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In this work we prove constructively that the complement Rn \ K of a convex polyhedron

K ⊂ Rn and the complement Rn \ Int(K) of its interior are regular images of Rn. If K is

moreover bounded, we can assure that Rn \ K and Rn \ Int(K) are also polynomial images

of Rn. The construction of such regular and polynomial maps is done by double induction

on the number of facets (faces of maximal dimension) and the dimension of K; the careful

placing (first and second trimming positions) of the involved convex polyhedra which

appear in each inductive step has interest by its own and it is the crucial part of our

technique.

1 Introduction

A map f := ( f1, . . . , fm) : Rn → Rm is a polynomial map if its components fk ∈ R[x] :=
R[x1, . . . ,xn] are polynomials. Analogously, f is a regular map if its components can be

represented as quotients fk = gk/hk of two polynomials gk, hk ∈ R[x] such that hk never

vanishes on Rn. During the last decade we have approached the problem of deter-

mining which (semialgebraic) subsets S ⊂ Rm are polynomial or regular images of Rn
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2 J. F. Fernando and C. Ueno

(see [9] for the first proposal of studying this problem and some particular related ones

like the “quadrant problem”). By Tarski–Seidenberg’s principle (see [2, 1.4]) the image

of an either polynomial or regular map is a semialgebraic set. As is well known, a

subset S ⊂ Rn is semialgebraic when it has a description by a finite Boolean combi-

nation of polynomial equations and inequalities, which we shall call a semialgebraic

description.

We feel very far from solving the problem stated above in its full generality, but

we have developed significant progress in two ways:

General conditions. By obtaining general conditions that must satisfy a semial-

gebraic subset S ⊂ Rm which is either a polynomial or a regular image of Rn (see [5, 7, 16]

for further details). The most remarkable one states that the set of infinite points of a

polynomial image of Rn is connected.

Ample families. By showing that certain ample families of significant semial-

gebraic sets are either polynomial or regular images of Rn (see [3, 4, 6, 17] for further

details). We will comment later on some of our main results.

The results of this work go in the direction of the second approach. Since the

one-dimensional case has been completely described by the first author in [3], we will

only take care of semialgebraic sets S ⊂ Rm of dimension ≥ 2.

A very distinguished family of semialgebraic sets is the one consisting of

those semialgebraic sets whose boundary is piecewise linear, that is, semialgebraic

sets that admit a semialgebraic description involving just polynomials of degree 1.

Of course, many of them are neither polynomial nor regular images of Rn, as one

easily realizes reviewing the known general conditions that must satisfy a semial-

gebraic set to be either a polynomial or a regular image of Rn; however, it seems

natural to wonder what happens with convex polyhedra, their interiors (as topo-

logical manifolds with boundary), their complements and the complements of their

interiors.

We proved in [6] that all n-dimensional convex polyhedra of dimension ≥ 2 and

their interiors are regular images of Rn. Since many convex polyhedra are bounded

and the images of nonconstant polynomial maps are unbounded, the suitable general

approach in that case was to consider regular maps. Concerning the representation of

unbounded convex polygons P ⊂ R2 as polynomial images of R2, see [18].

The complements of proper convex polyhedra (or of their interiors) are

unbounded and so the representation problem in these cases has a meaning

either in the polynomial or in the regular case. Our main result is the following

theorem.
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On Complements of Convex Polyhedra as Polynomial and Regular Images 3

Theorem 1.1. Let K ⊂ Rn be a convex polyhedron such that K is not a layer nor a hyper-

plane. Then

(i) If K is bounded, Rn \ K and Rn \ Int(K) are polynomial images of Rn.

(ii) If K is unbounded, Rn \ K and Rn \ Int(K) are regular images of Rn. �

Here, Int(K) refers to the interior of K as a topological manifold with boundary,

and by a layer we understand a subset of Rn affinely equivalent to [−a, a] × Rn−1 with

a> 0. It is important to point out that the challenging situations arise when the dimen-

sion of K ⊂ Rn equals n. As we will see in Proposition 3.1 and Remark 3.2, for convex

polyhedra K ⊂ Rn of dimension d< n which are not hyperplanes it is always true (and

much easier to prove) that both Rn \ K and Rn \ Int(K) are polynomial images of Rn.

It is clear that layers and hyperplanes disconnect Rn. Actually, from Theorem 1.1

it follows as a byproduct that these are the only convex polyhedra that disconnect Rn

(a fact that can be proved by more elementary means), for a polynomial or regular image

of Rn must be necessarily connected.

