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Abstract. In this work we study the Positive Extension ðPEÞ property and Hilbert’s
17th problem for real analytic germs and sets. A real analytic germ X0 of Rn

0 has the PE
property if every positive semidefinite analytic function germ on X0 has a positive semi-
definite analytic extension to Rn

0; analogously one states the PE property for a global real
analytic set X in an open set W of Rn. These PE properties are natural variations of Hil-
bert’s 17th problem. Here, we prove that: (1) A real analytic germ X0 kR3

0 has the PE
property if and only if every positive semidefinite analytic function germ on X0 is a sum
of squares of analytic function germs on X0; and (2) a global real analytic set X of
dimensione 2 and local embedding dimensione 3 has the PE property if and only if it
is coherent and all its germs have the PE property. If that is the case, every positive semi-
definite analytic function on X is a sum of squares of analytic functions on X . Moreover,
we classify the singularities with the PE property.

1. Introduction and statement of the main results

In the study of positive semidefinite functions and sums of squares one main prob-
lem is whether or not every positive semidefinite function is a sum of squares of functions
of the same class. As is well known, the interest on these questions comes from Hilbert’s
17th problem, and has been one streamline of research in real algebra and geometry.
The history of the topic is long and rich, and we refer the reader to [BCR], [ChDLR] and
[Sch]. In the relevant case of analytic functions, we refer to [BKS], [Rz1] and [Jw2] for clas-
sical results, and for more recent progress, to [ADR], [ABFR1], [Fe5], [ABFR2] and
[ABFR3].

In the analytic setting, there are always two complementary viewpoints: (a) the local
one, germs, which involves real algebra and real spectra in essential ways; and (b) the global
one, sets, for which complex classical analysis ([GuRo]) and Cartan’s Theorems A and B
([Ca]) play a crucial role.

*) Author supported by Spanish GAAR MTM2005-02865 and GAAR Grupos UCM 910444.



Local approach.

(1.1) Analytic germs. We recall some notation and terminology. Let X0 HRn
0 be

a real analytic (set) germ (at the origin of Rn, to simplify notations); we denote by OðX0Þ
the ring of germs of analytic functions on X0. For instance, OðRn

0Þ is the ring Rfxg of
convergent power series in the variables x ¼ ðx1; . . . ; xnÞ. As X0 HRn

0, we have
OðX0Þ ¼ Rfxg=JðX0Þ, where JðX0Þ is the ideal of all analytic function germs vanishing
on X0. The embedding dimension of X0 is the minimum number of generators of the maxi-
mal ideal of the local ring OðX0Þ. A germ f0 A OðX0Þ is positive semidefinite if it is f 0 on
X0; and PðX0Þ is the set of all positive semidefinite analytic function germs on X0. We de-
note by SðX0Þ (resp. SpðX0Þ) the set of all sums of (resp. p) squares of elements of OðX0Þ.
Recall also that an analytic germ X0 is unmixed if all its irreducible components have the
same dimension and it is mixed otherwise.

Clearly, SðX0ÞHPðX0Þ and the question, commonly known as Hilbert’s 17th
problem for the analytic ring OðX0Þ, consists of determining whether the equality
PðX0Þ ¼ SðX0Þ holds. If PðX0Þ ¼ SðX0Þ for a germ X0, we will say that X0 has P ¼ S. Re-
ferring to this, in [Fe3] we proved that if PðX0Þ ¼ SðX0Þ, then dim X0 e 2. Moreover, in
[Sch], 3.9, the author characterizes the 1-dimensional analytic germs for which P ¼ S;
and, in [Fe2] we determined the full list of all the analytic surface germs X0 of R3

0 with
P ¼ S. Notice also that if we consider meromorphic instead of analytic function germs,
P ¼ S holds always true, see [ABR], VIII.2.9.

On the other hand, recall that the analytic function germs on an analytic germ X0

of Rn
0 are the restrictions of the analytic function germs of Rn

0 . Thus, it could be
PðX0Þ3SðX0Þ because there exist positive semidefinite analytic function germs on Rn

0

which are not sums of squares in OðRn
0Þ. Hence, to avoid this disturbance we look at a

more general property. Namely, an analytic germ X0 HRn
0 has the Positive Extension

ðPEÞ property, if the following assertion holds true:

Local PE property. Every positive semidefinite analytic function germ f0 on X0 is
the restriction to X0 of a positive semidefinite analytic function germ on Rn

0.

In relation with this, see [BP], §5. Although the PE property actually refers to the em-
bedding X0 HRn

0, it is in fact intrinsic and does not depend on how the analytic germ is em-
bedded in the Euclidean space. On the other hand, clearly P ¼ S implies PE, hence what
matters is the converse. Now, for dimension d f 3 it is easy to find analytic germs with the
PE property, for which P3S ([Fe3]). An immediate example is X0 ¼ R3

0;R
4
0; . . . , but

there are also singular examples. For instance, X0 ¼ fxdþ1 ¼ 0gW fx1 ¼ � � � ¼ xd ¼ 0g in
Rdþ1

0 for d f 3. Thus, the interesting dimensions are 1 and 2. Our main result concerning
this is the following:

Theorem 1.2. Let X0 kR3
0 be a real analytic germ. If X0 has the PE property, then

X0 is (equivalent to) one among:

Curve germs of R3
0 with the PE property

(i) x ¼ 0, y ¼ 0 (a line)

(ii) xy ¼ 0, z ¼ 0 (two tranversal lines)

(iii) xy ¼ 0, xz ¼ 0, yz ¼ 0 (three independent lines)
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Unmixed surface germs of R3
0 with the PE property

(iv) z ¼ 0 (plane)

(v) z2 � x3 � y5 ¼ 0 (Brieskorn’s singularity)

(vi) z2 � x3 � xy3 ¼ 0

(vii) z2 � x3 � y4 ¼ 0

(viii) z2 � x2 ¼ 0 (two transversal planes)

(ix) z2 � x2 � y2 ¼ 0 (cone)

(x) z2 � x2 � yk ¼ 0, k f 3 (deformations of two planes)

(xi) z2 � x2y ¼ 0 (Whitney’s umbrella) (non-coherent)

(xii) z2 � x2y þ y3 ¼ 0

(xiii) z2 � x2y � ð�1Þk
yk ¼ 0, k f 4 (deformations of Whitney’s umbrella)

Mixed surface germs of R3
0 with the PE property

(xiv) zx ¼ 0, zy ¼ 0 (union of a plane and a transversal line)

In what follows, this table of analytic germs will be called the List.

As we have pointed out above the analytic germs X0 HR3
0 with P ¼ S have been al-

ready characterized. More precisely:

(1) In [Sch], 3.9, the author determines the analytic curves germs X0 HRn for which
P ¼ S and proves that it is enough one square to represent a positive semidefinite analytic
function on such an X0. For n ¼ 3, the curve germs with P ¼ S are those in the List.

(2) In [Rz3], it is proved that if an unmixed analytic surface germ X0 HR3
0 has

PðX0Þ ¼ S2ðX0Þ, then it is (equivalent to) one of the germs in the List. Using this, in [Fe2]
and [FR] it is shown that an unmixed analytic surface germ X0 HR3

0 has P ¼ S, and in fact
P ¼ S2, if and only if X0 belongs to the List.

(3) Finally, by [Fe4], 3.1, a mixed analytic surface germ with P ¼ S, and in fact with
the P ¼ S2 property, is the union of a plane and a tranversal line.

Putting all together we conclude the following:

Theorem 1.3. Let X0 kR3
0 be a real analytic germ. Then the following assertions are

equivalent:

(a) PðX0Þ ¼ S2ðX0Þ.

(b) PðX0Þ ¼ SðX0Þ.

(c) X0 has the PE property.

(d) X0 belongs to the List.
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Global approach.

(1.4) Global analytic sets. Let WHRn be an open set and OW the (coherent) sheaf of
analytic function germs on W. We denote by OðWÞ ¼ H 0ðW;OWÞ the ring of global analytic
functions on W. A set X HW is global analytic, if there exist global analytic functions
f1; . . . ; fr : W ! R such that X ¼ f f1 ¼ 0; . . . ; fr ¼ 0g, or equivalently, if X is the zero set
of a coherent sheaf of ideals on W ([Ca]). For such sets we consider the coherent sheaf
of ideals JX ¼ JðXÞOW, generated by the ideal JðX ÞHOðWÞ of all global analytic func-
tions on W vanishing on X . This sheaf JX is the biggest coherent sheaf of ideals with zero
set X (see [Ca]). But JX may well be smaller than the sheaf of function germs vanishing
on X . When both sheafs are equal, that is, JX ;x ¼ JðXxÞ for all x A X , the set X is called
coherent.

In any case, OX ¼ OW=JX is the sheaf of global analytic function germs on X and
OðXÞ ¼ H 0ðX ;OX Þ ¼ OðWÞ=JðX Þ is the ring of global analytic functions on X . A positive

semidefinite (global ) analytic function on X is an element f A OðX Þ such that f ðxÞf 0 for
all x A X . We denote by PðX Þ the set of all the analytic functions which are positive semi-
definite on X and by SðXÞ (resp. SpðXÞ) the set of all sums of (resp. p) squares of the
ring OðXÞ. Similarly to the local case, we will say that X has P ¼ S if the equality
PðX Þ ¼ SðXÞ holds. Moreover, X has the Positive Extension (PE) property, if the follow-
ing assertion holds true:

Global PE property. Every positive semidefinite analytic function f on X is the re-
striction to X of a positive semidefinite analytic function on W.

Again, if P ¼ S for X , then X has the PE property and what matters is the converse.
First of all, we prove:

Theorem 1.5. Let X be a global analytic set in an open set WHRn with

PðX Þ ¼ SðXÞ. Then:

(a) X has dimensione 2 and it is coherent.

(b) The germs Xx have P ¼ S for all x A X.

Once more, for dimension d f 3 it is easy to find global analytic sets, even singular,
with the PE property for which clearly P3S. To progress further, recall that the local

embedding dimension of an analytic set X is the number

supfemb dimðXxÞ : x A Xg:

Then we will prove:

Theorem 1.6. Let WHRn be an open set and let X be a global analytic set in W of

dimensione 2 and local embedding dimensione 3. Then the following assertions are equiva-

lent:

(a) PðX Þ ¼ S6ðX Þ.

(b) PðX Þ ¼ SðXÞ.
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(c) X has the PE property.

(d) X is coherent and all the germs Xx belong to the List.

The previous result gives in fact a criterion to determine if a global analytic set X in
an open set WHR3 has P ¼ S and/or the PE property. One just checks that its singular-
ities are in the List, Whitney’s umbrella excepted (because it is non-coherent).

Actually, one can show (see Section 2) that for Whitney’s umbrella the positive semi-
definite analytic function f ðx; y; zÞ ¼ x2 � x þ ðy þ 1Þ2 cannot be positively extended to
R3. However, the P ¼ S and PE properties are almost local for a real coherent analytic
set X of dimensione 2 and local embedding dimensione 3, that is, both properties are
local for those analytic sets which do not have singularities equivalent to Whitney’s um-
brella.

The article is organized as follows. In Section 2 we get several local consequences of
the P ¼ S and/or the PE property for the germs at the points of a real analytic set having
such properties. In Sections 3 and 4 we respectively prove local results for dimensions 1 and
2 from which it follows 1.2. The next step is to study what happens with respect to both
properties around the set of non-isolated singular points of an analytic set. This is ap-
proached in Section 5. The next section is devoted to prove 1.6. Finally, in Section 7, we
formulate two conjectures (one local and the other one global) for analytic curves and pro-
pose some open questions referring the P ¼ S and PE properties.

2. Local consequences of the global properties

The purpose of this section is to show that if a global analytic set X has either P ¼ S
and/or the PE property, then the germs at all its points have almost such properties. We
begin with the P ¼ S property whose behaviour is, as we have stated in 1.5, the expectable
one.

(2.1) Local consequences of the global PFS property. Before proving 1.5 we need
some preliminary results:

Lemma 2.2. Let X0 HRn
0 be an analytic germ of dimensionf 1. An analytic function

germ h A OðX0Þ is positive semidefinite on X0 if and only if for every half-branch curve germ

Y0 HX0, with parametrization a : ft > 0g ! Y0, we have h � af 0.

Proof. Indeed, the only if condition is clearly true. To prove the converse we proceed
as follows. Suppose that h B PðX0Þ. Then the germ fh < 0gXX0 is non empty and open in
X0; hence, it has dimensionf 1. Thus, by the curve selection lema [ABR], VII.4, there ex-
ists a half-branch curve germ Y0 through the origin such that Y0 H fh < 0gXX0, against
our hypothesis. Therefore, h A PðX0Þ, as wanted. r

Lemma 2.3. Let X be an analytic set in an open set WHRn. Fix a point a A X and let

fa A OðRn
aÞ be an analytic function germ which is positive semidefinite on Xa. Then, for every
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integer mf 1 there exists a polynomial gm A R½x� ¼ R½x1; . . . ; xn� such that gm A PðX Þ and

the order at a of the function germ fa � gm;a A OðRn
a Þ isfm.

Proof. First, to simplify notations we assume a ¼ 0. Fix an integer mf 1. We set

gm ¼ j2mð f0Þ þ ðx2
1 þ � � � þ x2

nÞ
m

where j2mð f0Þ is the jet of degree 2m of f0. We claim that: gm A PðX0Þ.

Indeed, let a : ft > 0g ! X0 be a half-branch curve germ and consider the analytic
series

gm � a ¼ j2mð f0Þ � aþ ða2
1 þ � � � þ a2

nÞ
m A Rftg:

We can write f0 ¼ j2mð f0Þ þ h2mþ1 where h2mþ1 A Rfxg is an analytic series of
orderf 2m þ 1. Thus,

f0 � a ¼ j2mð f0Þ � aþ h2mþ1 � a

where oðh2mþ1 � aÞf ð2m þ 1ÞoðkakÞ and kak ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ � � � þ a2
n

q
A Rftg. Recall that oð:Þ

gives the order of the involved series. Next, we distinguish two cases:

(a) r ¼ oð f0 � aÞe 2moðkakÞ. Since f0 � a > 0 for t > 0, we get that

f0 � a ¼ art
r þ arþ1trþ1 þ � � � ; ar > 0:

Hence, j2mð f0Þ � a ¼ f0 � a� h2mþ1 � a ¼ art
r þ � � � > 0 because

oðh2mþ1 � aÞf ð2m þ 1ÞoðkakÞ > 2moðkakÞf r:

Therefore, we conclude that

gm � a ¼ j2mð f0Þ � aþ ða2
1 þ � � � þ a2

nÞ
m > 0:

(b) r ¼ o
�

j2mð f0Þ � a
�
¼ oð f0 � aÞ > 2moðkakÞ. Since

o
�
ða2

1 þ � � � þ a2
nÞ

m
�
¼ 2moðkakÞ;

we have that

gm � a ¼ j2mð f0Þ � aþ ða2
1 þ � � � þ a2

nÞ
m > 0:

Thus, by 2.2, the polynomial germ gm is positive semidefinite on X0. Hence, there ex-
ists e > 0 such that gm f 0 on X XBeð0Þ. We write gm ¼

P
jnje2m

anx
n. If kxkf e we have

kxk
e

f 1 and therefore
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jgmðxÞj ¼
���� P
jnje2m

anx
n

����e P
jnje2m

janj jxnj

e
P

jnje2m

janj kxkn
e

P
jnje2m

janj kxk2m 1

e2m�jnj

¼ kxk2m P
jnje2m

janj
1

e2m�jnj ¼ Mmkxk2m

for certain real number Mm > 0. Hence, the polynomial

gmðxÞ ¼ gmðxÞ þ Mmðx2
1 þ � � � þ x2

nÞ
m A R½x�

has the desired properties:

(i) oð f0 � gmÞ ¼ o
�

f0 � j2mð f0Þ � ðMm þ 1Þðx2
1 þ � � � þ x2

nÞ
m�

f 2m, and

(ii) gm A PðXÞ.

Indeed, if p A X XBeð0Þ it is clear that gmðpÞf 0 and if p A RnnBeð0Þ we conclude
that gmðpÞ ¼ gmðpÞ þ Mmkpk2m

f�jgmðpÞj þ Mmkpk2m
f 0, as wanted. r

Lemma 2.4. Let X be a global analytic set of dimensionf 3 in an open set WHRn.

Then PðXÞ3SðXÞ.

