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Abstract
We prove constructively that: The complement R

n\K of an n-dimensional unbounded
convex polyhedron K ⊂ R

n and the complement R
n\ Int(K) of its interior are polyno-

mial images of R
n whenever K does not disconnect R

n . The case of a compact convex
polyhedron and the case of convex polyhedra of small dimension were approached by
the authors in previous works. The techniques here are more sophisticated than those
corresponding to the compact case and require rational separation results for tuples
of variables, which have interest by their own and can be applied to separate certain
types of (non-compact) semialgebraic sets.

Keywords Semialgebraic sets · Polynomial maps and images · Complement of a
convex polyhedra · Rational separation of tuples of variables
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1 Introduction and Statement of theMain Results

Amap f := (f1, . . . ,fm) : R
n → R

m is polynomial if its components fk ∈ R[x] :=
R[x1, . . . ,xn] are polynomials. Analogously, f is regular if its components can be
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represented as quotients fk := gk
hk

of two polynomials gk,hk ∈ R[x] such that
hk never vanishes on R

n . We will consider here the degree deg(f) of a polynomial
map f = (f1, . . . ,fm) as the maximum degree of its components fi . The degree
of a polynomial map is not affected by compositions with affine bijections. A subset
S ⊂ R

n is semialgebraic when it has a description by a finite boolean combination of
polynomial equations and inequalities. The category of semialgebraic sets is closed
under basic boolean operations but also under usual topological operations: taking
closures (denoted byCl(·)), taking interiors (denoted by Int(·)), considering connected
components, etc. By Tarski–Seidenberg’s principle [5, 1.4] the image of an either
polynomial or regular map is a semialgebraic set. During the last decade we have
approached the following question:

Problem 1.1 Characterize which (semialgebraic) subsets S ⊂ R
m are polynomial or

regular images of R
n .

The first proposal for studying this problem and related ones, like the famous ‘quad-
rant problem’, goes back to [22] (see also [6, §3.IV, p. 69]). A related problem concerns
the parameterization of semialgebraic sets of dimension d using continuous semial-
gebraic maps whose domains are semialgebraic subsets of R

d satisfying certain nice
properties [23]. The approach proposed by Gamboa in [22] sacrifices injectivity but
chooses the simplest possible domains (Euclidean spaces) and the simplest possible
maps (polynomial and regular) to represent semialgebraic sets. The class of semial-
gebraic sets that can be represented as polynomial and regular images of Euclidean
spaces (even sacrificing injectivity) is surely much smaller than the one consisting
of the images under injective continuous semialgebraic maps of nice semialgebraic
sets. Of course, more general domains than Euclidean spaces can be considered and
compact semialgebraic sets deserve special attention: balls, spheres, compact con-
vex polyhedra, … For instance, in [26] the authors develop a computational study of
images under polynomial maps f : R

3 → R
2 (and the corresponding convex hulls) of

compact (principal) semialgebraic subsets {h ≥ 0} ⊂ R
3, where h ∈ R[x1,x2,x3]

(this includes for example the case of a three-dimensional ball). In addition, other
types of maps (like Nash, continuous rational, etc.) have been already considered to
represent semialgebraic sets as images of Euclidean spaces (see for instance [9,10]).
Recall that an analytic function f : U → R on an open semialgebraic set U ⊂ R

n is
a Nash function if there exists a non-zero polynomial P ∈ R[x1, . . . ,xn,y] such that
P(x,f(x)) = 0 for each x ∈ U .

1.1 Brief State of the Art

We feel very far from solving Problem 1.1 as stated above in its full generality, but we
have developed significant progress in three ways:

Obtention of general properties. We have found conditions [8,12,17,32] that a semi-
algebraic subset S ⊂ R

m must satisfy in order to be an either polynomial or regular
image of R

n . The most remarkable one states that the set of points at infinity of a
polynomial image of R

n is connected [17]. In addition, the one-dimensional case has
been completely described in [8]. In [10] we have proved that the family of images of
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R
2 under regular maps and the family of images ofR

2 under continuous rational maps
coincide. On the other hand, in [9] the first author has provided a full characterization
of the semialgebraic subsets S ⊂ R

m that are Nash images of R
n .

Optimization of polynomial maps with a given image. Even in the simplest cases, it
is difficult to determine which is the minimum degree for a polynomial map that has
a given set as image (see Question 1.6 below). As a relevant example, we have been
trying to find the least degree of a polynomial map f : R

2 → R
2 whose image is the

open quadrant Q := {x > 0,y > 0}. We already know that it is bounded above by 16
(see [11,14,20]), but we guess that this bound can still be lowered down (hopefully to
8). Similar values are expected for the complement S := R

2\Q of the closed quadrant
Q := {x ≥ 0,y ≥ 0}.We consider that our degree bounds formore complex polyhedra
are still far from being optimal and, from a computational point of view, it would be
interesting an improvement on these current bounds.

Explicit representation of families of semialgebraic sets as polynomial or regular
images of R

n . We have devised techniques to represent large families of significant
semialgebraic sets as either polynomial or regular images of R

n , with the already
mentioned ‘open quadrant problem’ as a recurrent matter. In [8,11,13,15,16,18,19,33]
we focused on semialgebraic setswith piecewise linear boundary, that is, semialgebraic
sets that admit a semialgebraic description involving only linear equations. To bemore
precise, we analyzed the cases of convex polyhedra and their interiors, together with
their respective complements. For these families of semialgebraic sets we already had
full understanding concerning their representation as regular images [13,18] but we
were lacking information when trying to represent them as polynomial (instead of
regular) images.

We guess that in general there are ‘few’ polynomial maps that have the complement
of a concrete convex polyhedron (or its interior) as a polynomial image and that there
are even fewer forwhich it is affordable to show that their images actually correspond to
the complement of our given convex polyhedron (or its interior). Let us bemore explicit
in this point. Since the complements of proper convex polyhedra (or of their interiors)
are unbounded semialgebraic sets, it makes sense to wonder whether these sets are not
only images of regularmaps, but also of polynomialmaps. This in fact provides a priori
‘simpler’ representations for this type of sets because polynomial representations do
not involve denominators. Our initial purpose when writing [18] was to approach the
previous problem in its full generality, but the techniques developed there required,
in order to use polynomial maps, to assume that the involved convex polyhedra were
compact when the dimension ofKmatched that of the ambient space and was greater
than or equal to 4 (for further details see [19]). Therefore, the main results appearing
in [18] that follow next referred to the compact case, together with the case of convex
polyhedra of smaller dimension than their ambient space. From now on, we denote
by Int(K) the relative interior of K as a topological manifold with boundary, which
coincides with the topological interior ofK in the affine subspace ofR

n spanned byK.

Theorem 1.2 ([18, Thm. 1.1 (i)]) Let K be an n-dimensional compact convex poly-
hedron of R

n. Then the semialgebraic sets S := R
n\K and S := R

n\ Int(K) are
polynomial images of R

n.
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Proposition 1.3 ([18, Thm. 3.1]) Let K be a d-dimensional convex polyhedron of R
n

such that d < n and it is not a hyperplane. Then the semialgebraic sets S := R
n\K

and S := R
n\ Int(K) are polynomial images of R

n.

Similar techniques to those developed to prove Theorem 1.2 can be adapted for
unbounded two-dimensional and three-dimensional convex polyhedra [19,33], but
unfortunately do not extend any further to higher dimensions [19]. The purpose of
this work is to close this gap and provide a full answer to the representation of the
complements of convex polyhedra K and their interiors as polynomial images of R

n

(see Table 1), dropping the compactness assumption onK that appears in [12]. Since
our previousmethods did notwork in thismore general setting, we have developed new
algorithms that use more sophisticated polynomial maps to achieve ‘constructively’
our goals. This requires a more technical approach than the one devised in [12], but
reveals a better understanding on how polynomial maps can act on R

n to produce our
desired image sets.

1.2 Main Results of this Article

A layer is a convex polyhedron of R
n affinely equivalent to [−a, a] × R

n−1 with
a > 0. Our main results in this work, which complete the full picture in regard to the
representation of complements of convex polyhedra and their interiors as polynomial
images of Euclidean spaces, are the following:

Theorem 1.4 Let n ≥ 1 and let K be an n-dimensional unbounded convex polyhedron
in R

n that is not a layer. Then the semialgebraic set S := R
n\ Int(K) is a polynomial

image of R
n.

Theorem 1.5 Let n ≥ 2 and let K be an n-dimensional unbounded convex polyhedron
in R

n that is not a layer. Then the semialgebraic set S := R
n\K is a polynomial image

of R
n.

Table 1 Full picture concerning
the values of the invariants p
and r

K bounded K unbounded

n = 1 n ≥ 2 n = 1 n ≥ 2

r(K) 1 n 1 n

r(Int(K)) 2 n 2 n

p(K) +∞ +∞ 1 n, +∞ (∗)

p(Int(K)) +∞ +∞ 2 n, n + 1, +∞ (�)

r(S) +∞ n 2 n

r(S) +∞ n 1 n

p(S) +∞ n 2 n

p(S) +∞ n 1 n
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1.3 Full Picture for PL Semialgebraic Sets

To summarize the presentation of the results concerning the representation of piecewise
linear boundary semialgebraic sets as either polynomial or regular images [13,16–
18,33] we introduce the following two invariants. Given a semialgebraic set S ⊂ R

m ,
we define

p(S) := inf
{
n ≥ 1 : ∃f : R

n → R
m polynomial such that f(Rn) = S

}
,

r(S) := inf
{
n ≥ 1 : ∃f : R

n → R
m regular such that f(Rn) = S

}
.

The condition p(S) := +∞ characterizes the non representability of S as a poly-
nomial image of some R

n while r(S) := +∞ has the analogous meaning for regular
maps. Let K ⊂ R

n be an n-dimensional convex polyhedron and assume below that
S := R

n\K and S := R
n\ Int(K) are connected. Denote by 	C(K) the recession cone

ofK (see Sect. 2.3 for further details). Let us explain some (marked) cases in Table 1
developed in [16]:

(∗) (n, +∞): An n-dimensional convex polyhedron K ⊂ R
n has p(K) = +∞ if

and only if its recession cone 	C(K) has dimension < n. Otherwise, p(K) = n.
(�) (n, n +1, +∞): If the recession cone 	C(K) of an n-dimensional convex polyhe-

dronK has dimension< n, then p(Int(K)) = +∞. Otherwise, ifK has bounded
facets, p(Int(K)) = n + 1 and if K has no bounded facets, p(Int(K)) = n.

1.4 Related Problems and Open Questions

The effective representation of a semialgebraic subset S ⊂ R
m as a polynomial or

regular image of R
n may help the handling of certain classical problems in Real

Geometry by reducing them to its study in R
n . Let us comment some of them:

Positivstellensätze. A widespread studied problem is the algebraic characterization of
those polynomial or regular functions g : R

m → R which are either strictly positive
or positive semidefinite on a semialgebraic set S ⊂ R

n . When S is a basic closed
semialgebraic set these problems were solved in [31] (see also [5, 4.4.3]). For the
particular case of compact convex polyhedra S = K ⊂ R

n we refer the reader to
[24], where stronger Positivstellensätze are obtained, specially for strictly positive
polynomials on K. In this case the obtained certificate of positiveness is the best
possible one.

Let f : R
n → R

m be a polynomial and denote S := f(Rn). Note that g is strictly
positive (respectively positive semidefinite) on S if and only if g◦f is strictly positive
(respectively positive semidefinite) on R

n and both questions are decidable using for
instance [31]. Thus, this provides an algebraic characterization of positiveness for
polynomial and regular functions on semialgebraic sets that are either polynomial or
regular images of R

n . Observe that these semialgebraic sets need not to be neither
closed, as is the case with the interior of a convex polyhedron, nor basic, as is the
case with the complement of a convex polyhedron. Thus, our results in this article
provide certificates of positivity for a large class of semialgebraic sets (neither closed
nor basic) which cannot be approached by the classical Positivstellensätze.
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Stochastic finance. In the pricing of assets in an arbitrage-free market the analysis
of the interior of the convex hull of the support of a certain probability measure is
crucial. Roughly speaking, recall that a market is arbitrage-free if there is no positive
probability of having a positive economical position after a period of time, if the initial
position is ≤ 0 (see for instance [21, §1.5] for further details). In many occasions,
the market is constituted by n assets which are “independent” and all the others are
derivative products of these “independent assets” and are described by measurable
piecewise linear functions on this assets ( put options, call options, straddles, butterfly
spreads, etc.). This kind of assets provides a convex hull, which is an either bounded
or unbounded open convex polyhedron. Our results allow to represent the set S of
arbitrage-free prices as the image of R

n under a regular or a polynomial map [13,16],
but also the set of arbitrage prices R

n\S (the complement of an either bounded or
unbounded open convex polyhedron) can be described again as a polynomial image
of R

n (Theorem 1.5). Although the involved polynomial or regular map in each case
has a great complexity, we eliminate with this map the contour conditions and, at least
from a theoretical point of view, we introduce a different approach to study the sets of
arbitrage-free and arbitrage prices of this type of markets.

Optimization. Suppose that f : R
n → R

m is either a polynomial or a regular map
and let S := f(Rn). Then the optimization of a given regular or polynomial function
g : S → R is equivalent to the optimization of the composition g ◦ f on R

n . In
this way one can avoid contour conditions and only apply elementary analysis to
approach optimization (see for instance [27,28,30,34] for relevant tools concerning
optimization of polynomial functions on R

n). Of course, the user should evaluate in
each case whether the increase of the complexity of the composition g◦fwith respect
to that of f is preferable to the existence of contour conditions.

Alternatively, let T ⊂ R
n be a semialgebraic set and let h : T → R be a continuous

semialgebraic function (that is, a continuous function on T with semialgebraic graph).
Then there exists a semialgebraic compactification T∗ ⊂ R

n+1 of T and a continuous
(semialgebraic) extension h̄ : T∗ → R, where R := R�{−∞,+∞} is the (semialge-
braic) compactification ofR by twopoints.As it iswell-known, compact semialgebraic
sets are triangulable and by [5, Thm. 9.4.1] also continuous semialgebraic functions
on compact semialgebraic sets can be ‘triangulated’. Thus, a continuous semialgebraic
function on a compact semialgebraic set could be assumed, up to a suitable triangu-
lation, as a continuous function on a finite simplicial complex that is affine on each
simplex of the complex. Of course, optimization problems for this type of functions
are ‘straightforwardly’ approached.

However, the usual algorithms to triangulate a compact semialgebraic set S ⊂ R
n

(and continuous semialgebraic maps) [5, Chap. 9] are based in the use of cylindrical
decompositions, which have doubly exponential complexity in the number n of vari-
ables involved in describing S. More precisely, its complexity is in general (�d)O(1)n

where O(1) represents a constant, � is a bound on the number of polynomials need
to describe S and d is a bound on the degrees of a family of polynomials describing
S, see [2, Chap. 11]. If S has piecewise linear boundary, the complexity of cylindrical
decomposition is �O(1)n

, which is still doubly exponential in the number n of variables
involved in describing S.
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Questions regarding complexity. The algorithms developed in this work to show that
certain semialgebraic sets with piecewise linear boundary are polynomial images of
R

n are constructive without much control on the complexity of the construction. In
particular, the degrees of the involved polynomial maps are very high. From a compu-
tational perspective, the efficiency of our constructions is at stake and perhaps at this
moment the interest of our results relies more on their existential implications than on
their practical applications. However, two natural questions arise when considering
the issue of complexity:

Question 1.6 Which is the minimum (or a good bounding) degree of a polynomial
map whose image is the complement of a convex polyhedron with m facets?

In Remarks 4.2 and 6.8 we provide bounds for the polynomial maps constructed in
the proofs of Theorems 1.4 and 1.5 below.

Question 1.7 If we think of polynomial maps R
m → R

n with m > n, that is, if we
allow an increase in the number of variables, is it possible to devise constructions
which lower the complexity of the polynomial maps presented here?

We refer the reader to Examples 4.3 and 6.9 for a partial positive answer to this
question in the two-dimensional case, which takes advantage of the techniques devel-
oped in this paper. This increase in the number of variables is somehow related with
the extension complexity, which is the smallest integer k such that a compact convex
polyhedronK ⊂ R

n can be expressed as the linear image of a polytope with k facets.
This invariant is used to ‘simplify’ the formulation of linear programming problems
over polytopes increasing the number of variables (and providing new constrains). For
further details we refer the reader to [7,35].

1.5 Rational Separation for Tuples of Variables

It is worthwhile to mention here in the Introduction that the proof of Theorem 1.5
involves a separation result for tuples of variables that has interest by its own.A rational
separator for the pair of positive integers (r , s) is a rational functionφr ,s : R

r ×R
s ���

R that is regular on the interior of the polyhedron

Qr ,s := {
(y1, . . . ,yr ;z1, . . . ,zs) ∈ R

r × R
s : max{y1, . . . ,yr } ≤ min{z1, . . . ,zs}

}
,

extends to a continuous (semialgebraic) function on Qr ,s and satisfies

max{y1, . . . ,yr } < φr ,s(y;z) < min{z1, . . . ,zs}

for each (y;z) := (y1, . . . ,yr ;z1, . . . ,zs) ∈ Int(Qr ,s). In Proposition 5.4 we show
that rational separators exist for each pair of positive integers (r , s). As a conse-
quence we prove in Proposition 5.9 the following statement: Given an n-dimensional
convex polyhedron of R

n and the projection πn : R
n → R

n−1, (x1, . . . ,xn) →
(x1, . . . ,xn−1), the two connected components of the difference (Int(πn(K))×R)\K
can be separated by a rational function that is regular on Int(πn(K)) and extends
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Xλ, λ > 0

Xλ, λ < 0

∂Q := {q = 0}

Pm,×

f

f (Xλ), λ > 0

f (Xλ), λ < 0

f (∂Q) = ∂Q

P

P

f (R2 \ Int(Pm,×))

Fig. 1 A sketch of the behavior of the polynomial map f : R
2 → R

2

to a continuous function on πn(K). As it is well-known, the separation of disjoint
semialgebraic sets is a delicate issue and we refer the reader to [1] for further details.

