N2M? — (N2 + Ao (m))* if j = jo and k = ko.
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Note that if (j,k) =+ (jo,ko), then Ajk(m)2 < N?M?; recall that N,M > 1. Hence, if
(J,k) % (Jjo, ko), we get that |Ajy(m)| < NM. Thus,

Ao ()| = >0 awAu(m) = 30 | [Au(m)| = PNM
J<k, J<k,
(J, ) # (o, ko) (J, /) =% (jos ko)
for P = > |ajx| € R. On the other hand,
J<k,

(J.k) = (jo, ko)

IN? + Ajk, (m)] Z IN?| = [y (m)| = N? — PNM > NM
if N > 1 is large enough. Therefore, for such N we have
0 < ajyjoaroky — a]%ko =N>’M?* - (N2 + Ajoko (m))2 <0,
a contradiction. Thus, d = s(s — 1)/2, as claimed. []
Step 4. If s = n, Xy is equivalent to the union of n independent lines.

We keep all the conditions obtained at the end of Step 3, even the same coordinate
system. Thus, by the previous step, we may assume that Q = Qy is generated by the qua-
dratic forms x;x; where 1 < j <k <n. Now, for each 1 < j <k <n there exists an
analytic series gj € #(Xo) whose initial form is x;xi, that is, g = xjxx + hy, where
hj € R{x1,...,x,} is an analytic series of order = 3. Thus, if m, denotes the maximal ideal
of R{x}, the vectorial space

m, + ¢ (Xo)/ (my ™ + 7(X0))

is generated by the vectors xj/ + (mf,"rl + 7 (Xo)) where 1 < j=<n; hence, it has
dimension < n for all / < 1. Therefore, the Hilbert-Samuel function of X,

HS(/) = kZ/Odim(m,’i + 7 (X0)/ (my ™ + 7(X0))),

which is equal to a polynomial HSP € Q[/] for / large enough, is < n/ + 1. Since X has
dimension 1, HSP is a polynomial of degree 1 whose principal coefficient is equal to the

multiplicity m(Xj). Since HSP(¢/) < n/ + 1, we deduce that > m(X; o) = m(Xo) < n (for
i=1

more details, see [JP], 4.2). On the other hand, since r = s =n and m(X; o) = 1, we also
have that

,
n<y m(X;o) =m(Xy) <n.
i=1

Hence, m(X)) = n, and this necessarily means that r = s = nand m(X; o) = 1 for1 <i < n.
Thus, each X; is a regular curve germ and the tangent lines are linearly independent.
Therefore, Xj is equivalent to the union of » independent lines, which proves (c). []
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Step 5. If s < n and the initial form q =1In(f) of a series f € #(Xo) is a positive
semidefinite quadratic form, then it is identically 0 on the vectorial subspace of R" generated
by the tangent cone to Xy and g = f — q € R{x\,...,x,} is an analytic series of order 3.

By 3.6, the quadratic form ¢ = In(f) is identically zero on the tangent cone to Xj.
Since ¢ is moreover a positive semidefinite quadratic form, its zero set is a vectorial sub-
space of R". Hence ¢ is identically 0 on the vectorial subspace of R"” generated by the tan-
gent cone to Xj.

Let us see now that g = f — ¢ is an analytic series of order 3. It is clear that g has
order = 3, and we have to show that it cannot have order = 4. If g has order = 4, by 3.3,
there exists M > 0 such that

2
gl S MP(x{ + -+ +x,)°.

Since ¢ is a nonzero positive semidefinite quadratic form, there exist nonzero linear forms
ai,...,a, such that ¢ = aj + - -- + a;. Hence,

jan| < Jaf +--+a2=Vlgl = Vgl £ M(x{ + -+ x7)

on Xy, because /' = g+ g€ #(Xy). Thus, a; + (M + 1)(x? + - - - + x2) is strictly positive on
Xo\{0} but cannot be extended positively to Ry, a contradiction. Hence, f* — ¢ has order 3,
and the statement (d)(i) is proved. []

Step 6. If s < n, there exists an analytic series f € ¢(Xo) whose initial form is a pos-
itive semidefinite quadratic form.

We keep the coordinate system fixed in Step 3. Let .%, be the set of all the symmetric
matrices of order n. Note that Q = {q(f) : f € #(Xp)} can be canonically embedded in .%,
as a vectorial subspace, identifying each quadratic form ¢ with its associated symmetric
matrix. Note that if 4 = (a;) € Q, then by 3.6 and the special coordinate system we have
fixed, we have a;; = 0,...,a, = 0. We consider the norm

Ill: % =R, A+ /z};afk
Js

on %, and the sphere S = {4 € %, : ||4|| = 1}. Note that if 4 € 9,\{0} then A/||4] € S.
Moreover, if ¢ = 4 € ,, then

lg(x)| < nllq|l <] forall x e R".

Indeed, if 4 = (a;;), then

n
D axixX;
=1

lg(x)] =

& 2 & 2 2
< 3 fayl b byl S 31 32 | < 1PV = gl 1
L]=

i,j=1
Next, consider the compact set

U=QnSc{a;=0,...,a,5 =0}
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If there exists ¢ € ! positive semidefinite we are done. Thus, we suppose that every
g € Wis a non definite quadratic form, and we will achieve a contradiction.

First, we claim that: For each q € W there exist ¢ > 0 and My > 0 such that if ¢’ € &,
M > My and ||q — q'|| < ¢, then Mq' + (X3 + - - + x2) is non definite.

Indeed, since ¢ €2l is a non definite quadratic form, there exist u = (uy,...,u,),
v = (v1,...,0,) € R" such that ¢(u) > 0 and ¢(v) < 0. Take

24 ... 2
me{\qw)r \q(v)\}>0 and a2 S

2 2
3n [l = [l

If ||¢g — ¢'|| < &and M > M, then

¢'() - (uf + -+ uf) Z q(u) +q' () = q(u) = q(u) — |g(u) — ¢'(u)]

M
> () — il — | Il > gl —
/()+i(2+ +02) < q'( R 2\ < lq(v)]
00+ 04 S0+ ) 20+
= ¢/(0) - T2 4 ) g) < 220 4 g) - )
< 219 4 nlg — ol < 242 4 e
< 2q3(v)+|q(3v)l :q(;) <0,

hence, Mq' + (x} + --- + x2) is a non definite quadratic form. The claim is proved.

Next, since U is compact, there exists M, > 0 such that for all ¢ € U and all M > M,
the quadratic form Mq + (x? + - -+ + x2) is non definite.

Consider now the quadratic form f = —2Mo(xZ | + -+ 4+ x2) + x{ + - - - + x2 which
is strictly positive over the vectors ey, ..., e,. Then, by 3.7, f is strictly positive on X,\{0}.
Since X, has the 26" property, there exist g € #(Xp) such that f + g is positive semidefin-
ite on R{. In particular, its initial form f 4 q(g) is a positive semidefinite quadratic form.
Note that ¢ = q(g) * 0.

Now, we distinguish two cases:
(i) If llg]l > Mo, then

do=q+xi el = gl
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is a non definite quadratic form, because ¢/[|¢]|e W= NS. Let ve R" such that
qo(v) < 0. Then

(f +a(9)(v) = f(v) + q(v) = =2Mo (v}, + -+ ;) + 1] + -+ 07 +4(v)

= —2Mo(v];y + -+ 0y) + qo(v) <O,
which is impossible, because f + q(g) is a positive semidefinite quadratic form.
(i) If ||¢q|| = My, we get that
(f +a(9)(es1) = fless1) +qlesst) S —2Mo + |q(es)] < —2Mo + [lgl] < —My <0,
a contradiction.

Therefore there exists a positive semidefinite quadratic form ¢ € U, and statement
(d)(ii) holds true. [J

As a nice application of the previous result we have the following:

Corollary 3.10. Let Xy < Ry be an analytic curve whose irreducible components are
all regular. The following assertions are equivalent:

(a) 2(Xo) = Z(Xo).

(b) Xo has the 2& property.

(¢) Xo has the & property.

(d) Xo is equivalent to a union of independent lines.

Proof. First, note that we may assume that the embedding dimension of Xj is equal
to n. Moreover, by [Sch], 3.9, statements (a) and (d) are equivalent. Note also that obvi-
ously, (a) implies (b) and (b) implies (c). Thus, it is enough to prove that (c) implies (d).

By 3.9 (b), the tangent cone to Xj is the union of s independent lines L, ..., L,. After
a linear change of coordinates, we may assume that L, ..., L, are respectively generated by
the vectors ey, ..., e, where e; = (0,...,0,1,0,...,0). If s = n, by 3.9 (c¢), X)) is equivalent to
a union of independent lines, and we are done.