Proof. Indeed, let a A X be a non-singular point such that dimðXaÞf 3. To sim-
plify the notation we suppose a ¼ 0. By the Jacobian Criterion ([JP], 4.3.10) there
exist analytic function germs f1; . . . ; fn�3 A Rfxg such that JðX0Þ ¼ ð f1; . . . ; fn�3Þ and

rk
qfi

qxj

ð0Þ
� �

¼ n � 3. Thus, after a linear change of coordinates (which is an analytic global

change), we can assume that fi ¼ xi þ giðxn�2; xn�1; xnÞ where gi A m2
n XRfxn�2; xn�1; xng,

for i ¼ 1; . . . ; n � 3. Now, we choose a positive semidefinite homogeneous polynomial
h A R½xn�2; xn�1; xn� which is not a sum of squares. We can take, for instance, Motzkin’s
polynomial

hðxn�2; xn�1; xnÞ ¼ x6
n�2 þ x4

n�1x2
n þ x2

n�1x4
n � 3x2

n�2x2
n�1x2

n

(see [BCR], 6.4.20). One can check that h A PðXÞ but h0 A PðX0ÞnSðX0Þ. Hence, if
PðX Þ ¼ SðXÞ we would deduce that h0 A SðX0Þ, a contradiction. Thus, we conclude that
PðX Þ3SðX Þ. r

Now, we are ready to prove 1.5.

Proof of Theorem 1.5. First, by 2.4, we have dim X e 2. Next, we claim that: If

a A X and fa A OðXaÞ is positive semidefinite on Xa, then fa is a sum of squares in the ring

A ¼ OðRn
a Þ=JðX ÞOðRn

aÞ.

Indeed, we may assume, to simplify notation, that a ¼ 0. Since JðXÞRfxg is a fi-
nitely generated ideal, there exist analytic functions h1; . . . ; hr A JðXÞ which generate
JðXÞRfxg. By 2.3, for each integer mf 1 there exists gm A R½x� such that gm A PðXÞ and
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gm � f0 A mm
n , where mn denotes the maximal of Rfxg. Since PðXÞ ¼ SðX Þ, for each

mf 0 there exist a1m; . . . ; armm A OðWÞ such that

gm ¼ a2
1m þ � � � þ a2

rmm modJðXÞ:

Considering germs at the origin in the previous equality, we get that

gm;0 ¼ a2
1m;0 þ � � � þ a2

rmm;0 modJðXÞRfxg:

Since X0 ¼ Z
�
JðXÞRfxg

�
and dim X0 e 2, by [Fe1], 1.4, and [Fe3], 1.1, there exists an

integer pf 1 such that each sum of squares in A ¼ Rfxg=JðXÞRfxg can be written as
a sum of p squares in A. Hence, for every mf 1 there exist analytic function germs
b1m;0; . . . ; bpm;0; l1m;0; . . . ; lrm;0 A Rfxg such that

gm;0 ¼ b2
1m;0 þ � � � þ b2

pm;0 þ l1m;0h1 þ � � � þ lrm;0hr:

That is, the equation

f0 ¼ Y 2
1 þ � � � þ Y 2

p þ Z1h1 þ � � � þ Zlhl

has a solution modmm
n for all mf 1. By M. Artin’s Approximation Theorem ([Ar], [Ku

et al.]), we conclude that f0 is a sum of squares in A.

In particular, we have PðXaÞ ¼ SðXaÞ for every a A X , that is, the statement (b) holds.
To end, it remains to check that X is coherent.

Indeed, suppose that X is not coherent. Then, there exists a point a A X , which may
be assumed to be the origin, and an analytic function germ h0 A JðX0ÞnJðXÞRfxg. Next,
we will show that h0 A

T
k AN

mk
A ¼ f0g where mA is the maximal ideal of A, against the con-

dition h0 A JðX0ÞnJðXÞRfxg.

Since h0 A PðX0Þ, by the previous claim, h0 ¼ h2
1;0 þ � � � þ h2

s;0 in A. Thus, hi;0 A mA

and so h0 A m2
A. Furthermore, since h0 A JðX0Þ which is a real radical ideal, the func-

tion germ hi;0 A JðX0Þ, hence hi;0 A PðX0Þ. Again, hi;0 ¼ h2
i1;0 þ � � � þ h2

iri;0
in A where

hij;0 A mA and hij;0 A JðX0Þ, thus h A m4
A. Repeating this, we conclude that h0 A

T
k AN

mk
A.

r

Next, we proceed with the PE property. Before that we need to introduce an addi-
tional property for analytic germs. We say that an analytic germ X0 HRn

0 has the PEþ

property if every analytic function germ which is strictly positive on X0nf0g has a positive
semidefinite analytic extension to Rn

0 . Clearly, an analytic germ which has the PE property
also has the PEþ property.

(2.5) Local consequences of the global PE property. Let X be a global analytic set in

an open set WHRn. If X has the PE property, then the analytic germs Xx have the PEþ

property for all x A X.

Before proving this, we would like to justify the introduction of the PEþ property.
The kind of statement one expects to have is the following:
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PE for X ) PE for all the germs Xx:ð?Þ

The natural strategy to prove ð?Þ should be the following. Let x A X and assume that
x is a singular point of X . If the germ Xx is not singular, it trivially has the PE property.
Next, take a positive semidefinite analytic function germ fx on Xx which vanishes at x; oth-
erwise there is nothing to prove. Since X has the PE property, we should extend fx to a
positive semidefinite analytic function on X . In general a representant of fx cannot be ex-
tended even if X is a curve. For instance,

Example 2.6. Let X : x2 � y2 � y3 ¼ 0 which is an analytic curve in R2. The ana-
lytic function germ f0 ¼ yðx þ y

ffiffiffiffiffiffiffiffiffiffiffiffi
1 þ y

p
Þ is positive semidefinite on X0. However, it cannot

be extended analytically to X because f0 is identically 0 on one of the branches of X0 and
these branches form part of a loop of X .

Thus, we should extend positively to X a suitable modification gx of one of the repre-
sentatives of fx. Clearly, the zero set of gx must be the germ at x of a global analytic subset
of X , and the most natural choice is to ask that fgx ¼ 0g ¼ fxg. Next, using that X has the
PE property we conclude that gx can be extended to a positive semidefinite analytic func-
tion germ on Rn

x .

Now, we would like to use this to prove that fx can also be extended positively to Rn
x .

However, if fx and gx do not generate the same ideal of OðXxÞ, it seems a di‰cult matter to
determine if fx can be extended positively to Rn

x . This is essentially because two extensions
f̂f1;x and f̂f2;x to Rn

x of two positive semidefinite analytic germs f1;x and f2;x on Xx have no
relation, even if f1;x � f2;x A mr

x, where mx is the maximal ideal of OðXxÞ and r is a large
integer. Note that if f̂fx is a positive semidefinite analytic extension to Rn

x of a positive semi-
definite analytic germ fx on Xx and g1;x; . . . ; gs;x A JðXxÞ, then f̂fx þ g2

1;x þ � � � þ g2
s;x is also

a positive semidefinite analytic extension of fx to Rn
x .

After all these considerations, we prove 2.5:

Proof of 2.5. Let a A X be a point and fa A OðXaÞ be an analytic function germ
such that fa is strictly positive on Xanfag. To simplify the notation we assume that
a ¼ 0. Choose a representative of f0 in Rfxg and denote it again by f0. Since f0 is strictly
positive on X0nf0g there exist analytic functions h1;0; . . . ; hr;0 A JðX0Þ such that
f f0 ¼ 0; h1;0 ¼ 0; . . . ; hr;0 ¼ 0g ¼ f0g. Hence, if

h0 ¼ f 2
0 þ h2

1;0 þ � � � þ h2
r;0 A Rfxg

we have fh0 ¼ 0g ¼ f0g. By Łojasiewicz’s inequality ([To], V.4), there exists an integer
mf 1 such that

h0ðxÞ > ðx2
1 þ � � � þ x2

nÞ
m

on Rn
0nf0g. By 2.3, there exists g A R½x� such that g A PðXÞ and oðg0 � f0Þf 2m þ 2. Since

g A PðX Þ and X has the PE property, there exists a positive semidefinite analytic func-
tion ĝg : W ! R such that ĝgjX ¼ g. In particular, there exists an analytic function germ
h0 A JðX0Þ such that ĝg0 ¼ g0 þ h0. Let us see that F0 ¼ f0 þ h0 þ h0 is a positive semidefin-
ite analytic function germ on Rn

0 . For that, by 2.2, it is enough to check that if a : R0 ! Rn
0

is a parametrization then F0 � af 0.
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Indeed, we distinguish two cases:

(1) o
�
ð f0 þ h0Þ � a

�
f ð2m þ 2ÞoðkakÞ where kak ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ � � � þ a2
n

q
A Rftg. Then

F0 � a ¼ ð f0 þ h0Þ � aþ h0 � af ð f0 þ h0Þ � aþ kak2m > 0:

(2) o
�
ð f0 þ h0Þ � a

�
< ð2m þ 2ÞoðkakÞ. Since oðg0 � f0Þf 2m þ 2, there exists

z0 A m2mþ2
n such that f0 ¼ g0 þ z0. Hence,

ð f0 þ h0Þ � a ¼ z0 � aþ ðg0 þ h0Þ � a ¼ z0 � aþ ĝg0 � a > 0;

because ĝg0 � af 0, oðz0 � aÞf ð2m þ 2ÞoðkakÞ and o
�
ð f0 þ h0Þ � a

�
< ð2m þ 2ÞoðkakÞ.

Thus,

F0 � a ¼ ð f0 þ h0Þ � aþ h0 � a > 0:

Therefore, we deduce that F0 is positive semidefinite on Rn
0 . Finally, note that

F0jX0
¼ f0 þ f 2

0 ¼ f0ð1 þ f0Þ. Hence,

f̂f0 ¼ F0

1 þ f0
A OðRn

0Þ

is a positive semidefinite analytic function germ such that f̂f0jX0
¼ f0. Thus, Xa has the PEþ

property for all a A X . r

(2.7) Examples of non coherent surfaces. We finish this section with several exam-
ples of non coherent global analytic sets which do not have any of the two properties we
are studying, but whose germs at all their points have both properties. We begin with Whit-
ney’s umbrella.

Examples 2.8. (a) Let X : z2 � x2y ¼ 0 be Whitney’s umbrella. By 1.5, we have
PðX Þ3SðX Þ, since X is not coherent. Moreover, for each point x A X we have
PðXxÞ ¼ SðXxÞ; because for each x A X the germ Xx is equivalent to one of the following
analytic germs of R3 at the origin:

(i) z ¼ 0,

(ii) x ¼ 0, y ¼ 0,

(iii) z2 � x2 ¼ 0,

(iv) z2 � x2y ¼ 0.

Recall that all of them appear in the List and therefore, have P ¼ S. Hence, the PE prop-
erty also holds for Xx for all x A X .

Next, let us see that X does not have the PE property. In fact, we see that for every
e > 0 the analytic surface Y ¼ X XBeð0Þ does not have the PE property.

Indeed, consider the analytic function

10 Fernando, Positive extension property for real analytic sets



f : R3 ! R; ðx; y; zÞ 7! x � e

4

� �2

þ y þ e

2

� �2

� e2

16
¼ x2 � e

2
x þ y þ e

2

� �2

which isf 0 on Y . Moreover, JðYÞ is generated by the function z2 � x2y which has order
2 at the point p0 ¼ ð0;�e=2; 0Þ while f has order 1 at such point. Thus, we conclude that f

cannot be extended to a positive semidefinite analytic function on Beð0Þ because if such ex-
tension existed, it would have even order at all its points, which is impossible for any ana-
lytic extension of f .

(b) In fact, proceeding analogously, one can check that if S is an analytic surface (in
an open set WHRn) which has a singularity equivalent to Whitney’s umbrella, then neither
P ¼ S nor PE hold for S. r

Moreover, for each embedding dimension there exist non coherent analytic surface
germs with the P ¼ S and PE properties. However, any of its representatives have none
of them. For that, we recall certain examples already introduced in [Fe4].

Examples 2.9. The generalized Whitney’s umbrellas Yn;0 HRnþ1, nf 2, are the an-
alytic closures of the set germs parametrized by

jn : ðs; tÞ 7! ðs; st; . . . ; stn�1; tnÞ ¼ ðx0; x1; . . . ; xn�1; xnÞ:

It can be checked that the ideal of Yn;0 is generated by the polynomials

xixj � x0xlx
q
n : i þ j ¼ qn þ l and

1e ie j e n � 1;

0e le n � 1:

�
Moreover, Yn;0 consists of the union of the image of jn and the xn-axis. Hence, Yn;0 is a
non coherent germ for all nf 2 (see [N], §V. Prop. 7). We find that the multiplicity of Yn;0

is n and its embedding dimension n þ 1.

These analytic surface germs have P ¼ S ([Fe4], 4.4), hence the PE property. The
first umbrella Y2 HR3 is the classical Whitney umbrella x2

1 ¼ x2
0x2.

Again we have, proceeding similarly to example 2.8 (a), that each representative of
the germ Yn;0 does not have the PE property for all nf 2. r

3. Local results for dimension one

In this section we study both properties for analytic curve germs. In [Sch], 3.9, the
author characterizes the analytic curve germs in Rn

0 with P ¼ S, which are those equi-
valent to a union of independent lines through the origin. As we will see along this section
the approach to the PE property is quite more delicate. Our main result here is the follow-
ing:

Theorem 3.1. Let X0 HR3
0 be an analytic curve germ. The following assertions are

equivalent:
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(a) PðX0Þ ¼ S1ðX0Þ.

(b) PðX0Þ ¼ SðX0Þ.

(c) X0 has the PE property.

(d) X0 has the PEþ property.

(e) X0 is equivalent to a union of independent lines in R3
0.

The key result (3.9) to prove 3.1, that will be introduced later, implies the following
one for arbitrary embedding dimension:

Theorem 3.2. Let X0 HRn
0 be an analytic curve germ with the PEþ property and

embedding dimension n. Then X0 is either regular or a reducible curve germ whose tangent

cone is the union of re n independent lines. Moreover, if r ¼ n then X0 is equivalent to

the union of n independent lines through the origin and we may assume that

JðX0Þ ¼ fxixj : 1e i < j e ng.

We need to introduce here several preliminary results.

Lemma 3.3. Let f A Rfxg ¼ Rfx1; . . . ; xng be an analytic series of order sf 1.

Then, there exists M > 0 such that j f j < Mkxks
.

Proof. Indeed, since oð f 2Þ ¼ 2s we can write f 2 ¼
P

jnj¼2s

anðxÞxn for some analytic
series an A Rfxg, and so, near the origin we have

j f ðxÞj2 e
P

jnj¼2s

cnjxjn ¼
P

jnj¼2s

cnkxk2sjyjn ¼ kxk2s P
jnj¼2s

cnjyjn

where cn ¼ 1 þ janð0Þj and y ¼ x=kxk. The function
P

jnj¼2r

cnjyjn is bounded on the compact

set kyk ¼ 1, say by M > 0, and we conclude j f j2 < Mkxk2s, hence j f j < Mkxks, as wan-
ted. r

Lemma 3.4. Let X0 HRn
0 be an analytic germ of the dimension d. Then, after a linear

change of coordinates, the analytic function germs gk; iðxÞ ¼ kðx2
1 þ � � � þ x2

dÞ � x2
i are posi-

tive semidefinite on X0 for i ¼ d þ 1; . . . ; n and k large enough.

Proof. First, by Rückert’s parametrization (see [Rz2], 3.4) we may assume,
after a linear change of coordinates, that there exist Weierstrass polynomials
Pdþ1; . . . ;Pn A Rfx1; . . . ; xdg½T � ¼ Rfx 0g½T � such that PiðxiÞ A JðX0Þ. Recall that a poly-
nomial F A Rfx 0g½T � is a Weierstrass polynomial if it is monic and its degree with respect
to the variable T is equal to its order as a series.

Fix i ¼ d þ 1; . . . ; n and let ri > 0 be the degree of the polynomial Pi. We write

PiðxiÞ ¼ xri

i þ ai; ri�1xri�1
i þ � � � þ ai1xi þ ai0;

where each aij A Rfx 0g ¼ Rfx1; . . . ; xdg and oðaijÞf ri � j for 0e j e ri. By 3.3, there is
M > 0 such that jaijj < Mkx 0kri�j for all i, j.

12 Fernando, Positive extension property for real analytic sets



Now, for each integer k f 1 we consider the quadratic form

gk; i ¼ k2ðx2
1 þ � � � þ x2

dÞ � x2
i ¼ k2kx 0k2 � x2

i ;

and will prove that for k large enough the series gk; i is positive semidefinite on X0.