1.6 Structure of the Article

All basic notions and (standard) notations appear in Sect. 2. In Sect. 3 we focus our
attention in a special family of polynomial maps f := (f1,f2) : R

2 → R
2 and

prove a key result (Theorem 3.3), which allows us to prove in Sect. 4 Theorem 1.4 by
using induction on the dimension and reducing its proof to the two-dimensional scene,
and has as a straightforward consequence Corollary 3.5, which is the two-dimensional
version of Theorem1.4 (see also [33, Thm. 1]). Figure 1 illustrates the behavior of these
polynomial maps and should help understand how they work. In Sect. 5 we provide
some rational separation results for certain types of (non-compact) semialgebraic sets.
The separating polynomials arising from these results will be an important ingredient
for constructing in Sect. 6 the polynomial maps needed to prove Theorem 1.5. A great
deal ofworkhere is devoted to comprehendhow thesemaps act on ‘vertical’ lines inR

n ,
that is, lines whose direction is generated by the ‘vertical’ vector 	en := (0, . . . , 0, 1).
An annoying difficulty which has to be dealt with is related to the intersections of
the spans of facets of the target polyhedron. To circumvent this problem we construct
a suitable enveloping polyhedron K0 of K (see Sect. 6.2), on whose complement
we apply a sequence of our maps in order to obtain R

n\K as a polynomial image
of R

n\ Int(K0). Figure 8 shows a two-dimensional sketch of how these maps act on
complements of polyhedra and should give an idea on how we achieve our goal.
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2 Preliminaries on Convex Polyhedra

We begin by introducing some preliminary terminology and notations concerning
convex polyhedra. For a detailed study of the main properties of convex sets we refer
the reader to [3,29,36]. An affine hyperplane of R

n will be written as H := {x ∈ R
n :

h(x) = 0} ≡ {h = 0}, where h is the corresponding linear equation. It determines
two closed half-spaces

H+ := {x ∈ R
n : h(x) ≥ 0} ≡ {h ≥ 0} and

H− := {x ∈ R
n : h(x) ≤ 0} ≡ {h ≤ 0}.

A linear subspaceU in the vector spaceR
n is called vertical when it contains the vector

	en := (0, . . . , 0, 1) ∈ R
n . Otherwise, we say that U is non-vertical. Analogously, we

say that an affine subspace Z ⊂ R
n is vertical (non-vertical) when its associated linear

subspace 	Z := {−→pq : p, q ∈ Z} is vertical (non-vertical). Notice that Z is vertical
if and only if Z can be defined by a finite set of implicit linear equations that do not
involve the variable xn , that is,

Z :=

⎧
⎪⎪⎨

⎪⎪⎩

a11x1 + · · · + a1,n−1xn−1 = b1,
...

...
...

am1x1 + · · · + am,n−1xn−1 = bm,

where ai j , bi ∈ R.

In particular, vertical vectors are the non-zero multiples of 	en and vertical lines � are
those whose direction 	� is generated by 	en . In general, given an affine object we will
use an overlying arrow 	· to denote its corresponding vectorial counterpart, whenever
its meaning is clear.

The vertical projection is the linear projection

πn : R
n → R

n−1, x := (x1, . . . ,xn) → x′ := (x1, . . . ,xn−1)

and the vertical projection of a set S ⊂ R
n is its image under πn . We introduce the

previous nomenclature with the aim of lightening the statements and the proofs in the
sequel.

2.1 Generalities on Convex Polyhedra

A subset K ⊂ R
n is a convex polyhedron if it can be described as the finite intersec-

tion K := ⋂r
i=1 H+

i of closed half-spaces H+
i . The dimension dim(K) of K is the

dimension of the smallest affine subspace of R
n that containsK. IfK has non-empty

interior there exists by [3, 12.1.5] a unique minimal family {H1, . . . , Hm} of affine
hyperplanes in R

n such that K = ⋂m
i=1 H+

i . This family is the minimal presentation
of K. We assume that we choose the linear equation hi of each Hi so that K ⊂ H+

i .
For inductive processes we will write Ki,× := ⋂

j �=i H+
j , which is a convex poly-

hedron that strictly contains K, satisfies K = Ki,× ∩ H+
i and has one facet less

than K.
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2.1.1. The facets or (n−1)- faces ofK are the intersectionsFi := Hi ∩K for 1 ≤ i ≤
m. Only the convex polyhedron R

n has no facets. Each facet Fi := H−
i ∩⋂m

j=1 H+
j is

a convex polyhedron contained in Hi . The convex polyhedronK ⊂ R
n is a topological

manifold with boundary, whose interior is Int(K) = ⋂m
i=1(H+

i \Hi ) and its boundary
is ∂K = ⋃m

i=1 Fi . For 0 ≤ j ≤ n − 2 we define inductively the j- faces of K as the
facets of the ( j +1)-faces ofK, which are again convex polyhedra. The 0-faces are the
vertices ofK and the 1-faces are the edges ofK. A face E ofK is vertical if the affine
subspace of R

n generated by E is vertical, that is, if its linear implicit equations do
not involve the variable xn . Otherwise, we say that E is non-vertical. In particular, if
E := F is a facet ofK, it is vertical if and only if an implicit linear equation of the affine
hyperplane H spanned by F is of the type a0 + a1x1 + · · · + an−1xn−1 = 0. Thus,
non vertical facets generate affine hyperplanes that admit implicit linear equations of
the type a0 + a1x1 + · · · + an−1xn−1 + xn = 0.

Obviously, if K has a vertex, then m ≥ n. A convex polyhedron of R
n is non-

degenerate if it has at least one vertex. Otherwise, we say that the convex polyhedron
is degenerate.

2.1.2. A supporting hyperplane of a convex polyhedron K ⊂ R
n is a hyperplane H

of R
n that meets K and satisfies K ⊂ H+ or K ⊂ H−. This is equivalent to have

∅ �= K ∩ H ⊂ ∂K. The intersection of K with a supporting hyperplane H is a face
of K and conversely each face of K is the intersection of K with some supporting
hyperplane. In particular, the vertices of a convex polyhedron K ⊂ R

n are those
points p ∈ K for which there exists a (supporting) hyperplane H ⊂ R

n such that
K ∩ H = {p}.

2.2 Projections of Convex Polyhedra

Let K ⊂ R
n be an n-dimensional convex polyhedron and let πn : R

n → R
n−1, x :=

(x′,xn) → x′ be the projection onto the first n − 1 coordinates. We denote the origin
of R

n with 0 and that of R
n−1 with 0′. Let P := πn(K) and let 	�n be the line generated

by 	en := (0, . . . , 0, 1) = (0′, 1). By [29, II, Thm. 6.6] we have πn(Int(K)) = Int(P)

and consequently π−1
n (∂P) ∩ K ⊂ ∂K. Thus, if � is a vertical line and πn(�) ⊂ ∂P,

then

� ∩ K = π−1
n (πn(�)) ∩ K ⊂ π−1

n (∂P) ∩ K ⊂ ∂K.

In fact, π−1
n (∂P) ∩ K is a union of faces of K.

Indeed, let F′ be a facet of P and let H ′ be the hyperplane of R
n−1 generated by

F′. Notice that H := π−1
n (H ′) = (H ′ × {0}) + 	�n is a hyperplane of R

n that meetsK
but does not meet Int(K). Thus, H is a supporting hyperplane ofK and H ∩ K =: E
is a face of K. Therefore

π−1
n (F′) ∩ K = π−1

n (H ′ ∩ P) ∩ K = π−1
n (H ′) ∩ π−1

n (P) ∩ K = H ∩ K = E

is a face of K.
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2.3 Recession Cone of a Convex Polyhedron

We associate to each convex polyhedron K ⊂ R
n its recession cone (see [36, Chap.

1] or [29, II, §8]), defined as

	C(K) := {	v ∈ R
n : ∀p ∈ K,∀λ > 0, p + λ	v ∈ K},

which is a polyhedral convex cone. IfK := ⋂r
i=1 H+

i , then 	C(K) := ⋂r
i=1

	C(H+
i ) =

⋂r
i=1

	Hi
+
. Clearly, 	C(K) = {0} if and only if K is bounded. In addition, if P ⊂ R

n

is a non-degenerate convex polyhedron and k ≥ 1, then 	C(Rk × P) = R
k × 	C(P).

Recall that each degenerate convex polyhedron can be written as the product of a non-
degenerate convexpolyhedron times anEuclidean space.Besides, a convexpolyhedron
is degenerate if and only if it contains a line or, equivalently, if its recession cone
contains a line. Consequently, a convex polyhedron is non-degenerate if and only if
all its faces are non-degenerate polyhedra. We recall the following interpretation of
the recession cone for the sake of intuition.

Remark 2.1 (Projective interpretation of the recession cone) Let us embed R
n inside

the real projective space RP
n by means of the usual embedding

R
n ↪→ RP

n, x := (x1, . . . , xn) → [1 : x] := [1 : x1 : . . . : xn].

Consider also the map

ϕ0 : R
n\{0} → RP

n, 	v := (v1, . . . , vn) → [0 : 	v] := [0 : v1 : . . . : vn].

Denote by H∞ := {x0 = 0} = RP
n\R

n the hyperplane of RP
n at infinity (with

respect to the embedding of R
n in RP

n described above), which is the image of ϕ0.
Let K ⊂ R

n be a convex polyhedron, let K be the closure of K in RP
n and denote

K∞ := K ∩ H∞. We claim:

K∞ = ϕ0(	C(K)) = ϕ0({	v ∈ R
n : ∀λ > 0, p + λ	v ∈ K}) (B.1)

for each p ∈ K.
Fix any point p ∈ K and let [0 : 	v] ∈ K∞. Consider the projective line L that

passes through p and [0 : 	v]. Observe that L ∩ H∞ = {[0 : 	v]}. If L ⊂ K, then
the half-line T ′ := {p + λ	v : λ ≥ 0} ⊂ K. Otherwise, we pick a point p′ ∈ L\K
and let H be a hyperplane through p′ such that K ∩ H− = ∅. To construct H , write
K := ⋂r

i=1{hi ≥ 0} where each hi ∈ R[x] is a polynomial of degree one. Assume
that h1(p′) < 0 and let α, β > 0 be such that (αh1 + h2 + · · · + hr )(p′) < 0 and
(αh1 + h2 + · · · + hr + β)(p′) = 0. Define h := αh1 + h2 + · · · + hr + β and
H := {h = 0}. The hyperplane H satisfies the requirements. Let H ⊂ RP

n be the
projective completion of H . It holds that K\H is a convex polyhedron of the affine
space RP

n\H. Consequently, the segment that connects p and [0 : 	v] in RP
n\H is

contained inK\H. This means that (after changing 	v by −	v if necessary) the half-line
T ′ := {p + λ	v : λ ≥ 0} ⊂ K. As h(p + λ	v) > 0 for each λ > 0 and h(p′) = 0, we
deduce that 	h(	v) > 0 (where 	h := h − h(0)).
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Let q ∈ K be another point and consider the line � := {q + t 	v : t ∈ R}. We know
that one of the half-lines T1 := {q + λ	v : λ ≥ 0} or T2 := {q − λ	v : λ ≥ 0} is
contained in K (follow the same argument we have done for p). As 	h(	v) > 0 and
K ∩ H− = ∅, we conclude that T2 �⊂ K, so T1 ⊂ K. Consequently,

K∞ ⊂ ϕ0(	C(K)) ⊂ ϕ0({	v ∈ R
n : ∀λ > 0, p + λ	v ∈ K}).

Conversely, fix p ∈ K and let 	v ∈ R
n be a vector such that the half-line T :=

{p + λ	v : λ ≥ 0} ⊂ K. Then its closure T meets H∞ in exactly one point, which
is [0 : 	v] and belongs to K. In particular, [0 : 	v] ∈ K ∩ H∞ = K∞. We conclude
ϕ0({	v ∈ R

n : ∀λ > 0, p + λ	v ∈ K}) ⊂ K∞, so (B.1) holds.
Now, it is a straightforward exercise left to the reader to check that given any point

p ∈ K the recession cone 	C(K) coincideswith the set {	v ∈ R
n : ∀λ > 0, p+λ	v ∈ K}.

We will use this fact freely along this work. ��
We will frequently use a convenient way to place an unbounded n-dimensional

polyhedron in its ambient space. Consider the linear projection π ′ : R
n → R,

(x1, . . . , xn) → xn .

Lemma 2.2 Let K ⊂ R
n be an unbounded n-dimensional convex polyhedron with

m ≥ 3 facets F1,…,Fm. After an affine change of coordinates and reindexing the
facets we may assume that K satisfies the following properties:

(i) The facet Fm spans the hyperplane {xn = 0} and K ⊂ {xn ≤ 0}.
(ii) The origin 0 := (0, . . . , 0) ∈ Int(Fm).
(iii) π ′(K) = π ′(K ∩ {x1 = 0, . . . ,xn−1 = 0}).
(iv) The vector 	en /∈ Km,×.

Proof Suppose first that there exists a facetF ofK such that dim(	C(F)) = dim(	C(K)).
After an affine change of coordinates and reindexing the facets we may assume that
Fm := F spans the hyperplane {xn = 0} and K ⊂ {xn ≤ 0}. As the convex cones
	C(F) ⊂ 	C(K) and both have the same dimension, we conclude 	C(K) ⊂ {xn = 0}. As
dim(K) = n, we can choose a finite setW that contains all the vertices ofK and spans
R

n . LetK0 be the convex hull ofW. It holdsK = K0 + 	C(K). As 	C(K) ⊂ {xn = 0},
we have π ′(K) = π ′(K0), which is a compact interval [−M, 0] of R (for some
M > 0). As m ≥ 3, then K is not a layer and there exists a facet F′ of K that spans
a hyperplane H ′ := {h′ = 0} of R

n that is not parallel to {xn = 0}. Pick a vector
	v ∈ 	C(K)\ 	H ′. Pick points p ∈ Int(Fm) and q ∈ ∂K such that π ′(p) = −M . If we
set R

+ = {λ ∈ R : λ ≥ 0}, the ray q + R
+	v ⊂ K and for each point x ∈ q + R

+	v
we have π ′(x) = −M , so we may assume 	h′( 	pq) > 0. After an affine change of
coordinates that keeps the hyperplane {xn = 0} invariant, we may assume that p is the
origin and 	pq = −M	en . Thus, (i), (ii) and (iv) hold. Also (iii) holds: If (p′, pn) ∈ K,
then −M ≤ pn ≤ 0, so (0′, pn) ∈ K (because K is convex and both the origin and
the point (0′,−M) belong to K).

Assume next that dim(	C(F)) < dim(	C(K)) for each facet F of K. Pick a facet F
ofK such that dim(	C(Fi )) ≤ dim(	C(F)) for i = 1, . . . , m. We may assume F = Fm

spans the hyperplane {xn = 0} and K ⊂ {xn = 0}. As m ≥ 3, then K is not a layer
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and there exists a facet F′ of K that spans a hyperplane H ′ := {h′ = 0} of R
n and

that is not parallel to {xn = 0}. Pick a vector 	v ∈ 	C(K)\( 	H ′ ∪ {xn = 0}) and a point
p ∈ Int(Fm). After an affine change of coordinates that keeps invariant the hyperplane
{xn = 0} we may assume that p is the origin, 	v = −	en and 	h′(	v) > 0. Thus, (i), (ii)
and (iv) hold. Let us check that it also holds (iii). If (p′, pn) ∈ K, then pn ≤ 0, so
(0′, pn) ∈ K (because the origin belongs to K and −	en ∈ 	C(K)), as required. ��

3 Complements of Interiors of Convex Polygons

In this section we construct, for a convex polygon P ⊂ R
2 defined by a convenient set

of m linear inequalities described in 3.1, a polynomial map f := (f1,f2) : R
2 → R

2

such that f(R2\ Int(Pm,×)) = R
2\ Int(P). Here, the polygon Pm,× is defined by the

first m −1 linear inequalities defining P (see Theorem 3.3), and has one facet less than
P. Figure 1 illustrates the behaviour of the map f. This polynomial map f is the key
to prove Theorem 1.4. To fully understand the behaviour of f, we study carefully in
Sect. 3.4 the level curves Xλ := {f2(y,z) = λ} (λ ∈ R), so that laterwe can determine
precisely the set f(R2\ Int(Km,×)) = ⋃

λ∈R f(Xλ\ Int(Km,×)). As a consequence of
Theorem 3.3 we provide in Corollary 3.5 a straightforward proof of Theorem 1.4 for
n = 2. The reader can compare this proof with the one in [33, Thm. 1].

3.1 Choice of Suitable Linear Equations

Let us considerm ≥ 2 linear equations {l̄k(y,z), k = 1, . . . , m} that can be expressed
as follows:

l̄k(y,z) :=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

l0k(y) := ck(y − bk) if k = 1, . . . , r ,

εklk(y,z) := εk(l0k(y) − z) if k = r + 1, . . . , m − 1,

:= εk(aky + bk − z)

−z if k = m.

(C.1)

Here, r < m − 1 (so that there is at least one equation of the second type), bkck �= 0
for k = 1, . . . , r and εk ∈ {−1, 1} for k = r + 1, . . . , m − 1. We allow redundancy in
the collection of equations but we ask that at least one of the εk is equal to +1. Notice
that l̄k(y,z) = 0 corresponds to a vertical line for k = 1, . . . , r and to a non-vertical
line for k = r + 1, . . . , m, which is the horizontal axis when k = m. We define now
the polygons

P :=
m⋂

k=1

{
l̄k ≥ 0

} ⊂ R
2 and Pm,× :=

m−1⋂

k=1

{l̄k ≥ 0} ⊂ R
2, (C.2)

and consider the projection π ′ : R
2 → R, (y, z) → z. Besides, we assume two extra

conditions:

• (0, 0) ∈ Int(Pm,×),
• π ′(P) = π ′(P ∩ {y = 0}).
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The conditions above imply that the unbounded two-dimensional convex polygon
P satisfies properties (i)–(iv) in Lemma 2.2. Namely,

(i) The line lm(y,z) = −z = 0 is spanned by one of the edges, say E, of P and
P ⊂ {z ≤ 0}.

(ii) The origin (0, 0) ∈ Int(E).
(iii) π ′(P) = π ′(P ∩ {y = 0}).
(iv) The vector 	e2 /∈ Pm,× (this follows from the fact that Pm,× is contained in a

half-plane of the form l0k(y) − z ≥ 0).

3.2 Auxiliary Polynomials

Now we introduce the auxiliary polynomials

q(y,z) := z − y2 − 1 −
m−1∑

i=r+1

l0i
2(y) + 1

2
,

g(y,z) :=
( r∏

j=1

l0 j (y)

)2

·
( m−1∏

i=r+1

li (y,z)

)
,

p(y,z) := 1 − q(y,z)g2(y,z).

(C.3)

Some properties of these polynomials will be relevant to us.