If s<n, let us see that X, does not have the 2&% property. Indeed, write
Xo=Xi0uU---UX,o as the union of its irreducible components and f; =x; for
j=1,....n

Fix 1 <i < rand let o; be a primitive parametrization of X; o. Say that L; is the tan-

gent line to X; 9. We have that w(fjoo;) = 1 and w(f, o o;) = 2 (because j < n). Thus, the
function germ x, + ij2 is strictly positive on X; o for M > 0 large enough.
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Hence, the function germ x, + M (x? + - + x2) is strictly positive on Xp\{0} for
M > 0 large enough, but it cannot be extended positively to R;. Thus, X, does not have
the 267 property. [

Now, we are ready to prove 3.1.

Proof of Theorem 3.1. Again, by [Sch], 3.9, statements (a), (b) and (e) are equivalent.
Moreover, (b) implies (c) and (c) implies (d). Thus, it is enough to prove that (d) implies (e).

Indeed, let n < 3 be the embedding dimension of Xj. We distinguish several cases:
Case 1. If n =1 there is nothing to prove, since Xj is a straight-line.

Case?2. 1Ifn =2, by 3.9 (a), after an additional linear change of coordinates, we may
assume that (xy)R{x, y} = #(Xp). Thus, Xj is contained in the union of two transversal
lines. But since the embedding dimension of Xj is 2, we deduce that (X)) = (xy)R{x, y}
and X is the union of two transversal lines.

Case 3. Ifn =3, by 3.9 (b), the tangent cone to X is the union of s < 3 lines. By 3.9
(c), if s = 3, then X is equivalent to the union of three independent lines. Thus, we have to
show that s =3. []

3.11) If s =2, X, does not have the & property.

Proof.  We write Xo = Xj U ---U X, o as the union of its irreducible components.
After a linear change of coordinates, we may assume that the tangent cone to Xj is the
union of the lines y =0, z=0 and x =0, z = 0. By 3.9, there exist

g1 :xy—i—axz—i—byz—i—czz—i—hl, go zzz—l—hzej()(o)

where a,b,c € R and hy,h; € R{x, y,z} have order = 3. Let € R be a real number such
that the initial form of g; + ug» is a quadratic form of rank 3; we denote again by g; the
analytic series g; + ug». By classification of singularities ([JP], 9.2.12), we may assume that

gi=xy—22, gp=2>4+he (X

where h; € R{x, y,z} is an analytic series of order = 3. Note that the tangent cone to Xj
is still the union of the lines x =0, z=0 and y =0, z = 0. Let us see that /;(x,0,0) or
hy(0, y,0) are analytic series of order 3. Otherwise, we can write

ha(x, p,2) = zha1 (X, ¥, 2) + xyho(x, ¥) + x* o3 (x) + y*haa(y)
where hy; € R{x, y,z} for 1 < j <4, hy; has order = 2 and 5, has order = 1. Consider

92 = 92 — hngi = 2°(1 + hoa) + zho + x*hos + y*hog
3,

+ Xy + Yy — —2
X Np3 + Y N4 4(1—|—h22)

o\
= 1+ hyp + ——
(Z 2 2\/1+h22>
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Notice that since /;; has order = 2 and /£, has order = 1, then, after the change of coordi-
nates

2]
) ) 1 h ) ) )
(xyz +22+2 ﬁ_’_hzz)l—%xyz)

we deduce that the tangent cone to Xj is still the union of the lines x =0, z=0and y =0,
z =0, and g} = z% — hy, for certain analytic series iy € R{x, ,z} of order = 4. Thus, by 3.9
(d), Xy does not have the 26" property. Hence, we may assume that /;(x, 0, 0) has order 3,
and, in fact, that /;(x,0,0) = a®>x* + - - - for some a > 0.

Fix 1 <i <r and let o; be a primitive parametrization of the irreducible curve X; o.
We have that:

(a) If the tangent line to X;o is the line y=0, z=0, then using that
g1 = xy — z2 € #(Xo) we can write

(1) = (et®, et u? 154 u),

where u e R{t} is a unit, k,/ =1 are positive integers and ¢ = +1. Moreover, since
g2 = 2>+ hy € #(Xo), where h(x,0,0) = a®x* + - - - for some a > 0, we have

0=gyoou =t + ke’ (1),

where v € R{r} is a unit. Thus k = 2/ is even and ¢ = —1. Therefore, the function germ —x
is strictly positive on X; o\ {0}.

(b) If the tangent line to X;o is the line x=0, z=0, then using that
g1 = xy — z2 € #(X,) we can write

(1) = (et u? er* 5t u),

where u e R{t} is a unit, k,/ =1 are positive integers and ¢ = +1. Moreover, since
g2 =2+ e 7(Xp),

0=groua = (K22 4 Z3kaf(t),

where ¢ € R{t}. Thus, 2/ = k and the function germ —x + My? is strictly positive on
X:0\{0} for M > 0 large enough.

Hence, if M > 0 is large enough, then —x + My? is strictly positive on X;\ {0} but it
cannot be extended positively to [RS. Thus, X, does not have the 26" property. []

(3.12) Ifs =1, X, does not have the 2&* property.

Proof.  We write Xo = XjoU---U X, o as the union of its irreducible components.
After a linear change of coordinates, we may assume, by 3.9 (a), that y*> — xz e #(Xp).
After an additional linear change that keeps the equation y> — xz invariant, we may as-
sume that the tangent cone to Xj is the line y =0, z = 0.
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Fix 1 £i < r and let o; be a primitive parametrization of the irreducible component
X; 0. We may assume, after a reparametrization, that,

(1) = (et*, F u, et y?)

where u € R{¢} is a unit, e = +1 and k, / are positive integers. Note that all the previous
elements depend on i.

Now, by 3.9 (d), there exists an analytic series f € #(Xp) whose initial form is a non-
zero positive semidefinite quadratic form of rank p < 2 which vanishes on the line y = 0,
z=0. If p=2, by classification of singularities and 3.9 (d), we may assume (after a
new change of coordinates) that f = y? +z> — x3. Since y? +z?> = x3 on X,, we have
x e ?(Xy) and x + (x* + y? + z2) is strictly positive on Xp\{0} but it cannot be extended
positively to [RES. Thus, X, does not have the 26" property.

Hence, in what follows, we assume that p = 1 and, by 3.9 (d), there exists g € (X))
of the type

g=(ay+ bz)2 + aox® + a1x*y + arx’z + azxy?
+ a4xz2 + asxyz + aéyzz + a7z2y + agy3 + agz3 + h,

where a; € R and 1 € R{x, y,z} has order > 4. Using that y? — xz € #(X) we may assume
that as, ag, ag are 0, that is,

g=(ay+ bz)2 + aox® + a1x*y + arx*z + agxz® + asxyz + a;z*y + agz® + h,
where /1 € R{x, y,z} has order > 4. We have that g o o; = 0, that is
(%) (@t u + ber™ 1) + ager™ + aut™ + et R 4 ager
F asid Y 4 a9 4 ageuS RS 1 ke () = 0,
where &(7) € R{z}. We distinguish several cases:

(3.12.1) ap = 0. Then (from the equality (x)) we deduce that k is even and —aoe > 0.
Thus, the function germ —aox is strictly positive on X; o\{0}. Since this happens for all i,
we have —agx is strictly positive on X;\{0}. Hence, X, does not have the 26" property.

OJ

(3.12.2) a9 =0, a+0. Then, we deduce that /= k. Thus, the function germ
f = y+ Mx? is strictly positive on X; ¢\{0} for M > 0 large enough. Since this happens
for all 7, the function germ f is strictly positive on Xy\{0} for M > 0 large enough. Hence,
Xy does not have the 26" property. [

(3.12.3) ap =0,a=0. Then b + 0 and we may assume that b = 1. Thus, we have
(%) A Lt et} ager Y
asid Y 4 a4 ageuS T 4k e(r) = 0,

and we distinguish several subcases:



Fernando, Positive extension property for real analytic sets 27

(@) a1 +£0. Then 2k +4/ =3k + ¢ or 3k + ¢ = 4k. If 2k + 4/ = 3k + /, we have
k = 3/. Hence

o = (813/, *u, 8[5/142).

Moreover, since 2k + 4/ = 10/ < 12/ = 4k, we have —a;u(0) = u(0)* > 0. Thus, the func-
tion —a; y is strictly positive on X; o\{0}.

If 3k + ¢ = 4k then / = k, that is, / = k + j for an integer j = 0. Hence,
o = (e, 2w, e,
and the function —a;y + (|aju(0)| + 1)x? is strictly positive on X; o\{0}.