In fact, otherwise, X0 would contain a sequence xðkÞ ¼ ðx 0ðkÞ; zðkÞÞ ! 0 such that
gkðxðkÞÞ < 0, that is,

0e krk < jxðkÞ
i j; where rk ¼ kx 0ðkÞk:

Since Pi A JðX0Þ, we have PiðxðkÞÞ ¼ 0, and consequently

jxðkÞ
i jri ¼

����Pri�1

j¼0

aijðx 0ðkÞÞðxðkÞ
i Þ j

����ePri�1

j¼0

jaijðx 0ðkÞÞj jxðkÞ
i j j

eM
Pri�1

j¼0

r
ri�j
k jxðkÞ

i j j < M
Pri�1

j¼0

jxðkÞ
i jri

kri�j
¼ MjxðkÞ

i jri
Pri�1

j¼0

1

kri�j
:

But jxðkÞ
i jri > 0, and we get 1 < M

1

k
þ � � � þ 1

kri

� �
, a contradiction. Thus, gi;k is positive

semidefinite on X0 for k large enough, as wanted. r

Remark 3.5. In particular, if X0 HRn
0 is an analytic germ with the PEþ property,

then the analytic function germ h ¼ kðx2
1 þ � � � þ x2

dÞ � x2
n þ ðx2

1 þ � � � þ x2
nÞ

2, is strictly
positive on X0nf0g for k large enough. Thus, we deduce, that

o
�
JðX0Þ

�
¼ minfoð f Þ : f A JðX0Þge 2:

Otherwise, o
�
JðX0Þ

�
f 3 and there exists an analytic function germ f A JðX0Þ such

that h þ f is positive semidefinite in Rn
0 and oð f Þf 3. In particular, its initial form

Inðh þ f Þ ¼ InðhÞ ¼ kðx2
1 þ � � � þ x2

dÞ � x2
n is a positive semidefinite quadratic form, a con-

tradiction. r

In what follows, we focus our attention on curve germs. Let X0 HRn
0 be an irreduc-

ible curve germ. Recall that a parametrization j : R0 ! X0 of X0 is primitive if there
do not exist another parametrization c : R0 ! X0 of X0 and an integer pf 2 such that
jðtÞ ¼ cðtpÞ. If j ¼ ðj1; . . . ; jnÞ : R0 ! X0 is primitive, we define the multiplicity mðX0Þ of
X0 by

m ¼ mðX0Þ ¼ minfoðjiÞ : i ¼ 1; . . . ; ng:

The tangent line to X0 is the straight line parametrized by t 7! tv, where v ¼ cð0Þ and
c ¼ j=tm. A rutinary checking shows that the multiplicity of X0 and its tangent line do
not depend on the chosen primitive parametrization of X0.

If X0 is an analytic curve germ we define its tangent cone as the union of the tangent
lines to all the irreducible components of X0.
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Lemma 3.6. Let X0 be an analytic curve germ. If f A JðX0Þnf0g then the initial form

Inð f Þ of f is identically 0 on the tangent cone to X0.

Proof. First, we write X0 ¼ X1;0 W � � �WXr;0 as the union of its irreducible compo-
nents.

Fix i ¼ 1; . . . ; r and let ai : R0 ! Xi;0 be a primitive parametrization of Xi;0. Let mi

be the multiplicity of Xi;0, bi ¼ ai=tmi and vi ¼ bið0Þ A Rn. Recall that vi generates the tan-
gent line to Xi;0. Let us check that Inð f ÞðviÞ ¼ 0.

We write f ¼
P

kfk0

fk, where each fk is either 0 or a homogeneous polynomial of de-

gree k and fk0
¼ Inð f Þ. Since f � ai ¼ 0, we get

0 ¼ f � ai ¼ f ðtmibiÞ ¼
P

kfk0

fkðtmibiÞ ¼
P

kfk0

tkmi fkðvi þ giÞ

where gi A ðtÞRftgn. In particular, this shows that Inð f ÞðviÞ ¼ fk0
ðviÞ ¼ 0. Therefore Inð f Þ

vanishes on the tangent cone to X0, as wanted. r

Next, we see a method to construct analytic function germs on X0 which are strictly
positive on X0nf0g. In fact, we denote by PþðX0ÞHOðX0Þ the set of all the strictly positive
function germs on X0nf0g.

Lemma 3.7. Let X0 be an analytic curve germ and let v1; . . . ; vr A Rn be generators

of the tangent lines to the irreducible components X1;0; . . . ;Xr;0 of X0. Let f A R½x1; . . . ; xn�
be a homogeneous polynomial of even degree such that f ðviÞ > 0 for i ¼ 1; . . . ; n. Then,
f A PþðX0Þ.

Proof. First, note that PþðX0Þ ¼
Tr
i¼1

PþðXi;0Þ. Thus, it is enough to check that

f A PþðXi;0Þ for i ¼ 1; . . . ; r. Note that if ai : R0 ! Xi;0 is a primitive parametrization of
Xi;0, then f A PðXi;0Þþ if and only if f � ai A Rftgnf0g is a positive semidefinite series,
that is, f � aiðtÞ ¼ a2rt

2r þ � � � , for some a2r > 0.

Next, we write mi ¼ mðXi;0Þ and bi ¼ ai=tmi . Since f is homogeneous of even degree,
say 2l, we get

f � aiðtÞ ¼ t2lmi f � bi ¼ t2lmi
�

f ðviÞ þ txiðtÞ
�

for certain analytic series xi A Rftg. Since f ðviÞ > 0, we conclude that f � ai A Rftgnf0g is
positive semidefinite, and we are done. r

Proposition 3.8. Let X0 HRn be an irreducible curve germ with the PEþ property.

Then X0 is a regular curve germ.

Proof. If X0 is regular, there is nothing to prove. Thus, we may assume that X0 is
singular and that its embedding dimension is n. Thus, in particular o

�
JðX0Þ

�
f 2. After a

change of coordinates we may assume that the tangent line to X0 is L : x2 ¼ 0; . . . ; xn ¼ 0.
Let a be a primitive parametrization of X0. After a new change of coordinates that keeps
invariant the line L, we may assume that
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aðtÞ ¼ ðtk1u1; t
k2 u2; . . . ; t

kn unÞ;

where u1; . . . ; un A Rftg are units and 2e k1 < k2 < � � � < kn are positive integers.

If some ki is even, then xiuið0Þ is strictly positive on X0nf0g but cannot be extended
positively to Rn

0 . Thus, we may assume that every ki is odd. Then the function germ
f ¼ x1x2u1ð0Þu2ð0Þ is strictly positive on X0nf0g. Since X0 has the PEþ property, there ex-
ists an analytic function germ g A JðX0Þ such that f þ g is positive semidefinite on Rn

0. In
particular, its initial form Inð f þ gÞ is positive semidefinite on Rn. We have two possibil-
ities:

(i) InðgÞðx1; x2; 0; . . . ; 0Þ ¼ �x1x2u1ð0Þu2ð0Þ. We claim that k1 þ k2 f 3k1.

Indeed, g ¼ InðgÞ þ h, where h A Rfxg ¼ Rfx1; . . . ; xng is an analytic function germ
of orderf 3. Since k1 < k2 < � � � < kn and InðgÞðx1; x2; 0; . . . ; 0Þ ¼ �x1x2u1ð0Þu2ð0Þ, we
have that o

�
InðgÞ � a

�
¼ k1 þ k2. On the other hand,

oðh � aÞfoðhÞ � minfoðaiÞ; i ¼ 1; . . . ; ngf 3k1:

Therefore, since g � a1 0, we deduce that k1 þ k2 ¼ o
�
InðgÞ � a

�
¼ oðh � aÞf 3k1.

Thus, since k1 þ k2 f 3k1, we have k2 f 2k1 and for M > 0 large enough we deduce
that f1 ¼ x2 þ Mx2

1 A PþðX0Þ is strictly positive on X0nf0g, but cannot be extended posi-
tively to Rn

0, a contradiction.

(ii) InðgÞðx1; 0; . . . ; 0Þ ¼ a2x2
1 for some a > 0. If this is the case, g cannot vanish on

X0, a contradiction.

Thus, we conclude that X0 is a regular curve germ. r

Now, we are to prove the technical result announced at the beginning of the section,
which summarizes all the information we know about a curve germ X0 HRn

0 with the PEþ

property. The full statement of this result, and not only 3.2, will be crucial to prove 3.1.

Theorem 3.9. Let X0 HRn
0 be an analytic curve germ with the PEþ property and

embedding dimension n. Then:

(a) There exists a quadratic form q A JðX0Þ of rank n and signature n � 1, that is, q is

equivalent to x2
1 þ � � � þ x2

n�1 � x2
n.

(b) The tangent cone to X0 is the union of se n independent lines L1; . . . ;Ls. More-

over, after a change of coordinates, we may assume that Li is generated by the vector

ei ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ whose ith coordinate is 1 and all the others are 0. Then, for

each 1e i < j e s there exists an analytic series fij A JðX0Þ whose initial form is

InðfijÞ ¼ xixj þFij where Fij is a quadratic form identically 0 on the set

fxsþ1 ¼ 0; . . . ; xn ¼ 0g (which is the linear subspace of Rn generated by the lines L1; . . . ;Ls).

(c) If s ¼ n, X0 is equivalent to the union of n independent lines and we may assume

that JðX0Þ ¼ fxixj : 1e i < j e ng.
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(d) If se n � 1 we have the following extra information:

(i) If the initial form q ¼ Inð f Þ of a series f A JðX0Þ is a positive semidefinite qua-

dratic form q, then it is identically 0 on the vectorial subspace of Rn generated by the tangent

cone to X0 (hence, q has ranke n � s) and g ¼ f � q is an analytic series of order 3.

(ii) There exists an analytic series f A JðX0Þ whose initial form is a positive semi-

definite quadratic form.

The general strategy to prove 3.9 consists, roughly speaking, of finding for an X0 not
satisfying any of such conditions a positive semidefinite analytic function germ f A OðX0Þ
of order 1. Obviously such an f cannot be extended positively to Rn

0 and X0 cannot have
the PEþ property.

Proof of Theorem 3.9. First, we write X0 ¼ X1;0 W � � �WXr;0 as the union of its irre-
ducible components. For each f A Rfxg of orderf 2, let Inð f Þ stand for the initial form of
f and

qð f Þ ¼ Inð f Þ if oð f Þ ¼ 2;

0 if oð f Þf 3:

�
The proof runs in several steps:

Step 1. After a change of coordinates, we may assume that

x2
1 þ � � � þ x2

n�1 � x2
n A JðX0Þ:

Indeed, by 3.4, we may assume that the function germs kx2
n � x2

i A PðX0Þ for k > 0
large enough and i ¼ 1; . . . ; n � 1. Thus,

ðn � 1Þkx2
n � ðx2

1 þ � � � þ x2
n�1Þ ¼

Pn�1

i¼1

ðkx2
n � x2

i Þ A PðX0Þ

for k large enough. Hence,

f ¼ mx2
n � ðx2

1 þ � � � þ x2
n�1Þ þ ðx2

1 þ � � � þ x2
nÞ

2 where m ¼ ðn � 1Þk;

is strictly positive on X0nf0g. Since X0 has the PEþ property there exists g A JðX0Þ such
that f þ g is positive semidefinite on Rn

0 . In particular, if q0 ¼ qðgÞ, then the quadratic
form

mx2
n � ðx2

1 þ � � � þ x2
n�1Þ þ q0

is positive semidefinite on Rn. Thus,

q1ðx1; . . . ; xn�1Þ ¼ �ðx2
1 þ � � � þ x2

n�1Þ þ q0ðx1; . . . ; xn�1; 0Þ

is positive semidefinite on Rn�1. By the spectral theorem, there exists an orthogonal basis
for the usual scalar product of Rn�1 that diagonalizes q0ðx1; . . . ; xn�1; 0Þ. Thus, after a suit-
able linear change of coordinates, we may assume that
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q1ðx1; . . . ; xn�1Þ ¼ �ðx2
1 þ � � � þ x2

n�1Þ þ ða1x2
1 þ � � � þ an�1x2

n�1Þ;

for certain real numbers a1; . . . ; an�1 f 1. Since X0 has embedding dimension n, we have
JðX0ÞHm2

n . Hence, by classification of singularities (see [JP], 9.2.12), we may assume,
after a new change of coordinates, that

g ¼ x2
1 þ � � � þ x2

n�1 � xk
n A JðX0Þ;

for some k f 2; recall that X0 has dimension 1. Now, if k ¼ 2lþ 1 is odd, then

x2
1 þ � � � þ x2

n�1 ¼ x2lþ1
n :

Hence, xn A PðX0Þ and xn þ ðx2
1 þ � � � þ x2

nÞ is strictly positive on X0nf0g but it cannot be
extended positively to Rn

0, a contradiction.

On the other hand, if k ¼ 2lf 4 is even, then

jx1je
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

1 þ � � � þ x2
n�1

q
¼ jxnjl e x2

n :

Hence, x1 þ x2
n A PðX0Þ and x1 þ x2

n þ ðx2
1 þ � � � þ x2

nÞ is strictly positive on X0nf0g but it
cannot be extended positively to Rn

0, a contradiction.

Therefore, k ¼ 2 and we deduce x2
1 þ � � � þ x2

n�1 � x2
n A JðX0Þ, which proves (a). r

Step 2. Consider Q ¼ fqð f Þ : f A JðX0Þg and C ¼ fx A Rn : qðxÞ ¼ 0 Eq A Qg. We
claim that: C is the tangent cone to X0.

Indeed, let Li be the tangent line to the curve germ Xi;0 for i ¼ 1; . . . ; r. By 3.6, it is

clear that the tangent cone
Sr
i¼1

Li to X0 is contained in C.

Next, we check that C ¼
Sr
i¼1

Li. Since x2
1 þ � � � þ x2

n�1 � x2
n A JðX0Þ, we have

x2
1 þ � � � þ x2

n�1 � x2
n A Q. Hence, the set C, which is the zero set of a family of homoge-

neous equations, is the cone over C1 ¼ C X fxn ¼ 1g. Let fpig ¼ Li X fxn ¼ 1g be the in-
tersection point of the tangent line to Xi;0 with the hyperplane xn ¼ 1.

Suppose that there exists a point p0 A C1 H fx2
1 þ � � � þ x2

n�1 ¼ 1; xn ¼ 1g ¼ Sn�2 dif-
ferent from p1; . . . ; pr. After a linear change of coordinates that preserves Sn�2 we may as-
sume that p0 ¼ ð1; 0; . . . ; 0; 1Þ.

Note that x1 ¼ 1, xn ¼ 1 defines the tangent a‰ne subspace to Sn�2 at the point
p0 ¼ ð1; 0; . . . ; 0; 1Þ. Moreover, the function ð1 � x1Þð2 þ x1Þ is positive semidefinite
on Sn�2 and only vanishes at the point p0. Let d > 0 be small enough such that
f ¼ ð1 � d� x1Þð2 þ x1Þ is strictly positive at the points p1; . . . ; pr. However, note that
f ðp0Þ < 0.

Therefore, f is not positive semidefinite on C1, but it is strictly positive at the points
p1; . . . ; pr. Thus, F ¼

�
ð1 � dÞxn � x1

�
ð2xn þ x1Þ is a quadratic form strictly positive, out-
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side the origin, on the lines L1; . . . ;Lr through the origin determined by the points
p1; . . . ; pr. Recall that the tangent cone to X0 is the union of these lines. Hence, by 3.7, F

defines a strictly positive analytic function germ on X0nf0g. Since X0 has the PEþ prop-
erty, there exists an analytic function g A JðX0Þ such that F þ g is positive semidefinite on
Rn

0. Thus, qðF þ gÞ ¼ F þ qðgÞ is a positive semidefinite quadratic form on Rn. However,
since p0 A C we get

qðF þ gÞðp0Þ ¼ Fðp0Þ þ qðgÞðp0Þ ¼ Fðp0Þ < 0;

a contradiction. Thus, C ¼
Sr
i¼1

Li.

Remark. In the following step, we will perform new linear changes of coordinates,
that will transform the quadratic form x2

1 þ � � � þ x2
n�1 � x2

n A JðX0Þ into a quadratic form
q of rank n and signature n � 1, as stated in (i). We point out here that the quadratic form
x2

1 þ � � � þ x2
n�1 � x2

n obtained in Step 1 has been used just to prove that C is the tangent
cone to X0 and will not be used any more along the proof.

Step 3. The tangent cone C to X0 is the union of se r independent lines.

Let W be the vectorial subspace of Rn generated by C and s ¼ dim W . We may as-
sume, after a new linear change of coordinates, that the tangent lines L1; . . . ;Ls generate W

and that Li is generated by the vector ei ¼ ð0; . . . ; 0; 1
ðiÞ
; 0; . . . ; 0Þ for 1e ie s.

Let Q0 ¼ fqð f Þðx1; . . . ; xs; 0; . . . ; 0Þ : f A JðX0Þg. We claim that: Q0 is a vectorial

space of dimension d ¼ sðs � 1Þ=2, hence, fxjxk : 1e j < k e sg is a basis of Q0.

Assume this claim true for a moment. Since C ¼
Sr
i¼1

Li HW ¼ fxsþ1 ¼ 0; . . . ; xn ¼ 0g

and C is the zero set of Q, we deduce that C is the intersection of the zero set of Q0 and W .

On the other hand, by the claim, such intersection is equal to
Ss
i¼1

Li. Hence, s ¼ r and C is

the union of s independent lines, which proves statement (b). Thus, we turn to prove our
claim.