Lemma 3.1 The region Q := {q > 0} satisfies:

(i) Q ⊂ {z − y2 − 1 > 0} ⊂ {z − |y| > 0} ⊂ {z > 0} = {lm < 0}. Besides, Q is
connected and its vertical projection covers {y = 0}.

(ii) Q ⊂ ⋂m
i=r+1{li < 0} and Q ⊂ {l̄k < 0} for some k ∈ {r + 1, . . . , m − 1}. In

particular, P ∩ Q = ∅ and Pm,× ∩ Q = ∅.
(iii) Let M > 0 be such that 1 + |ai | + |bi | < M for i = r + 1, . . . , m − 1. Then

Q ⊂
m−1⋂

i=r+1

{Mz − |l0i (y) − z| > 0}.

Proof (i) This is trivial.
(ii) Since r < m − 1, fix i0 ∈ {r + 1, . . . , m − 1} and (y0, z0) ∈ Q. We have

q(y0, z0) > 0, so

z0 > y20 + 1 +
m−1∑

i=r+1

(
l02i (y0) + 1

2

)
≥ l02i0(y0) + 1

2
≥ l0i0(y0).

Therefore, li0(y0, z0) = l0i0(y0) − z0 < 0 and (y0, z0) ∈ {li0 < 0}.
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As εk = +1 for at least one index k ∈ {r + 1, . . . , m − 1}, we have for such k that
l̄k = εklk = lk . Consequently,

Q ⊂
m⋂

i=r+1

{li < 0} ⊂ {lk < 0} = {l̄k < 0},

so P ∩ Q = ∅ and Pm,× ∩ Q = ∅.
(iii) Fix i ∈ {r + 1, . . . , m − 1} and (y0, z0) ∈ Q. By (i) we have |y0| < z0 = |z0|

and z0 > 1. Thus,

|l0i (y0) − z0| = |ai y0 + bi − z0| ≤ |ai ||y0| + |bi | + |z0|
≤ |ai ||z0| + |bi ||z0| + |z0| < Mz0,

as required. ��
Lemma 3.2 For each y0 ∈ U := R\{b1, . . . , br } there exists

z1 > z0 := y20 + 1 +
m−1∑

i=r+1

l02i (y0) + 1

2

such that p(y0, z1) = 0. In particular, (y0, z1) ∈ Q.

Proof Let us consider the odd degree polynomial

py0(z) := p(y0,z) = 1 − q(y0,z)g2(y0,z).

and observe that q(y0, z0) = 0. As limz→+∞ py0(z) = −∞ and py0(z0) = 1, there
exists z1 > z0 such that py0(z1) = 0, as required. ��

3.3 ‘Winning’Polynomial Map

Let us consider now the polynomial map f := (f1,f2) : R
2 → R

2 given by

f1(y,z) := y((p(y,z) − 1)2 + p2(y,z)),

f2(y,z) := zp2(y,z),
(C.4)

where p ∈ R[y,z] is the polynomial introduced in (C.3).
Our main result in this section is the following.

Theorem 3.3 For a non-degenerate unbounded convex polygon P described as in
Sect.3.1 the polynomial map f := (f1,f2) : R

2 → R
2 satisfies

R
2\ Int(P) = f(R2\ Int(Pm,×)).
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Let us apply Theorem 3.3 to show Theorem 1.4 when n = 2. We recall first how
one can represent as a polynomial image of R

2 the complement of the interior of an
(unbounded) convex polygon P ⊂ R

2 with one or two edges.

Examples 3.4 (i) If P ⊂ R
2 has one edge, we may assume P := {z ≤ 0}, so S :=

R
2\P = {z ≥ 0}. The image of the polynomial map f : R

2 → R
2, (x1,x2) →

(x1,x2
2) is S and deg(f) = 2.

(ii) If P ⊂ R
2 has two edges, we may assume P := {y ≥ 0,z ≥ 0}. Define

f : R
2 → R

2 ≡ C → C ≡ R
2,

(x1,x2) → (x21,x
2
2) ≡ x21 + √−1x22 =: ω → ω3 = (x21 − √−1x22)

3

= (x61 − 3x2
1x

4
2) − √−1 (3x41x

2
2 − x62)

≡ (x61 − 3x2
1x

4
2,x

6
2 − 3x4

1x
2
2).

The image of f is S, as it maps first R
2 to the closed quadrant {x1 ≥ 0,x2 ≥ 0} and

then this one to S using the complex operation ω → ω3. In addition, deg(f) = 6.

Corollary 3.5 Let P ⊂ R
2 be an unbounded convex polyhedron that does not discon-

nect R
2. Then S := R

2\ Int(P) is a polynomial image of R
2.

Proof We proceed by induction on the number m of edges of P.

First cases. The cases m = 1 and m = 2 were provided in Example 3.4.

Induction step. Let P := ⋂m
i=1

{
l̄i (y,z) ≥ 0

}
be a convex polygon with m ≥ 3

edges. After an affine change of coordinates we may assume that properties (i)–(iv)
from Lemma 2.2 are satisfied. This in turn implies that, ordering adequately the edges
of the polygon, we can express the equations of the l̄i as in (C.1), so they satisfy all
the required conditions in Sect. 3.1.

Now, setPm,× := ⋂m−1
i=1

{
l̄i (y,z) ≥ 0

}
. By the induction hypothesis there exists a

polynomial map h0 : R
2 → R

2 such that h0(R2) = R
2\ Int(Pm,×). By Theorem 3.3

we have f(R2\ Int(Pm,×)) = R
2\ Int(P). Thus, the image of the polynomial map

F := f ◦ h0 : R
2 → R

2 is S := R
2\ Int(P), as required. ��

Before proving Theorem 3.3 we need to study carefully the level curves of f2.

3.4 On the Level Curves of f2

For each λ ∈ R consider the plane algebraic curve

Xλ := {f2 = λ}.

The properties of these algebraic curves will help us prove later the equality
f(Xλ\ Int(Pm,×)) = {z = λ}\ Int(P), which essentially represents the core of the
proof. Propositions 3.6 and 3.7 provide semialgebraic parameterizations of (a part
of) Xλ. The properties of these parameterizations depend strongly on the sign of λ.
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The reader should have in mind Fig. 1, which sketches the behavior of the polyno-
mial map f and helps understand how it acts on R

2. In the sequel we make use of
Nash functions on open semialgebraic subsets U ⊂ R. Recall that an analytic func-
tion f : U → R is Nash if there exists a non-zero polynomial P ∈ R[x,y] such that
P(t,f(t)) = 0 for each t ∈ U .

Proposition 3.6 Assume λ > 0 and define ϕλ(y) := max{z ∈ R : (y,z) ∈ Xλ} for
each y ∈ U := R\{b1, . . . , br }. Then

(i) ϕλ : U → R is a Nash function and its graph �λ is contained in Xλ ∩ Q.
(ii) limy→b j ϕλ(y) = +∞ for all j = 1, . . . , r .

Proof We note first that: the function ϕλ is well-defined on U .
Fix y0 ∈ U and observe that q(y0,z) is a polynomial of degree one. Thus, p(y0,z)

is a polynomial of degree ≥ 1 and f2(y0,z) is a polynomial of odd degree. Conse-
quently, the set {f2(y0,z) = b} ⊂ R is non-empty and finite, so the value ϕλ(y0)
exists.

3.6.1. The proof of (i) is conducted in several steps. We first claim: The partial deriva-

tive ∂(qg2)
∂z is strictly positive on Q0 := {q > 0} ∩ (U × R).

We have

∂(qg2)

∂z
= ∂q

∂z
g2 + 2qg

∂g

∂z

= g2 + 2q

⎛

⎝
r∏

j=1

l j (y,z)

⎞

⎠

4 (
m−1∏

i=r+1

li (y,z)

)⎛

⎝−
m−1∑

k=r+1

∏

i �=k

li (y,z)

⎞

⎠

= g2 + 2q

⎛

⎝
r∏

j=1

l j (y,z)

⎞

⎠

4 ⎛

⎝
m−1∑

k=r+1

(z − l0i (y))
∏

i �=k

li (y,z)2

⎞

⎠ ,

and by Lemma 3.1 (ii) this last expression is strictly positive on Q0.

3.6.2. Fix (y0, ϕλ(y0)) ∈ �λ and denote

z0 := y20 + 1 +
m−1∑

i=r+1

(
l02i (y0) + 1

2

)

.

We claim: There exists z0 < z1 < z2 such that p(y0, z1) = 0 and f2(y0, z2) = λ.
Besides, the graph �λ is contained in Q0 and p is strictly negative on �λ.

Write Q∩ {y = y0} = {(y0,z) : z > z0}. By Lemma 3.2 there exists z1 > z0 such
that p(y0, z1) = 0, so f2(y0, z1) = 0. As λ > 0 and limz→+∞ f2(y0,z) = +∞
(because it is an odd degree polynomial with positive leading coefficient), there exists
z2 > z1 > z0 such that f2(y0, z2) = λ. Thus,

ϕλ(y0) ≥ z2 > z1 > z0, (C.5)
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so (y0, ϕλ(y0)) ∈ Q ∩ {y = y0} ⊂ Q0.

As ∂(qg2)
∂z > 0 on Q0, the polynomial function py0(z) := p(y0,z) is strictly

decreasing on the interval ]z0,+∞). As py0(z1) = 0 and ϕλ(y0) > z1, we deduce
py0(ϕλ(y0)) < 0.

3.6.3. Finally we prove: The function ϕλ is Nash on U .

Pick y0 ∈ U . We know that (y0, ϕλ(y0)) ∈ Q0, so
∂(qg2)

∂z (y0, ϕλ(y0)) > 0. In
addition, we know that p(y0, ϕλ(y0)) < 0. It follows that

∂f2
∂z

(y0, ϕλ(y0)) = p2(y0, ϕλ(y0)) +
(
2zp ·

(
−∂(qg2)

∂z

))
(y0, ϕλ(y0)) > 0.

By the Implicit Function Theorem [5, 2.9.8] there exist

• open bounded intervals I , J ⊂ R such that y0 ∈ I and ϕλ(y0) ∈ J ,
• I × J ⊂ Q0 ∩ {p < 0} and
• a Nash function φ : I → J such that Xλ ∩ (I × J ) = {z = φ(y)}.

Let us check: After shrinking I , we have ϕλ|I = φ|I .
Indeed, suppose by contradiction that there exists a sequence {yk}k≥1 ⊂ I that

converges to y0 and ϕλ(yk) > sup(J ) for all k ≥ 1. As I × J ⊂ Q0 ∩ {p < 0}, we
deduce

I × ] inf(J ),+∞[ ⊂ Q0 ∩ {p < 0}
because p is decreasing on the line Q∩{y = y} for all y ∈ U (see the end of the proof
of Sect. 3.6.2). In particular, p2(y, sup(J )) > 0 for each y ∈ I . By Sect. 3.6.1

∂p2

∂z
(y, z) = −2p(y, z)

∂(qg2)

∂z
(y, z) > 0

for all (y, z) ∈ I × ] inf(J ),+∞[. Thus, p2(yk, ϕλ(yk)) > p2(yk, sup(J )) > 0 for
all k ≥ 1. As f2(yk, ϕλ(yk)) = λ,

sup(J ) ≤ ϕλ(yk) = λ

p2(yk, ϕλ(yk))
≤ λ

p2(yk, sup(J ))
.

As {yk}k≥1 ∪ {y0} ⊂ I is compact and the rational function λ
p2(y,sup(J ))

is continuous
on I , there exists M > 0 such that

sup(J ) < ϕλ(yk) ≤ λ

p2(y, sup(J ))
< M .

As K := Xλ ∩ (Cl(I ) × [sup(J ), M]) is a compact set, we may suppose that the
sequence {(yk, ϕλ(yk))}k≥1 converges to (y0, t0) ∈ K , so

ϕλ(y0) < sup(J ) ≤ t0 ≤ ϕλ(y0),
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which is a contradiction. Thus, after shrinking I , it holds (y, ϕλ(y)) ∈ I × J for all
y ∈ I . Consequently, ϕλ|I = φ|I .

Therefore, ϕλ is a Nash function because it is locally Nash and by its definition
semialgebraic.

3.6.4. To prove (ii) we start by fixing b j0 and taking y0 close to b j0 . Consider the
algebraic curve

Y := {p := 1 − qg2 = 0}.

By Sect. 3.6.2 there exists (y0, z1) ∈ Y ∩Q0 such that z1 < ϕλ(y0). By Lemma 3.1 (iii)
there exists M > 0 such that

1 = q(y0, z1)g
2(y0, z1) ≤ (z1 − q0(y0))(Mz1)

2(m−1−r)
r∏

j=1

c4j (y0 − b j )
4

≤ z1(Mz1)
2(m−1−r)

r∏

j=1

c4j (y0 − b j )
4.

Therefore,

1

2m−2r−1
√

M2(m−1−r)
∏r

j=1(y0 − b j )4
≤ z1 ≤ ϕλ(y0),

and so limy→b j0
ϕλ(y) = +∞, as required. ��

Proposition 3.7 Assume λ < 0 and let π : R
2 → R, (y,z) → y. Then Xλ ⊂ R×

]λ−1, 0[ and there exists a continuous semialgebraic map ψλ := (ψ1,λ, ψ2,λ) : R →
R
2 such that Im(ψλ) ⊂ Xλ and limt→±∞ ψ1,λ(t) = ±∞. In particular,

π(Im(ψλ)) = R.

Proof The proof is conducted in several steps:

3.7.1. We show first: the algebraic curve Xλ when λ < 0 lies in the band {λ − 1 <

z < 0}.
Pick (y0, z0) ∈ Xλ. As q < 0 on the half-plane {z < 0} and λ < 0, we have

0 > z0 = λ

(1 − q(y0, z0)g2(y0, z0))2
≥ λ > λ − 1.

3.7.2. Next we prove: π(Xλ) = R.
Fix y0 ∈ R and consider the univariate polynomial f2,y0(z) := f2(y0,z). Then

f2,y0(0) = 0 > λ and using again the fact that q < 0 on {z < 0} we deduce that

f2,y0(λ − 1) = (λ − 1)(1 − q(y0, λ − 1)g2(y0, λ − 1))2 ≤ λ − 1 < λ. (C.6)
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E1

E2

S1

S2

0

λ − 1

−M M

Yt

Y1
Yt+1

Ys

Fig. 2 Description of the situation

By continuity there exists z0 ∈ ]λ − 1, 0[ such that f2(y0, z0) = f2,y0(z0) = λ, so
(y0, z0) ∈ Xλ. Hence, y0 = π(y0, z0) ∈ π(Xλ) as claimed.

3.7.3. By [5, 2.9.10] the curve Xλ is the disjoint union of a finite set of points F and
finitelymany affineNashmanifolds N1, . . . , Np, each Nash diffeomorphic to the open
interval ]0, 1[. As Xλ contains no vertical lines, we may assume that π : Ni → R is a
Nash diffeomorphism onto its image for i = 1, . . . , p.

3.7.4. Let M > 0 be such that π(F) ⊂ ] − M, M[. Let Y1, . . . , Ys be the connected
components of Xλ. As Xλ ⊂ R × ]λ − 1, 0[, the same happens for each Y�. Of
course each Y� is a closed subset of R

2. We claim: Some Y� connects the vertical
edges E1 := {−M} × [λ − 1, 0] and E2 := {M} × [λ − 1, 0] of the rectangle
R := [−M, M] × [λ − 1, 0].

To prove this claim we will make use of Janiszewski’s Theorem (see [25] or [4,
Thm. A]): If K1 and K2 are compact subsets of the plane R

2 whose intersection is
connected, a pair of points that is separated by neither K1 nor K2 is neither separated
by their union K1 ∪ K2.

Suppose by contradiction that no Y� connects E1 with E2. As π(Xλ) = R, we may
assume that the first t < s connected components of Xλ meet E1, whereas the rest of
them do not (Fig. 2). Define the compact sets

K1 :=
t⋃

�=1

(Y� ∩ R) ∪ E1, L :=
s⋃

�=t+1

(Y� ∩ R) and K2 := L ∪ ∂R,

and note that the intersection K1 ∩ K2 = E1 is connected.
The horizontal segments S1 := [−M, M] × {0} and S2 := [−M, M] × {λ − 1}

satisfy f2(S1) = {0} and f2(S2) ⊂ ]−∞, λ[ (see (C.6)), that is, S1 ⊂ f−1
2 (]λ,+∞[)

and S2 ⊂ f−1
2 (]−∞, λ[). Consequently, the algebraic curve Xλ = f−1

2 (λ) separates
the horizontal segments S1 and S2. Notice that if we restrict f2 to R the set Xλ ∩ R

still separates these segments on R. Observe that ∂R = S1 ∪ S2 ∪ E1 ∪ E2. As

K1 ∩
(

∂R ∩
{
y ≥ − M

2

})
= ∅ and L ∩

(
∂R ∩

{
y ≤ M

2

})
= ∅,
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Fig. 3 Positions of K1 and W2
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Fig. 4 Positions of K2 and W1
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•

•

p2

p1
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the real number

ε := min

{
dist

(
K1,

(
∂R ∩

{
y ≥ − M

2

}))
, dist

(
L,

(
∂R ∩

{
y ≤ M

2

}))}

is strictly positive and does not exceed M
2 (Figs. 3, 4). Let 0 < δ < ε

2 be such that
p1 := (0,−δ) ∈ f−1

2 (]λ,+∞[) and p2 := (0, λ − 1 + δ) ⊂ f−1
2 (]−∞, λ[). It holds

that K1 ∪ K2 = (Xλ ∩R) ∪ ∂R separates the points p1 and p2. Note that both p1, p2
belong to the open connected subsets

W1 :=
{

p ∈ Int(R) : 0 < dist

(
p,

(
∂R ∩

{
y ≤ M

2

}))
<

ε

2

}
,

W2 :=
{

p ∈ Int(R) : 0 < dist

(
p,

(
∂R ∩

{
y ≥ − M

2

}))
<

ε

2

}

of Int(R), while K1 ∩ W2 = ∅ and K2 ∩ W1 = ∅. Thus, p1, p2 are separated neither
by K1 nor by K2, which contradicts Janiszewski’s Theorem. The claim follows.