Thus, for M > 0 large enough, the function f = —ajy + Mx? is strictly positive on
Xo\{0}. Whence, X, does not have the 26" property.

(b) ag =0and ar 0. Then 2k +4/ =3k + 2/ or 3k + 2/ = 4k. If

2k + 44 =3k + 27,
we have k = 2/. Hence

20 3/ 47,2
)t ).

o = (et u, et u

Thus, the function z + (1 + u(0)%)x? is strictly positive on X; ¢\{0}.

If 3k + 2/ = 4k then 2/ = k, that is, 2/ = k + j for an integer j = 0. Hence,

%= (SZk, Zk+/ 2k+ju2),

u, et
and the function z + (1 + u(0)*)x? is strictly positive on X; o\ {0}.

Thus, for M > 0 large enough, the function f = z+ Mx? is strictly positive on
Xo\{0}. Hence, X, does not have the 2&" property.

(c) ai,ap =0and as 0. Then 2k +4/ =3k + 3/ or 2k + 4/ = 4k. If

2k +4¢ =3k + 3¢,
we have k = /. Hence,

o = (et*, %u, et u?).

Thus, the function z + x? is strictly positive on X; \{0}.

If 2k + 4¢ = 4k then 2/ = 2k, that is, 2/ = k + j for an integer j = 0. Hence,

k7 tk+/ 2k+ju2),

o = (et u, et

and the function z + (1 + u(O)z)x2 is strictly positive on X; o\{0}.
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Thus, for M > 0 large enough, the function f =z + Mx? is strictly positive on
Xo\{0}. Therefore, X does not have the 26" property.

(d) aj,az,as =0. Then 2k + 4/ = 4k and 2/ = k, that is, 2/ = k + j for an integer
j = 0. Hence,
k

ket 2kt uz)
7

o = (et™, 1", et

and the function z 4 (1 + u(0)%)x? is strictly positive on X; ¢\{0}.

Thus, for M > 0 large enough, the function f = z+ Mx? is strictly positive on
Xo\{0}. Therefore, X does not have the 26" property.

In this way, we conclude that if s = 1, X{ does not have the & property, as wanted.

OJ

4. Local results for dimension two

The purpose of this section is to prove 1.2. To make easier the proof of 1.6 that will
be done in the next section we prove the following slightly stronger result:

Theorem 4.1. Let Xy & RS be a real analytic germ. If Xy has the & property, then
Xo is one among the analytic germs of the List.

Proof. First, note that if X, has dimension 1 then, by 3.1, the germ Xj is an analytic
curve germ in the List. Thus, we assume that X, has dimension 2. We distinguish two cases:

Case 1. Xy has irreducible components of dimension 1.  We have to check that Xj is
equivalent to the union of a plane and a transversal line.

Since X, has the 2&™* property, by 3.5, (#(X,)) = 2. Let I (resp. J) be the ideal of
the union of the components of X of dimension 2 (resp. 1). Then #(X,) =1 nJ. More-
over, since the ideal 7 < R{x, y,z} has height 1, it is principal; and we write I = (p) with
9 € R{x, y,z}. One can check that #(Xy) =1-J; hence, 2 = (7 (X)) = o)+ w(J).
Thus, w(I) =w(J)=1 and we may assume that [ =(z) and J = (y,¥,) where
Y; e R{x,y,z} and 1 = w(;) < (). Let us see that we may assume that ¢, = x.

Otherwise, we can suppose that the initial form of s, is equal to z and, after an ana-

lytic change of coordinates, that y, = z + 2F(x, y) for certain analytic series F(x, y) € m3.

We have that #(Xo) = (z(z + 2F(x, y)),z,). Note that since
(z+2F(x,) = (2 + F(x, )" = FA(x, ) € #(X),
the following equality holds for Xj:
|2+ F(x, »)| = [F(x, y)l.

On the other hand, since w(F)=2, by 3.3, there exists ¢>0 such that
|F(x,y)| £ c2(x? + y?). Thus, we get that
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|24+ F(x,»)| = |[F(x, »)| £ (5 + %)

and the analytic function germ /g = (¢ + 1)*(x2 + y?) + F(x, y) + z is positive semidefinite
on Xy, hence h = hy + (x2 4 y2 4 z2)? is strictly positive on X,\{0}, but does not admit a
positive semidefinite extension to [Rg; impossible, because X, has the 26" property.

Thus, in what follows, we may assume that J = (x,,) where , € R{y, z} is a series
of order = 1. We are to prove that after a new change of coordinates y/,(y,z) = y, hence
J = (x, y), which means that X, is (equivalent to) the union of a plane and a trans-
versal line. To that end, we begin by proving that the curve germ Y, of Rg given by
Yo : 2y, (, z) = 0 has the 26" property.

Indeed, note that #(Yy) = (zy,)R{y,z}. Let f(»,z) € Z(Yy) be such that f is strictly
positive on Yo\ {0}. Then f(y,z) + x? is strictly positive on Xy\{0}. Since X, has the 2&*
property there exist analytic functions g € @(RS) and by, b, € R{x, y, z} such that

f(yaz) —|—X2 = g(x7 y,Z) +ZXbl(xa y,Z) +le2(y,z)b2(x, y)Z)'

Making x = 0 in the previous equation we get that

f(ya Z) = g(07 Vs Z) + Zlﬁz(y,Z)bz(O, y72)7
where ¢(0, y,z) € Z(R?). Thus, Yy = R has the 26" property.

Next, since w(i,) = 1, by 3.1, the germ Y is equivalent to the union of two trans-
versal lines. Hence, after a change of coordinates, we may assume that s, = y, and we are
done.

Case 2. Xy does not have irreducible components of dimension 1. If X, is reg-
ular, then X is equivalent to a plane, which belongs to the List. Thus, we may as-
sume that Xj is singular. Note that since X; does not have irreducible components of
dimension 1, the ideal #(X,) is principal. Since X, has the 2&" property and it is sin-
gular, by 3.5, a)(/ (XO)) = 2. Thus, after a change of coordinates, we may assume that
J(Xo) = (22 — F(x,y))R{x, y,z} for certain analytic series F € R{x, y} of order > 2.
Note that the ring ((Xp) is a free R{x, y}-module of rank 2 with basis {1,z}. By [Rz3],
4.3, we have

() 2(Xo)={f+29: f,9eR{x, v}, f € Z(F 2 0), /> — Fy* e 2(RY)},
where Z(F = 0) denotes the set of the analytic series of R{x, y} which are positive semi-
definite on the germ {F = 0}. In what follows, we obtain successive restrictions on the se-
ries F. To start with, we get rid of order = 4 series:

(4.2) First restriction. «(F) < 3.

Proof. Indeed, suppose w(F) = 4. By 3.3, there exists ¢ > 0 such that

IF(x, )] < A(x* + )%
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Now, we set & = c(x?> + y?). Thus, h and h*> — F are positive semidefinite, and from (e), we
have h + z € 2(X,); hence, we deduce that /1 + z + (x2 + y* + z2)? is strictly positive on
Xo\{0}, but does not admit a positive semidefinite extension to RJ. Consequently, Xo
does not have the 26" property. [

This completes the proof of (4.2), and we can assume henceforth w(F) < 3. Concern-
ing order 2 series we have:

(4.3) Second restriction. If w(F) =2, then Xy is equivalent to z*> —x>=0 or
22 — x? — yk =0 for some k = 2.

Proof. After a change of coordinates, we can suppose that the equation of Xj is
22— x> =0orof the type z2 +ex? — yX  withe =41,k = 2. If k =2, 22 + ex> — > =0 is
equivalent to z2 — x> — y? = 0. Now, we prove that ¢ must be —1 for k > 3. This is dis-
cussed as follows.

On the surface Xj : z2 + x? = y% k =2, we have |y*| = V22 + x2 = |x|. If k is even,
we deduce that x + y¥ is positive semidefinite on Xo, and & = x + y* 4+ (x2 + y2 4+ z2)¥
is strictly positive on X\{0}, but cannot be extended positively to R}. If k is odd,
we get that p**1 = |p**1| = |xy|. Thus y(x + y¥) is positive semidefinite on Xp, and
g = y(x+ y*) + (x2 + y? + z22)" is strictly positive on Xp\{0}. If g could be extended pos-
itively to Rj, there would exist an equation of the type

Zk)

g=G+ (22 +x*—y")a

for certain G € Z(R]) and a € R{x, y, z}. Looking at the initial forms we find a positive
semidefinite quadratic form ¢ and a constant ¢ € R such that yx = ¢ — ¢(x? + z?), which
implies that yx + cx? + cz? is positive semidefinite, a contradiction.