First, note that dimQ0 e sðs � 1Þ=2. Suppose that d ¼ dimQ0 < sðs � 1Þ=2 and
consider a basis fq1; . . . ; qdg of Q0. Since each quadratic form ql vanishes on the lines
Li ¼ L½ei�, we deduce that the correspondent coe‰cients of ql to the monomials x2

1 ; . . . ; x
2
s

are all zero. Thus, we write

ql ¼
P
j<k

ll
jkxjxk

for some ll
jk A R. For each 1e j < k e s consider the linear form

Ljk ¼
Pd
l¼1

ll
jkml
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in the variables m ¼ ðm1; . . . ; mdÞ. Note that since d <
sðs � 1Þ

2
the previous linear forms are

dependent. Thus, there exist 1e j0 < k0 e s such that

Lj0k0
¼

P
j<k;

ð j;kÞ3ð j0;k0Þ

ajkLjk;

for certain ajk A R.

Next, for each i ¼ 1; . . . ; r choose a vector vi that generates the tangent line Li to Xi;0.
Consider the quadratic form

fj0k0
¼ N 2ð2xk0

þ M 2xj0Þxj0 þ
P

1ejes;
j3j0

x2
j

for N;M > 1. Note that if M is large enough fj0k0
ðviÞ > 0 for i ¼ 1; . . . ; r and all N > 1.

Thus, by 3.7, the quadratic form fj0k0
is strictly positive on X0nf0g. Since X0 has the PEþ

property, there exists gN A JðX0Þ such that Fj0k0
¼ fj0k0

þ gN is positive semidefinite on
Rn

0. Thus, qðFj0k0
Þ ¼ fj0k0

þ qðgNÞ is a positive semidefinite quadratic form. Substituting
xsþ1 ¼ 0; . . . ; xn ¼ 0, we deduce that

fj0k0
þ qðgNÞðx1; . . . ; xs; 0; . . . ; 0Þ

is a positive semidefinite quadratic form. Note that qðgNÞðx1; . . . ; xs; 0; . . . ; 0Þ A Q0. Hence,
there exists m ¼ ðm1; . . . ;mdÞ A Rd such that

qðgNÞðx1; . . . ; xs; 0; . . . ; 0Þ ¼
Pd
l¼1

2mlql

and therefore

Q ¼ fj0k0
þ
Pd
l¼1

2mlql ¼ fj0k0
þ
Pd
l¼1

2ml

P
j<k

ll
jkxjxk ¼ fj0k0

þ
P
j<k

2

�Pd
l¼1

mll
l
jk

�
xjxk

¼ N 2ð2xk0
þ M 2xj0Þxj0 þ

P
j3j0

x2
j þ

P
j<k

2LjkðmÞxjxk

is a positive semidefinite quadratic form. Let A ¼ ðajkÞ1ej;kes be the real symmetric matrix
such that

Qðx1; . . . ; xsÞ ¼ ðx1; . . . ; xsÞA
x1

..

.

xs

0B@
1CA:

Since Q is positive semidefinite, all the ordered 2 minors ajjakk � a2
jk are f 0 for

1e j < k e s. Thus,

0 < ajjakk � a2
jk ¼

1 �LjkðmÞ2 if j0 3 j < k;

N 2M 2 �Lj0kðmÞ2 if j0 ¼ j < k 3 k0;

N 2M 2 �
�
N 2 þLj0k0

ðmÞ
�2

if j ¼ j0 and k ¼ k0:

8><>:
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Note that if ð j; kÞ3 ð j0; k0Þ, then LjkðmÞ2 < N 2M 2; recall that N;M > 1. Hence, if
ð j; kÞ3 ð j0; k0Þ, we get that jLjkðmÞj < NM. Thus,

jLj0k0
ðmÞj ¼

���� P
j<k;

ð j;kÞ3ð j0;k0Þ

ajkLjkðmÞ
����e P

j<k;
ð j;kÞ3ð j0;k0Þ

jajkj jLjkðmÞjePNM

for P ¼
P
j<k;

ð j;kÞ3ð j0;k0Þ

jajkj A R. On the other hand,

jN 2 þLj0k0
ðmÞjf jN 2j � jLj0k0

ðmÞjfN 2 � PNM > NM

if N > 1 is large enough. Therefore, for such N we have

0 < aj0 j0ak0k0
� a2

j0k0
¼ N 2M 2 �

�
N 2 þLj0k0

ðmÞ
�2

< 0;

a contradiction. Thus, d ¼ sðs � 1Þ=2, as claimed. r

Step 4. If s ¼ n, X0 is equivalent to the union of n independent lines.

We keep all the conditions obtained at the end of Step 3, even the same coordinate
system. Thus, by the previous step, we may assume that Q ¼ Q0 is generated by the qua-
dratic forms xjxk where 1e j e k e n. Now, for each 1e j < k e n there exists an
analytic series gjk A JðX0Þ whose initial form is xjxk, that is, gjk ¼ xjxk þ hjk, where
hjk A Rfx1; . . . ; xng is an analytic series of orderf 3. Thus, if mn denotes the maximal ideal
of Rfxg, the vectorial space

ml
n þJðX0Þ=

�
mlþ1

n þJðX0Þ
�

is generated by the vectors xl
j þ

�
mlþ1

n þJðX0Þ
�

where 1e j e n; hence, it has
dimensione n for all le 1. Therefore, the Hilbert-Samuel function of X0,

HSðlÞ ¼
Pl
k¼0

dim
�
mk

n þJðX0Þ=
�
mkþ1

n þJðX0Þ
��
;

which is equal to a polynomial HSP A Q½l� for l large enough, is e nlþ 1. Since X0 has
dimension 1, HSP is a polynomial of degree 1 whose principal coe‰cient is equal to the

multiplicity mðX0Þ. Since HSPðlÞe nlþ 1, we deduce that
Pr

i¼1

mðXi;0Þ ¼ mðX0Þe n (for

more details, see [JP], 4.2). On the other hand, since rf s ¼ n and mðXi;0Þf 1, we also
have that

ne
Pr

i¼1

mðXi;0Þ ¼ mðX0Þe n:

Hence, mðX0Þ ¼ n, and this necessarily means that r ¼ s ¼ n and mðXi;0Þ ¼ 1 for 1e ie n.
Thus, each Xi;0 is a regular curve germ and the tangent lines are linearly independent.
Therefore, X0 is equivalent to the union of n independent lines, which proves (c). r
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Step 5. If s < n and the initial form q ¼ Inð f Þ of a series f A JðX0Þ is a positive

semidefinite quadratic form, then it is identically 0 on the vectorial subspace of Rn generated

by the tangent cone to X0 and g ¼ f � q A Rfx1; . . . ; xng is an analytic series of order 3.

By 3.6, the quadratic form q ¼ Inð f Þ is identically zero on the tangent cone to X0.
Since q is moreover a positive semidefinite quadratic form, its zero set is a vectorial sub-
space of Rn. Hence q is identically 0 on the vectorial subspace of Rn generated by the tan-
gent cone to X0.

Let us see now that g ¼ f � q is an analytic series of order 3. It is clear that g has
orderf 3, and we have to show that it cannot have orderf 4. If g has orderf 4, by 3.3,
there exists M > 0 such that

jgjeM 2ðx2
1 þ � � � þ x2

nÞ
2:

Since q is a nonzero positive semidefinite quadratic form, there exist nonzero linear forms
a1; . . . ; ap such that q ¼ a2

1 þ � � � þ a2
p . Hence,

ja1je
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

1 þ � � � þ a2
p

q
¼

ffiffiffiffiffiffi
jqj

p
¼

ffiffiffiffiffiffi
jgj

p
eMðx2

1 þ � � � þ x2
nÞ

on X0, because f ¼ q þ g A JðX0Þ. Thus, a1 þ ðM þ 1Þðx2
1 þ � � � þ x2

nÞ is strictly positive on
X0nf0g but cannot be extended positively to Rn

0, a contradiction. Hence, f � q has order 3,
and the statement (d)(i) is proved. r

Step 6. If s < n, there exists an analytic series f A JðX0Þ whose initial form is a pos-

itive semidefinite quadratic form.

We keep the coordinate system fixed in Step 3. Let Sn be the set of all the symmetric
matrices of order n. Note that Q ¼ fqð f Þ : f A JðX0Þg can be canonically embedded in Sn

as a vectorial subspace, identifying each quadratic form q with its associated symmetric
matrix. Note that if A ¼ ðaijÞ A Q, then by 3.6 and the special coordinate system we have
fixed, we have a11 ¼ 0; . . . ; ass ¼ 0. We consider the norm

k:k : Sn ! R; A 7! þ
ffiffiffiffiffiffiffiffiffiffiffiffiP
j;k

a2
jk

r
on Sn and the sphere S ¼ fA A Sn : kAk ¼ 1g. Note that if A A Snnf0g then A=kAk A S.
Moreover, if q1A A Sn, then

jqðxÞje nkqk kxk2 for all x A Rn:

Indeed, if A ¼ ðaijÞ, then

jqðxÞj ¼
���� Pn
i; j¼1

aijxixj

����e Pn
i; j¼1

jaijj jxij jxjje kxk2 Pn
i; j¼1

jaijje kxk2kqk
ffiffiffiffiffi
n2

p
¼ nkqk kxk2:

Next, consider the compact set

U ¼ QXSH fa11 ¼ 0; . . . ; ass ¼ 0g:
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If there exists q A U positive semidefinite we are done. Thus, we suppose that every
q A U is a non definite quadratic form, and we will achieve a contradiction.

First, we claim that: For each q A U there exist e > 0 and M0 > 0 such that if q 0 A S,
M > M0 and kq � q 0k < e, then Mq 0 þ ðx2

1 þ � � � þ x2
s Þ is non definite.

Indeed, since q A U is a non definite quadratic form, there exist u ¼ ðu1; . . . ; unÞ,
v ¼ ðv1; . . . ; vnÞ A Rn such that qðuÞ > 0 and qðvÞ < 0. Take

e ¼ 1

3n
min

jqðuÞj
kuk2

;
jqðvÞj
kvk2

( )
> 0 and M0 ¼ 3ð1 þ v2

1 þ � � � þ v2
s Þ

jqðvÞj :

If kq � q 0k < e and M > M0 then

q 0ðuÞ þ 1

M
ðu2

1 þ � � � þ u2
s Þf qðuÞ þ q 0ðuÞ � qðuÞf qðuÞ � jqðuÞ � q 0ðuÞj

f qðuÞ � nkq � q 0k kuk2 > qðuÞ � nkuk2e

f qðuÞ � jqðuÞj
3

¼ 2qðuÞ
3

> 0;

q 0ðvÞ þ 1

M
ðv2

1 þ � � � þ v2
s Þe q 0ðvÞ þ 1

M0
ðv2

1 þ � � � þ v2
s Þe q 0ðvÞ þ jqðvÞj

3

¼ q 0ðvÞ � qðvÞ
3

¼ 2qðvÞ
3

þ q 0ðvÞ � qðvÞe 2qðvÞ
3

þ jqðvÞ � q 0ðvÞj

e
2qðvÞ

3
þ nkq � q 0k kvk2 <

2qðvÞ
3

þ nkvk2e

e
2qðvÞ

3
þ jqðvÞj

3
¼ qðvÞ

3
< 0;

hence, Mq 0 þ ðx2
1 þ � � � þ x2

s Þ is a non definite quadratic form. The claim is proved.

Next, since U is compact, there exists M0 > 0 such that for all q A U and all M > M0

the quadratic form Mq þ ðx2
1 þ � � � þ x2

s Þ is non definite.

Consider now the quadratic form f ¼ �2M0ðx2
sþ1 þ � � � þ x2

nÞ þ x2
1 þ � � � þ x2

s which
is strictly positive over the vectors e1; . . . ; es. Then, by 3.7, f is strictly positive on X0nf0g.
Since X0 has the PEþ property, there exist g A JðX0Þ such that f þ g is positive semidefin-
ite on Rn

0 . In particular, its initial form f þ qðgÞ is a positive semidefinite quadratic form.
Note that q ¼ qðgÞ3 0.

Now, we distinguish two cases:

(i) If kqk > M0, then

q0 ¼ q þ x2
1 þ � � � þ x2

s ¼ kqk q

kqk þ x2
1 þ � � � þ x2

s
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is a non definite quadratic form, because q=kqk A U ¼ QXS. Let v A Rn such that
q0ðvÞ < 0. Then�

f þ qðgÞ
�
ðvÞ ¼ f ðvÞ þ qðvÞ ¼ �2M0ðv2

sþ1 þ � � � þ v2
nÞ þ v2

1 þ � � � þ v2
s þ qðvÞ

¼ �2M0ðv2
sþ1 þ � � � þ v2

nÞ þ q0ðvÞ < 0;

which is impossible, because f þ qðgÞ is a positive semidefinite quadratic form.

(ii) If kqkeM0, we get that�
f þ qðgÞ

�
ðesþ1Þ ¼ f ðesþ1Þ þ qðesþ1Þe�2M0 þ jqðesþ1Þje�2M0 þ kqke�M0 < 0;

a contradiction.

Therefore there exists a positive semidefinite quadratic form q A U, and statement
(d)(ii) holds true. r

As a nice application of the previous result we have the following:

Corollary 3.10. Let X0 HRn
0 be an analytic curve whose irreducible components are

all regular. The following assertions are equivalent:

(a) PðX0Þ ¼ SðX0Þ.

(b) X0 has the PE property.

(c) X0 has the PEþ property.

(d) X0 is equivalent to a union of independent lines.

Proof. First, note that we may assume that the embedding dimension of X0 is equal
to n. Moreover, by [Sch], 3.9, statements (a) and (d) are equivalent. Note also that obvi-
ously, (a) implies (b) and (b) implies (c). Thus, it is enough to prove that (c) implies (d).

By 3.9 (b), the tangent cone to X0 is the union of s independent lines L1; . . . ;Ls. After
a linear change of coordinates, we may assume that L1; . . . ;Ls are respectively generated by
the vectors e1; . . . ; es where ei ¼ ð0; . . . ; 0; 1; 0; . . . ; 0Þ. If s ¼ n, by 3.9 (c), X0 is equivalent to
a union of independent lines, and we are done.

If s < n, let us see that X0 does not have the PEþ property. Indeed, write
X0 ¼ X1;0 W � � �WXr;0 as the union of its irreducible components and fj ¼ xj for
j ¼ 1; . . . ; n.

Fix 1e ie r and let ai be a primitive parametrization of Xi;0. Say that Lj is the tan-
gent line to Xi;0. We have that oð fj � aiÞ ¼ 1 and oð fn � aiÞf 2 (because j < n). Thus, the
function germ xn þ Mx2

j is strictly positive on Xi;0 for M > 0 large enough.
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Hence, the function germ xn þ Mðx2
1 þ � � � þ x2

s Þ is strictly positive on X0nf0g for
M > 0 large enough, but it cannot be extended positively to R3

0. Thus, X0 does not have
the PEþ property. r

Now, we are ready to prove 3.1.

Proof of Theorem 3.1. Again, by [Sch], 3.9, statements (a), (b) and (e) are equivalent.
Moreover, (b) implies (c) and (c) implies (d). Thus, it is enough to prove that (d) implies (e).

Indeed, let ne 3 be the embedding dimension of X0. We distinguish several cases:

Case 1. If n ¼ 1 there is nothing to prove, since X0 is a straight-line.

Case 2. If n ¼ 2, by 3.9 (a), after an additional linear change of coordinates, we may
assume that ðxyÞRfx; ygHJðX0Þ. Thus, X0 is contained in the union of two transversal
lines. But since the embedding dimension of X0 is 2, we deduce that JðX0Þ ¼ ðxyÞRfx; yg
and X0 is the union of two transversal lines.

Case 3. If n ¼ 3, by 3.9 (b), the tangent cone to X0 is the union of se 3 lines. By 3.9
(c), if s ¼ 3, then X0 is equivalent to the union of three independent lines. Thus, we have to
show that s ¼ 3. r

(3.11) If s ¼ 2, X0 does not have the PEþ property.