Moreover, in [8] we prove that the techniques developed here still work, by care-

fully handling our convex polyhedra, to prove that R3 \ K and R3 \ Int(K) are polynomial

images of R3 if K ⊂ R3 is a three-dimensional convex polyhedron; even more, we prove

there that for n≥ 4 our constructions do not go further to represent either Rn \ K or

Rn \ Int(K) as polynomial images of Rn for a general convex polyhedra K ⊂ Rn.

To make easy the presentation of the full picture of what is known concerning

piecewise linear boundary sets (including the results of this work stated in Theorem 1.1),

we introduce the following two invariants. Given a semialgebraic set S ⊂ Rm, we define

p(S) : = inf{n≥ 1 : ∃ f : Rn → Rm polynomial such that f(Rn) = S},

r(S) : = inf{n≥ 1 : ∃ f : Rn → Rm regular such that f(Rn) = S}.

The condition p(S) := +∞ characterizes the nonrepresentability of S as a polynomial

image of some Rn, while r(S) := +∞ has the analogous meaning for regular maps. Let

K ⊂ Rn be an n-dimensional convex polyhedron and assume for the second part of

the table below that S := Rn \ K and S̄ = Rn \ Int(K) are connected. Let us explain some

(marked) exceptions in the chart below:

• (2,+∞∗): an unbounded convex polygon K ⊂ R2 has p(K) = +∞ if and only if

all the unbounded edges of K are parallel (see [18]); otherwise p(K) = 2.
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4 J. F. Fernando and C. Ueno

• (+∞, 2∗): if the number of edges of an unbounded convex polygon K ⊂ R2 is

≥ 3, then p(Int(K)) = +∞; otherwise, p(Int(K)) = 2 (see [5, 17]).

• (unknown1, +∞∗): if the linear projection of K in some direction is bounded,

then p(Int(K)) = +∞; otherwise, we have no further information.

• (unknown2, +∞∗): if K has a bounded facet or its linear projection in some

direction is bounded, then p(Int(K)) = +∞; otherwise, we have no further

information.

K bounded K unbounded

n= 1 n≥ 2 n= 1 n= 2 n= 3 n≥ 4

r(K) n

r(Int(K))

+∞

n 2 n

p(K)

+∞
1 2,+∞∗ unknown1,+∞∗

p(Int(K)) 2 +∞, 2∗ unknown2,+∞∗

r(S)

+∞ n

2 n

r(S̄) n

p(S) 2 n

unknownp(S̄) n

The interest of deciding whether a semialgebraic set is a polynomial or a regular

image of Rn is out of any doubt, and it lies in the fact that the study of certain classical

problems in Real Geometry concerning this kind of sets is reduced to the analysis of

those problems on Rn, for which no contour conditions appear and there are many more

tools and more powerful (for further details see [4, Section 1; 5, Section 1]). Let us discuss

here two of them.

Optimization. Suppose that f : Rn → Rn is either a polynomial or a regular map

and let S = f(Rn). Then the optimization of a given regular function g : S → R is equiva-

lent to the optimization of the composition g ◦ f on Rn, and in this way one can avoid

contour conditions (see, for instance, [11, 12, 14, 19] for relevant tools concerning opti-

mization of polynomial functions on Rn). Of course, weakness of this construction is that

complexity of the composition g ◦ f is much higher than the one of g. However, for each

regular function g : S → R the problem that we have to solve is

(
∂g

∂x1
◦ f, . . . ,

∂g

∂xn
◦ f

)
·
(

∂ fi
∂xj

)
1≤i, j≤n

= (0, . . . , 0),
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On Complements of Convex Polyhedra as Polynomial and Regular Images 5

where the matrix Jf :=
(

∂ fi
∂xj

)
1≤i, j≤n

depends only on f . We expect that a “good knowledge”

of this matrix Jf will be useful, if we have to device optimization problems for many

regular functions on S, because, although complexity increases, the matrix Jf is the

same for all the maximization problems.