Finally, we exclude X : z2 + x> = p?**1 because the analytic series
v+ P+ 7+ 2
is strictly positive on Xp\{0} but cannot be extended positively to R3. []
Next we look at order 3 series and get:

(4.4) Third restriction. If w(F) = 3, then X is equivalent to one of the following:

{22 —xy— (=D =0 (k=3), 22—xY;
2-xX34x3=0, 2-xX—)»*=0 or 22—x} -y’ =0.

Proof. After a linear change, the initial form of F is x?y, x?y + y3 or x*. We study
two cases:

@4.1) If In(F)=x%* or x*y+y* then X, is equivalent either to
22— x%y — (—l)kyk =0 (k=3)orz>—x%y.

After a change of coordinates (classification of singularities), we can suppose that
F is one of the following power series: x2y, x%y + yk, k= 3. If F=x%y— (=1)"pk
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we show that there exists a strictly positive analytic function on X o\{0} (where
Xi0: 22 = x2y — (=1)*y* and k = 3) which cannot be extended positively to R.

Indeed, if k is even, we have z?>+ y¥=x?y. Thus, yeP(Xio) and
h=y+ (x> + y*+z?) is strictly positive on Xy ¢\{0}, but cannot be extended posi-
tively to R3. If k is odd, we have z2= (x>+ p*1)y. Thus, ye 2(Xio) and
h= )3/+ (x2 + y* + z?) is strictly positive on Xj o\{0}, but cannot be extended positively
to R;.

After this, we see that:

4.4.2) IfIn(F) = x3 then X, is equivalent to z> — x> + xy* = 0,22 — x> — y* =0 or
2-x3 -y =0

Changing x by —x if necessary, there exist a Weierstrass polynomial

P=x"+ (1)’ + p(3)y’x + ps(0)»* (pie R{y})

and a unit U € R{x, y} such that U(0,0) > 0 and F = PU. After the change of coordinates
(x,»,2) = (x = p1(»)»*/3, »,v/Uz), we can suppose that the equation of Xj is of the type
22 — F(x, y) where F(x,y) = x> +a(y)y*x + b(y)y* for some a,b € R{y}. After this pre-
paration we proceed in several steps:

(@) If w(a) = 1 and w(b) = 2 then X, does not have the & property.

We claim that: The analytic function germ x + cy? is positive semidefinite on X, for
¢ > 0 large enough. Thus, h = x + cy? 4+ (x> + y? + z2)* is strictly positive on X;\{0}, but
cannot be extended positively to [Rg.

Let us see now our claim. In view of the equality (e) above, we have to show that for
¢ > 0 large enough x + cy? € Z2(F = 0), that is, {x + ¢y?> = 0} > {F = 0}, or equivalently,
{x+cy? <0} = {F < 0}. Thus, we have to check that for a fixed ¢ > 0 large enough,
0 > F(—ct* —v,t) for v > 0. Indeed,

F(—ct®> —v,1) = (—ct? =) + a(t)(—er® — v) + b(0)1*

= 3% = 3c%0t* — 3er*v? — 0P — ca(t)® — va(0)t? + b(£)t*

= —¢° <c3 + c&;)—i—%) — ot <362 —i—@) — 3t — 0.

t
Since w(a) =1 and w(b) =2, the series a;(t) = a(t)/t and bi(t) = b(¢)/t* belong to

R{t}. Thus, if ¢>0 is such that ¢+ ca;(0)+b;(0) >0 and 3c¢?+a;(0) >0, then
F(—ct* —v,1) < 0 for v > 0, and we are done.

Next, we discuss the factorization of F = x* + a(y)y3x + b(y)y*:

(b) If F is the product of three (possibly equal) irreducible factors, then Xy does not
have the 2" property.
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Suppose F' = f} f> /3, where some or all the factors may coincide. Since the initial form
of Fis x3, we can write f; = x + A (x, y) where w(/;) = 2 and then

F=(x+4)x+ ) (x+ 1)
=+ X2 4 A+ A3) + x(Aida + Ay + Jads) + (Mdads)
=x"+a(y)y’x+b(y)y*.
From this equality we deduce that

b(»)y* = F(0,y) = 21(0, ¥)72(0, »)23(0, ) has order > 6,

oF oA
a()y ==—=0,7) = X 2(0,)4(0, ) 1+=2(0,y)) has order > 4.
0x 1<i<j<3, 0x
1<k<3,k=+i,j

Hence, w(a) = 1, w(b) = 2 and, by (4.4.2)(a), Xy does not have the 26" property.
(¢) If F is reducible, then F = x* — xy°>.

By the previous remark, F = fg and f, g must be irreducible, say o(f) = 2, w(g) =1
and we can suppose In(f) = x2, In(g) = x. If £ is semidefinite, it is a sum of two squares
with initial form x?. Choosing a suitable representation of f as a sum of two squares, we
can suppose f = (x + 4 (x, y))2 + (1o (x, y))2 and g = x + u5(x, y) with (g4 ) = 2. Thus,

F= (x+:ul(x7y) JriﬂZ(xay))(er:ul(x’y) - iﬂ2(xvy))(x+ﬂ3(xvy))'

Proceeding similarly to (4.4.2)(b) (we have again three irreducible factors although two of
them are complex) we are in the hypothesis of (4.4.2)(a) and X, does not have the 2&*

property.

Hence, if X, has the 26" property, f should be irreducible and real. Thus, we
can assume F = (x?— y*)(x+u(x,»)), k=3, o(u) =2. By the Weierstrass Pre-
paration Theorem there exist a series € R{y} and a unit U € R{x, y} such that
x+u(x,y) = (x+o<(y)y2) U(x, y). Changing x by —x (if necessary) we can suppose
U(0,0) > 0 and after a change (x, y,z) — (x, »,V U(x, y)z), the equation of our germ is

22— (2 = ) (x +a(y)y?).
For k = 4, F = x> + a(y)x?y? — ykx — y**2q(y). After the change
X x —a(y)y /3,
we are again in the conditions of (4.4.2)(a). Hence, X does not have the 26" property.

Finally, for k = 3 we get F = (x> — y*)(x + ---) and by classification of singularities

F is equivalent to x> — xy3.

(d) If F is irreducible, then F = x* + y* or x* + y°.

Suppose F irreducible. By classification of singularities we can transform F into
X3+ y* or F=x3+xp*a’(y)+ y°b'(p). Suppose first F = x3 4+ xy*a’(y) + y°b'(y). If
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b'(0) =0, by (4.4.2)(a), Xy does not have the 26" property. If b'(0) & 0 then another
change makes F = x* + y°.

For F = x3 — y* we see that X, does not have the 2&" property. Since z2 + y* = x3

we have that x € 2(Xj) and h = x + (x> + y* + z?) is strictly positive on Xp\{0}, but can-
not be extended positively to RS. O

Thus, we have proved (4.4.2). Summing up, (4.2) says that o(F) < 3, (4.3) that if
o(F) =2, the germ z> — F =0 is one among (viii)—(x) in the List, and (4.4) that if
o(F) = 3, the germ z2 — F = 0 is one among (v)—(vii) or (xi)—(xiii) in the List. All together
we conclude that an unmixed surface germ X, = R] with the 28" property belongs to the
List, as wanted. []

Thus, we conclude the following:

Corollary 4.5. Let Xy & RS be an analytic germ. Then the following assertions are
equivalent:

(a) 2(Xo) = Z2(Xo).

(b) 2(Xo) = Z(Xo).

(c) Xo has the 2& property.

(d) Xo has the & property.

Moreover, we recall that the Pythagoras number p[X,| of the ring of analytic function
germs (O(Xp) of an analytic germ Xj is the least integer p = 1 such that every sum of
squares of the ring (/(Xp) is a sum of p squares in such ring, or +oo if such integer does
not exist. In [Fed], 1.1, it is proved again that if X, < [RS is an unmixed surface analytic
germ with p[Xy] = 2, then X; belongs to the List. Thus, if we restrict our target to unmixed

analytic surface germs we deduce the following surprising result:

Corollary 4.6. Let Xo = R} be an unmixed analytic surface germ. Then the following
assertions are equivalent:

(@) plXo] =2.
(b) 2(Xo) = Z(Xo).
(c) Xo has the 2& property.

(d) Xy has the & property.