Proof. We write X0 ¼ X1;0 W � � �WXr;0 as the union of its irreducible components.
After a linear change of coordinates, we may assume that the tangent cone to X0 is the
union of the lines y ¼ 0, z ¼ 0 and x ¼ 0, z ¼ 0. By 3.9, there exist

g1 ¼ xy þ axz þ byz þ cz2 þ h1; g2 ¼ z2 þ h2 A JðX0Þ

where a; b; c A R and h1; h2 A Rfx; y; zg have orderf 3. Let m A R be a real number such
that the initial form of g1 þ mg2 is a quadratic form of rank 3; we denote again by g1 the
analytic series g1 þ mg2. By classification of singularities ([JP], 9.2.12), we may assume that

g1 ¼ xy � z2; g2 ¼ z2 þ h2 A JðX0Þ

where h2 A Rfx; y; zg is an analytic series of orderf 3. Note that the tangent cone to X0

is still the union of the lines x ¼ 0, z ¼ 0 and y ¼ 0, z ¼ 0. Let us see that h2ðx; 0; 0Þ or
h2ð0; y; 0Þ are analytic series of order 3. Otherwise, we can write

h2ðx; y; zÞ ¼ zh21ðx; y; zÞ þ xyh22ðx; yÞ þ x4h23ðxÞ þ y4h24ðyÞ

where h2j A Rfx; y; zg for 1e j e 4, h21 has orderf 2 and h22 has orderf 1. Consider

g 0
2 ¼ g2 � h22g1 ¼ z2ð1 þ h22Þ þ zh21 þ x4h23 þ y4h24

¼ z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ h22

p
þ h21

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ h22

p
� �2

þ x4h23 þ y4h24 �
h2

21

4ð1 þ h22Þ
:
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Notice that since h21 has orderf 2 and h22 has orderf 1, then, after the change of coordi-
nates

x; y; z
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ h22

p
þ h21

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 þ h22

p
� �

7! ðx; y; zÞ;

we deduce that the tangent cone to X0 is still the union of the lines x ¼ 0, z ¼ 0 and y ¼ 0,
z ¼ 0, and g 0

2 ¼ z2 � h4, for certain analytic series h4 A Rfx; y; zg of orderf 4. Thus, by 3.9
(d), X0 does not have the PEþ property. Hence, we may assume that h2ðx; 0; 0Þ has order 3,
and, in fact, that h2ðx; 0; 0Þ ¼ a2x3 þ � � � for some a > 0.

Fix 1e i e r and let ai be a primitive parametrization of the irreducible curve Xi;0.
We have that:

(a) If the tangent line to Xi;0 is the line y ¼ 0, z ¼ 0, then using that
g1 ¼ xy � z2 A JðX0Þ we can write

aiðtÞ ¼ ðetk; etkþ2lu2; tkþluÞ;

where u A Rftg is a unit, k; lf 1 are positive integers and e ¼G1. Moreover, since
g2 ¼ z2 þ h2 A JðX0Þ, where h2ðx; 0; 0Þ ¼ a2x3 þ � � � for some a > 0, we have

0 ¼ g2 � ai ¼ t2kþ2lu2 þ t3kev2ðtÞ;

where v A Rftg is a unit. Thus k ¼ 2l is even and e ¼ �1. Therefore, the function germ �x

is strictly positive on Xi;0nf0g.

(b) If the tangent line to Xi;0 is the line x ¼ 0, z ¼ 0, then using that
g1 ¼ xy � z2 A JðX0Þ we can write

aiðtÞ ¼ ðetkþ2lu2; etk; tkþluÞ;

where u A Rftg is a unit, k; lf 1 are positive integers and e ¼G1. Moreover, since
g2 ¼ z2 þ h2 A JðX0Þ,

0 ¼ g2 � ai ¼ t2kþ2lu2 þ t3kexðtÞ;

where x A Rftg. Thus, 2lf k and the function germ �x þ My2 is strictly positive on
Xi;0nf0g for M > 0 large enough.

Hence, if M > 0 is large enough, then �x þ My2 is strictly positive on X0nf0g but it
cannot be extended positively to R3

0. Thus, X0 does not have the PEþ property. r

(3.12) If s ¼ 1, X0 does not have the PEþ property.

Proof. We write X0 ¼ X1;0 W � � �WXr;0 as the union of its irreducible components.
After a linear change of coordinates, we may assume, by 3.9 (a), that y2 � xz A JðX0Þ.
After an additional linear change that keeps the equation y2 � xz invariant, we may as-
sume that the tangent cone to X0 is the line y ¼ 0, z ¼ 0.
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Fix 1e ie r and let ai be a primitive parametrization of the irreducible component
Xi;0. We may assume, after a reparametrization, that,

aiðtÞ ¼ ðetk; tkþlu; etkþ2lu2Þ

where u A Rftg is a unit, e ¼G1 and k, l are positive integers. Note that all the previous
elements depend on i.

Now, by 3.9 (d), there exists an analytic series f A JðX0Þ whose initial form is a non-
zero positive semidefinite quadratic form of rank re 2 which vanishes on the line y ¼ 0,
z ¼ 0. If r ¼ 2, by classification of singularities and 3.9 (d), we may assume (after a
new change of coordinates) that f ¼ y2 þ z2 � x3. Since y2 þ z2 ¼ x3 on X0, we have
x A PðX0Þ and x þ ðx2 þ y2 þ z2Þ is strictly positive on X0nf0g but it cannot be extended
positively to R3

0. Thus, X0 does not have the PEþ property.

Hence, in what follows, we assume that r ¼ 1 and, by 3.9 (d), there exists g A JðX0Þ
of the type

g ¼ ðay þ bzÞ2 þ a0x3 þ a1x2y þ a2x2z þ a3xy2

þ a4xz2 þ a5xyz þ a6y2z þ a7z2y þ a8y3 þ a9z3 þ h;

where aj A R and h A Rfx; y; zg has orderf 4. Using that y2 � xz A JðX0Þ we may assume
that a3, a6, a8 are 0, that is,

g ¼ ðay þ bzÞ2 þ a0x3 þ a1x2y þ a2x2z þ a4xz2 þ a5xyz þ a7z2y þ a9z3 þ h;

where h A Rfx; y; zg has orderf 4. We have that g � ai ¼ 0, that is

ðatkþlu þ betkþ2lu2Þ2 þ a0et
3k þ a1ut3kþl þ a2et

3kþ2lu2 þ a4et
3kþ4lu4ð*Þ

þ a5u3t3kþ3l þ a7u5t3kþ5l þ a9eu
6t3kþ6l þ t4kxðtÞ ¼ 0;

where xðtÞ A Rftg. We distinguish several cases:

(3.12.1) a0 3 0. Then (from the equality (*)) we deduce that k is even and �a0e > 0.
Thus, the function germ �a0x is strictly positive on Xi;0nf0g. Since this happens for all i,
we have �a0x is strictly positive on X0nf0g. Hence, X0 does not have the PEþ property.

r

(3.12.2) a0 ¼ 0, a3 0. Then, we deduce that lf k. Thus, the function germ
f ¼ y þ Mx2 is strictly positive on Xi;0nf0g for M > 0 large enough. Since this happens
for all i, the function germ f is strictly positive on X0nf0g for M > 0 large enough. Hence,
X0 does not have the PEþ property. r

(3.12.3) a0 ¼ 0, a ¼ 0. Then b3 0 and we may assume that b ¼ 1. Thus, we have

t2kþ4lu4 þ a1ut3kþl þ a2et
3kþ2lu2 þ a4et

3kþ4lu4ð**Þ

þ a5u3t3kþ3l þ a7u5t3kþ5l þ a9eu
6t3kþ6l þ t4kxðtÞ ¼ 0;

and we distinguish several subcases:
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(a) a1 3 0. Then 2k þ 4l ¼ 3k þ l or 3k þ lf 4k. If 2k þ 4l ¼ 3k þ l, we have
k ¼ 3l. Hence

ai ¼ ðet3l; t4lu; et5lu2Þ:

Moreover, since 2k þ 4l ¼ 10l < 12l ¼ 4k, we have �a1uð0Þ ¼ uð0Þ4 > 0. Thus, the func-
tion �a1y is strictly positive on Xi;0nf0g.

If 3k þ lf 4k then lf k, that is, l ¼ k þ j for an integer j f 0. Hence,

ai ¼ ðetk; t2kþju; et3kþ2ju2Þ;

and the function �a1y þ
�
ja1uð0Þj þ 1

�
x2 is strictly positive on Xi;0nf0g.

Thus, for M > 0 large enough, the function f ¼ �a1y þ Mx2 is strictly positive on
X0nf0g. Whence, X0 does not have the PEþ property.

(b) a1 ¼ 0 and a2 3 0. Then 2k þ 4l ¼ 3k þ 2l or 3k þ 2lf 4k. If

2k þ 4l ¼ 3k þ 2l;

we have k ¼ 2l. Hence

ai ¼ ðet2l; t3lu; et4lu2Þ:

Thus, the function z þ
�
1 þ uð0Þ2�

x2 is strictly positive on Xi;0nf0g.

If 3k þ 2lf 4k then 2lf k, that is, 2l ¼ k þ j for an integer j f 0. Hence,

ai ¼ ðetk; tkþlu; et2kþju2Þ;

and the function z þ
�
1 þ uð0Þ2�

x2 is strictly positive on Xi;0nf0g.

Thus, for M > 0 large enough, the function f ¼ z þ Mx2 is strictly positive on
X0nf0g. Hence, X0 does not have the PEþ property.

(c) a1; a2 ¼ 0 and a5 3 0. Then 2k þ 4l ¼ 3k þ 3l or 2k þ 4lf 4k. If

2k þ 4l ¼ 3k þ 3l;

we have k ¼ l. Hence,

ai ¼ ðetk; t2ku; et3ku2Þ:

Thus, the function z þ x2 is strictly positive on Xi;0nf0g.

If 2k þ 4lf 4k then 2lf 2k, that is, 2l ¼ k þ j for an integer j f 0. Hence,

ai ¼ ðetk; tkþlu; et2kþju2Þ;

and the function z þ
�
1 þ uð0Þ2�

x2 is strictly positive on Xi;0nf0g.
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Thus, for M > 0 large enough, the function f ¼ z þ Mx2 is strictly positive on
X0nf0g. Therefore, X0 does not have the PEþ property.

(d) a1; a2; a5 ¼ 0. Then 2k þ 4lf 4k and 2lf k, that is, 2l ¼ k þ j for an integer
j f 0. Hence,

ai ¼ ðetk; tkþlu; et2kþju2Þ;

and the function z þ
�
1 þ uð0Þ2�

x2 is strictly positive on Xi;0nf0g.

Thus, for M > 0 large enough, the function f ¼ z þ Mx2 is strictly positive on
X0nf0g. Therefore, X0 does not have the PEþ property.

In this way, we conclude that if s ¼ 1, X0 does not have the PEþ property, as wanted.
r

4. Local results for dimension two

The purpose of this section is to prove 1.2. To make easier the proof of 1.6 that will
be done in the next section we prove the following slightly stronger result:

Theorem 4.1. Let X0 kR3
0 be a real analytic germ. If X0 has the PEþ property, then

X0 is one among the analytic germs of the List.

Proof. First, note that if X0 has dimension 1 then, by 3.1, the germ X0 is an analytic
curve germ in the List. Thus, we assume that X0 has dimension 2. We distinguish two cases:

Case 1. X0 has irreducible components of dimension 1. We have to check that X0 is
equivalent to the union of a plane and a transversal line.

Since X0 has the PEþ property, by 3.5, o
�
JðX0Þ

�
¼ 2. Let I (resp. J) be the ideal of

the union of the components of X of dimension 2 (resp. 1). Then JðX0Þ ¼ I X J. More-
over, since the ideal I HRfx; y; zg has height 1, it is principal; and we write I ¼ ðjÞ with
j A Rfx; y; zg. One can check that JðX0Þ ¼ I � J; hence, 2 ¼ o

�
JðX0Þ

�
¼ oðIÞ þ oðJÞ.

Thus, oðIÞ ¼ oðJÞ ¼ 1 and we may assume that I ¼ ðzÞ and J ¼ ðc1;c2Þ where
cj A Rfx; y; zg and 1 ¼ oðc1Þeoðc2Þ. Let us see that we may assume that c1 ¼ x.

Otherwise, we can suppose that the initial form of c1 is equal to z and, after an ana-
lytic change of coordinates, that c1 ¼ z þ 2Fðx; yÞ for certain analytic series Fðx; yÞ A m2

2.
We have that JðX0Þ ¼

�
z
�
z þ 2Fðx; yÞ

�
; zc2

�
. Note that since

z
�
z þ 2Fðx; yÞ

�
¼
�
z þ Fðx; yÞ

�2 � F 2ðx; yÞ A JðXÞ;

the following equality holds for X0:

jz þ Fðx; yÞj ¼ jFðx; yÞj:

On the other hand, since oðFÞf 2, by 3.3, there exists c > 0 such that
jFðx; yÞje c2ðx2 þ y2Þ. Thus, we get that
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jz þ Fðx; yÞj ¼ jFðx; yÞje c2ðx2 þ y2Þ

and the analytic function germ h0 ¼ ðc þ 1Þ2ðx2 þ y2Þ þ Fðx; yÞ þ z is positive semidefinite
on X0, hence h ¼ h0 þ ðx2 þ y2 þ z2Þ2 is strictly positive on X0nf0g, but does not admit a
positive semidefinite extension to R3

0; impossible, because X0 has the PEþ property.

Thus, in what follows, we may assume that J ¼ ðx;c2Þ where c2 A Rfy; zg is a series
of orderf 1. We are to prove that after a new change of coordinates c2ðy; zÞ ¼ y, hence
J ¼ ðx; yÞ, which means that X0 is (equivalent to) the union of a plane and a trans-
versal line. To that end, we begin by proving that the curve germ Y0 of R2

0 given by
Y0 : zc2ðy; zÞ ¼ 0 has the PEþ property.

Indeed, note that JðY0Þ ¼ ðzc2ÞRfy; zg. Let f ðy; zÞ A PðY0Þ be such that f is strictly
positive on Y0nf0g. Then f ðy; zÞ þ x2 is strictly positive on X0nf0g. Since X0 has the PEþ

property there exist analytic functions g A PðR3
0Þ and b1; b2 A Rfx; y; zg such that

f ðy; zÞ þ x2 ¼ gðx; y; zÞ þ zxb1ðx; y; zÞ þ zc2ðy; zÞb2ðx; y; zÞ:

Making x ¼ 0 in the previous equation we get that

f ðy; zÞ ¼ gð0; y; zÞ þ zc2ðy; zÞb2ð0; y; zÞ;

where gð0; y; zÞ A PðR2
0Þ. Thus, Y0 HR2

0 has the PEþ property.

Next, since oðc2Þf 1, by 3.1, the germ Y0 is equivalent to the union of two trans-
versal lines. Hence, after a change of coordinates, we may assume that c2 ¼ y, and we are
done.

Case 2. X0 does not have irreducible components of dimension 1. If X0 is reg-
ular, then X0 is equivalent to a plane, which belongs to the List. Thus, we may as-
sume that X0 is singular. Note that since X0 does not have irreducible components of
dimension 1, the ideal JðX0Þ is principal. Since X0 has the PEþ property and it is sin-
gular, by 3.5, o

�
JðX0Þ

�
¼ 2. Thus, after a change of coordinates, we may assume that

JðX0Þ ¼
�
z2 � Fðx; yÞ

�
Rfx; y; zg for certain analytic series F A Rfx; yg of orderf 2.

Note that the ring OðX0Þ is a free Rfx; yg-module of rank 2 with basis f1; zg. By [Rz3],
4.3, we have

PðX0Þ ¼ f f þ zg : f ; g A Rfx; yg; f A PðF f 0Þ; f 2 � Fg2 A PðR2
0Þg;ð�Þ

where PðF f 0Þ denotes the set of the analytic series of Rfx; yg which are positive semi-
definite on the germ fF f 0g. In what follows, we obtain successive restrictions on the se-
ries F . To start with, we get rid of orderf 4 series:

(4.2) First restriction. oðFÞe 3.

Proof. Indeed, suppose oðFÞf 4. By 3.3, there exists c > 0 such that

jFðx; yÞje c2ðx2 þ y2Þ2:
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Now, we set h ¼ cðx2 þ y2Þ. Thus, h and h2 � F are positive semidefinite, and from ð�Þ, we
have h þ z A PðX0Þ; hence, we deduce that h þ z þ ðx2 þ y2 þ z2Þ2 is strictly positive on
X0nf0g, but does not admit a positive semidefinite extension to R3

0. Consequently, X0

does not have the PEþ property. r

This completes the proof of (4.2), and we can assume henceforth oðFÞe 3. Concern-
ing order 2 series we have:

(4.3) Second restriction. If oðFÞ ¼ 2, then X0 is equivalent to z2 � x2 ¼ 0 or

z2 � x2 � yk ¼ 0 for some k f 2.

Proof. After a change of coordinates, we can suppose that the equation of X0 is
z2 � x2 ¼ 0 or of the type z2 þ ex2 � yk with e ¼G1, k f 2. If k ¼ 2, z2 þ ex2 � y2 ¼ 0 is
equivalent to z2 � x2 � y2 ¼ 0. Now, we prove that e must be �1 for k f 3. This is dis-
cussed as follows.

On the surface X0 : z2 þ x2 ¼ y2k, k f 2, we have jykj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
z2 þ x2

p
f jxj. If k is even,

we deduce that x þ yk is positive semidefinite on X0, and h ¼ x þ yk þ ðx2 þ y2 þ z2Þk

is strictly positive on X0nf0g, but cannot be extended positively to R3
0. If k is odd,

we get that ykþ1 ¼ jykþ1jf jxyj. Thus yðx þ ykÞ is positive semidefinite on X0, and
g ¼ yðx þ ykÞ þ ðx2 þ y2 þ z2Þk is strictly positive on X0nf0g. If g could be extended pos-
itively to R3

0, there would exist an equation of the type

g ¼ G þ ðz2 þ x2 � y2kÞa

for certain G A PðR3
0Þ and a A Rfx; y; zg. Looking at the initial forms we find a positive

semidefinite quadratic form q and a constant c A R such that yx ¼ q � cðx2 þ z2Þ, which
implies that yx þ cx2 þ cz2 is positive semidefinite, a contradiction.