3.7.5. Let α : [−M, M] → Xλ be a continuous semialgebraic path such that α(−M) ∈
Xλ ∩ E1 and α(M) ∈ Xλ ∩ E2. As π(F) ⊂ ]−M, M[, we may assume that

• α(−M) ∈ N1 and α(M) ∈ N2,
• π(N1) = ]−∞,−M[ and π(N2) = ]M,∞[, where π |N1 and π |N2 are homeo-
morphisms.
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0

λ − 1

−M M

•

•Xλ

α(t)

(π |N1)
−1(t)

(π |N2)
−1(t)

Fig. 5 Construction of the parameterization ψλ

Finally, the continuous semialgebraic map (Fig. 5)

ψλ(t) = (ψ1,λ(t), ψ2,λ(t)) :=

⎧
⎪⎨

⎪⎩

(π |N1)
−1(t) it t < −M,

α(t) if − M ≤ t ≤ M,

(π |N2)
−1(t) it t > M,

satisfies π(Im(ψλ)) = R and limt→±∞(ψ1,λ(t)) = ±∞, as required. ��

3.5 Proof of Theorem 3.3

Now we are ready to prove the main theorem in this section, which is key in order to
prove later Theorem 1.4.

3.3.1. Denote S := R
2\ Int(P) and T := R

2\ Int(Pm,×). We have to prove that
f(T) = S. Write T = T1 ∪ T2 ∪ T3 and S = S1 ∪ S2 ∪ S3 where

T1 := T ∩ {z > 0}, S1 := S ∩ {z > 0},
T2 := T ∩ {z = 0}, S2 := S ∩ {z = 0},
T3 := T ∩ {z < 0}, S3 := S ∩ {z < 0}.

Note that

S1 � S2 = S ∩ {z ≥ 0} = {z ≥ 0} and T3 = S3 = {z < 0}\ Int(P).

It is enough to show

f(T1 � T2) = S1 � S2, f(T3) = S3.

The inclusion f(T1 ∪T2) ⊂ S1 �S2 is straightforward. Therefore, we are left to show

S1 � S2 ⊂ f(T1 � T2), (C.7)

S3 ⊂ f(T3) ⊂ S3. (C.8)
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To prove (C.7) it is enough to check:

{(b1, 0), . . . , (br , 0)} ⊂ f(T2),

{z = 0}\{(b1, 0), . . . , (br , 0)} ⊂ f(T1),

and {z > 0} ⊂ f(T1).

3.3.2. We check first {(b1, 0), . . . , (br , 0)} ⊂ f(T2). Note that {b j }×R ⊂ T because

R
2\T = Int(Pm,×) ⊂

r⋂

j=1

{l j (y,z) = c j (y − b j ) > 0}.

As f(b j , λ) = (b j , λ), we have {b j } × R ⊂ f(T). Therefore {(b1, 0), . . . , (br , 0)} ⊂
f(T2).

3.3.3. Next we show: U × {0} = {z = 0}\{(b1, 0), . . . , (br , 0)} ⊂ f(T1).
By Lemma 3.2, for each y0 ∈ U := R\{b1, . . . , br } there exists z1 ∈ R such that

(y0, z1) ∈ Q and p(y0, z1) = 0, so f2(y0, z1) = 0 and f1(y0, z1) = y0. Now, by
Lemma 3.1

Q ⊂ {z > 0}\Pm,× ⊂ {z > 0} ∩ T = T1. (C.9)

Thus U × {0} ⊂ f(T1).

3.3.4. Let us prove: {z > 0} ⊂ f(T1). To that end we show: If λ > 0, the line {z = λ}
is contained in f(T1).

Consider the curve Xλ := {f2(y,z) = λ}. By Proposition 3.6 there exists a
Nash function ϕλ : U := R\{b1, . . . , br } → R such that limy→b j ϕλ(y) = +∞ for
j = 1, . . . , r and its graph �λ ⊂ Xλ ∩Q. The latter condition means in particular that
limy→±∞ ϕλ(y) = +∞.

Consider the function

�λ : R → R, y →
{
f1(y, ϕλ(y)) if y ∈ U ,

b j if y = b j .

Let us check: Im(�λ) = R. It is enough to prove: �λ is continuous and
limy→±∞ �λ(y) = ±∞.

Indeed, since (y, ϕλ(y)) ∈ Xλ we have

ϕλ(y)p2(y, ϕλ(y)) = λ � p(y, ϕλ(y)) =
√

λ

ϕλ(y)
.

Thus, for each y ∈ U we have by (C.11)

�λ(y) = f1(y, ϕλ(y)) = y

(
2

λ

ϕλ(y)
− 2

√
λ

ϕλ(y)
+ 1

)
, (C.10)
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so limy→b j �λ(y) = b j for j = 1, . . . , r and �λ is continuous. Also from (C.10)
follows that limy→±∞ �λ(y) = ±∞. Thus, the map R → R × λ = {z = λ}, y →
(�λ(y), λ) is surjective. As the graph �λ of ϕλ is contained in Q ⊂ {z > 0} ∩ T (see
inclusions (C.9)) and the points (b j , λ) ∈ T (see Sect. 3.3.2), we deduce {z = λ} ⊂
f(T ∩ {z > 0}) = f(T1).

This concludes the proof of (C.7) and we proceed now with (C.8).

3.3.5. Let us check: S3 ⊂ f(T3). To that end we show: If λ < 0, the difference
{z = λ}\ Int(P) is contained in f(T3) = f(T ∩ {z < 0}).

Let ψλ : R → Xλ be the continuous semialgebraic map constructed in Propo-
sition 3.7. Write R = C ∪ A where C := ψ−1

λ (Im(ψλ)\ Int(P)) and A :=
ψ−1

λ (Im(ψλ) ∩ Int(P)). We distinguish two cases here:

Case 1: A = ∅. Consider the map t → f(ψλ(t)) = (f1(ψλ(t)),f2(ψλ(t)). We
know that f2(ψλ(t)) = λ. Rewrite f1 as follows:

f1 = y((p − 1)2 + p2) = y(2p2 − 2p + 1) = y

(
2

(
p2 − 1

2

)2

+ 1

2

)
. (C.11)

We deduce

f1(ψλ(t)) = ψ1,λ(t)

(
2

(
p2(ψλ(t)) − 1

2

)2

+ 1

2

)
. (C.12)

As limt→±∞ ψ1,λ(t) = ±∞, we have limt→±∞ f1(ψλ(t)) = ±∞. As f1 ◦ ψλ is
continuous, we conclude f(ψλ(R)) = R × {λ} ⊂ f(T3).

Case 2: A �= ∅. If t0 ∈ ∂C , there exist points t1 ∈ C and t2 ∈ A close to t0. As ψλ

is continuous, ψλ(t1) ∈ Im(ψλ)\ Int(P) and ψλ(t2) ∈ Int(P) are close to ψλ(t0), so
ψλ(t0) ∈ Xλ ∩ ∂P.

Asψλ(t0) ∈ ∂Pwehaveg(ψλ(t0)) = 0, sop(ψλ(t0)) = 1 andf(ψλ(t0)) = ψλ(t0).
In addition, as ψλ(t0) ∈ Xλ we have f2(ψλ(t0)) = λ, so ψλ(t0) = f(ψλ(t0)) =
(ψ1,λ(t0), λ). Thus,

ψλ(t0) ∈ {z = λ} ∩ ∂P = ∂({z = λ}\ Int(P)).

Notice that {z = λ}\ Int(P) = (S1 × {λ}) � (S2 × {λ}) where

S1 :=
{

]−∞, cλ] or

∅
and S2 :=

{
[dλ,+∞[ or

∅.

As π(Im(ψλ)) = R and limt→±∞ ψ1,λ(t) = ±∞, there exists two intervals C1
and C2 of C (in case they are non-empty) such that

C1 :=
{

]−∞, c′
λ] if S1 =]−∞, cλ],

∅ if S1 = ∅
and
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C2 :=
{

[d ′
λ,+∞[ if S2 = [dλ,+∞[,

∅ if S2 = ∅

where ψ1,λ(c′
λ) = cλ and ψ1,λ(d ′

λ) = dλ if the corresponding Si �= ∅. Let us show:
f(ψλ(Ci )) = Si ×{λ} for i = 1, 2.Asψλ(C) ⊂ {z < 0}\ Int(P) = {z < 0}∩T = T3,
we conclude

{z = λ}\ Int(P) ⊂ f(ψλ(C)) ⊂ f(T ∩ {z < 0}) = f(T3).

Now, as in the previous case, from (C.11) and (C.12) we deduce that, since
limt→±∞ ψ1,λ(t) = ±∞, then limt→±∞ f1(ψλ(t)) = ±∞. In addition,

ψλ(c′
λ) = (cλ, λ)

ψλ(d ′
λ) = (dλ, λ)

}
∈ ∂P,

so f1(ψλ(c′
λ)) = cλ and f1(ψλ(d ′

λ)) = dλ. Consequently, f1(ψλ(Ci )) = Si for
i = 1, 2, as required.

3.3.6. Finally we show: f(T3) ⊂ S3 = {z < 0}\ Int(P).
Note first that f(S3) ⊂ {z < 0}. Thus, we only have to check: f(S3) ∩ Int(P) is

the empty set.
Let (y0, z0) ∈ T3 = T ∩ {z < 0} = S ∩ {z < 0} = {z < 0}\ Int(P) and choose

an edge of P (different from Em) and a linear equation l := ay + bz + c of the line
containing it that satisfies P ⊂ {l ≥ 0} and

l(y0, z0) = ay0 + bz0 + c ≤ 0. (C.13)

We also have c > 0, because l(0, 0) > 0. We distinguish two cases:

Case 1: b ≤ 0. Let us check: l(f(y0, z0)) ≤ 0.
Indeed,

l(f(y0, z0)) = ay0((1 − p)2(y0, z0) + p2(y0, z0) + bz0p
2(y0, z0) + c

= (ay0 + bz0 + c)((1 − p)2(y0, z0) + p2(y0, z0))

− bz0(1 − p)2(y0, z0) + c(1 − (1 − p)2(y0, z0) − p2(y0, z0)) ≤ 0

because ay0 + bz0 + γ 2 ≤ 0, z0 < 0 and (1 − p)2(y0, z0) + p2(y0, z0) > 1. Hence,
f(y0, z0) /∈ Int(P).

Case 2: b > 0. Let −M := inf{z : (y, z) ∈ P}. If M = ∞, then −	en ∈ 	C(P), so
b ≤ 0. Thus, M ∈ R. As (0,−M) ∈ P, we have −bM + c ≥ 0, so −M ≥ − c

b . We
consider two subcases. If ay0 ≥ 0, we have

ay0 + bz0 + c ≤ 0 � z0 ≤ −ay0
b

− c

b
≤ −ay0

b
− M ≤ −M .
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Consequently, z0p2(y0, z0) ≤ M , because p(y0, z0) ≥ 1 as z0 < 0. Therefore,
f(y0, z0) ∈ Int(P) and f(y0, z0) ∈ S3. If ay0 ≤ 0, we have

l(f(y0, z0)) = ay0((1 − p)2(y0, z0) + p2(y0, z0)) + bz0p
2(y0, z0) + c

= p2(y0, z0)(ay0 + bz0 + c) + ay0(1 − p)2(y0, z0)

+ c(1 − p2(y0, z0)) ≤ 0,

because all the addends in the last expression are non-positive (recall that as z0 < 0,
it holds p(y0, z0) ≥ 1). Again, we conclude f(y0, z0) ∈ S3, as required. ��

4 Complements of Interiors of Convex Polyhedra

The purpose of this section is to provide a constructive proof of Theorem 1.4. The
proof can be schematized as follows:

• We place the polyhedron K so that the vector −	en := (0, . . . , 0,−1) lies in its
recession cone and one of its facets Fi lies in the hyperplane {xn = 0}.

• We proceed by double induction on the dimension and the number of facets ofK.
• By the induction hypothesis, the complement Ti of the interior of the unbounded
convex polyhedronKi,× (which has one facet less thanK) is a polynomial image
of R

n .
• Themain task now is to construct a polynomialmapFK that sends this complement
Ti onto the complement of the original polyhedron K.

• We show that the previous map satisfies our requirements by reducing the problem
to a two-dimensional setting, so that we are able to apply Theorem 3.3.

The reader could follow together the proof of Theorem 1.4 and the simple working
Example 4.1 in order to get a better idea on how the construction works.

4.1 Proof of Theorem 1.4

The proof is conducted in several steps.

4.1.1 Setting Up the Scenario

Weproceedbydouble induction on the pair (n, m), wheren denotes the dimension ofK
andm its number of facets. The result is trivial for n = 1 because in this case layers cor-
respond precisely to bounded closed intervals that disconnect R, whereas R

n\ Int(K)

for unbounded K is affinely equivalent to [0,+∞[, which is the image of the poly-
nomial map f : R → R, x → x2. Assume n ≥ 2 and the result true for all convex
polyhedra that have either dimension ≤ n − 1, or dimension n and less than m facets.

LetK ⊂ R
n be an n-dimensional convex polyhedron with m facets, which is not a

layer. IfK is degenerate, we can assumeK = P×RwhereP ⊂ R
n−1 is a convex poly-

hedron different from a layer. By the induction hypothesis there exists a polynomial
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map f0 : R
n−1 → R

n−1 whose image is R
n−1\ Int(P). The image of the polynomial

map f : R
n → R

n, x := (x′,xn) → (f0(x′),xn) is R
n\ Int(K) and we are done.

Assume next that K is non-degenerate. We can assume that K satisfies properties
(i)–(iv) in Lemma 2.2. LetF1, . . . ,Fr be the vertical facets ofK and letFr+1, . . . ,Fm

be the non-vertical ones, with Fm lying in the hyperplane {xn = 0} as usual.

4.1.2 Construction of the Polynomial Map FK

As before, set x′ := (x1, . . . , xn−1) and x := (x1, . . . ,xn) = (x′,xn). Let us express
the equations for the spans of the facets of K as follows:

h̄i (x) :=

⎧
⎪⎨

⎪⎩

h0i (x
′) for i = 1, . . . , r ,

εihi (x) := εi (h0i (x
′) − xn) for i = r + 1, . . . , m − 1,

hm(xn) := −xn for i = m,

where εi ∈ {−1,+1} for i = r + 1, . . . , m − 1. The hyperplanes Hi for i = 1, . . . , r
are vertical, while those corresponding to i = r + 1, . . . , m are non-vertical. Here,
H+

i = {h̄i ≥ 0} and h̄i (0′, 0) > 0 for i = 1, . . . , m − 1 because the origin of R
n

belongs to the interior of Fm . We also have for some index k ∈ {r +1, . . . , m −1} that
εk = +1, because otherwise the vector 	en would belong to 	C(Km,×) as all non-vertical
half-spaces H+

i would be of the form {−h0i (x
′) + xn ≥ 0}. We introduce now the

n-dimensional versions of the auxiliary polynomials that we introduced in Sects. 3.1
and 3.2. Consider first

Q(x) := xn − ‖x′‖2 − 1 −
m−1∑

i=r+1

(
h02i (x

′) + 1

2

)
, (D.1)

where the last addend becomes 0 when r = m − 1. The polynomial Q(x) has two
properties of interest to us. First, the region Q(x) ≥ 0 lies ‘above’ all the hyperplanes
containing non-vertical facets of K and ‘above’ the hypersurface xn = ‖x′‖2 + 1. In
addition, this region is connected and projects onto {xn = 0}. Second, Q(x) is always
negative on {xn ≤ 0}. Next, we introduce

G(x) :=
⎛

⎝
r∏

j=1

h0 j (x
′)

⎞

⎠

2

·
(

m−1∏

i=r+1

hi (x)

)

. (D.2)

Notice that this polynomial function vanishes on the hyperplanes containing the facets
of K and is positive on its interior. In addition, vertical facets of K do not change the
sign of G(x). Finally, consider the polynomial

P(x) := 1 − Q(x)G2(x), (D.3)
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which is ≥ 1 whenever Q ≤ 0 and = 1 when G = 0 (that is, on the hyperplanes
spanning the facets of K).

Define with the aid of (D.3)

F1(x) := x′((P(x) − 1)2 + P2(x)) ∈ R[x]n−1 and

F2(x) = xnP
2(x) ∈ R[x]. (D.4)

4.1.3.

We claim: The map FK : R
n → R

n = R
n−1 × R, x → (F1(x),F2(x)) satisfies

FK(Rn\ Int(Km,×)) = R
n\ Int(K).

Assume the previous claim true for a while. As Km,× has one facet less than K, by
the induction hypothesis the complement Rn\ Int(Km,×) is the image of a polynomial
map F0 : R

n → R
n . Therefore, the composition FK ◦ F0 satisfies FK ◦ F0(Rn) =

FK(Rn\ Int(Km,×)) = R
n\K, as required. Hence, it only remains to prove this claim.

4.1.4 Reduction to the Two-Dimensional Case

Consider the family of vertical hyperplanes through the origin. This family can be
parameterized as follows: for each 	u ∈ S

n−2 ⊂ R
n−1 define π	u := {(	uy,z) : (y,z) ∈

R
2},which is the plane through the origin generated by the vectors 	u and 	en . Obviously

R
n = ⋃

	u∈Sn−2 π	u and FK(π	u) ⊂ π	u . Therefore it is enough to check that

FK(π	u\ Int(Km,×)) = π	u\ Int(K)

for all 	u ∈ S
n−2. As Int(Km,×) and Int(K) are open subsets of R

n , we have

Int(Km,×) ∩ π	u = Int(Km,× ∩ π	u) and Int(K) ∩ π	u = Int(K ∩ π	u).

As the origin of R
n belongs to the interior of Fm , the intersection Em,	u := Fm ∩ π	u is

an edge ofK∩π	u and its interior Int(Em,	u) contains the origin of R
n . We are reduced

to prove that

FK(π	u\ Int(Km,× ∩ π	u)) = π	u\ Int(K ∩ π	u) (D.5)

for all 	u ∈ S
n−2.
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4.1.5 Conclusion of Proof

Fix now an arbitrary 	u ∈ S
n−2 and write

l̄i (y,z) := h̄i (y	u,z)

=

⎧
⎪⎨

⎪⎩

l0k(y) if k = 1, . . . , r ,

εklk(y,z) := εk(l0k(y) − z) if k = r + 1, . . . , m − 1,

−z if k = m.

q(y,z) := Q(y	u,z) = z − y2 − 1 −
m−1∑

i=r+1

l02i (y) + 1

2
,

g(y,z) := G(y	u,z) =
( r∏

j=1

l0 j (y)

)2

·
( m−1∏

i=r+1

li (y,z)

)
,

p(y,z) := P(y	u,z) = 1 − q(y,z)g2(y,z),

f1(y,z) := F1(y	u,z) = y((p(y,z) − 1)2 + p2(y,z)),

f2(y,z) := F2(y	u,z) = zp2(y,z).