5. Non-isolated singular points

In this section we study what happens with respect to the 2 = X and & properties
around the one dimensional component of the singular set of a global analytic set X which
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has 2 = ¥ and/or the 26" property at the germs of all its points. Since we are working in
local embedding dimension < 3, the non-isolated singularities having such properties must
be equivalent to Xy = {yz = 0} = R} (see the List). This is because, as we have seen in 1.5
and 2.8, to have such properties globally, all the singularities have to be coherent. Related
to this, the main result of this section is the following:

Theorem 5.1. Let S be a real analytic surface in an open set Q < R". Suppose that for
all x e C = Sing(S) the germ S, is equivalent to Xy = {yz =0} = R}. Let f be a positive
semidefinite analytic function on S such that C < {f = 0}. Then, there exists an open neigh-
bourhood W of C in S, such that f is a sum of two squares in O(W).

To prove 5.1, we will need to use in a crucial way the normalization of a real analytic
set. We recall here, for the sake of the reader, its definition and some of its main properties:

Definition 5.2. Let (X, Ox) be a real analytic space (see [Tg] for the general theory
of real analytic spaces). A normalization of X is a pair (X, 0g),m), where (X, 0y ) is a real
normal analytic space and 7z : X — X is a surjective analytic map such that:

(a) m is proper and has finite fibers.
(b) X\z!(Sing(X)) is dense in X and the restriction
al: X\n! (Sing(X)) — X\Sing(X)
is an analytic diffeomorphism.

Recall that a real analytic space (X, Ox) is normal if for all x € X the local ring Oy
is integrally closed in its total ring of fractions. Note that we have to use real analytic
spaces to define the normalization because it can happen that the normalization of a real
analytic set is not again a real analytic set, although it is always a real analytic space. Nev-
ertheless, the only problem arises from the local embedding dimension of the normaliza-
tion, which can be +oco. Summing up [N], §VI. Lem. 2 and Thm. 4, and [Tg], §8, we get
that:

Theorem 5.3.  Let (X, Ox) be a real coherent reduced analytic space. Then (X, Ux) has
a coherent normalization, which is unique up to analytic equivalence, that is, if ((X,, (0}2), ni)
are_normalizations of (X,Ox) for i =1,2, then there exists an analytic diffeomorphism

¢ : X1 — Xp such that 1y = 7y o @.

Lemma 5.4. Let S be a real analytic surface in an open set Q < R" and let (3’, ) be
its normalization. Suppose that the germ S, is equivalent to Xy = {yz =0} < IRg for all
x € C = Sing(S). Then S is a smooth analytic surface and for all x e C there exist
y1, v2 € S and respective open neighbourhoods V', V2 of y1, v in S analytically diffeomor-
phic to a plane, such that

(i) =

(i) W*=n(V?)un(V?2) is an open neighbourhood of x in S analytically diffeo-
morphic to the union of two transversal planes.

v 2 VY — (V) is an analytic diffeomorphism for i = 1,2, and
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Proof. Take a point x € C. Since the germ S, is equivalent to Xy = {yz = 0} < R},
there exists a neighbourhood W* in S analytically diffeomorphic to the union of two
transversal planes. Note that 7|, i) : (Wx) — W* is the normalization of W*. On
the other hand, the normahzatlon of WY is the disjoint union of two planes. Hence,
by the unicity of the normalization (see 5.3), we have 7~ '(W?*) = V"' U V> where
n(y1) =n(y2) =x, V"' A V¥ =@ and V¥ is an open neighbourhood of y; in S analyti-
cally diffeomorphic to a plane. Moreover, 7|, : V' — n(V?) is an analytic diffeomor-
phism and W* = z(V") v n(V2).

Finally, since each point of S has an open neighbourhood analytically diffeomorphic
to a plane, we conclude that S is a smooth analytic surface, as wanted. [

Lemma 5.5. Let Xy = R® be the analytic surface germ of equation yz =0 and con-
sider the analytic germs X1 :y =0 and X :z=0. Let f; € O(X; ) be analytic function
germs for i = 1,2, which vanish on the line germ Cy:y =0, z=0. Then, the function germ
f:Xo—R given by fly.o = fifor i =1,2is analytic on Xo.

Proof. Indeed, note that
O(X10) = O(Xo)/(y) = R{x,z} and O(Xz0) = O(Xo)/(z) = R{x, y}.
Then, we may assume that
fieR{x,z} « R{x,y,z} and f,eR{x,y} < R{x,y,z}.

Moreover, since fi, fo vanish on the line germ Cy:y =0, z=0, we get f; =zg; and
f>» = vg» where g; € R{x,z} and ¢, € R{x, y}. Then, if f = fi + f> € R{x, y, z}, we have

g(X,O,Z) :fl(X,O,Z) —|—f2(X,O,Z) :ﬁ(X,Z) +0- g2(x70) :fl(xvz)a
g(x7 yao) :fl(xa y70) +f2(x7 yvo) =0 'Q](.X,O) +f2(x7 y) :fi(x,Z).
Therefore, gy, = fi = fly,, fori=1,2, and [ = g € O(X)), as wanted. []

Corollary 5.6. Let Sy, Sy be two transversal smooth analytic surfaces in an open set
QcR" Let S =S, 0S8, and let f; be an analytic function on S; such that fils, s, = 0 for
i =1,2. Then, the function f : S — R given by f|s = f; for i = 1,2 is analytic on S.

Proof. First, since S;, S, are transversal smooth analytic surfaces, C = S; NS is a
smooth analytic curve and that S, is equivalent to X : yz =0 for all x € C.

Next, note that we only have to check the analyticity of f in the points x € C. For
that, it is enough to check that the germ f, is analytic for all x € C; but, this follows
straightforwardly from 5.5, and we are done. []

Now, we are ready to prove 5.1:

Proof of Theorem 5.1. Indeed, let (S,7) be the normalization of S. By 5.4, Sisa
smooth analytic surface. For each compact connected component Sk of S we consider a
point x; € Sy\7 ' (C). We have that D = | J{x;} is a closed subset of S which does not in-

k



36 Fernando, Positive extension property for real analytic sets

tersect 7~ (C). Note that all the connected components of S\ D are non compact and that
W = S\n(D) is an open neighbourhood of C in S. Moreover, (S\D,7|g, ;) is the normal-
ization of W.

Consider the analytic function f o 7 : S\p — R. Since f is positive semidefinite on S,
we have that f o 7 is positive semidefinite on S\ D.

Thus, since all the connected components of the smooth analytic surface S‘\D are
non compact, by [Jwl], there exist two analytic functions fi, f5 : S’\D — R such that
fon=f+ f7 Note that since f|- =0, we have f o n|n,1(c) = 0. Therefore fi, f> are
identically zero on 7~!(C).

Consider for j = 1,2, the function

fion H(x) if xe W\C,

aj: W — R, x»—>aj(x)—{0 freC

Clearly, /' = a} + a3. Thus, to finish we must check that a;, a; are analytic on S. For that,
it is enough to prove that the functions «; are analytic around x, for all x € C.

Indeed, fix a point x € C. By 5.4, there exist two different points y;, y, € S\D such
that 7(y;) = n(y,) = x and respective open neighbourhoods V', V72 of y;, y, in S\D,
analytically diffeomorphic to a plane, such that for i = 1,2 the map

Al 2 VY — (V)
is an analytic diffeomorphism and W* = (V") Un(V”??) is an open neighbourhood of x
in W analytically diffeomorphic to the union of two transversal planes. Consider the ana-
lytic functions

by = fio (aly) (V) = R

onn(V7) for 1 <1i,j < 2. Clearly, bjon

i = filym for 1 <i,j < 2.

Since fi, f» are identically zero on n~!(C), the analytic functions b; vanish on
Cnr(V?) for 1 £i,j <2. Thus, by 5.6, there exist analytic functions by, b, € O(W?)
such that b;[, ) = bj for 1 < i, j <2. We have that

ajo |y, = filys = bjjonlyy = bjon|y,

and aj| ¢y = bjlcaw« =0for 1 <, j < 2. Thus, gj| . = b;is analyticon W~ for j = 1,2,
and we are done. []

We dedicate the second part of this section to determine the topology of a real
analytic surface S around a connected curve C < Sing(S) such that Sy is equivalent to
Xo={yz=0} c [Rig for all x € C. We recall that germs at any closed subset Z of a real
analytic set X are defined exactly as germs at a point, through neighbourhoods of Z in X.
If Y < X is a subset of X containing Z we denote by Y, the germ of Y at Z.
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(5.7) Topology of our surfaces around the non-isolated singular points. Lez S be a real
analytic surface and let C < Sing(S) be a connected curve C such that the germ Sy is equi-
valent to the germ Xy = {yz =0} < [RS for all x € C. Then, S is homeomorphic around C to
one of the following four surfaces:

(i) Two transversal planes. This is the case if C is non compact, that is, analyti-
cally diffeomorphic to a line. In particular, the germ Sc is reducible.