Finally, we exclude X0 : z2 þ x2 ¼ y2kþ1, because the analytic series

y þ ðx2 þ y2 þ z2Þ

is strictly positive on X0nf0g but cannot be extended positively to R3
0. r

Next we look at order 3 series and get:

(4.4) Third restriction. If oðFÞ ¼ 3, then X0 is equivalent to one of the following:

z2 � x2y � ð�1Þk
yk ¼ 0 ðk f 3Þ; z2 � x2y;

z2 � x3 þ xy3 ¼ 0; z2 � x3 � y4 ¼ 0 or z2 � x3 � y5 ¼ 0:

�
Proof. After a linear change, the initial form of F is x2y, x2yG y3 or x3. We study

two cases:

(4.4.1) If InðFÞ ¼ x2y or x2yG y3, then X0 is equivalent either to

z2 � x2y � ð�1Þk
yk ¼ 0 ðk f 3Þ or z2 � x2y.

After a change of coordinates (classification of singularities), we can suppose that
F is one of the following power series: x2y, x2yG yk, k f 3. If F ¼ x2y � ð�1Þk

yk
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we show that there exists a strictly positive analytic function on Xk;0nf0g (where
Xk;0 : z2 ¼ x2y � ð�1Þk

yk and k f 3) which cannot be extended positively to R3
0.

Indeed, if k is even, we have z2 þ yk ¼ x2y. Thus, y A PðXk;0Þ and
h ¼ y þ ðx2 þ y2 þ z2Þ is strictly positive on Xk;0nf0g, but cannot be extended posi-
tively to R3

0. If k is odd, we have z2 ¼ ðx2 þ yk�1Þy. Thus, y A PðXk;0Þ and
h ¼ y þ ðx2 þ y2 þ z2Þ is strictly positive on Xk;0nf0g, but cannot be extended positively
to R3

0.

After this, we see that:

(4.4.2) If InðFÞ ¼ x3 then X0 is equivalent to z2 � x3 þ xy3 ¼ 0, z2 � x3 � y4 ¼ 0 or

z2 � x3 � y5 ¼ 0.

Changing x by �x if necessary, there exist a Weierstrass polynomial

P ¼ x3 þ p1ðyÞy2x2 þ p2ðyÞy3x þ p3ðyÞy4 ðpi A RfygÞ

and a unit U A Rfx; yg such that Uð0; 0Þ > 0 and F ¼ PU . After the change of coordinates
ðx; y; zÞ 7!

�
x � p1ðyÞy2=3; y;

ffiffiffiffiffi
U

p
z
�
, we can suppose that the equation of X0 is of the type

z2 � Fðx; yÞ where Fðx; yÞ ¼ x3 þ aðyÞy3x þ bðyÞy4 for some a; b A Rfyg. After this pre-
paration we proceed in several steps:

(a) If oðaÞf 1 and oðbÞf 2 then X0 does not have the PEþ property.

We claim that: The analytic function germ x þ cy2 is positive semidefinite on X0 for

c > 0 large enough. Thus, h ¼ x þ cy2 þ ðx2 þ y2 þ z2Þ4 is strictly positive on X0nf0g, but
cannot be extended positively to R3

0.

Let us see now our claim. In view of the equality ð�Þ above, we have to show that for
c > 0 large enough x þ cy2 A PðF f 0Þ, that is, fx þ cy2 f 0gI fF f 0g, or equivalently,
fx þ cy2 < 0gH fF < 0g. Thus, we have to check that for a fixed c > 0 large enough,
0 > Fð�ct2 � v; tÞ for v > 0. Indeed,

Fð�ct2 � v; tÞ ¼ ð�ct2 � vÞ3 þ aðtÞt3ð�ct2 � vÞ þ bðtÞt4

¼ �c3t6 � 3c2vt4 � 3ct2v2 � v3 � caðtÞt5 � vaðtÞt3 þ bðtÞt4

¼ �t6 c3 þ c
aðtÞ

t
þ bðtÞ

t2

� �
� vt4 3c2 þ aðtÞ

t

� �
� 3ct2v2 � v3:

Since oðaÞf 1 and oðbÞf 2, the series a1ðtÞ ¼ aðtÞ=t and b1ðtÞ ¼ bðtÞ=t2 belong to
Rftg. Thus, if c > 0 is such that c3 þ ca1ð0Þ þ b1ð0Þ > 0 and 3c2 þ a1ð0Þ > 0, then
Fð�ct2 � v; tÞ < 0 for v > 0, and we are done.

Next, we discuss the factorization of F ¼ x3 þ aðyÞy3x þ bðyÞy4:

(b) If F is the product of three (possibly equal) irreducible factors, then X0 does not

have the PEþ property.
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Suppose F ¼ f1 f2 f3, where some or all the factors may coincide. Since the initial form
of F is x3, we can write fk ¼ x þ lkðx; yÞ where oðlkÞf 2 and then

F ¼ ðx þ l1Þðx þ l2Þðx þ l3Þ

¼ x3 þ x2ðl1 þ l2 þ l3Þ þ xðl1l2 þ l1l3 þ l2l3Þ þ ðl1l2l3Þ

¼ x3 þ aðyÞy3x þ bðyÞy4:

From this equality we deduce that

bðyÞy4 ¼ Fð0; yÞ ¼ l1ð0; yÞl2ð0; yÞl3ð0; yÞ has orderf 6;

aðyÞy3 ¼ qF

qx
ð0; yÞ ¼

P
1ei<je3;

1eke3;k3i; j

lið0; yÞljð0; yÞ 1 þ qlk

qx
ð0; yÞ

� �
has orderf 4:

Hence, oðaÞf 1, oðbÞf 2 and, by (4.4.2)(a), X0 does not have the PEþ property.

(c) If F is reducible, then F ¼ x3 � xy3.

By the previous remark, F ¼ fg and f , g must be irreducible, say oð f Þ ¼ 2, oðgÞ ¼ 1
and we can suppose Inð f Þ ¼ x2, InðgÞ ¼ x. If f is semidefinite, it is a sum of two squares
with initial form x2. Choosing a suitable representation of f as a sum of two squares, we
can suppose f ¼

�
x þ m1ðx; yÞ

�2 þ
�
m2ðx; yÞ

�2
and g ¼ x þ m3ðx; yÞ with oðmkÞf 2. Thus,

F ¼
�
x þ m1ðx; yÞ þ im2ðx; yÞ

��
x þ m1ðx; yÞ � im2ðx; yÞ

��
x þ m3ðx; yÞ

�
:

Proceeding similarly to (4.4.2)(b) (we have again three irreducible factors although two of
them are complex) we are in the hypothesis of (4.4.2)(a) and X0 does not have the PEþ

property.

Hence, if X0 has the PEþ property, f should be irreducible and real. Thus, we
can assume F ¼ ðx2 � ykÞ

�
x þ mðx; yÞ

�
, k f 3, oðmÞf 2. By the Weierstrass Pre-

paration Theorem there exist a series a A Rfyg and a unit U A Rfx; yg such that
x þ mðx; yÞ ¼

�
x þ aðyÞy2

�
Uðx; yÞ. Changing x by �x (if necessary) we can suppose

Uð0; 0Þ > 0 and after a change ðx; y; zÞ 7!
�
x; y;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Uðx; yÞ

p
z
�
, the equation of our germ is

z2 � ðx2 � ykÞ
�
x þ aðyÞy2

�
.

For k f 4, F ¼ x3 þ aðyÞx2y2 � ykx � ykþ2aðyÞ. After the change

x 7! x � aðyÞy2=3;

we are again in the conditions of (4.4.2)(a). Hence, X0 does not have the PEþ property.

Finally, for k ¼ 3 we get F ¼ ðx2 � y3Þðx þ � � �Þ and by classification of singularities
F is equivalent to x3 � xy3.

(d) If F is irreducible, then F ¼ x3 þ y4 or x3 þ y5.

Suppose F irreducible. By classification of singularities we can transform F into
x3 G y4 or F ¼ x3 þ xy4a 0ðyÞ þ y5b 0ðyÞ. Suppose first F ¼ x3 þ xy4a 0ðyÞ þ y5b 0ðyÞ. If
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b 0ð0Þ ¼ 0, by (4.4.2)(a), X0 does not have the PEþ property. If b 0ð0Þ3 0 then another
change makes F ¼ x3 þ y5.

For F ¼ x3 � y4 we see that X0 does not have the PEþ property. Since z2 þ y4 ¼ x3

we have that x A PðX0Þ and h ¼ x þ ðx2 þ y2 þ z2Þ is strictly positive on X0nf0g, but can-
not be extended positively to R3

0. r

Thus, we have proved (4.4.2). Summing up, (4.2) says that oðFÞe 3, (4.3) that if
oðFÞ ¼ 2, the germ z2 � F ¼ 0 is one among (viii)–(x) in the List, and (4.4) that if
oðFÞ ¼ 3, the germ z2 � F ¼ 0 is one among (v)–(vii) or (xi)–(xiii) in the List. All together
we conclude that an unmixed surface germ X0 HR3

0 with the PEþ property belongs to the
List, as wanted. r

Thus, we conclude the following:

Corollary 4.5. Let X0 kR3
0 be an analytic germ. Then the following assertions are

equivalent:

(a) PðX0Þ ¼ S2ðX0Þ.

(b) PðX0Þ ¼ SðX0Þ.

(c) X0 has the PE property.

(d) X0 has the PEþ property.

Moreover, we recall that the Pythagoras number p½X0� of the ring of analytic function
germs OðX0Þ of an analytic germ X0 is the least integer pf 1 such that every sum of
squares of the ring OðX0Þ is a sum of p squares in such ring, or þy if such integer does
not exist. In [Fe4], 1.1, it is proved again that if X0 HR3

0 is an unmixed surface analytic
germ with p½X0� ¼ 2, then X0 belongs to the List. Thus, if we restrict our target to unmixed
analytic surface germs we deduce the following surprising result:

Corollary 4.6. Let X0 HR3
0 be an unmixed analytic surface germ. Then the following

assertions are equivalent:

(a) p½X0� ¼ 2.

(b) PðX0Þ ¼ SðX0Þ.

(c) X0 has the PE property.

(d) X0 has the PEþ property.

5. Non-isolated singular points

In this section we study what happens with respect to the P ¼ S and PE properties
around the one dimensional component of the singular set of a global analytic set X which
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has P ¼ S and/or the PEþ property at the germs of all its points. Since we are working in
local embedding dimensione 3, the non-isolated singularities having such properties must
be equivalent to X0 ¼ fyz ¼ 0gHR3

0 (see the List). This is because, as we have seen in 1.5
and 2.8, to have such properties globally, all the singularities have to be coherent. Related
to this, the main result of this section is the following:

Theorem 5.1. Let S be a real analytic surface in an open set WHRn. Suppose that for

all x A C ¼ SingðSÞ the germ Sx is equivalent to X0 ¼ fyz ¼ 0gHR3
0. Let f be a positive

semidefinite analytic function on S such that C H f f ¼ 0g. Then, there exists an open neigh-

bourhood W of C in S, such that f is a sum of two squares in OðWÞ.

To prove 5.1, we will need to use in a crucial way the normalization of a real analytic
set. We recall here, for the sake of the reader, its definition and some of its main properties:

Definition 5.2. Let ðX ;OX Þ be a real analytic space (see [Tg] for the general theory
of real analytic spaces). A normalization of X is a pair

�
ðX̂X ;OX̂X Þ; p

�
, where ðX̂X ;OX̂X Þ is a real

normal analytic space and p : X̂X ! X is a surjective analytic map such that:

(a) p is proper and has finite fibers.

(b) X̂Xnp�1
�
SingðXÞ

�
is dense in X̂X and the restriction

pj : X̂Xnp�1
�
SingðXÞ

�
! XnSingðXÞ

is an analytic di¤eomorphism.

Recall that a real analytic space ðX ;OX Þ is normal if for all x A X the local ring OX ;x

is integrally closed in its total ring of fractions. Note that we have to use real analytic
spaces to define the normalization because it can happen that the normalization of a real
analytic set is not again a real analytic set, although it is always a real analytic space. Nev-
ertheless, the only problem arises from the local embedding dimension of the normaliza-
tion, which can be þy. Summing up [N], §VI. Lem. 2 and Thm. 4, and [Tg], §8, we get
that:

Theorem 5.3. Let ðX ;OX Þ be a real coherent reduced analytic space. Then ðX ;OX Þ has

a coherent normalization, which is unique up to analytic equivalence, that is, if
�
ð bXiXi;ObXi

Þ; pi

�
are normalizations of ðX ;OX Þ for i ¼ 1; 2, then there exists an analytic di¤eomorphism

j : cX1X1 ! cX2X2 such that p1 ¼ p2 � j.

Lemma 5.4. Let S be a real analytic surface in an open set WHRn and let ðŜS; pÞ be

its normalization. Suppose that the germ Sx is equivalent to X0 ¼ fyz ¼ 0gHR3
0 for all

x A C ¼ SingðSÞ. Then ŜS is a smooth analytic surface and for all x A C there exist

y1; y2 A ŜS and respective open neighbourhoods V y1 , V y2 of y1, y2 in ŜS analytically di¤eomor-

phic to a plane, such that

(i) pjV yi : V yi ! pðV yiÞ is an analytic di¤eomorphism for i ¼ 1; 2, and

(ii) W x ¼ pðV y1ÞWpðV y2Þ is an open neighbourhood of x in S analytically di¤eo-

morphic to the union of two transversal planes.
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Proof. Take a point x A C. Since the germ Sx is equivalent to X0 ¼ fyz ¼ 0gHR3
0,

there exists a neighbourhood W x in S analytically di¤eomorphic to the union of two
transversal planes. Note that pjp�1ðW xÞ : p

�1ðW xÞ ! W x is the normalization of W x. On
the other hand, the normalization of W x is the disjoint union of two planes. Hence,
by the unicity of the normalization (see 5.3), we have p�1ðW xÞ ¼ V y1 WV y2 where
pðy1Þ ¼ pðy2Þ ¼ x, V y1 XV y2 ¼ j and V yi is an open neighbourhood of yi in ~SS analyti-
cally di¤eomorphic to a plane. Moreover, pjV yi : V yi ! pðV yiÞ is an analytic di¤eomor-
phism and W x ¼ pðV y1ÞWpðV y2Þ.

Finally, since each point of ŜS has an open neighbourhood analytically di¤eomorphic
to a plane, we conclude that ŜS is a smooth analytic surface, as wanted. r

Lemma 5.5. Let X0 HR3 be the analytic surface germ of equation yz ¼ 0 and con-

sider the analytic germs X1;0 : y ¼ 0 and X2;0 : z ¼ 0. Let fi A OðXi;0Þ be analytic function

germs for i ¼ 1; 2, which vanish on the line germ C0 : y ¼ 0, z ¼ 0. Then, the function germ

f : X0 ! R given by f jXi;0
¼ fi for i ¼ 1; 2 is analytic on X0.

Proof. Indeed, note that

OðX1;0Þ ¼ OðX0Þ=ðyÞGRfx; zg and OðX2;0Þ ¼ OðX0Þ=ðzÞGRfx; yg:

Then, we may assume that

f1 A Rfx; zgHRfx; y; zg and f2 A Rfx; ygHRfx; y; zg:

Moreover, since f1, f2 vanish on the line germ C0 : y ¼ 0, z ¼ 0, we get f1 ¼ zg1 and
f2 ¼ yg2 where g1 A Rfx; zg and g2 A Rfx; yg. Then, if f ¼ f1 þ f2 A Rfx; y; zg, we have

gðx; 0; zÞ ¼ f1ðx; 0; zÞ þ f2ðx; 0; zÞ ¼ f1ðx; zÞ þ 0 � g2ðx; 0Þ ¼ f1ðx; zÞ;

gðx; y; 0Þ ¼ f1ðx; y; 0Þ þ f2ðx; y; 0Þ ¼ 0 � g1ðx; 0Þ þ f2ðx; yÞ ¼ f2ðx; zÞ:

Therefore, gjXi; 0
¼ fi ¼ f jXi; 0

for i ¼ 1; 2, and f ¼ g A OðX0Þ, as wanted. r

Corollary 5.6. Let S1, S2 be two transversal smooth analytic surfaces in an open set

WHRn. Let S ¼ S1 WS2 and let fi be an analytic function on Si such that fijS1XS2
¼ 0 for

i ¼ 1; 2. Then, the function f : S ! R given by f jSi
¼ fi for i ¼ 1; 2 is analytic on S.