(D.6)

The linear polynomials l̄i can be interpreted as the restrictions to the plane π	u of
the linear polynomials h̄i . Recall that for some index k ∈ {r + 1, . . . , m − 1} we have
εk = +1. We have settled in π	u ≡ R

2 coordinates (y,z) with respect to the vectors
{	u, 	en}. Analogously, the functions q, g, p, f1 and f2 can be understood respectively
as the restrictions to the plane π	u of the polynomials Q, G, P, F1 and F2, appearing
in (D.1) through (D.4). But restating (D.5) in terms of the plane R

2 leads precisely to
Theorem 3.3. This settles the claim §4.1.3 and completes the proof of Theorem 1.4. ��

Example 4.1 To show a concrete example on how the previous algorithm works, we
sketch here how to construct a polynomial map F : R

3 → R
3 whose image is the

complement of the interior of the unbounded convex polyhedronK := {x1 ≥ 0,x2 ≥
0,x3 ≥ 0} ⊂ R

3. We start with a shortcut provided by the polynomial map

FK1(x1,x2,x3) :=
(
x61 − 3x21x

4
2,−3x4

1x
2
2 + x62,x3

)
,

which satisfies FK1(R
3) = R

3\ Int(K1) where K1 := {x1 ≥ 0,x2 ≥ 0} ⊂ R
3

(see Example 3.4 (ii)). We need now to apply an affine transformation φ to place the
polyhedron K1 in such a way that its facets are non-vertical and −	e3 is contained in
(the interior of) its recession cone. This is achieved, for example, with

φ(x1,x2,x3) := (x1 + x3,x2 + x3,x3 + 1).

We have φ(K1) = K′
1, where K

′
1 := {x3 ≤ x1 + 1,x3 ≤ x2 + 1} ⊂ R

3. The two
facets of K′

1 are the planes of equations x2 + 1 − x3 = 0 and x1 + 1 − x3 = 0. We
consider the polynomials
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Q(x1,x2,x3) := x3 − x21 − x22 − 1

− (x1 + 1)2 + (x2 + 1)2 + 2

2
,

G(x1,x2,x3) := (x1 − x3 + 1)(x2 − x3 + 1),

P(x1,x2,x3) := 1 − QG2.

Then we follow our recipe and construct the polynomial map

FK′(x1,x2,x3) :=
(
x1((P − 1)2 + P2),x2((P − 1)2 + P2),x3P

2
)

,

which satisfies FK′(R3\ Int(K′
1)) = R

3\ Int(K′), where K′ := {x3 ≤ x1 + 1,x3 ≤
x2 + 1,x3 ≤ 0}. Undoing the isomorphism φ by means of the affine bijection

ψ(x1,x2,x3) := (x1 − x3 + 1,x2 − x3 + 1,x3)

we finally obtain that the composition F = ψ ◦ FK′ ◦ φ ◦ FK1 satisfies F(R3) =
R
3\ Int(K), as required. The curious reader could compare this construction with our

previous one in [18, Lem. 7.2]. Expanding this composition map and expressing it in
terms of the variables x1,x2,x3 produces rather large polynomials. This shows that
even for polyhedra with a few number of facets our current constructive procedures
lead to expressions with very high degrees. ��
Remark 4.2 By inspecting the polynomials introduced in Sect. 4.1.2 we can obtain
information regarding the degree of the polynomial map FK := (F1,F2) : R

n →
R

n−1 × R introduced in (D.4) and hence have and idea of the complexity of our
construction (see Question 1.6).

We will assume the more general case, which takes place when, along the inductive
process, we never get vertical facets. Then, for an unbounded convex polyhedron K

withm facets, we have deg(Q) = 2, deg(G) = m−1 and deg(P) = 2+2(m−1) = 2m.
We conclude that both deg(F1) and deg(F2) have degree 2(2m) + 1 = 4m + 1 and
therefore deg(FK) = 4m + 1. Since we are applying induction on the number of
facets of the polyhedron and the last step in the process corresponds to the half-space
{xn ≤ 0}, which can be obtained as the image of a polynomial map of degree 2, we
finally get that the polynomial map f sending R

n onto R
n\K has degree

deg( f ) ≤ 2 ·
m∏

i=2

(4i + 1).

As an example, for the complement of the interior of an unbounded convex polyhedron
with three facets we obtain a polynomial map of degree 234, whereas if the number
of facets is four the degree of the polynomial map is 3978.

Example 4.3 If we do not care about the number of variables that we introduce to
represent the complement R

n\ Int(P) of an unbounded convex polygon P ⊂ R
n that

does not disconnect R
2 as a polynomial image of an Euclidean space, then we can
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lower substantially the degrees of the involved polynomial maps (see Question 1.7).
More precisely:

Let P ⊂ R
2 be an unbounded convex polygon with m > 1 edges that does not

disconnect R
2 and such that dim(	C(P)) is two-dimensional. Then there exists a poly-

nomial map Fm : R
m → R

2 such that Fm(Rm+1) = R
2\ Int(P) and deg(Fm) ≤

8 · 3m−2 − 2.
For instance, for the complement of the interior of an unbounded convex polygon

with three edges we obtain a polynomial map of degree 22 involving 3 variables,
whereas if the number of edges is four the degree of the polynomialmap is 70 involving
4 variables.

Let us explain how the procedure of increasing the number of variables helps us
to reduce the degree of the involved maps. The arguments here partly resemble those
developed in Sect. 3.5. We proceed by induction on the number of edges m of the
convex polygon P.

Initial step. We refer the reader to Example 3.4. For m = 2, we obtain a polynomial
map of degree 6 = 8 · 30 − 2 involving two variables.

Induction step. Let P ⊂ R
2 be a convex polygon that does not disconnect R

2 and
has m ≥ 3 edges. Let E1, . . . ,Em be the edges of P and let {hi = 0} be the line
spanned by the edge Ei . We may assume (reindexing the facets if necessary) that
P := {h1 ≥ 0, . . . ,hm ≥ 0} satisfies the conditions (i)–(iv) of Lemma 2.2, that is,

(i) The edge Em lies in {x2 = 0} and P ⊂ {x2 ≤ 0}.
(ii) (0, 0) ∈ Int(Em).
(iii) Whenever (p1, p2) ∈ P, then (0, p2) ∈ P.
(iv) The vertical vector 	e2 /∈ 	C(Pm,×).

We choose for each i = 1, . . . , m − 1 an equation of the form hi (x1,x2) = aix1 +
bix+ci , where ci > 0 (because (0, 0) ∈ Int(E) ⊂ ∂P). Write Pm,× := {h1 ≥
0, . . . ,hm−1 ≥ 0}. We claim: The polynomial map

f : R
2 → R

2, (x1,x2,w) → (x1((x2w
2)2 + (1 − x2w

2)2),x2(1 − x2w
2)2)

satisfies the equality f((R2\ Int(Pm,×)) × R) = R
2\ Int(P).

Set T := (R2\ Int(Pm,×)) × R and S := R
2\ Int(P). If we verify that f(T ∩ {x2 ≥

0}) = {x2 ≥ 0}(= S∩ {x2 ≥ 0}) and f(T ∩ {x2 < 0}) = T ∩ {x2 < 0}(= S∩ {x2 <

0}), then the claim follows.
For the first equality, the inclusion f(T∩{x2 ≥ 0}) ⊂ {x2 ≥ 0} is straightforward.

For the reversed inclusion, take (q1, q2) ∈ {x2 ≥ 0} and choose p2 > 0 so that
0 ≤ q2/p2 < 1 and the segment {|x1| ≤ 2|q1|,x2 = p2} does not meet Pm,× ⊂ R

2

(this is posible because 	e2 /∈ 	C(Pm,×)). If we set

w0 := +
√

1

p2

(
1 −

√
q2
p2

)
and

p1 := q1
(p2w2

0)
2 + (1 − p2w2

0)
2

= q1

2

(√
q2
p2

− 1
2

)2

+ 1
2

,
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we have f(p1, p2, w0) = (q1, q2) and therefore f(T ∩ {x2 ≥ 0}) ⊃ {x2 ≥ 0} (notice
that |p1| ≤ 2|q1|, so (p1, p2) /∈ Pm,× and (p1, p2, w0) ∈ T ∩ {x2 ≥ 0}).

We prove next the second equality. The inclusion S∩{x2 < 0} ⊂ f(T∩{x2 < 0}) is
straightforward, because for w = 0 we have f(x1,x2, 0) ≡ idR2(x1,x2) = (x1,x2),
so

S ∩ {x2 < 0} = idR2(S ∩ {x2 < 0})
= f(T ∩ {x2 < 0} ∩ {w = 0}) ⊂ f(T ∩ {x2 < 0}).

For the reversed inclusion pick (q1, q2) ∈ f(T ∩ {x2 < 0}). This means that there
exists (p1, p2, w0) ∈ T ∩ {x2 < 0} with

f(p1, p2, w0) = (
p1((p2w

2
0)

2 + (1 − p2w
2
0)

2), p2(1 − p2w
2
0)

2) = (q1, q2).

As (p1, p2, w0) ∈ T, we have (p1, p2) /∈ Int(Pm,×), so there exists an index i =
1, . . . , m − 1 for which hi (p1, p2) = ai p1 + bi p2 + ci ≤ 0. As in the proof of
Theorem 3.3, we distinguish two cases:

Case 1: bi ≤ 0. As also ci > 0, we deduce ai p1 < 0. As p2 < 0, we deduce
1 − p2w2

0 ≥ 1, so (1 − (1 − p2w2
0)

2) ≤ 0. Consequently,

ai p1((p2w
2
0)

2 + (1 − p2w
2
0)

2) + bi p2(1 − p2w
2
0)

2 + ci

= (1 − p2w
2
0)

2(ai p1 + bi p2 + ci )

+ci (1 − (1 − p2w
2
0)

2) + ai p1(p2w
2
0)

2 ≤ 0,

because all the addends are non-positive. We conclude f(p1, p2, w0) ∈ T∩{x2 < 0}.
Case 2: bi > 0. Set −M := inf{z : (y, z) ∈ P}. If M = ∞, then (0, z) ∈ P for
z < 0 and −	e2 ∈ 	C(P). But this implies that bi ≤ 0, which is a contradiction. Hence,
M ∈ R and (0,−M) ∈ P implies that −bi M + ci ≥ 0. Now we distinguish two
subcases: If ai p1 ≥ 0, then

ai p1 + bi p2 + ci ≤ 0 � p2 ≤ −ai p1
bi

− ci

bi
≤ −ai p1

bi
− M ≤ −M,

so p2(1− p2w2
0)

2 ≤ p2 ≤ −M . This implies that f(p1, p2, w0) /∈ P ⊂ {x2 ≥ −M}.
On the other hand, if ai p1 < 0 a similar argument as in Case 1 leads to

ai p1((p2w
2
0)

2 + (1 − p2w
2
0)

2) + bi p2(1 − p2w
2
0)

2 + ci ≤ 0,

and again f(p1, p2, w0) /∈ P.
Therefore, in both cases f(p1, p2, w0) ∈ S ∩ {x2 < 0}.
Now we use our inductive hypothesis. As Pm,× has m − 1 edges, there exists a

polynomial map gm : R
m−1 → R

2 such that gm(Rm−1) = R
2\Pm,× and deg(gm) ≤

8 ·3m−3 −2. Next we consider the map Fm : R
m−1 ×R → R

2 defined by Fm(z,w) =
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K

C+

C−

Int(P) × R

�
��

rational
separator

Fig. 6 Rational separator for the attic and the basement of a skyscraper

f(gm(z),w). It is clear thatFm(Rm+1) = R
2\ Int(P). Asgm has degree≤ 8·3m−3−2,

we have

deg(Fm) = deg(f(gm,w)) ≤ 3(8 · 3m−3 − 2) + 4 = 8 · 3m−2 − 2

for m ≥ 3, as required. ��

5 Rational Separation of Distinguished Semialgebraic Sets

A crucial step to prove Theorem 1.5 is, roughly speaking, the following separation
result. Let K ⊂ R

n be a convex polyhedron of dimension n and let P ⊂ R
n−1 be the

projection ofKonto thefirstn−1 coordinates.Consider the ‘infinite prysm’ Int(P)×R,
which henceforth will be called skyscraper. Under mild conditions on the placement
ofK in R

n the difference (Int(P) × R)\K has two connected components: the ‘attic’
C+ of the skyscraper Int(P) × R and its ‘basement’ C−. It would be desirable (and
much simpler for the exposition) to find a polynomial map f ∈ R[x1, . . . ,xn−1] that
separates the attic C+ and the basement C− of the skyscraper Int(P)×R, but the strong
restrictions concerning separation of non-compact semialgebraic sets by polynomial
functions suggests to use more general functions. In Proposition 5.9 we find a rational
map depending on (x1, . . . ,xn−1) that separates C+ and C−, see Fig. 6. In addition,
the previous rational map is regular on Int(P) and we choose a representation such
that the zero set of the denominator is contained in the zero set of the numerator.

The result announced above is based on a preliminary one concerning rational
separation of tuples of variables, which has interest by its own.
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5.1 Rational Separation of Tuples of Variables

Fix positive integers r , s and set y := (y1, . . . ,yr ), z := (z1, . . . ,zs). Consider the
convex polyhedron

Qr ,s := {(y;z) ∈ R
r × R

s : max{y1, . . . ,yr } ≤ min{z1, . . . ,zs}}.

It holds

Int(Qr ,s) = {(y;z) ∈ R
r × R

s : max{y1, . . . ,yr } < min{z1, . . . ,zs}}

and Cl(Int(Qr ,s)) = Qr ,s . If r , s ≥ 1 and k, � ≥ 0, the map

ρk,�
r ,s : R

r × R
s → R

r+k × R
s+�,

(y;z) → (y1, . . . ,yr−1,yr ,
(k+1). . . ,yr ;z1, . . . ,zs−1,zs,

(�+1). . . ,zs)

is a linear embedding such that ρ(Int(Qr ,s)) ⊂ Int(Qr+k,s+�) and ρ(Qr ,s) ⊂ Qr+k,s+�.
Using the identities min(S) = −max(−S) and max(S) = −min(−S) for any finite
set S, one proves that if r , s ≥ 1 the linear isomorphism

σ : R
r × R

s → R
s × R

r , (y;z) → (−z;−y)

satisfies σ(Qr ,s) = Qs,r and σ(Int(Qr ,s)) = Int(Qs,r ).

Definition 5.1 A rational separator for the pair (r , s) is a rational function φr ,s : R
r ×

R
s ��� R that is regular on Int(Qr ,s), extends to a continuous (semialgebraic) function

Qr ,s and satisfies

max{y1, . . . ,yr } < φr ,s(y;z) < min{z1, . . . ,zs}

for each (y;z) ∈ Int(Qr ,s).

As Cl(Int(Qr ,s)) = Qr ,s and φr ,s extends to a continuous (semialgebraic) function
�r ,s on Qr ,s , we deduce

max{y1, . . . ,yr } ≤ �r ,s(y;z) ≤ min{z1, . . . ,zs}

for each (y;z) ∈ Qr ,s .

5.2 Recursive Properties of Rational Separators

We present next some recursive properties of rational separators that will ease the
proof of the existence of rational separators in Proposition 5.4.
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Remark 5.2 (i) Let φr ,s : R
r × R

s ��� R be a a rational separator for (r , s). Then the
rational function φs,r (z,y) := −φr ,s(−y;−z) is a rational separator for (s, r).

(ii) Let r , s ≥ 1 and k, � ≥ 0 and let φr+k,s+� : R
r+k × R

s+� ��� R be a rational
separator for (r + k, s + �). Then φr ,s(y,z) = φr+k,s+�(ρ

k,�
r ,s (y,z)) is a rational

separator for (r , s).

Lemma 5.3 Let r , s, k ≥ 1 be such that r ≥ k. Let φr−k+1,s be a rational separator
for (r − k + 1, s) and φk,s a rational separator for (k, s). Then

φr ,s(y;z) = φr−k+1,s(y1, . . . ,yr−k, φk,s(yr−k+1, . . . ,yr ;z);z)

is a rational separator for (r , s).

Proof Define

M := {(y1, . . . ,yr−k,yr−k+1, . . . ,yr ;z) ∈ R
r × R

s : max{yr−k+1, . . . ,yr }
≤ min{z1, . . . ,zs}}.

The rational map

� : R
r × R

s ��� R
r−k+1 × R

s ,

(y1, . . . ,yr−k ,yr−k+1, . . . ,yr ;z) → (y1, . . . ,yr−k , φk,s(yr−k+1, . . . ,yr ;z);z)

is regular on Int(M) and extends continuously toM = Cl(Int(M)). Clearly,Qr ,s ⊂ M.
We claim: �(Int(Qr ,s)) ⊂ Int(Qr−k+1,s).

If (y;z) ∈ Int(Qr ,s), then max{y1, . . . ,yr } < min{z1, . . . ,zs}, so

max{yr−k+1, . . . ,yr } < min{z1, . . . ,zs}

and consequently φk,s(yr−k+1, . . . ,yr ;z) < min{z1, . . . ,zs}. Thus,

max{y1, . . . ,yr−k, φk,s(yr−k+1, . . . ,yr ;z)} < min{z1, . . . ,zs} (E.1)

and �(y;z) ∈ Int(Qr−k+1,s). Therefore φr ,s is regular on Int(Qr ,s) and extends
continuously toQr ,s . Let us check:max{y1, . . . ,yr } < φr ,s(y;z) < min{z1, . . . ,zs}
for each (y;z) ∈ Int(Qr ,s).

Indeed, by (E.1) we know that �(y;z) ∈ Int(Qr−k+1,s), so

max{y1, . . . ,yr } ≤ max{y1, . . . ,yr−k , φk,s(yr−k+1, . . . ,yr ;z)}
< φr ,s(y;z) := φr−k+1,s(y1, . . . ,yr−k , φk,s(yr−k+1, . . . ,yr ;z);z)

< min{z1, . . . ,zs}.