(i) Two transversal orientable bands, that is, the union of a cylinder and a
transversal circular crown. This is the case if C is compact (that is, analytically diffeomorphic
to a circumference), the germ Sc is reducible, and one of the irreducible components of Sc is
orientable. In particular, the other irreducible component is also orientable.

(i) Two transversal Moebius bands. This is the case if C is compact (that is,
analytically diffeomorphic to a circumference), the germ Sc is reducible, and one of the irre-
ducible components of Sc is non-orientable. In particular, the other irreducible component is
also non-orientable.

(iv) Singular Moebius band. This is the case if C is compact and the germ

Sc is irreducible. In this case Sc¢ is homeomorphic to the germ at the circumference
C: x>+ y?> =1, z =0 of the analytic surface S parametrized by the analytic map:

p:Rx <—%,%> — R,

(0,p) — (cos(20),sin(20),0) + p(cos(20) cosg , sin(20) cosg ,sin g)

The following table shows pictures of the previous surfaces:

(i) two transversal planes (i) two transversal orientable bands

(iii) two transversal Moebius bands
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Remark 5.8. Consider the Moebius band M parametrized by the map

11 ;
IPRX<—171> —>R,
0 0 0
(0,p) — (cos@,sin0,0) +p(cos€cos§,sin0cos§,sini);

and the map

2.2
M — R (x,y,z)|—>< r ) 2xy )

) i Z
Ve et
Then, (M, n) is the normalization of the singular Moebius band S described above.

Proof of 5.7. First, let (S,7) be the normalization of S. By 5.4, we deduce that
71y n!(C) — Cisa2:1 local diffeomorphism. We distinguish two cases:

Case 1. If C is non compact, that is, analytically diffeomorphic to a straight-line, then
7~ Y(C) is the disjoint union of two straight-lines and S is homeomorphic around C to two
transversal planes.

Indeed, since C is non compact and z|,i ¢, is a local diffeomorphism, each connected
component of 7~!(C) is non compact, hence, analytically diffeomorphic to a straigh-line.
Thus, if L is a connected component of 7~ !(C), the local diffeomorphism 7|, : L — C de-
fines a global diffeomorphism between L and n(L). Consequently, 7(L) is an open subset of
C. On the other hand, since =z is proper and L is closed (because it is an analytic subset of
S), we conclude that 7(L) = C. Thus, 7t|1(c) being a 2: 1 map, we conclude that n1(C) is
the disjoint union of two straight-lines L, L.

Next, since L;, L, are closed disjoint subsets of S, we can find disjoint open
neighbourhoods W; of L; in S which are moreover analytically diffeomorphic to a plane.
One can check that W = z(W; U W) is an open neighbourhood of C in W homeomorphic
to the union of two transversal planes. []

Case 2. If C is compact, that is, analytically diffeomorphic to a circumference, then
n~Y(C) is either a circumference or the disjoint union of two. In the first case, S is homeomor-
phic around C to a singular Moebius band, and in the second one, S is homeomorphic
around C either to two transversal orientable bands or to two transversal Moe-
bius bands.

Indeed, since C is compact and 7| (c) 1s proper, we deduce that each connected
component of z~'(C) is compact, hence, analytically diffeomorphic to a circumference.
Moreover, since 7|, 1 is a local diffeomorphism, the image under 7 of each connected
component of 77!(C) is the whole C. Thus, 7t|1(c) being a 2:1 map, we conclude that
7~ !(C) is either a circumference or the disjoint union of two. We distinguish both situations:

(5.8.1) If nY(C) is the disjoint union of two circumferences Ci, C, then S is
homeomorphic around C either to two transversal orientable bands or to two trans-
versal Moebius bands.
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Since Cy, C; are disjoint closed subsets of S, there exist disjoint open neighbourhoods
W; of C; in S which are moreover homeomorphic either to a cylinder or to a Moebius band.
Thus, it is enough to see that 1 is orientable if and only if W is orientable.

Indeed, assume that W) is orientable and fix an orientation in W;. Take x € C; we
know that x has a neighbourhood W~ analytically diffeomorphic to the union of two trans-
versal planes, say X = {yz =0} c R>. Let y : W¥ — X be such a diffeomorphism. We
may assume that yy maps W, n W~ on the plane {z =0} and W, n W~ on the plane
{y = 0}. We also assume that W) induces (through ) in {y = 0} the orientation given by
the basis {(1,0,0), (0,1,0)}. After this choice, we consider in W, n W~ the orientation in-
duced by ¥ and the basis {(1,0,0),(0,0,1)} on the plane {z = 0}. One can check that this
procedure determines an orientation in W,; and, W, is orientable. The converse follows
interchanging the roles of W, and W;.

Thus, W, u W, is homeomorphic either to two transversal oriented bands or to two
transversal Moebius bands. []

(5.8.2) If n71(C) = Cy is a circumference, then S is homeomorphic around C to a
singular Moebius band.

Indeed, let xo e C and y;, y, € Cy be such that zn(y;) = 7n(y2) = xo. Note that
L = C\{x¢} is an analytic curve in S\{xp} analytically diffeomorphic to a straight-line.
By the Case 1, L has an open neighbourhood in S\{x¢} analytically diffeomorphic to
the union of two transversal planes. Let W, W, be the irreducible components of such
open neighbourhood. On the other hand, since Sy, is analytically diffeomorphic to
Xo={yz=0} c RS, xo has an open neighbourhood in S analytically diffeomorphic to the
union of two transversal planes. We denote by D;, D, the irreducible components of such
neighbourhood. We shrink Wi, W, and Dy, D; in such a way that:

(i) V =n"Y(W, U W, U D; U D,) defines a neighbourhood of Cy in S homeomor-
phic either to a cylinder or to a Moebius band.

(i) ' (W) na t (W) =0if i + .
(iii) =~ '(W;) "=~ 1(D;) is a non-empty connected open set for 1 < i, j < 2.

(iv) W, D; are still analytically diffeomorphic to a plane.

S

7 (D,)
ORI 7 ()

k& 7' (Dy)
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Let p:{yz=0}cR>— Wy UW, and ¥ : {yz =0} < R* = D; U D, be analytic
difftomorphisms such that ¢({z =0}) = W), ¢({y =0}) = W>, Y({z=0})=D; and
Y({y = 0}) = D,. Consider the open sets:

Wi = p({z = 0,9 > 0}), =1,
Wi =o¢({y=0,ez>0}), ¢=1,
D} = y({z =0,5x > 0}), d=+,
D3 =y({y=0,0x>0}), =1,
D¥ =y({z=10,0x>0,ep >0}), =+, ¢=+,
DY =y({y=0,0x>0,ez>0}), d=+4,e=+

Up to shrinking the sets W, W,, if necessary, we can suppose moreover that for
¢ == and 6 = £ the set W' N Dj‘? is either empty or a subset of Df” for some p = +. We
may also assume, using the symmetries with respect to the planes y =0 and z = 0 in the
domain of ¥, that W? n D < D}* fori=1,2 and ¢ = +.

Consider the vectors e; = (1,0,0), e; = (0,1,0) and e3 = (0,0, 1) and the diagrams:

'Y
e; wy Dy e; Dy "
ffffff o——— — — — = = = —

Wy Dy~ 9 DrT

Since W n D; must contain a non empty open set, W;" n D5 < D5* for some ¢ = +.
If W|" nD; = Dy, we deduce, using the diagrams above that

WlerDz_ CD2_+, W, nD; = D;,

Wy nDy =«D;", W, nDj =D".
Otherwise, we have:

W) naDy «D,”, W;nD, cD;*,

wWynaDy =D, W, nDj =D .

Thus, W =zn(V) = W) u W, u D; U D, is homeomorphic to one of the two surfaces
given by the identifications:



Fernando, Positive extension property for real analytic sets 41

Using a suitable symmetry, one can check that both surfaces are homeomorphic,
and in fact, both are homeomorphic to a singular Moebius band. Finally, since W\C is
connected, we deduce that '\ Cy = n~!(W)\Cy is connected. Hence, V' is homeomorphic
to a Moebius band, as wanted. []

6. Global results

In this section we finally prove 1.6. The key result to prove it is the following:

Theorem 6.1. Let S be a real coherent analytic surface in an open set Q = R” such
that 2(Sy) = 2,(Sy) for all x € Sing(S). Suppose that any non-isolated singularity Sy of S
is equivalent to Xo = {yz = 0} = R}. Then, 2(S) = Z¢(S).