Proof. First, since S1, S2 are transversal smooth analytic surfaces, C ¼ S1 XS2 is a
smooth analytic curve and that Sx is equivalent to X0 : yz ¼ 0 for all x A C.

Next, note that we only have to check the analyticity of f in the points x A C. For
that, it is enough to check that the germ fx is analytic for all x A C; but, this follows
straightforwardly from 5.5, and we are done. r

Now, we are ready to prove 5.1:

Proof of Theorem 5.1. Indeed, let ðŜS; pÞ be the normalization of S. By 5.4, ŜS is a
smooth analytic surface. For each compact connected component ŜSk of ŜS we consider a
point xk A ŜSknp�1ðCÞ. We have that D ¼

S
k

fxkg is a closed subset of ŜS which does not in-
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tersect p�1ðCÞ. Note that all the connected components of ŜSnD are non compact and that
W ¼ SnpðDÞ is an open neighbourhood of C in S. Moreover, ðŜSnD; pjŜSnDÞ is the normal-
ization of W .

Consider the analytic function f � p : ŜSnD ! R. Since f is positive semidefinite on S,
we have that f � p is positive semidefinite on ŜSnD.

Thus, since all the connected components of the smooth analytic surface ŜSnD are
non compact, by [Jw1], there exist two analytic functions f1; f2 : ŜSnD ! R such that
f � p ¼ f 2

1 þ f 2
2 . Note that since f jC ¼ 0, we have f � pjp�1ðCÞ ¼ 0. Therefore f1, f2 are

identically zero on p�1ðCÞ.

Consider for j ¼ 1; 2, the function

aj : W ! R; x 7! ajðxÞ ¼ fj � p�1ðxÞ if x A WnC;

0 if x A C:

�
Clearly, f ¼ a2

1 þ a2
2. Thus, to finish we must check that a1, a2 are analytic on S. For that,

it is enough to prove that the functions ai are analytic around x, for all x A C.

Indeed, fix a point x A C. By 5.4, there exist two di¤erent points y1; y2 A ŜSnD such
that pðy1Þ ¼ pðy2Þ ¼ x and respective open neighbourhoods V y1 , V y2 of y1, y2 in ŜSnD,
analytically di¤eomorphic to a plane, such that for i ¼ 1; 2 the map

pjV yi : V yi ! pðV yiÞ

is an analytic di¤eomorphism and W x ¼ pðV y1ÞWpðV y2Þ is an open neighbourhood of x

in W analytically di¤eomorphic to the union of two transversal planes. Consider the ana-
lytic functions

bij ¼ fj � ðpjV yi Þ�1 : pðV yiÞ ! R

on pðV yiÞ for 1e i; j e 2. Clearly, bij � pjV yi ¼ fjjV yi for 1e i; j e 2.

Since f1, f2 are identically zero on p�1ðCÞ, the analytic functions bij vanish on
C X pðV yiÞ for 1e i; j e 2. Thus, by 5.6, there exist analytic functions b1; b2 A OðW xÞ
such that bjjpðV yi Þ ¼ bij for 1e i; j e 2. We have that

aj � pjV yi ¼ fjjV yi ¼ bij � pjV yi ¼ bj � pjV yi

and ajjCXW x ¼ bjjCXW x ¼ 0 for 1e i; j e 2. Thus, ajjW x ¼ bj is analytic on W x for j ¼ 1; 2,
and we are done. r

We dedicate the second part of this section to determine the topology of a real
analytic surface S around a connected curve C H SingðSÞ such that Sx is equivalent to
X0 ¼ fyz ¼ 0gHR3

0 for all x A C. We recall that germs at any closed subset Z of a real
analytic set X are defined exactly as germs at a point, through neighbourhoods of Z in X .
If Y HX is a subset of X containing Z we denote by YZ the germ of Y at Z.
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(5.7) Topology of our surfaces around the non-isolated singular points. Let S be a real

analytic surface and let C H SingðSÞ be a connected curve C such that the germ Sx is equi-

valent to the germ X0 ¼ fyz ¼ 0gHR3
0 for all x A C. Then, S is homeomorphic around C to

one of the following four surfaces:

(i) Two transver sa l p lanes. This is the case if C is non compact, that is, analyti-

cally di¤eomorphic to a line. In particular, the germ SC is reducible.

(ii) Two transver sa l o r i en tab le bands, that is, the union of a cylinder and a

transversal circular crown. This is the case if C is compact (that is, analytically di¤eomorphic

to a circumference), the germ SC is reducible, and one of the irreducible components of SC is

orientable. In particular, the other irreducible component is also orientable.

(iii) Two transver sa l Moeb ius bands. This is the case if C is compact (that is,
analytically di¤eomorphic to a circumference), the germ SC is reducible, and one of the irre-

ducible components of SC is non-orientable. In particular, the other irreducible component is

also non-orientable.

(iv) Singu lar Moeb ius band. This is the case if C is compact and the germ

SC is irreducible. In this case SC is homeomorphic to the germ at the circumference

C : x2 þ y2 ¼ 1, z ¼ 0 of the analytic surface S parametrized by the analytic map:

j : R� � 1

4
;
1

4

� �
! R3;

ðy; rÞ 7!
�
cosð2yÞ; sinð2yÞ; 0

�
þ r cosð2yÞ cos

y

2
; sinð2yÞ cos

y

2
; sin

y

2

� �
:

The following table shows pictures of the previous surfaces:

(i) two transversal planes (ii) two transversal orientable bands

(iii) two transversal Moebius bands (iv) singular Moebius band
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Remark 5.8. Consider the Moebius band M parametrized by the map

c : R� � 1

4
;
1

4

� �
! R3;

ðy; rÞ 7! ðcos y; sin y; 0Þ þ r cos y cos
y

2
; sin y cos

y

2
; sin

y

2

� �
;

and the map

p : M ! R3; ðx; y; zÞ 7! x2 � y2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p ;
2xyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2 þ y2
p ; z

 !
:

Then, ðM; pÞ is the normalization of the singular Moebius band S described above.

Proof of 5.7. First, let ðŜS; pÞ be the normalization of S. By 5.4, we deduce that
pjp�1ðCÞ : p

�1ðCÞ ! C is a 2 :1 local di¤eomorphism. We distinguish two cases:

Case 1. If C is non compact, that is, analytically di¤eomorphic to a straight-line, then

p�1ðCÞ is the disjoint union of two straight-lines and S is homeomorphic around C to two

t ransver sa l p lanes.

Indeed, since C is non compact and pjp�1ðCÞ is a local di¤eomorphism, each connected
component of p�1ðCÞ is non compact, hence, analytically di¤eomorphic to a straigh-line.
Thus, if L is a connected component of p�1ðCÞ, the local di¤eomorphism pjL : L ! C de-
fines a global di¤eomorphism between L and pðLÞ. Consequently, pðLÞ is an open subset of
C. On the other hand, since p is proper and L is closed (because it is an analytic subset of
~SS), we conclude that pðLÞ ¼ C. Thus, pjp�1ðCÞ being a 2 :1 map, we conclude that p�1ðCÞ is
the disjoint union of two straight-lines L1, L2.

Next, since L1, L2 are closed disjoint subsets of ŜS, we can find disjoint open
neighbourhoods Wi of Li in ŜS which are moreover analytically di¤eomorphic to a plane.
One can check that W ¼ pðW1 WW2Þ is an open neighbourhood of C in W homeomorphic
to the union of two transversal planes. r

Case 2. If C is compact, that is, analytically di¤eomorphic to a circumference, then

p�1ðCÞ is either a circumference or the disjoint union of two. In the first case, S is homeomor-

phic around C to a s ingu lar Moeb ius band, and in the second one, S is homeomorphic

around C either to two t ransver sa l o r i en tab le bands or to two t ransver sa l Moe-

b iu s bands.

Indeed, since C is compact and pjp�1ðCÞ is proper, we deduce that each connected
component of p�1ðCÞ is compact, hence, analytically di¤eomorphic to a circumference.
Moreover, since pjp�1ðCÞ is a local di¤eomorphism, the image under p of each connected
component of p�1ðCÞ is the whole C. Thus, pjp�1ðCÞ being a 2 :1 map, we conclude that
p�1ðCÞ is either a circumference or the disjoint union of two. We distinguish both situations:

(5.8.1) If p�1ðCÞ is the disjoint union of two circumferences C1, C2, then S is

homeomorphic around C either to two t ransver sa l or i en tab le bands or to two t rans -

ve r sa l Moeb ius bands.
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Since C1, C2 are disjoint closed subsets of ŜS, there exist disjoint open neighbourhoods
Wi of Ci in ŜS which are moreover homeomorphic either to a cylinder or to a Moebius band.
Thus, it is enough to see that W1 is orientable if and only if W2 is orientable.

Indeed, assume that W1 is orientable and fix an orientation in W1. Take x A C; we
know that x has a neighbourhood W x analytically di¤eomorphic to the union of two trans-
versal planes, say X ¼ fyz ¼ 0gHR3. Let c : W x ! X be such a di¤eomorphism. We
may assume that c maps W1 XW x on the plane fz ¼ 0g and W2 XW x on the plane
fy ¼ 0g. We also assume that W1 induces (through c) in fy ¼ 0g the orientation given by
the basis fð1; 0; 0Þ; ð0; 1; 0Þg. After this choice, we consider in W2 XW x the orientation in-
duced by c and the basis fð1; 0; 0Þ; ð0; 0; 1Þg on the plane fz ¼ 0g. One can check that this
procedure determines an orientation in W2; and, W2 is orientable. The converse follows
interchanging the roles of W1 and W2.

Thus, W1 WW2 is homeomorphic either to two transversal oriented bands or to two

transversal Moebius bands. r

(5.8.2) If p�1ðCÞ ¼ C0 is a circumference, then S is homeomorphic around C to a

s ingu la r Moeb ius band.

Indeed, let x0 A C and y1; y2 A C0 be such that pðy1Þ ¼ pðy2Þ ¼ x0. Note that
L ¼ Cnfx0g is an analytic curve in Snfx0g analytically di¤eomorphic to a straight-line.
By the Case 1, L has an open neighbourhood in Snfx0g analytically di¤eomorphic to
the union of two transversal planes. Let W1, W2 be the irreducible components of such
open neighbourhood. On the other hand, since Sx0

is analytically di¤eomorphic to
X0 ¼ fyz ¼ 0gHR3

0, x0 has an open neighbourhood in S analytically di¤eomorphic to the
union of two transversal planes. We denote by D1, D2 the irreducible components of such
neighbourhood. We shrink W1, W2 and D1, D2 in such a way that:

(i) V ¼ p�1ðW1 WW2 WD1 WD2Þ defines a neighbourhood of C0 in ŜS homeomor-
phic either to a cylinder or to a Moebius band.

(ii) p�1ðWiÞX p�1ðWjÞ ¼ j if i3 j.

(iii) p�1ðWiÞXp�1ðDjÞ is a non-empty connected open set for 1e i; j e 2.

(iv) Wi, Dj are still analytically di¤eomorphic to a plane.
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Let j : fyz ¼ 0gHR3 ! W1 WW2 and c : fyz ¼ 0gHR3 ! D1 WD2 be analytic
di¤eomorphisms such that jðfz ¼ 0gÞ ¼ W1, jðfy ¼ 0gÞ ¼ W2, cðfz ¼ 0gÞ ¼ D1 and
cðfy ¼ 0gÞ ¼ D2. Consider the open sets:

W e
1 ¼ jðfz ¼ 0; ey > 0gÞ; e ¼G;

W e
2 ¼ jðfy ¼ 0; ez > 0gÞ; e ¼G;

Dd
1 ¼ cðfz ¼ 0; dx > 0gÞ; d ¼G;

Dd
2 ¼ cðfy ¼ 0; dx > 0gÞ; d ¼G;

Dde
1 ¼ cðfz ¼ 0; dx > 0; ey > 0gÞ; d ¼G; e ¼G;

Dde
2 ¼ cðfy ¼ 0; dx > 0; ez > 0gÞ; d ¼G; e ¼G:

Up to shrinking the sets W1, W2, if necessary, we can suppose moreover that for
e ¼G and d ¼G the set W e

i XDd
j is either empty or a subset of D

dr
j for some r ¼G. We

may also assume, using the symmetries with respect to the planes y ¼ 0 and z ¼ 0 in the
domain of c, that W e

i XDþ
i HDþe

i for i ¼ 1; 2 and e ¼G.

Consider the vectors e1 ¼ ð1; 0; 0Þ, e2 ¼ ð0; 1; 0Þ and e3 ¼ ð0; 0; 1Þ and the diagrams:

.

Since W1 XD�
2 must contain a non empty open set, Wþ

1 XD�
2 HD�e

2 for some e ¼G.
If Wþ

1 XD�
2 HD�þ

2 , we deduce, using the diagrams above that

Wþ
1 XD�

2 HD�þ
2 ; W�

1 XD�
2 HD��

2 ;

Wþ
2 XD�

1 HD��
1 ; W�

2 XD�
1 HD�þ

1 :

Otherwise, we have:

Wþ
1 XD�

2 HD��
2 ; W�

1 XD�
2 HD�þ

2 ;

Wþ
2 XD�

1 HD�þ
1 ; W�

2 XD�
1 HD��

1 :

Thus, W ¼ pðVÞ ¼ W1 WW2 WD1 WD2 is homeomorphic to one of the two surfaces
given by the identifications:
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Using a suitable symmetry, one can check that both surfaces are homeomorphic,
and in fact, both are homeomorphic to a singular Moebius band. Finally, since WnC is
connected, we deduce that VnC0 ¼ p�1ðWÞnC0 is connected. Hence, V is homeomorphic
to a Moebius band, as wanted. r

6. Global results

In this section we finally prove 1.6. The key result to prove it is the following:

Theorem 6.1. Let S be a real coherent analytic surface in an open set WHRn such

that PðSxÞ ¼ S2ðSxÞ for all x A SingðSÞ. Suppose that any non-isolated singularity Sx of S

is equivalent to X0 ¼ fyz ¼ 0gHR3
0. Then, PðSÞ ¼ S6ðSÞ.

Remark 6.2. Note that if an analytic function germ g A OðSxÞ belongs to S2ðSxÞ,
then it can be written as g ¼ a2 þ b2 ¼ ða þ

ffiffiffiffiffiffiffi
�1

p
bÞða �

ffiffiffiffiffiffiffi
�1

p
bÞ for certain analytic func-

tion germs a; b A OðSxÞ. Hence, g is reducible in the ring OðSxÞnR C ¼ Oð ~SSxÞ of holomor-
phic function germs on the complexification ~SSx of Sx. r

Thus, the complexification of a real analytic set will play a crucial role for the
proof of 6.1. We recall here, for the sake of the reader, its definition and some of its main
properties.

Definition 6.3. Let X be a real analytic set in an open set WHRn. A complex-
ification ~XX of X is a complex analytic set ~XX in an open neighbourhood U of W in Cn such
that:

(i) X is a closed subset of ~XX and X ¼ ~XX XRn.

(ii) Oð ~XX xÞ ¼ OðXxÞnR C for all x A X .

Some of the most relevant properties of the complexification are summarized in the
following result ([Tg], §3, §4).

Theorem 6.4. Let X be a real coherent analytic set in an open set WHRn. Then:

(a) Exis tence: There exists a complexification ~XX of X.
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(b) Uniqueness: If ~XX 1 and ~XX 2 are complexifications of X , then ~XX 1 X ~XX 2 is a com-

plexification of X.

(c) X has in ~XX a fundamental system of open neighbourhoods which are Stein spaces.

Consider the usual conjugation s : Cn ! Cn, z 7! z ¼ ðz1; . . . ; znÞ, whose fixed points
are Rn. A subset AHCn is (s-)invariant if sðAÞ ¼ A; obviously, AX sðAÞ is the biggest in-
variant subset of A. The restriction of s to an invariant complexification ~XX of a real ana-
lytic set X defines an involution in ~XX whose fixed set is X . Let F : ~XX ! C be a holomorphic
function. We say that F is (s-)invariant if FðzÞ ¼ F � sðzÞ for all z A ~XX . This implies that F

restricts to a real analytic function on X .

Now, we are ready to prove 6.1.

Proof of Theorem 6.1. Let f A PðSÞ be a positive semidefinite analytic function on
S. We have to check that f is a sum of 6 squares of analytic functions on S. The proof of
this fact runs in several steps:

Step 1. Initial preparation.

First of all, let fCjgj A J be the irreducible components of dimension 1 of SingðSÞ. By
the hypothesis about the non-isolated singular points of S, each Cj is a connected smooth
analytic curve.

Let S1 be the union of the global irreducible components of S over which f is not
identically 0 and S2 the union of those over which f is identically 0. Note that S1, S2 are
closed subsets of S whose union is S and whose intersection is an analytic subset of SingðSÞ
which necessarily has dimensione 1.