We conclude that φr ,s is a rational separator for (r , s). ��
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5.3 Existence of Rational Separators

We prove next that, for each pair (r , s) of positive integers, there actually are rational
separators. Denote �(r , s) := max{r − 1, 1} · max{s − 1, 1}.
Proposition 5.4 For each pair (r , s) of positive integers there exists a rational sep-
arator φr ,s . In addition, we may assume that φr ,s is the quotient Pr ,s

Qr ,s
of two

homogeneous polynomials Pr ,s, Qr ,s ∈ R[y;z] such that deg(Pr ,s) = 3�(r ,s),
deg(Qr ,s) = deg(Pr ,s) − 1 and {Qr ,s = 0} ⊂ {Pr ,s = 0}.
Proof The proof is conducted by induction on t := min{r , s}. We begin with some
initial cases:
Case t = r = s = 2. Define

φ2,2(y1,y2;z1,z2) := z1z2 − y1y2
(z1 + z2) − (y1 + y2)

= (z1z2 − y1y2)((z1 + z2) − (y1 + y2))

((z1 + z2) − (y1 + y2))2
,

which is regular in Int(Q2,2) and it is the quotient of two homogeneous polynomials
P2,2 := (z1z2−y1y2)((z1+z2)− (y1+y2)) and Q2,2 := ((z1+z2)− (y1+y2))2

such that deg(P2,2) = 3, deg(Q2,2) = 2 and {Q2,2 = 0} ⊂ {P2,2 = 0}.
Let us prove that if (y1,y2;z1,z2) ∈ Int(Q2,2), then

yi < φ2,2(y1,y2;z1,z2) < z j for i = 1, 2 and j = 1, 2. (E.2)

As φ2,2 is symmetric with respect to the variables (y1,y2) and (z1,z2), we only
consider i = 1, j = 1. We have to prove

y1((z1 + z2) − (y1 + y2)) < z1z2 − y1y2 < z1((z1 + z2) − (y1 + y2)).

The first inequality is equivalent to

z1z2 > y1z1 + y1z2 − y21 ⇐⇒ (z1 − y1)(z2 − y1) > 0,

hence it holds. The second inequality is equivalent to

−y1y2 < z21 − y1z1 − y2z1

⇐⇒ z21 − y1z1 − y2z1 + y1y2 = (z1 − y1)(z1 − y2) > 0

and it also holds. Note that Q2,2 ∩{z1 +z2 −y1 −y2 = 0} = {z1 = z2 = y1 = y2}.
By (E.2) the rational map φ2,2 extends continuously to Q2,2 as

�2,2(y1,y2;z1,z2) =
{

φ2,2(y1,y2;z1,z2) if z1 + z2 − y1 − y2 > 0,

z1 if z1 = z2 = y1 = y2.
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Case t = 2. By Remark 5.2 (i) we may assume that r ≥ s = 2. We proceed by
induction on r . We have constructed above a rational separator for (2, 2) (even satis-
fying the additional conditions in the statement), so the initial case r = 2 has been
already approached. By induction hypothesis there exists a rational separator φr−1,2

for (r − 1, 2) if r ≥ 3. We may assume in addition that φr−1,2 = Pr−1,2
Qr−1,2

is a quo-

tient of homogeneous polynomials Pr−1,2, Qr−1,2 such that deg(Pr−1,2) = 3r−2,
deg(Qr−1,2) = deg(Pr−1,2) − 1 and {Qr−1,2 = 0} ⊂ {Pr−1,2 = 0}. By Lemma 5.3
the function

φr ,2(y;z)

= φr−1,2(y1, . . . ,yr−2, φ2,2(yr−1,yr ;z);z)

= Pr−1,2(Q2,2(yr−1,yr ;z) · (y1, . . . ,yr−2, φ2,2(yr−1,yr ;z);z))

Q2,2(yr−1,yr ;z) · Qr−1,2(Q2,2(yr−1,yr ;z) · (y1, . . . ,yr−2, φ2,2(yr−1,yr ;z);z))

is a rational separator for (r , 2). Define

Pr ,2 := Pr−1,2(Q2,2(yr−1,yr ;z) · (y1, . . . ,yr−2, φ2,2(yr−1,yr ;z);z)),

Qr ,2 := Q2,2(yr−1,yr ;z)

· Qr−1,2(Q2,2(yr−1,yr ;z) · (y1, . . . ,yr−2, φ2,2(yr−1,yr ;z);z)).

As the polynomials Pr−1,2, Qr−1,2 are homogeneous, {Qr−1,2 = 0} ⊂ {Pr−1,2 = 0}
and {Q2,2 = 0} ⊂ {P2,2 = 0}, we deduce {Qr ,2 = 0} ⊂ {Pr ,2 = 0}. In addition, as
deg(P2,2) = 3 and deg(Q2,2) = 2, we have deg(Pr ,2) = 3 deg(Pr−1,2) = 3r−1 and

deg(Qr ,2) = 3 deg(Qr−1,2) + 2 = 3(deg(Pr−1,2) − 1) + 2

= 3 deg(Pr−1,2) − 1 = deg(Pr ,2) − 1.

Case t ≥ 3. By Remark 5.2 (i) we may assume that s ≥ r ≥ 3. Using Remark 5.2 (i)
and the construction for t = 2 we have a rational separator for (2, s) if s ≥ 2. By
induction hypothesis there exists a rational separator φr−1,s for (r −1, s) if r ≥ 3. We
mayassume in addition thatφr−1,s = Pr−1,s

Qr−1,s
is a quotient of homogeneous polynomials

Pr−1,s, Qr−1,s such that deg(Pr−1,s) = 3(s−1)(r−2), deg(Qr−1,s) = deg(Pr−1,s) − 1
and {Qr−1,s = 0} ⊂ {Pr−1,s = 0}. By Lemma 5.3 the function

φr ,s(y;z)

= φr−1,s(y1, . . . ,yr−2, φ2,s(yr−1,yr ;z);z)

= Pr−1,s(Q2,s(yr−1,yr ;z) · (y1, . . . ,yr−2, φ2,s(yr−1,yr ;z);z))

Q2,s(yr−1,yr ;z) · Qr−1,s(Q2,s(yr−1,yr ;z) · (y1, . . . ,yr−2, φ2,s(yr−1,yr ;z);z))

is a rational separator for (r , s). Define

Pr ,s := Pr−1,s(Q2,s(yr−1,yr ;z) · (y1, . . . ,yr−2, φ2,s(yr−1,yr ;z);z)),
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Qr ,s := Q2,s(yr−1,yr ;z)

· Qr−1,s(Q2,s(yr−1,yr ;z) · (y1, . . . ,yr−2, φ2,s(yr−1,yr ;z);z)).

As the polynomials Pr−1,s, Qr−1,s are homogeneous, {Qr−1,s = 0} ⊂ {Pr−1,s = 0}
and {Q2,s = 0} ⊂ {P2,s = 0}, we deduce {Qr ,s = 0} ⊂ {Pr ,s = 0}. In
addition, as deg(P2,s) = 3s−1 and deg(Q2,s) = 3s−1 − 1, we have deg(Pr ,s) =
3s−1 deg(Pr−1,s) = 3(s−1)(r−1) and

deg(Qr ,s) = 3s−1 deg(Qr−1,s) + (3s−1 − 1)

= 3s−1(deg(Pr−1,2) − 1) + (3s−1 − 1)

= 3s−1 deg(Pr−1,2) − 1 = deg(Pr ,2) − 1.

Case t = 1. By Remark 5.2 (ii)

φ1,s(y1;z) = φ2,s(ρ
1,0
1,s (y1;z)),

φr ,1(y;z1) = φr ,2(ρ
0,1
r ,1 (y;z1))

are respective rational separators for (1, s) and (r , 1) if r , s ≥ 1. The additional
conditions in the statement are satisfied because they hold for φ2,s and φr ,2, as
required. ��

5.4 Rational Separation of the Attic and the Basement of a Skyscraper

Let πn : R
n → R

n−1, x := (x1, . . . ,xn) → x′ := (x1, . . . ,xn−1) be the projection
onto the first n − 1 coordinates. The following position for an n-dimensional convex
polyhedron K ⊂ R

n guarantees that both differences (Int(P) × R)\K and (Int(P) ×
R)\ Int(K), where P := πn(K), have two connected components.

Definition 5.5 LetK ⊂ R
n be a convex polyhedron. We say thatK is in 	�n -bounded

position if the intersection of K with any vertical line � is either empty or a bounded
interval.

Remark 5.6 One proves straightforwardly: If K is in 	�n-bounded position, then
(Int(P) × R)\K has two connected components.

The following result provides an easy test to determine if a convex polyhedron is
in 	�n-bounded position.

Lemma 5.7 LetK ⊂ R
n be an n-dimensional convex polyhedron and let � be a vertical

line. Suppose that �∩K is a non-empty bounded segment, which may reduce to a point.
Then K is in 	�n-bounded position.

Proof Under the hypotheses 	en,−	en /∈ 	C(K), so the intersection ofKwith any vertical
line � is either empty or a bounded interval. ��

As a straightforward consequence one shows that each n-dimensional convex poly-
hedron K ⊂ R

n with at least two facets can be placed in 	�n-bounded position.
Moreover, we have
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Corollary 5.8 LetK ⊂ R
n be an n-dimensional convex polyhedron and letF be a facet

of K that has itself at least two facets. Then K can be placed in 	�n-bounded position
in such a way that F ⊂ {xn−1 = 0} and K ⊂ {xn−1 ≤ 0}.
Proof After an affine change of coordinates we may assume that F ⊂ {xn−1 = 0}
and K ⊂ {xn−1 ≤ 0}. As F has itself at least two facets, there exist an affine change
of coordinates that keeps invariant the half space xn−1 ≤ 0 and such that F is in
	�n-bounded position (inside {xn−1 = 0}). By Lemma 5.7 also K is in 	�n-bounded
position. ��

5.4.1 Convex polyhedron placed in 	�n-bounded position. Let K ⊂ R
n be an n-

dimensional convex polyhedron in 	�n-bounded position and let P := πn(K) ⊂ R
n−1

be its projection onto the hyperplane {xn = 0}. Let F1, . . . ,Fm be the facets ofK and
let Hi := {hi = 0} be the hyperplane generated by Fi . Assume K = ⋂m

i=1 H+
i and

set x := (x1, . . . ,xn−1,xn) := (x′,xn). We can write

hi (x) = −ai (x
′) + xn ∀ i = 1, . . . , r , (E.3)

hr+ j (x) = b j (x
′) − xn ∀ j = 1, . . . , s, (E.4)

hr+s+k(x) = ck(x
′) ∀ k = 1, . . . , m − r − s, (E.5)

where ai ,b j (x′),ck(x′) ∈ R[x′] are linear polynomials in n −1 variables. Equations
(E.3) correspond to the non-vertical, lower facets of K making up its ‘floor’, while
(E.4) and (E.5) correspond respectively to the non-vertical, upper facets making up
its ‘ceiling’ and those that constitute its vertical ‘walls’. AsK ⊂ R

n is in 	�n-bounded
position, we have r , s ≥ 1. Observe that K = K1 ∩ K2 where

K1 := {
(x′,xn) ∈ R

n : max{a1(x′), . . . ,ar (x
′)} ≤ xn ≤ min{b1(x′), . . . ,bs(x

′)}},
K2 := {

(x′,xn) ∈ R
n : c1(x′) ≥ 0, . . . ,cm−r−s(x

′) ≥ 0
}
.

Notice that

πn(K1) = {
x′ ∈ R

n−1 : max{a1(x′), . . . ,ar (x
′)} ≤ min{b1(x′), . . . ,bs(x

′)}},
πn(K2) = {

x′ ∈ R
n−1 : c1(x′) ≥ 0, . . . ,cm−r−s(x

′) ≥ 0
}
.

By [29, II, Thm. 6.5] Int(K) = Int(K1) ∩ Int(K2). As π−1
n (πn(K2)) = K2, the

equalityπn(K) = πn(K1)∩πn(K2) holds.Analogously,πn(Int(K)) = πn(Int(K1))∩
πn(Int(K2)). In addition

Int(K1) = {
(x′,xn) ∈ R

n : max{a1(x′), . . . ,ar (x
′)} < xn < min{b1(x′), . . . ,bs(x

′)}},
Int(K2) = {

(x′,xn) ∈ R
n : c1(x′) > 0, . . . ,cm−r−s(x

′) > 0
}
.

Notice that

πn(Int(K1)) = {
x′ ∈ R

n−1 : max{a1(x′), . . . ,ar (x
′)} < min{b1(x′), . . . ,bs(x

′)}},
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πn(Int(K2)) = {
x′ ∈ R

n−1 : c1(x′) > 0, . . . ,cm−r−s(x
′) > 0

}
.

By [29, II, Thm. 6.6] we have Int(P) = πn(Int(K)). Thus

Int(P) = πn(Int(K)) = πn(Int(K1)) ∩ πn(Int(K2)). (E.6)

By Remark 5.6 the difference (Int(P) × R)\K has two connected components.
Namely

C− := {
(x′,xn) ∈ Int(P) × R : xn < max{a1(x′), . . . ,ar (x

′)}} (basement),

C+ := {
(x′,xn) ∈ Int(P) × R : min{b1(x′), . . . ,bs(x

′)} < xn
}

(attic).

The next result provides a rational function f2
f1

∈ R(x1, . . . ,xn−1) that separates
C−,C+ and is regular on Int(P).

Proposition 5.9 (Rational separation of the attic and the basement) Write � :=
�(r , s) = max{r − 1, 1} · max{s − 1, 1} ≤ (m−1)2

4 . Then there exists a polynomial
P(x) := f1(x′)xn − f2(x′) ∈ R[x′,xn] of degree ≤ 3� such that

• {f1 = 0} ⊂ {f2 = 0},
• P|C− < 0 and P|C+ > 0,
• f1|Int(P) > 0 and f1|P ≥ 0.

Proof Let φr ,s(y;z) = g2(y;z)
g1(y;z)

be a rational separator for (r , s), where g1,g2 ∈
R[y;z] are (non-zero) homogeneous polynomials of respective degrees 3� −1 and 3�

such that {g1 = 0} ⊂ {g2 = 0}. Recall that φr ,s is regular on Int(Qr ,s) and extends
to a continuous semialgebraic function �r ,s on Qr ,s . As Qr ,s is by definition a convex
polyhedron and φr ,s is regular on Int(Qr ,s), we may assume that g1 has constant sign
on Int(Qr ,s) and in fact that g1 is strictly positive on Int(Qr ,s). Define

P(x) := f1(x
′)xn − f2(x

′) where

fk(x
′) = gk(a1(x

′), . . . ,ar (x
′);b1(x′), . . . ,bs(x

′))

for k = 1, 2. Note that {f1 = 0} ⊂ {f2 = 0}, deg(f1) ≤ 3� − 1 and deg(f2) ≤ 3�.
As φr ,s is a rational separator for (r , s) and Int(P) ⊂ πn(Int(K1)), we deduce: if
x′ ∈ Int(P), then

max{a1(x′), . . . ,ar (x
′)} <

f2(x′)
f1(x′)

< min{b1(x′), . . . ,bs(x
′)}.

Besides, f1(x′) := g1(a1(x′), . . . ,ar (x′);b1(x′), . . . ,bs(x′)) > 0 for each x′ ∈
Int(P).

Now, ifx := (x′,xn) ∈ C−, we havex′ ∈ Int(P) and there exists some i = 1, . . . , r
such that xn < ai (x′), so P(x) < 0. Similarly, if x := (x′,xn) ∈ C+, we have
x′ ∈ Int(P) and there exists some j = 1, . . . , s such that b j (x′) < xn , so P(x) > 0,
as required. ��
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Some technicalities arising from the proof of Theorem 1.5 force us to find a kind of
analogous result to Proposition 5.9 when we are dealing with non-degenerate convex
polyhedra not placed in 	�n-bounded position.

5.4.2 Non-degenerate convex polyhedra not placed in 	�n-bounded position. Let K ⊂
R

n be a non-degenerate n-dimensional convex polyhedron not placed in 	�n-bounded
position. Let F1, . . . ,Fm be the facets ofK and let Hi := {hi = 0} be the hyperplane
generated by Fi . Assume that K = ⋂m

i=1 H+
i . We may write

hi (x) = bi (x
′) + εixn ∀ i = 1, . . . , s,

hs+k(x) = c′
k(x

′) ∀ k = 1, . . . , m − s,

where εi = ±1. As K is non-degenerate, s ≥ 1 and as K ⊂ R
n is not placed in

	�n-bounded position, all εi are either equal to 1 or −1 (that is, all non-vertical facets
constitute either the floor or the ceiling ofK). Assume that all εi = −1. Observe that
K = K1 ∩ K2 where

K1 := {(x′,xn) ∈ R
n : xn ≤ min{b1(x′), . . . ,bs(x

′)}},
K2 := {(x′,xn) ∈ R

n : c1(x′) ≥ 0, . . . ,cm−s(x
′) ≥ 0}.

In addition

Int(K1) = {(x′,xn) ∈ R
n : xn < min{b1(x′), . . . ,bs(x

′)}},
Int(K2) = {(x′,xn) ∈ R

n : c1(x′) > 0, . . . ,cm−s(x
′) > 0}.

Notice that πn(K1) = R
n−1 and

πn(K2) = {x′ ∈ R
n−1 : c1(x′) ≥ 0, . . . ,cm−s(x

′) ≥ 0}.

As π−1
n (πn(K2)) = K2, we have P := πn(K) = πn(K1)∩πn(K2) = πn(K2). Thus,

as πn(Int(K)) = πn(Int(K1)) ∩ πn(Int(K2)) = πn(Int(K2)),

Int(P) = Int(πn(K)) = {x′ ∈ R
n−1 : c1(x′) > 0, . . . ,cm−s(x

′) > 0}
= πn(Int(K2)) = πn(Int(K)).

In particular,K2 = P× R and Int(K2) = Int(P) × R. Notice that: the semialgebraic
set

C+ := (Int(P) × R)\K = {(x′,xn) ∈ K2 : min{b1(x′), . . . ,bs(x
′)} < xn}

is connected.