Remark 6.2. Note that if an analytic function germ g € O(S,) belongs to %,(S,),
then it can be written as g = a® + b*> = (a ++/—1b)(a — v/—1b) for certain analytic func-
tion germs a, b € ()(Sy). Hence, ¢ is reducible in the ring O(Sy) ®r C = ©(S,) of holomor-
phic function germs on the complexification Sy of Sy. [

Thus, the complexification of a real analytic set will play a crucial role for the
proof of 6.1. We recall here, for the sake of the reader, its definition and some of its main
properties.

Definition 6.3. Let X be a real analytic set in an open set Q = R". A complex-
ification X of X is a complex analytic set X in an open neighbourhood U of Q in C” such
that:

(i) X is a closed subset of X and X = X nR".

(ii) O(X,) = O(X,) ®C for all x € X.

Some of the most relevant properties of the complexification are summarized in the
following result ([Tg], §3, §4).

Theorem 6.4. Let X be a real coherent analytic set in an open set Q = R”". Then:

(a) Existence: There exists a complexification X of X.
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(b) Uniqueness: If X\ and X, are complexifications of X, then X\ n X, is a com-
plexification of X.

(c) X has in X a fundamental system of open neighbourhoods which are Stein spaces.

Consider the usual conjugation o : C" — C", z — Z = (77,. .., Z,), whose fixed points
are R". A subset A = C" is (o-)invariant if o(A) = A; obviously, A na(A4) is the biggest in-
variant subset of A. The restriction of ¢ to an invariant complexification X of a real ana-
lytic set X defines an involution in X whose fixed set is X. Let F : X — C be a holomorphic
function. We say that F is (g-)invariant if F(z) = F o o(z) for all z € X. This implies that F
restricts to a real analytic function on X.

Now, we are ready to prove 6.1.

Proof of Theorem 6.1. Let f € 2(S) be a positive semidefinite analytic function on
S. We have to check that f is a sum of 6 squares of analytic functions on S. The proof of
this fact runs in several steps:

Step 1. Initial preparation.

First of all, let {C;},; be the irreducible components of dimension 1 of Sing(S). By
the hypothesis about the non-isolated singular points of S, each C; is a connected smooth
analytic curve.

Let S; be the union of the global irreducible components of S over which f is not
identically 0 and S, the union of those over which f is identically 0. Note that S;, S, are
closed subsets of S whose union is S and whose intersection is an analytic subset of Sing(S)
which necessarily has dimension < 1.

Next, we write

1 0)yns;=bD;u J iuJG
keK iel
as the union of its irreducible components, where I < J, D is a discrete set and each Yy is
an irreducible analytic curve not contained in Sing(S). [

Step 2. Study of the behaviour of f around the regular points of the one dimensional
part of its zero set.

Write Y = J Y. There exists a discrete set D, — Y satisfying the following prop-
keK
erty: For each k € K, there exist an analytic function hy : S — R and a positive integer

my = 1 such that for all x € Y;\D, the curve germ Y = Y} . is regular, the surface germ
S is regular, #y . = hUs  and f.Os . = h,fm" Os, .

Indeed, fix k € K and choose any regular point a € Y; off Sing(S). By Cartan’s
Theorem A, the ideal ¢y, , is generated by finitely many global analytic functions
fi,..., fr € O(S) which vanish on Y}, and at least one of the germs f; , does not belong to
2 %a. Say this is true for i = 1 and write A = fi. Since a is a regular point of Yj, we have
that hy,a generates Jy . In fact, since Yj is coherent, because it is a curve, /i  generates
Hy,  for all x e Yy close enough to a. Now, consider the coherent sheaf of ideals
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fx = (hk,x(QS,x : fYk,x)7 X € S,

and notice that .7, = U  if and only if & , generates ¢y, . Hence, the support
supp(Us/.#) = {x € Yj : hy  does not generate 7y, ,}

is a closed analytic set Y} that does not contain Y. As Y is an irreducible curve,
Ei = Y, n Y} is a discrete subset of Yj. Thus, / . generates # v, forall xe Y\ E). Con-
sider the discrete subset

E; = E; U Sing(Y;) U (Sing(X) n Yi) u U (Y2 Yy)
a*k
of Yj. For each x € Y\ Ex we have that Y, = Y} . is a regular curve germ, /i , generates
Ly, .= Sy, and S, is a regular surface germ.

Next, take a regular point b € Y;\E;. We have that f, = vyh’, for some integer
ap = 1 and an analytic germ v, ¢ #y, 5. Thus, since Yj has only one branch at b (because
it is a regular point of Y%), we deduce that v(x) % 0 for x close to b and v, is a unit for such
x’s. Consequently, for x = b close enough to b we have

e lfe and  filh.

Now, we consider the coherent sheaf of ideals 5# of (/s given by

He= (b o f) o (fei k), xeS.
The support
supp(Os/H) = {x e X : b}" ¥ fxor fe X R’}

is an analytic set Y}’ that does not contain Y}, hence E;' = Y; n Y} is a discrete subset of
Y. If x € Vi \(E[ U E]), then f, = h,ff’xvx for certain unit v, € Us ,; since f, is a positive
semidefinite analytic function we have moreover that o, = 2my is even.

Since { Yi }; . ¢ is a locally finite family of closed subsets of S and the set E; U E}' is a

discrete subset of Y} for all k € K, we deduce that D, = |J (E, U E}') is a discrete subset of
keK
S. Moreover, note that D, has the desired property. []

Step 3. Construction of a coherent sheaf which represents f locally as a sum of two
squares.

Consider the analytic set C = |J C; and the discrete set D = D; U (D,\C). Let S, ¥
~ iel
and C be respective complexifications of S, ¥ and C (which exist because S, Y and C are
real coherent analytic sets) such that ¥ and C are closed subsets of S and f can be ex-

tended holomorphically to a function F : S — C.

Next, we write D = {x,},.;. Foreach /e L, let " < S be an open neighbourhood
of x; in S such that Clg(V*)nC =0 for all /€ L, and {Clg(V*)},., is a locally finite
family of disjoint closed sets in S.
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Moreover, for each / € L we have 2(S,,) = 2,(Sy,). Thus, there exist analytic func-
tion germs a, ,,b; x, € Us x, such that f, =a; +b; . Shrinking V¥, if necessary, we
may assume that there exist holomorphic functions 4,, B, : V** — C such that the analytic
functions A/|j ., g and By|, ., ¢ define respectively at x, the germs a, ,, and b, ,,. Note

that F. = A%Z +B; _forallze V.

By 5.1, there exist an open neighbourhood W < S of C in S and two analytic func-
tions g1, g2 : W — R such that f],, = g + g5. Choose an open neighbourhood ¥ of C in
S on which ¢, ¢» extend to holomorphic functions G, G». We may assume, after reducing
the open set Vj if necessary, that Clg(V*) n Clg(Vy) =0 for all / € L.

For each k € K, let V}, be a neighbourhood of Y in S on which we can extend /i to a
holomorphic function Hy : V; — C. For each x € Y\ D, we consider an open neighbour-
hood V* = Reg(S)\(Du C) < V. of x in S such that:

i) F'O)nV =YV~

(i) Y. is a regular complex curve germ forallze V¥ Y.
(iii) Hy, . generates #y _ for all ze V™.

(iv) F.05 . = H,f_”?@gj forall ze V™.

Next, since for each x € $;\S) the function f is identically 0 around x, there exists an
open neighbourhood V7 of $;\S; in S such that F|, = 0.

Consider the open neighbourhood

V=_S\F'0)ururnuvyrv v U v
/el xeY\D,
of S in S. We consider an invariant complexification of S contained in * which is more-
over a Stein space. To simplify notation we denote again by S such complexification. Let o
be the involution of S induced by the complex conjugation of C”.

We denote again by V¥, Vy, Vi, V> and V] the intersections of such open sets with S
and by A,, B, Hy, G, G, the restrictions of such holomorphic functions to the respective
open set V™, V; or ¥V where they are defined. We also denote ¥ and C the intersections of
such sets with S, and by F the restriction of F to S.

Next, consider the subsheaf of ideals .7 of ()5 given by

(Ar:+V—=1B; )05 if ze V¥ and /€L,

H127§(9S,z if ze V¥, xe Y \D; and k € K,
7= (G- +V=1Gy)0s . if ze V5,

(0) if ze 11,

Us.. if ze S\F~'(0).

Let us see that 7 is a well-defined coherent sheaf on the Stein space S.
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Indeed, consider the open covering
R -1 2 b
V:{S\F (0)7V07VI}U{VW}ZELU{VY},\'EY\DQ

of S. For each open set U € 7, there exists a holomorphic function Wy : U — C such that
F|y =YyYyooand 7|, = YyUs|,. Next, take z € S. We distinguish several cases:

(a) If F(z) # 0, we have (#|), = Ug _ forall U e 7" such that ze U.