Next, we write

f �1ð0ÞXS1 ¼ D1 W
S

k AK

Yk W
S
i A I

Ci

as the union of its irreducible components, where I H J, D1 is a discrete set and each Yk is
an irreducible analytic curve not contained in SingðSÞ. r

Step 2. Study of the behaviour of f around the regular points of the one dimensional

part of its zero set.

Write Y ¼
S

k AK

Yk. There exists a discrete set D2 HY satisfying the following prop-

erty: For each k A K, there exist an analytic function hk : S ! R and a positive integer

mk f 1 such that for all x A YknD2 the curve germ Yx ¼ Yk;x is regular, the surface germ

Sx is regular, JY ;x ¼ hkOS;x and fxOS;x ¼ h2mk

k OS;x.

Indeed, fix k A K and choose any regular point a A Yk o¤ SingðSÞ. By Cartan’s
Theorem A, the ideal JYk ;a

is generated by finitely many global analytic functions
f1; . . . ; fr A OðSÞ which vanish on Yk, and at least one of the germs fi;a does not belong to
J2

Y ;a. Say this is true for i ¼ 1 and write hk ¼ f1. Since a is a regular point of Yk, we have
that hk;a generates JYk ;a

. In fact, since Yk is coherent, because it is a curve, hk;x generates
JYk ;x

for all x A Yk close enough to a. Now, consider the coherent sheaf of ideals
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Ix ¼ ðhk;xOS;x : JYk ;x
Þ; x A S;

and notice that Ix ¼ OS;x if and only if hk;x generates JYk; x
. Hence, the support

suppðOS=IÞ ¼ fx A Yk : hk;x does not generate JYk ;x
g

is a closed analytic set Y 0
k that does not contain Yk. As Yk is an irreducible curve,

Ek ¼ Yk XY 0
k is a discrete subset of Yk. Thus, hk;x generates JYk; x

for all x A YknEk. Con-
sider the discrete subset

E 0
k ¼ Ek W SingðYkÞW

�
SingðXÞXYk

�
W
S
a3k

ðYa XYkÞ

of Yk. For each x A YknEk we have that Yx ¼ Yk;x is a regular curve germ, hk;x generates
JYk; x

¼ JYx
and Sx is a regular surface germ.

Next, take a regular point b A YknE 0
k. We have that fb ¼ vbhab

k;b for some integer
ab f 1 and an analytic germ vb B JYk ;b

. Thus, since Yk has only one branch at b (because
it is a regular point of Yk), we deduce that vðxÞ3 0 for x close to b and vx is a unit for such
x’s. Consequently, for x3 b close enough to b we have

hab

k;xj fx and fxjhab

k;x:

Now, we consider the coherent sheaf of ideals H of OS given by

Hx ¼ ðhab

k;x : fxÞX ð fx : hab

k;xÞ; x A S:

The support

suppðOS=HÞ ¼ fx A X : hab

k;x a fx or fx a hab

k;xg

is an analytic set Y 00
k that does not contain Yk, hence E 00

k ¼ Yk XY 00
k is a discrete subset of

Yk. If x A YknðE 0
k WE 00

k Þ, then fx ¼ hab

k;xvx for certain unit vx A OS;x; since fx is a positive
semidefinite analytic function we have moreover that ab ¼ 2mk is even.

Since fYkgk AK is a locally finite family of closed subsets of S and the set E 0
k WE 00

k is a
discrete subset of Yk for all k A K , we deduce that D2 ¼

S
k AK

ðE 0
k WE 00

k Þ is a discrete subset of

S. Moreover, note that D2 has the desired property. r

Step 3. Construction of a coherent sheaf which represents f locally as a sum of two

squares.

Consider the analytic set C ¼
S
i A I

Ci and the discrete set D ¼ D1 W ðD2nCÞ. Let ~SS, ~YY

and ~CC be respective complexifications of S, Y and C (which exist because S, Y and C are
real coherent analytic sets) such that ~YY and ~CC are closed subsets of ~SS and f can be ex-
tended holomorphically to a function F : ~SS ! C.

Next, we write D ¼ fxlgl AL. For each l A L, let V xl H ~SS be an open neighbourhood
of xl in ~SS such that Cl ~SSðV xlÞX ~CC ¼ j for all l A L, and fCl ~SSðV xlÞgl AL is a locally finite
family of disjoint closed sets in ~SS.
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Moreover, for each l A L we have PðSxl
Þ ¼ S2ðSxl

Þ. Thus, there exist analytic func-
tion germs al;xl

; bl;xl
A OS;xl

such that fxl
¼ a2

l;xl
þ b2

l;xl
. Shrinking V xl , if necessary, we

may assume that there exist holomorphic functions Al;Bl : V xl ! C such that the analytic
functions AljV xlXS and BljV xlXS define respectively at xl the germs al;xl

and bl;xl
. Note

that Fz ¼ A2
l; z þ B2

l; z for all z A V xl .

By 5.1, there exist an open neighbourhood W HS of C in S and two analytic func-
tions g1; g2 : W ! R such that f jW ¼ g2

1 þ g2
2. Choose an open neighbourhood V0 of C in

~SS on which g1, g2 extend to holomorphic functions G1, G2. We may assume, after reducing
the open set V0 if necessary, that Cl ~SSðV xlÞXCl ~SSðV0Þ ¼ j for all l A L.

For each k A K , let Vk be a neighbourhood of Yk in ~SS on which we can extend hk to a
holomorphic function Hk : Vk ! C. For each x A YknD2 we consider an open neighbour-
hood V x HRegð ~SSÞnðDW ~CCÞHVk of x in ~SS such that:

(i) F�1ð0ÞXV x ¼ ~YY XV x.

(ii) ~YY z is a regular complex curve germ for all z A V x X ~YY .

(iii) Hk; z generates J~YY ; z for all z A V x.

(iv) FzO~SS; z ¼ H 2mk

k; z O~SS; z for all z A V x.

Next, since for each x A S2nS1 the function f is identically 0 around x, there exists an
open neighbourhood V1 of S2nS1 in ~SS such that F jV1

1 0.

Consider the open neighbourhood

V ¼
�
~SSnF�1ð0Þ

�
WV0 WV1 W

S
l AL

V xl W
S

x AYnD2

V x

of S in ~SS. We consider an invariant complexification of S contained in V which is more-
over a Stein space. To simplify notation we denote again by ~SS such complexification. Let s
be the involution of ~SS induced by the complex conjugation of Cn.

We denote again by V xl , V0, Vk, V x and V1 the intersections of such open sets with ~SS
and by Al, Bl, Hk, G1, G2 the restrictions of such holomorphic functions to the respective
open set V xl , Vk or V0 where they are defined. We also denote ~YY and ~CC the intersections of
such sets with ~SS, and by F the restriction of F to ~SS.

Next, consider the subsheaf of ideals F of O~SS given by

Fz ¼

ðAl; z þ
ffiffiffiffiffiffiffi
�1

p
Bl; zÞO~SS; z if z A V xl and l A L;

H mk

k; zO~SS; z if z A V x; x A YknD2 and k A K;

ðG1; z þ
ffiffiffiffiffiffiffi
�1

p
G2; zÞO~SS; z if z A V0;

ð0Þ if z A V1;

O~SS; z if z A ~SSnF�1ð0Þ:

8>>>>>><>>>>>>:
Let us see that F is a well-defined coherent sheaf on the Stein space ~SS.
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Indeed, consider the open covering

V ¼ f ~SSnF�1ð0Þ;V0;V1gW fV xlgl AL W fV xgx AYnD2

of ~SS. For each open set U A V, there exists a holomorphic function CU : U ! C such that
F jU ¼ CUCU � s and FjU ¼ CUO~SSjU . Next, take z A ~SS. We distinguish several cases:

(a) If FðzÞ3 0, we have ðFjUÞz ¼ O~SS; z for all U A V such that z A U .

(b) If FðzÞ ¼ 0 and z A V1, then ðFjUÞz ¼ ð0Þ for all U A V such that z A U .

(c) If FðzÞ ¼ 0 and z B V1 we proceed as follows. By the construction of the open cov-
ering V, we just have to consider the case when z A V x XU where x A YknD2 for some
k A K , and U is another open set of V. Let us see that in such case ðFjV xÞz ¼ ðFjUÞz.

We have that ðFjV xÞz ¼ H mk

k; zO~SS; z and ðFjUÞz ¼ CU ; zO~SS; z. Thus, we have to check
that

H mk

k; zO~SS; z ¼ CzO~SS; z:

Recall that by the choice of V x we have that ~YY z is a regular complex curve germ, ~SSz is a
regular complex surface germ, J~YY ; z ¼ Hk; zO~SS; z and H 2mk

k; z O~SS; z ¼ FzO~SS; z. In particular, there
exists an integer lf 0 and an analytic germ Gz A O~SS; znJ~YY ; z such that Cz ¼ H l

k; zGz. Thus,
Cz � s ¼ H l

k; zGz � s, and therefore

H 2mk

k; z O~SS; z ¼ FzO~SS; z ¼ ðCzCz � sÞO~SS; z ¼ ðH 2l
k; zGzGz � sÞO~SS; z:

Hence, since O~SS; z is a unique factorization domain (because ~SSz is a regular germ), l ¼ mk

and Gz A O~SS; z is a unit. Therefore, we deduce that CzO~SS; z ¼ H mk

k; zO~SS; z, as wanted. r

Step 4. Representation of f as a sum of six squares in Oð ~SSÞ.

Now, since ~SS is a Stein space of dimension 2 we have by [Co] that there exist global
sections F1;F2;F3 : ~SS ! C which generate F. Consider the holomorphic invariant function

F 0 ¼ F1F1 � sþ F2F2 � sþ F3F3 � s:

We have that F 0 restricts to S to a real analytic function f 0 which is a sum of six squares in
OðSÞ. Moreover, we get that F 0

xO~SS;x ¼ FxO~SS;x for all x A S.

Indeed, fix x A S. By the construction of F, there exists a holomorphic function germ
Cx A O~SS;x such that Fx ¼ CxCx � s and Fx ¼ CxO~SS;x. Thus, there exist holomorphic func-
tion germs F1;x;F2;x;F3;x A O~SS;x such that Fl;x ¼ CxFl;x for l ¼ 1; 2; 3. Moreover, since
Fx ¼ ðF1;x;F2;x;F3;xÞO~SS;x, we may assume that F1;x is a unit. Hence,

F 0
x ¼

P3
l¼1

Fl;xFl;x � s ¼ ðCxCx � sÞ
P3
l¼1

Fl;xFl;x � s ¼ Fxux

where ux ¼
P3
l¼1

Fl;xFl;x � s A O~SS;x is a unit. Thus, F 0
xO~SS;x ¼ FxO~SS;x for all x A S.
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Now, since f and f 0 are positive semidefinite analytic functions and fxOS;x ¼ f 0
xOS;x,

there exist an open neighbourhood W1 of S1 in S and a strictly positive semidefinite analytic
function u : W1 ! R such that f jW1

¼ f 0jW1
u2. Thus, f is a sum of six squares of analytic

functions on W1. Let a1; . . . ; a6 A OðW1Þ be such that

f jW1
¼ a2

1 þ � � � þ a2
6 :

Since f jS2
1 0, each ai is identically 0 on S2 XW1. Hence, we can extend analytically each

ai by 0 to the whole S. Therefore f is a sum of six squares of analytic functions on S, and
we are done. r

Now, we are ready to prove 1.6:

Proof of Theorem 1.6. First, it is clear that (a) implies (b), and (b) implies (c). Next,
let us check that (c) implies (d). Indeed, suppose (c) holds. By 2.5, for all x A X the germ Xx

has the PEþ property. Hence, by 4.1, all the germs Xx belong to the List. Moreover, by 2.8
(b), none of the germs Xx can be equivalent to Whitney’s umbrella singularity because oth-
erwise X does not have the PE property. Thus, we deduce that each germ Xx is coherent,
and (d) holds.

Finally, by 4.5, [ABFR2], 1.1, and 6.1 we have that (d) implies (a), and we are done.
r

We finish this section with a collection of examples of analytic surfaces Xn, of
embedding dimension n þ 1, which have P ¼ S.

Examples 6.5. The Veronese cone Xn HRnþ1, nf 2 (cone over the rational normal
curve) is the analytic surface given by the equations

Fij ¼ xixj � xi�1xjþ1 ¼ 0; 1e ie j e n � 1;

and whose complexification in Cn is parametrized by gðz;wÞ ¼ ðzn; zn�1w; . . . ; zwn�1;wnÞ,
(see [Ha]). It can be proved that Xn is a coherent surface and that SingðXnÞ ¼ f0g.
Note that the surface germ Xn;0 has embedding dimension n þ 1. We also have that
PðXn;0Þ ¼ S2ðXn;0Þ for all nf 2 (see [Fe4], 4.1). Hence, by 6.1, we deduce that
PðXnÞ ¼ SðXnÞ for all nf 2.

7. Conjectures and open questions

For higher local embedding dimension the situation is quite more delicate and we
have not achieved concluding results. The most remarkable are those referring to analytic
curve germs developed in Section 3 (see 3.2, 3.9 and 3.10). In view of such results, we con-
sider that the predictable behaviour about the P ¼ S and PE properties for analytic curves
can be summarized in the following two conjectures:

Conjecture 7.1. Let X0 HRn be an analytic curve germ. The following assertions are

equivalent:
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(a) PðX0Þ ¼ SðX0Þ.

(b) X0 is equivalent to a union of re n independent lines through the origin.

(c) X0 has the PE property.

(d) X0 has the PEþ property.

Conjecture 7.2. Let C be an analytic curve in an open set WHRn. The following as-

sertions are equivalent:

(a) PðCÞ ¼ SðCÞ.

(b) PðCxÞ ¼ SðCxÞ for each x A C.

(c) Cx is equivalent to a union of independent lines through the origin for each x A C.

(d) C has the PE property.

(e) Cx has the PE property for each x A C.

(f) Cx has the PEþ property for each x A C.

Notice that both conjectures are true for local embedding dimension ne 3 (see 3.1,
[Sch], 3.9, [ABFR2], 1.1, and 1.6). Moreover,

(i) Conjecture 7.1 holds, by 3.10, for analytic germs X0 HRn
0 which have only non-

singular branches, and therefore

(ii) Conjecture 7.2 holds for analytic curves X HRn whose irreducible components
are all regular curves.

With respect to Conjecture 7.1 we have, by [Sch], 3.9, that the assertions (a) and (b)
are equivalent. Also, (a) implies (c) and (c) implies (d). Thus, to prove 7.1 it would be
enough to prove that (d) implies (b).

Furthermore, as it is proved in [ABFR2], 1.1, the assertions (a), (b) and (c) in Conjec-
ture 7.2 are equivalent. Moreover, (a) implies (d), (b) implies (e), (e) implies (f) and by 2.5
also (d) implies (f). In fact, note that if Conjecture 7.1 is true, then (f) will imply (c) and
Conjecture 7.2 will hold. In general, every local situation on which 7.1 holds, gives us a
global situation on which 7.2 holds.

Remark 7.3. The suitable strategy to prove that (d) implies (b) in Conjecture 7.1
could be to improve 3.9. In view of the proof of 3.1, we need to compute enough terms of
primitive parametrizations of all the irreducible components of the germ X0, which has the
PEþ property. For that, we just use certain function germs that must be necessarily in the
ideal JðX0Þ. However, such function germs maybe do not generate JðX0Þ. As we have seen
in 3.1, the discussion is already too cumbersome for embedding dimension n ¼ 3, hence, it
seems extremely di‰cult for nf 4. r
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We finish here with several questions that arise naturally from the results we have
presented in this work:

(7.4) Open questions. (1) Does Conjectures 7.1 and/or 7.2 hold true?

(2) Is the PE property hereditary? That is, if the PE property holds for a real ana-
lytic set X , does it also hold for the germs at all its points?

(3) Are P ¼ S and PE equivalent properties for a global analytic set of
dimensione 2 and local embedding dimensionf 4?

(4) As we have seen in 1.5 the P ¼ S property for a global analytic set X is heredi-
tary and implies the coherence of X and that dim X e 2. The questions now are if the fol-
lowing statements hold true:

(A) A global analytic surface S in an open set WHRn has P ¼ S if and only if S is

coherent and P ¼ S holds for the germs at all its points.

Referring to this, in 6.1 we have proved that a real coherent analytic surface S such
that PðSxÞ ¼ S2ðSxÞ for all x A SingðSÞ and any non-isolated singularity Sx of S is equiva-
lent to X0 ¼ fyz ¼ 0gHR3

0, has P ¼ S. Note that in the proof of 6.1, both hypotheses
about the singular points, which are always true for local embedding dimensione 3, play
a crucial role.

However, for embedding dimensionf 4 we do not even know if PðX0Þ ¼ S2ðX0Þ
holds always true for a singularity X0 with P ¼ S. Moreover, we neither know which are
the non-isolated singularities with P ¼ S.

(B) A global analytic set X in an open set WHRn has the PE property if and only if X

is coherent and the PE property holds for the germs at all its points.
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