Proposition 5.10 There exists a polynomial P(x) := f1(x′)xn − f2(x′) ∈ R[x′,xn]
of degree 2 such that f1(x′) = 1, −f2 > 0 on R

n−1 and P|C+ > 0.
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Proof Let f2(x′) := −∑s
j=1

b2j (x
′)+1
2 and P(x) := xn − f2(x′). Observe that if

x = (x′,xn) ∈ C+ := (Int(P) × R)\K, then xn − min{b1(x′), . . . ,bs(x′)} > 0.
Thus

−xn < −min{b1(x′), . . . ,bs(x
′)} = max{−b1(x

′), . . . ,−bs(x
′)}

<

s∑

j=1

b2j (x
′) + 1

2

for each x′ ∈ R
n−1, so P(x′,xn) > 0 for each (x′,xn) ∈ C+. ��

6 Complements of Convex Polyhedra

In this section we prove constructively Theorem 1.5. In fact, we prove a more general
statement, since we do not assume in the sequel the unboundedness condition. We
develop first in Sect. 6.1 some basic tools. In this regard, Lemma 6.2 describes the
properties of polynomial maps TK (see (F.3)), which involve the rational separators
we have dealt with in the previous section. The ideal situation would be that, given
a convex polyhedron K and one of its facets Fi , a polynomial map TK would map
R

n\Ki,× onto R
n\K (see Sect. 2.1 for the definition of Ki,×). This would allow a

neat inductive proof of Theorem 1.5. However, the zero set of the denominator of the
chosen representation of the involved rational separator produces some difficulties.
To take care of them we introduce Corollaries 6.3, 6.5 and 6.6. We next consider the
complementRn\ Int(K0), whereK0 is a polyhedron that containsK tightly (in a sense
to be described in Sect. 6.2). This complement is by Theorem 1.4 a polynomial image
of R

n . Then we are in a position to apply a sequence of polynomial maps of type (F.3)
whose images progressively fill the remaining gap Int(K0)\K, until we finally accom-
plish the representation of R

n\K as the image of a finite composition of polynomial
maps. We hope this brief explanation will soften the technicalities of the process.

6.1 Basic Tools for the Inductive Process

Let K ⊂ R
n be a non-degenerate n-dimensional convex polyhedron and let P :=

πn(K). Assume that 	en /∈ 	C(K). Let

P(x′,xn) := f1(x
′)xn − f2(x

′) ∈ R[x′,xn] (F.1)

be a polynomial satisfying the conditions of Proposition 5.9 if K is placed in 	�n-
bounded position and the conditions of Proposition 5.10 otherwise. Write K :=⋂m

i=1{hi ≥ 0} (minimal presentation) where each hi is a linear equation. We may
assume that the coefficient of xn is non-zero for hi if and only if i = 1, . . . , d ≤ m.
As K is non-degenerate, d ≥ 1. Consider the polynomial

h :=
m∏

i=1

hi ∈ R[x] (F.2)
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and the polynomial map

TK : R
n → R

n,

x := (x′,xn) = (x1, . . . ,xn−1,xn) → (x′,xn − xn−1h
2(x)P(x)). (F.3)

Note that if Hi := {hi = 0} then TK|Hi = idHi because h|Hi ≡ 0. Fix a′ :=
(a1, . . . , an−1) ∈ R

n−1 and denote the vertical line through the point (a′, 0) by �a′ :=
(a′, 0) + 	�n .

Lemma 6.1 For each a′ ∈ R
n−1 we have TK(�a′) = �a′ .

Proof In order to see thisweprove:The polynomialQa′(t):=t−an−1h2(a′,t)P(a′,t)

has odd degree for each a′ ∈ R
n−1. In addition, Qa′(t) = t if and only if either

an−1h2(a′,t) ≡ 0 or f1(a′) = 0.
Indeed, if K is placed in 	�n-bounded position and f1(a′) = 0, then by Proposi-

tion 5.9 f2(a′) = 0, so P(a′,t) ≡ 0 and Qa′(t) = t has odd degree. If K is not
placed in 	�n-bounded position, P(a′,t) is a monic polynomial of degree 1. Therefore
we may assume that f1(a′) �= 0 and P(a′,t) is a polynomial of degree 1. As K

is non-degenerate, we have that h2(a′,t) is either identically zero or a polynomial
of positive degree 2d > 0. Therefore, Qa′(t) is either a polynomial of degree 1 (if
an−1h2(a′,t) ≡ 0) or of degree 2d + 1 > 1 (otherwise). ��

Let us analyze the behavior of TK over certain subsets of the line �a′ attending to
the position of the latter with respect to K (Fig. 7).

Proposition 6.2 Let K ⊂ R
n be an n-dimensional non-degenerate convex polyhedron

and let P := πn(K). Let G,R be sets such that Int(K) ⊂ G ⊂ K and R ⊂ ∂K. Given
a′ := (a1, . . . , an−1) ∈ R

n−1, we have:

Fig. 7 Analyzed positions
(i)–(iv) for a′ ∈ R

n−1

×

∗

�

•

a′

a′

a′

a′

K

R
n−1

xn−1 = 0
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(i) If a′ /∈ P, then �a′ \K = �a′ and TK(�a′ \K) = TK(�a′) = �a′ .
(ii) If a′ ∈ P and an−1 ≤ 0, then TK(�a′ \G) = �a′ \G.
(iii) If a′ ∈ Int(P) and an−1 > 0, then TK(�a′ \R) = �a′ and TK(�a′ \G) = �a′ if

�a′ ∩ G is a bounded set.
(iv) If a′ ∈ ∂P and an−1 > 0, then

TK(�a′ \R) =
{

�a′ \R if f1(a′) = 0 or h(a′,t) ≡ 0,

�a′ if f1(a′) �= 0 and h(a′,t) �≡ 0.

In particular, TK(�a′ \R) = �a′ \R if �a′ ∩ R contains at least two points.

Proof (i) As �a′ \K = �a′ , if follows from Lemma 6.1 that TK(�a′ \K) = TK(�a′) =
�a′ .

We prove next statements (ii), (iii) and (iv). For all of them a′ ∈ P. Then the set
K ∩ �a′ is either a segment (which can reduce to a point) or a ray. The end point(s)
of K ∩ �a′ belong(s) to

⋃d
i=1{hi = 0}. If K ∩ �a′ is a segment, we denote the end

points of K ∩ �a′ by p− := (a′, t−) and p+ := (a′, t+), where t− ≤ t+. If K ∩ �a′
is a ray, we denote its end point by p+ := (a′, t+). To avoid unnecessary repetitions,
we abuse notation and set C− = ∅ and p− := (a′, t−) where t− := −∞ if K ∩ �a′
is a ray. Consequently,

�a′ = (�a′ ∩ C−) ∪ {p−} ∪ (�a′ ∩ Int(K)) ∪ {p+} ∪ (�a′ ∩ C+).

We can write the differences �a′ \G and �a′ \R as follows:

�a′ \G = (�a′ ∩ C−) ∪ (�a′ ∩ C+) ∪ FG,

�a′ \R = (�a′ ∩ C−) ∪ (�a′ ∩ Int(K)) ∪ (�a′ ∩ C+) ∪ FR

for some FG,FR ⊂ {p−, p+}. Observe that

�a′ ∩ C− = {(a, t) : t < t−} and �a′ ∩ C+ := {(a, t) : t > t+}.

By Proposition 5.9 we have P|C− < 0 and P|C+ > 0. Also the equality h(p+) = 0
holds, so TK(p+) = p+. Analogously, if t− > −∞ then TK(p−) = p−.

(ii) If an−1 = 0, thenQa′(t) = t, soTK(�a′ \G) = �a′ \G. Assume next that an−1 <

0. If t > t+, then P(a′, t) > 0, so Qa′(t) ≥ t > t+ and TK(�a′ ∩ C+) = �a′ ∩ C+
(because TK(p+) = p+). Similarly, if �a′ ∩ C− �= ∅ and t < t− then P(a′, t) < 0,
so Qa′(t) ≤ t < t− and TK(�a′ ∩ C−) = �a′ ∩ C− (because TK(p−) = p−).
Consequently, TK(�a′ \G) = �a′ \G.

(iii) By Proposition 5.9 we have f1(a′) > 0, so the univariate polynomial
P(a′,t) = f1(a′)t − f2(a′) has degree one and its leading coefficient is positive.
As a′ ∈ Int(P), the polynomial h2(a,t) has even positive degree in t and positive
leading coefficient. Consequently, Qa′(t) is a univariate polynomial of odd degree
whose leading coefficient is negative, so limt→±∞ Qa′(t) = ∓∞.

123



336 Discrete & Computational Geometry (2019) 62:292–347

If �a′ ∩ G is a bounded set, then p− ∈ ∂K. As Qa′(t−) = t−, Qa′(t+) = t+ and
t− < t+ (because a′ ∈ Int(P)), we deduce

R = ]−∞, t+[ ∪ ]t−,+∞[ ⊂ Qa′(]t+,+∞[) ∪ Qa′(]−∞, t−[) ⊂ R.

Consequently, TK(�a′ \G) = TK(�a′ \K) = �a′ .
As a′ ∈ Int(P), we have that �a′ ∩ R ⊂ �a′ ∩ ∂K consists of at most two points.

Case 1: If �a′ ∩ R contains two different points, then �a′ ∩ G is a bounded set and
TK(�a′ \R) = TK(�a′ \K) = �a′ , as we have seen above.
Case 2: If �a′ ∩ R is a singleton {(a′, t0)}, we observe that h(a′, t0) = 0 and

∂

∂t
Qa′(t) = 1 − an−1h(a′,t)

(
2

∂h

∂xn
(a′,t)P(a′,t) + h(a′,t)

∂P

∂xn
(a′,t)

)

� ∂

∂t
Qa′(t0) = 1.

Thus, there exists ε > 0 such that Qa′(t0 − ε) =: s1 < t0 < s2 := Qa′(t0 + ε). As
limt→±∞ Qa′(t) = ∓∞, we have

R = ]−∞, s2[ ∪ ]s1,+∞[ ⊂ Qa′(]t0 − ε,+∞[) ∪ Qa′(]−∞, t0 + ε[) ⊂ R.

Consequently, TK(�a′ \R) = �a′ .
(iv) By Sect. 2.2 we have �a′ ∩K ⊂ ∂K. If f1(a′) = 0, then by Proposition 5.9 also

f2(a′) = 0 and Qa′(t) = t, so TK(�a′ \R) = �a′ \R. Analogously, if h(a′,t) ≡ 0,
then Qa′(t) = t, so TK(�a′ \R) = �a′ \R.

If f1(a′) �= 0 and h(a′,t) �≡ 0, then �a′ ∩ K reduces to a point and R ∩ �a′
can be either empty or a singleton. If R ∩ �a′ = ∅ it is clear by Lemma 6.1 that
TK(�a′ \R) = �a′ . If R is a singleton, it follows by Case 2 that TK(�a′ \R) = �a′ .

Next, ifR∩�a′ contains two different points, then by Sect. 2.2 the segment connect-
ing these two points is contained in �a′ ∩ K ⊂ ∂K. Thus, R is contained in a vertical
facet of K. Consequently, h(a′,t) ≡ 0, so Qa′(t) = t and TK(�a′ \R) = �a′ \R. ��

We present next some technical consequences of the previous result, which are
useful for the proof of Theorem 1.5. We need to understand how are the images under
TK of certain sets G satisfying Int(K) ⊂ G ⊂ K, which consist of the interior of the
polyhedronK together with portions of some of its faces. From now on we denote the
hyperplane {xn−1 = 0} by �n−1 and the half-spaces {xn−1 ≤ 0} and {xn−1 ≥ 0} by
�−

n−1 and �+
n−1 respectively.

Corollary 6.3 Let K ⊂ R
n be an n-dimensional non-degenerate convex polyhedron

placed in 	�n-bounded position and let P := πn(K). Let G be a set such that Int(K) ⊂
G ⊂ K. Let us set P := πn(K) and G− := G ∩ �−

n−1. Then
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(Rn\G−) \ (G ∩ π−1
n (∂P) ∩ Int(�+

n−1)) ⊂ TK(Rn\G) ⊂ R
n\G− (F.4)

and TK(Rn\G−) = R
n\G−.

Proof Let a′ ∈ R
n−1 and let �a′ be the vertical line through (a′, 0). If an−1 ≤ 0, we

have by Proposition 6.2 (i) and (ii)

TK(�a′ \G) = �a′ \G = �a′ \G−.

Consequently

TK((Rn\G) ∩ �−
n−1) =

⋃

a′∈Rn−1

an−1≤0

TK(�a′ \G)

=
⋃

a′∈Rn−1

an−1≤0

�a′ \G− = (Rn\G−) ∩ �−
n−1. (F.5)

If an−1 > 0, we have by Lemma 6.1 and Proposition 6.2,

TK(�a′ \G) =

⎧
⎪⎨

⎪⎩

�a′ if � ∩ G = ∅,

�a′ if a′ ∈ IntP (because �a′ ∩ K is bounded),

�a′ \G if a′ ∈ ∂P and � ∩ G contains at least two points.

In case a′ ∈ ∂P and � ∩ G is a singleton we have �a′ \G ⊂ TK(�a′ \G) ⊂ �a′ . Thus,

{
TK(�a′ \G) = �a′ if a′ /∈ ∂P, an−1 > 0,

�a′ \G ⊂ TK(�a′ \G) ⊂ �a′ if a′ ∈ ∂P, an−1 > 0.
(F.6)

Using the following equality:

TK((Rn\G) ∩ Int(�+
n−1)) =

⋃

a′∈Rn−1

an−1>0

TK(�a′ \G)

and (F.6) we conclude

TK((Rn\G) ∩ Int(�+
n−1)) ⊂

⋃

a′∈Rn−1

an−1>0

�a′ = Int(�+
n−1) = (Rn\G−) ∩ Int(�+

n−1),

TK((Rn\G) ∩ Int(�+
n−1)) ⊃

⋃

a′∈Rn−1

an−1>0,a′ /∈∂P

�a′ ∪
⋃

a′∈Rn−1

an−1>0,a′∈∂P

�a′ \G

123



338 Discrete & Computational Geometry (2019) 62:292–347

= Int(�+
n−1)\(G ∩ π−1

n (∂P))

= ((Rn\G−) ∩ Int(�+
n−1))\(G ∩ π−1

n (∂P) ∩ Int(�+
n−1)).

(F.7)

The last equality in the statement follows from (F.5) and Lemma 6.1. Therefore, by
(F.5) and (F.7) the inclusions in (F.4) follow, as required. ��

Lemma 6.4 Let E be a face of an n-dimensional convex polyhedron K ⊂ R
n and let

p, q ∈ Int(E). Let �p be a line through p that meets Int(K) and let �q be a line through
q and parallel to �p. Then �q also meets Int(K).

Proof WriteK = ⋂r
i=1{hi ≥ 0}where eachhi is a linear equation and �p := {p+t	v :

t ∈ R}.Wemay assume Int(E) = ⋂k
i=1{hi = 0}∩⋂r

i=k+1{hi > 0}, sohi (p) = 0 for
i = 1, . . . , k andhi (p) > 0 for i = k+1, . . . , r . As �p ∩Int(K) �= ∅, wemay assume
(changing 	v by −	v if necessary) that there exists t > 0 such that hi (p + t 	v) > 0
for i = 1, . . . , r . Consequently, 	hi (	v) > 0 for i = 1, . . . , k. As hi (q) = 0 for
i = 1, . . . , k and hi (q) > 0 for i = k + 1, . . . , r , we have hi (q + t ′ 	v) > 0 for
i = 1, . . . , r and t ′ > 0 small enough. Thus, �q ∩ Int(K) �= ∅, as required. ��

Corollary 6.5 Let K ⊂ R
n be an n-dimensional non-degenerate convex polyhedron

and let E be a face of K that is non-parallel to �n−1 and meets the open half-space
Int(�+

n−1). Let R0 ⊂ ∂K be such that Int(E) ∩ R0 = ∅ and let G be a set such that
Int(K) ∪ Int(E) ∪ R0 ⊂ G ⊂ K. Denote G− := G ∩ �−

n−1 and P := πn(K). Then,
after an affine change of coordinates that keeps the hyperplane �n−1 invariant (and
only depends on E), we have

(Rn\G−) \ (R0 ∩ π−1
n (∂P)) ⊂ TK((Rn\G−) \ (R0 ∪ Int(E))) ⊂ R

n\G− (F.8)

and TK(Rn\G−) = R
n\G−.

Proof Take a point p ∈ Int(E) and let �n−1,p be the hyperplane through p parallel to
�n−1. As E is not parallel to�n−1, the intersection�n−1,p ∩ Int(K) �= ∅. Otherwise,
as p ∈ K ∩ �n−1,p ⊂ ∂K, we have that �n−1,p is a supporting hyperplane for K.
As p ∈ Int(E), we have Int(E) ⊂ �n−1,p, so E is parallel to �n−1, which is a
contradiction.

Let q ∈ Int(K) ∩ �n−1,p. After an affine change of coordinates that keeps the
hyperplane �n−1 invariant, we may assume that the line through p and q is vertical
and 	en /∈ 	C(K). This latter condition is possible because asK is non-degenerate, either
	en or −	en does not belong to 	C(K). Therefore, πn(p) ∈ Int(P) = πn(Int(K)) and by
Lemma 6.4 we have πn(Int(E)) ⊂ Int(P).

The rest of the proof is similar to the one of Corollary 6.3. We include all the
technicalities for the sake of completeness. Observe that

G− = (G− ∪ R0 ∪ Int(E)) ∩ �−
n−1. (F.9)
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Let a′ ∈ R
n−1 and let �a′ be the vertical line through (a′, 0). If an−1 ≤ 0 we have by

Proposition 6.2 (i) and (ii)

TK(�a′ \G−) = �a′ \G−.

Consequently

TK((Rn\G−) ∩ �−
n−1) =

⋃

a′∈Rn−1

an−1≤0

TK(�a′ \G)

=
⋃

a′∈Rn−1

an−1≤0

�a′ \G− = (Rn\G−) ∩ �−
n−1. (F.10)

By (F.9) it holds

TK(((Rn\G−) \ (R0 ∪ Int(E))) ∩ �−
n−1)

= TK((Rn\G−) ∩ �−
n−1) = (Rn\G−) ∩ �−

n−1. (F.11)

Observe also that

(G− ∪ R0 ∪ Int(E)) ∩ Int(�+
n−1) = (R0 ∪ Int(E)) ∩ Int(�+

n−1) ⊂ ∂K ∩ Int(�+
n−1).

We have shown above that πn(Int(E)) ⊂ Int(P). If an−1 > 0 we have by Proposi-
tion 6.2

TK(�a′ \(R0 ∪ Int(E))) =

⎧
⎪⎨

⎪⎩

�a′ if � ∩ (R0 ∪ Int(E)) = ∅,

�a′ if a′ ∈ IntP (because R0 ∪ Int(E) ⊂ ∂K),

�a′ \R0 if a′ ∈ ∂P and � ∩ R0 contains at least two points.