(b) If F(z) =0 and z € 1, then (#|), = (0) for all U € #" such that z € U.

(c) If F(z) = 0 and z ¢ ] we proceed as follows. By the construction of the open cov-
ering 7", we just have to consider the case when z e V* n U where x € Y;\D, for some

k € K, and U is another open set of #". Let us see that in such case (#|,..), = (F|).-

ys). = H"Og . and (F|y), = Vv :0s .. Thus, we have to check

We have that (7

that
Hl:zl;(OSZ = lPZ(OS,Z'
Recall that by the choice of ¥~ we have that Y. is a regular complex curve germ, S. is a
regular complex surface germ, ¢y . = H; .05 . and H, ,f"z“ Os . = F.0g .. In particular, there
exists an integer / = 0 and an analytic germ G. € O \ Jy . such that V. = H,g _G,. Thus,
Y. o0 = H/_.G. o0, and therefore
H"™ g . = F.05 . = (¥-¥. 00)0s . = (H.G.G. 0 0) s _.

Hence, since (s , is a unique factorization domain (because S. is a regular germ), / = my
and G; € (s _ is a unit. Therefore, we deduce that ¥.0s . = H,"* (s _, as wanted. []J

Step 4. Representation of f as a sum of six squares in (9(5‘).

Now, since S is a Stein space of dimension 2 we have by [Co] that there exist global
sections Fi, F», F5 : S — C which generate % . Consider the holomorphic invariant function

F/:F1F100'+F2F200+F3F300'.

We have that F’ restricts to S to a real analytic function f’ which is a sum of six squares in
O(S). Moreover, we get that F/0g = = F,Og  for all xe S.

Indeed, fix x € S. By the construction of #, there exists a holomorphic function germ
Y, e (DS . such that F, =¥, Y.ooand Z, = ¥, (s .. Thus, there exist holomorphic func-
tion germs @y , P, , ®3 € O5 , such that F; , = ‘P +®@; « for 2 =1,2,3. Moreover, since
Ty = (F1x, P2 5, F3,) 05 ., we may assume that @, , is a unit. Hence

3 3
F‘; = Z F/’,XF/,X 00 = (lPx\PY o O-)Z q)/,xq)/,x 00 = Exux
/=1 /=1

3
where u, = > @, D (oo € O, is a unit. Thus, F{Og5 . = F.(O5  forall xe S.
/=1 - '
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Now, since /" and f’ are positive semidefinite analytic functions and f,Us , = f/CUs ,
there exist an open neighbourhood Q; of S} in S and a strictly positive semidefinite analytic
function u : Q) — R such that f|o = f'|g, u®>. Thus, f is a sum of six squares of analytic
functions on Q;. Let ay,...,as € O(Q)) be such that

f|QI:a12—|—~-~+a§.

Since f1s, =0, each g; is identically 0 on S; N Q;. Hence, we can extend analytically each
a; by 0 to the whole S. Therefore f is a sum of six squares of analytic functions on S, and
we are done. []

Now, we are ready to prove 1.6:

Proof of Theorem 1.6. First, it is clear that (a) implies (b), and (b) implies (c). Next,
let us check that (c) implies (d). Indeed, suppose (c) holds. By 2.5, for all x € X the germ X
has the 26" property. Hence, by 4.1, all the germs X, belong to the List. Moreover, by 2.8
(b), none of the germs X, can be equivalent to Whitney’s umbrella singularity because oth-

erwise X does not have the 24 property. Thus, we deduce that each germ X, is coherent,
and (d) holds.

Finally, by 4.5, [ABFR2], 1.1, and 6.1 we have that (d) implies (a), and we are done.
O

We finish this section with a collection of examples of analytic surfaces X, of
embedding dimension » + 1, which have 2 = .

Examples 6.5. The Veronese cone X, R n>2 (cone over the rational normal
curve) is the analytic surface given by the equations

Fj=xixj —xi-1x,1 =0, 1=5isj=sn—1,

and whose complexification in C” is parametrized by y(z, w) = (2", 2" tw,... zw" 1 w")
(see [Ha]). It can be proved that X, is a coherent surface and that Sing(X,)= {0}
Note that the surface germ X, o has embedding dimension n+ 1. We also have that
P(Xno0) =Zo(Xno) for all n =2 (see [Fed|, 4.1). Hence, by 6.1, we deduce that
P(X,) =2(X,) foralln = 2.

bl

7. Conjectures and open questions

For higher local embedding dimension the situation is quite more delicate and we
have not achieved concluding results. The most remarkable are those referring to analytic
curve germs developed in Section 3 (see 3.2, 3.9 and 3.10). In view of such results, we con-
sider that the predictable behaviour about the # = X and 2¢& properties for analytic curves
can be summarized in the following two conjectures:

Conjecture 7.1. Let Xy = R" be an analytic curve germ. The following assertions are
equivalent:
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(a) 2(Xo) = Z(Xo).
(b) Xo is equivalent to a union of r < n independent lines through the origin.
(c) Xo has the P& property.
(d) Xy has the & property.

Conjecture 7.2. Let C be an analytic curve in an open set Q = R". The following as-
sertions are equivalent:

(@) 2(C) = £(C).

(b) 2(Cy) = XZ(Cy) for each x € C.

(c) Cx is equivalent to a union of independent lines through the origin for each x € C.
(d) C has the & property.

(e) Cx has the & property for each x € C.

(f) Cy has the 28" property for each x € C.

Notice that both conjectures are true for local embedding dimension n < 3 (see 3.1,
[Sch], 3.9, [ABFR2], 1.1, and 1.6). Moreover,

(i) Conjecture 7.1 holds, by 3.10, for analytic germs X, < R;j which have only non-
singular branches, and therefore

(i) Conjecture 7.2 holds for analytic curves X < R" whose irreducible components
are all regular curves.

With respect to Conjecture 7.1 we have, by [Sch], 3.9, that the assertions (a) and (b)
are equivalent. Also, (a) implies (c) and (c) implies (d). Thus, to prove 7.1 it would be
enough to prove that (d) implies (b).

Furthermore, as it is proved in [ABFR2], 1.1, the assertions (a), (b) and (c) in Conjec-
ture 7.2 are equivalent. Moreover, (a) implies (d), (b) implies (e), () implies (f) and by 2.5
also (d) implies (f). In fact, note that if Conjecture 7.1 is true, then (f) will imply (c) and
Conjecture 7.2 will hold. In general, every local situation on which 7.1 holds, gives us a
global situation on which 7.2 holds.

Remark 7.3. The suitable strategy to prove that (d) implies (b) in Conjecture 7.1
could be to improve 3.9. In view of the proof of 3.1, we need to compute enough terms of
primitive parametrizations of all the irreducible components of the germ Xy, which has the
P& property. For that, we just use certain function germs that must be necessarily in the
ideal #(Xp). However, such function germs maybe do not generate #(Xj). As we have seen
in 3.1, the discussion is already too cumbersome for embedding dimension #» = 3, hence, it
seems extremely difficult forn = 4. [
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We finish here with several questions that arise naturally from the results we have
presented in this work:

(7.4) Open questions. (1) Does Conjectures 7.1 and/or 7.2 hold true?

(2) Is the 2& property hereditary? That is, if the & property holds for a real ana-
Iytic set X, does it also hold for the germs at all its points?

(3) Are 2 =X and 2& equivalent properties for a global analytic set of
dimension < 2 and local embedding dimension = 4?

(4) As we have seen in 1.5 the 2 = X property for a global analytic set X is heredi-
tary and implies the coherence of X and that dim X < 2. The questions now are if the fol-
lowing statements hold true:

(A) A global analytic surface S in an open set Q < R" has 2 =X if and only if S is
coherent and P = X holds for the germs at all its points.

Referring to this, in 6.1 we have proved that a real coherent analytic surface S such
that 2(S,) = 2,(Sy) for all x € Sing(S) and any non-isolated singularity Sy of S is equiva-
lent to Xy = {yz =0} = R}, has 2 = X. Note that in the proof of 6.1, both hypotheses
about the singular points, which are always true for local embedding dimension < 3, play
a crucial role.

However, for embedding dimension = 4 we do not even know if 2(X)) = Z,(X))
holds always true for a singularity X, with 2 = . Moreover, we neither know which are
the non-isolated singularities with 2 = X.

(B) A global analytic set X in an open set Q = R" has the & property if and only if X
is coherent and the P& property holds for the germs at all its points.
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