In case a′ ∈ ∂P and � ∩ R0 is a singleton, we have �a′ \R0 ⊂ TK(�a′ \R0) ⊂ �a′ .
Thus,

{
TK(�a′ \(R0 ∪ Int(E))) = �a′ if a′ /∈ ∂P, an−1 > 0,

�a′ \R0 ⊂ TK(�a′ \(R0 ∪ Int(E))) ⊂ �a′ if a′ ∈ ∂P, an−1 > 0.
(F.12)

Using the following equalities:

TK((Rn\G−) \ (R0 ∪ Int(E))) ∩ Int(�+
n−1))

= TK((Rn\(R0 ∪ Int(E))) ∩ Int(�+
n−1))

=
⋃

a′∈Rn−1

an−1>0

TK(�a′ \(R0 ∪ Int(E))) (F.13)

and (F.12) we conclude
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TK((Rn\(R0 ∪ Int(E))) ∩ Int(�+
n−1)) ⊂

⋃

a′∈Rn−1

an−1>0

�a′

= Int(�+
n−1) = (Rn\G−) ∩ Int(�+

n−1)

TK((Rn\(R0 ∪ Int(E))) ∩ Int(�+
n−1)) ⊃

⋃

a′∈Rn−1

an−1>0,a′ /∈∂P

�a′ ∪
⋃

a′∈Rn−1

an−1>0,a′∈∂P

�a′ \R0

= (Int(�+
n−1)\(R0 ∩ π−1

n (∂P))

= (Int(�+
n−1) ∩ (Rn\G−)) \ (R0 ∩ π−1

n (∂P)).

(F.14)

From (F.11), (F.13) and (F.14)weobtain (F.8). The last equality in the statement follows
from Eq. (F.10) and the fact that TK(�a′) = �a′ for each a′ ∈ R

n−1, as required. ��
Corollary 6.6 Let K ⊂ R

n be an n-dimensional non-degenerate convex polyhedron
and let E1, . . . ,Es be finitely many faces of K such that each one is non-parallel to
�n−1 and meets the open half-space Int(�+

n−1). Let R := ⊔s
k=1 Int(Ek) and let G

be a set such that Int(K) ∪ R ⊂ G ⊂ K. Denote G− := G ∩ �−
n−1. Then, there

exists a polynomial map T : R
n → R

n such that T((Rn\G−) \ R) = R
n\G− and

T(Rn\G−) = R
n\G−.

Proof We proceed by induction on s. If s = 1, the statement follows from Corol-
lary 6.5. So let us assume that s > 1 and let R0 := ⋃s−1

k=1 Int(Ek). By induction
hypothesis there exists a polynomial map T0 : R

n → R
n such that T0((Rn\G−) \

R0)) = R
n\G− and T0(Rn\G−) = R

n\G−. On the other hand by Corollary 6.5 there
exists a polynomial map T1 : R

n → R
n such that

(Rn\G−) \ R0 ⊂ T1((R
n\G−) \ (R0 ∪ Int(E))) ⊂ R

n\G−

and T1(Rn\G−) = R
n\G−. Consider the polynomial map T = T0 ◦ T1 : R

n → R
n .

We have

R
n\G− = T0((R

n\G−) \ R0) ⊂ T0(T1((R
n\G−) \ (R0 ∪ Int(E))))

= T((Rn\G−) \ R) ⊂ T0(R
n\G−) = R

n\G−,

so T((Rn\G−) \ R)) = R
n\G−. Finally,

T(Rn\G−) = T0(T1(R
n\G−)) = T0(R

n\G−) = R
n\G−,

as required. ��

6.2 Enveloping Polyhedron forK

Keeping the same notation as before, letK ⊂ R
n be an n-dimensional non-degenerate

convex polyhedron and letF1, . . . ,Fm be its facets. Let Hi be the hyperplane generated
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byFi and let hi be a linear equation of Hi such thatK = ⋂m
i=1{hi ≥ 0}. Now, for each

ε > 0 denote by Hi (ε) the hyperplane of linear equation hi + ε = 0. The hyperplanes
Hi and Hi (ε) are parallel and H+

i ⊂ H+
i (ε).

Let I := {i1, . . . , ik, ik+1} ⊂ {1, . . . , m} be such that

(1) The vectorial hyperplanes 	Hi1 , . . . ,
	Hik are linearly independent.

(2) WI := ⋂k
j=1 Hi j is parallel to Hik+1

(3) WI ⊂ Int(H−
ik+1

).

Define δ(I ) := dist(WI , H+
ik+1

). Let I be the collection of all the subsets I ⊂
{1, . . . , m} satisfying conditions (1), (2) and (3). Define

δ := min{δ(I ) : I ∈ I} > 0.

Fix ε > 0 such that dist(H+
i , Hi (ε)) < δ

2 for i = 1, . . . , m anddefine an enveloping
polyhedron for K as

K0 :=
m⋂

i=1

H+
i (ε).

Observe that K ⊂ Int(K0) and notice that K0 is an n-dimensional non-degenerate
convex polyhedron. Define

G0 := Int(K0), Gi := Gi−1 ∩ H+
i and Gm = K.

Set Ki := Cl(Gi ) and observe that

Int(Ki ) ⊂ Gi = H+
1 ∩ · · · ∩ H+

i ∩ Int(H+
i+1(ε)) ∩ · · · ∩ Int(H+

m (ε)) ⊂ Ki .

By Theorems 1.2 and 1.4 the semialgebraic set R
n\G0 is a polynomial image of R

n .
Our goal is to represent Rn\K as a polynomial image of R

n by applying a sequence of
polynomial maps to the initial polynomial imageR

n\G0, making use of Corollaries 6.3
and 6.6 along the process. We need first the following property of the sets Gi .

Lemma 6.7 Fix i = 1, . . . , m and letE be a face ofKi := Cl(Gi ) that lies in Int(H−
i+1)

and is parallel to Hi+1. Then E ∩ Gi = ∅.

Proof Let W be the affine subspace generated by E. We claim: W ⊂ H�(ε) for some
� = i + 1, . . . , m. Note that if this is the case then W ∩ Gi = ∅ and so E ∩ Gi = ∅.

To prove our claim, assume that none of the aforementioned inclusions hold, so
that W = ⋂k

j=1 Hi j for some 1 ≤ i1, . . . , ik ≤ i such that 	Hi1 , . . . ,
	Hik are linearly

independent. Thus, W = WI for I = {i1, . . . , ik, i + 1} following the notation in
Sect. 6.2. We show now that this cannot happen. As E ⊂ Int(H−

i+1) and E is parallel
to Hi+1, we have dist(WI , H+

i+1) ≥ δ. Since dist(H+
i+1, Hi+1(ε)) < δ

2 , we deduce
E ⊂ WI ⊂ Int(Hi+1(ε)

−). On the other hand, we must have E ⊂ Ki ⊂ Hi+1(ε)
+,

which is a contradiction. ��
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G0

K

T0

G1

K

rational separa-
tor

G0

K

T0 (R
n \ G0)

an−1 < 0 an−1 > 0

Fig. 8 A two-dimensional sketch of the behavior of the polynomial map T0

6.3 Proof of Theorem 1.5

Now that we have developed the necessary machinery, we are ready to confront the
proof of Theorem 1.5. According to the degeneracy of K, we distinguish two cases.

6.3.1 Case of a Non-degenerate n-Dimensional Convex Polyhedron

Consider the non-degenerate n-dimensional convex polyhedronK0 and the semialge-
braic sets G0, . . . ,Gm described in Sect. 6.2. Place K in 	�n-bounded position in such
a way that the facet F1 is contained in �n−1 and K ⊂ �−

n−1 (see Corollary 5.8).

Notice that K0 = Cl(G0) is also in 	�n-bounded position. Observe that H1 = �n−1,
H+
1 = �−

n−1 and G0 ∩ H+
1 = G1. By Corollary 6.3 applied to G0 there exists a

polynomial map T0 : R
n → R

n such that

(Rn\G1) \ (Int(H−
1 ) ∩ G0 ∩ π−1

n (∂P0)) ⊂ T0(R
n\G0) ⊂ R

n\G1

where P0 := πn(K0). As G0 = Int(K0), we have G0 ∩ π−1
n (∂P0) = ∅, so

T0(Rn\G0) = G1. Figure 8 illustrates the behaviour of the polynomial map T0 in
a two-dimensional setting.

Assume by induction that R
n\Gi is a polynomial image of R

n . Place Ki+1 in 	�n-
bounded position in such a way that the facet Fi+1 is contained in �n−1 = Hi+1 and
K ⊂ �−

n−1 = H+
i+1 (see Corollary 5.8). Note thatKi = Cl(Gi ) is also in 	�n-bounded

position. By Corollary 6.3 applied to Gi we obtain a polynomial map Ti,0 : R
n → R

n

with

123



Discrete & Computational Geometry (2019) 62:292–347 343

(Rn\Gi+1) \ (Int(H−
i+1) ∩ Gi ∩ π−1

n (∂Pi )) ⊂ Ti,0(R
n\Gi ) ⊂ R

n\Gi+1

and Ti,0(R
n\Gi+1) = R

n\Gi+1 where Pi := πn(Cl(Gi )). By Sect. 2.2 the set Gi ∩
π−1

n (∂Pi ) can be expressed as a finite, (disjoint) union of some interiors of faces
of Ki = Cl(Gi ). Thus, there exist finitely many facets E1, . . . ,Er of Ki such that
Gi ∩π−1

n (∂Pi ) = Int(E1)�. . .�Int(Er ).Wemay assume that only the facesE1, . . . ,Es

where 0 ≤ s ≤ r intersect Int(H−
i+1). We claim: E j is non-parallel to Hi+1 for

j = 1, . . . , s.
Suppose that E j is parallel to Hi+1 for some j = 1, . . . , s. As E j ∩ Int(H−

i+1) �= ∅,
we deduce E j ⊂ Int(H−

i+1). By Lemma 6.7 Int(E j ) ⊂ E j ∩ Gi = ∅, which is a
contradiction.

Define Ri := Int(E1) � . . . � Int(Es). By Corollary 6.6 there exists a polynomial
map Ti,1 : R

n → R
n such that

Ti,1((R
n\Gi+1) \ Ri ) = R

n\Gi+1

and Ti,1(R
n\Gi+1) = R

n\Gi+1. Thus, the polynomial map Ti := Ti,1 ◦ Ti,0 : R
n →

R
n satisfies

R
n\Gi+1 = Ti,1((R

n\Gi+1) \ Ri ) ⊂ Ti,1(Ti,0(R
n\Gi ))

= Ti (R
n\Gi ) ⊂ Ti,1(R

n\Gi+1) = R
n\Gi+1,

that is, Ti (R
n\Gi ) = R

n\Gi+1.
The composition T := Tm−1 ◦ · · · ◦T0 satisfies T(Rn\ Int(K0)) = R

n\K and since
R

n\ Int(K0) is by Theorems 1.2 and 1.4 a polynomial image of R
n , we are done.

6.3.2 Case of a Degenerate Polyhedron

We assume now that K is degenerate. We may write K, after an affine change of
coordinates, as K = P × R

n−k where P ⊂ R
k is a k-dimensional non-degenerate

convex polyhedron. If k ≥ 2, there exists by 6.3.1 a polynomial map T0 : R
k → R

k

such that T0(Rk) = R
k\P, so the polynomial map

T : R
k × R

n−k → R
k × R

n−k, x := (x ′, x ′′) → (T0(x ′), x ′′)

satisfies T(Rn) = R
n\K.

If k = 0, then K = R
n and there is nothing to say. If k = 1, we may assume

that P = (−∞, 0] (because K is not a layer). This means that K = {x1 ≤ 0}, so
R

n\K = {x1 > 0}. As it is well-known this set is a polynomial image of R
n . Take for

instance the polynomial map

T := (T1, . . . ,Tn) : R
n → R

n,

x = (x1,x2,x
′′) → ((x1x2 − 1)2 + x21,x2(x1x2 − 1),x′′),

where x′′ := (x3, . . . ,xn) and whose image is R
n\K = {x1 > 0} (see [11]), as

required. ��
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Remark 6.8 With respect to the degrees of the polynomial maps appearing in this
section, we make a few considerations (see Question 1.6). In Proposition 5.9 we have
seen that, for an unbounded convex polyhedronKwith m facets, of which r are lower
facets and s upper facets, the degree of a separating polynomial P is bounded above

by 3�, where � = max{r − 1, 1} · max{s − 1, 1} ≤ (m−1)2

4 . Since the polynomial in
(F.2) has degree m, we conclude that the degree of the polynomial map TK appearing
in (F.3) is bounded by 3� + 2m + 1 ≤ 3(m−1)2/4 + 2m + 1.

The final map T that we have constructed in the proof of Theorem 1.5 results from a
composition of polynomial maps TKi for various intermediate polyhedra Ki , as well
as affine transformations. Besides, the number of these maps rely upon the geometry
of the targeted polyhedron, because we not only use them for reducing the number
of facets, but also for handling the problems arising with its lower dimensional faces.
The multiplicative nature of polynomial degrees under composition leads us to really
high exponents for the final map T and it is not easy to obtain a sharp bound for its
degree. Nevertheless, let us provide at least a very coarse bound: Assume for simplicity
thatK is a generic non-degenerate unbounded convex polyhedron such that, when we
slightly modify K (as we do in Sect. 6.2) all the faces of the polyhedra Ki have the
same number of faces as those of K. In particular, K and Ki have the same total
number q of faces. If we follow the proofs of Corollary 6.6 and Sect. 6.3.1 and we
have in mind the bound in Remark 4.2, we obtain the coarse bound

deg(T) ≤ (3(m−1)2/4 + 2m + 1)mq · 2 ·
m∏

i=2

(4i + 1).

Again, finding more optimal approaches (as proposed in Question 1.6) seems a chal-
lenging task for further research on the topic.

Example 6.9 If we do not care about the number of variables that we introduce to rep-
resent as a polynomial image of an Euclidean space the complementR2\P of a convex
polygon P ⊂ R

2 that does not disconnect R
2, we can simplify substantially the com-

plexity of the involved polynomial map and in particular its degree (see Question 1.7).
More precisely:

Let P ⊂ R
2 be a convex polygon with m edges that does not disconnected R

2. Then
there exists a polynomial map Fm : R

m+2 → R
2 such that Fm(Rm+2) = R

2 → P =:
S and deg(Fm) ≤ 2m + 2.

We proceed by induction on the number m of edges of P.

Initial case. If m = 1, then after an affine change of coordinates we may assume
P = {x2 ≤ 0}, so S = {x2 > 0} = R × ]0,+∞[. We take the polynomial map

F1 : R
3 → R

2, (x1,x2,x3) → (x1, (1 − x2x3)
2 + x2

2),

whose image is S and has degree 4.

Induction step. Let P ⊂ R
2 be a convex polygon that does not disconnect R

2 and
has m ≥ 2 edges. Let E1, . . . ,Em be the edges of P and let Hi := {hi = 0} be the line
spanned by the edge Ei . We may assume P := {h1 ≥ 0, . . . ,hm ≥ 0}. As P has at
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least two edges, it is non-degenerate. After an affine change of coordinates, we may
assume that:

• The origin of R
2 is a vertex of P.

• h1 = x1, h2 = x1 − αx2 for some α > 0.
• IfP is unbounded, thenE1 is an unbounded edge ofP andT∩{x1 > 0} ⊂ {x2 > 0}.
• IfP is bounded, the furthest vertex ofP to the edge E1 (or one of them if there exist
two) belongs to the line x2 = 0. This means that a vertical line �a := {(a,t) : t ∈
R} that meets P satisfies P ∩ �a = {(a,t) : ba ≤ t ≤ ca} where ba ≤ 0 ≤ ca .

Define P0 := {h2 ≥ 0, . . . ,hm ≥ 0}, which is a convex polygon with m − 1 ≥ 1
edges that does not disconnect R

2. By induction hypothesis there exists a polynomial
map g′

m : R
m → R

n of degree ≤ 2(m − 1) + 2 such that T := g′
m(Rm) = R

2\P0.
Consider the polynomial maps

gm : R
m × R → R

3, (z,w) → (g′
m(z),w),

f : R
3 → R

2, (x1,x2,w) → (x1,x2(1 + w2)).

Let us prove: Fm(f ◦ gm)(Rm × R) = S. To that end we prove: f(T × R) = S.
Let �a := {(a,t) : t ∈ R} be a vertical line of R

2 and consider the plane Ha :=
�a × R. Then f|Ha : Ha → R

2, (a,t,w) → (a,t(1 + w2)). If we fix a point
(a, t0) ∈ �a , then the image under f of the line {(a, t0)} × R is

⎧
⎪⎨

⎪⎩

{(a, t0 + λ) : λ ≥ 0} if t0 > 0,

{(a, 0)} if t0 = 0,

{(a, t0 − λ) : λ ≥ 0} if t0 < 0.

As h2 := x1 − αx2, for each a < 0 the open ray ra := {(a,t) : t > a
α
} ⊂ T, so

f(ra × R) = {a} × R. Thus, f((T ∩ {x1 < 0}) × R) = {x1 < 0} = S ∩ {x1 < 0}.
Observe that

T ∩ {x1 = 0} =
{

{(0,t) : t > 0} if P is unbounded,

{(0,t) : t ∈ ] − ∞, b0[ ∪ {]0,+∞[}} for some b0 < 0 if P is bounded.

So f((T ∩ {x1 = 0}) × R) = T ∩ {x1 = 0} = S ∩ {x1 = 0}. In addition, if a > 0,
then �a ∩ T = {(a,t) : t ∈ Sa}, where

Sa =
{

]ca,+∞[ for some ca > 0 if P is unbounded,

] − ∞, ba[ ∪ ]ca,+∞[ for some ba ≤ 0 ≤ ca if P is bounded.

Thus, f((�a ∩ T) × R) = �a ∩ T for each a > 0. Consequently, f((T ∩ {x1 >

0}) × R) = T ∩ {x1 > 0} = S ∩ {x1 > 0} and

f(T × R) = f((T ∩ {x1 < 0}) × R) � f((T ∩ {x1 = 0}) × R) � f((T ∩ {x1 > 0}) × R)

= (S ∩ {x1 < 0}) � (S ∩ {x1 = 0}) � (S ∩ {x1 > 0}) = S.
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We have also deg(f ◦gm) ≤ deg(g′
m) + 2 ≤ 2(m − 1) + 2+ 2 = 2m + 2. Therefore,

the polynomial map Fm = f ◦ gm satisfies all our claims. ��
Acknowledgements The authors are strongly indebted with the anonymous referees for their suggestions
that have helped them to improve significantly the final version of this article.
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