On the other hand, recall here that if S is a compact semialgebraic set in Rn, there

is a doubly exponential (in the number n of variables describing S) algorithm triangu-

lating S (see [2, Chapter 9, Section 2] and [10]). Thus, semialgebraic compact sets can be

considered as finite simplicial complexes, but we remark that the known algorithm can

produce a doubly exponential number of simplexes. The algorithms we have developed

to show that certain semialgebraic sets with piecewise linear boundary are polynomial

or regular images of Rn are constructive, but the degrees of the involved maps are very

high; however, it will be interesting to estimate the smallest degree for which there is

a suitable polynomial or regular map, and to compare its complexity with the doubly

exponential one for the triangulations of semialgebraic sets.

Positivstellensätze. Another classical problem is the algebraic characterization

of those regular functions g : Rn → R which are either strictly positive or positive

semidefinite on S. In the case of S being a basic closed semialgebraic set, these prob-

lems were solved in [15], see also [2, 4.4.3]. Note that g is strictly positive (respectively,

positive semidefinite) on S if and only if g ◦ f is strictly positive (respectively, positive

semidefinite) on Rn, and both questions are decidable using for instance [15]. Thus, this

provides an algebraic characterization of positiveness for polynomial and regular func-

tions on semialgebraic sets which are either polynomial or regular images of Rn. Observe

that these semialgebraic sets need not to be either closed, as it happens with the interior

of a convex polyhedron, or basic, as it happens with the complement of a convex polyhe-

dron. Thus, this provides a large class of semialgebraic sets (neither closed nor basic),

which are not considered by the classical Positivstellensätze, for which there is a certifi-

cate of positiveness for polynomial and regular functions. Again, the weakness of this

strategy arises from the complexity of the composition g ◦ f ; however, if we restrict our

target to the theoretical viewpoint, this procedure enlarges the target of the classical

Positivstellensatz, which is restricted to closed semialgebraic sets.

The paper is organized as follows. In Section 2 we provide some general termi-

nology and results concerning convex polyhedra. In Section 3 we check Theorem 1.1 for

those convex polyhedra in Rn whose dimension is strictly smaller than n; in fact, we

prove a more general result which works for the complement of any basic semialgebraic

set contained in a hyperplane. In Sections 4 and 6 we develop the trimming tools that

will be crucial to prove Theorem 1.1 in Sections 5 and 7. Finally, in Section 8 we prove,
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6 J. F. Fernando and C. Ueno

as a byproduct of Theorem 1.1, that the complement of an open ball is a polynomial

image of Rn while the complement of the closed ball is a polynomial image of Rn+1 but

not of Rn.

2 Preliminaries on Convex Polyhedra

We begin by introducing some preliminary terminology and notation concerning convex

polyhedra. For a detailed study of the main properties of convex sets, we refer the reader

to [1, 13]. Along this work, we write R[x] to denote the ring of polynomials R[x1, . . . ,xn].

Given an affine hyperplane H ⊂ Rn, there exists a degree 1 polynomial h∈ R[x] such that

H := {x ∈ Rn : h(x) = 0} ≡ {h= 0}. This polynomial h determines two closed half-spaces H+

and H−, defined by

H+ := {x ∈ Rn : h(x) ≥ 0} ≡ {h≥ 0} and H− := {x ∈ Rn : h(x) ≤ 0} ≡ {h≤ 0}.

In this way, the labels H+ and H− are assigned in terms of the choice of h (or equiva-

lently, in terms of the orientation of H ) and it is enough to substitute h by −h to inter-

change the roles of H+ and H−. As usual, we denote by 
h the homogeneous component

of h of degree 1 and by 
H := {
v ∈ Rn : 
h(
v) = 0} the direction of H . More generally, we also

denote by 
W the direction of any affine subspace W ⊂ Rn.

2.1 Generalities on convex polyhedra

A subset K ⊂ Rn is a convex polyhedron if it can be described as the finite intersection

K := ⋂r
i=1 H+

i of closed half-spaces H+
i ; we allow this family of half-spaces to by empty

to describe K = Rn as a convex polyhedron. The dimension dim(K) of K is its dimen-

sion as a topological manifold with boundary, which coincides with its dimension as a

semialgebraic subset of Rn and with the dimension of the smallest affine subspace of Rn

which contains K.

Let K ⊂ Rn be an n-dimensional convex polyhedron. By Berger [1, 12.1.5] there

exists a unique minimal family H := {H1, . . . , Hm} of affine hyperplanes of Rn, which is

empty just in case K = Rn, such that K = ⋂m
i=1 H+

i ; we refer to this family as the minimal

presentation of K. Of course, we will always assume that we have chosen the linear

equation hi of each Hi such that K ⊂ H+
i .

The facets or (n− 1)-faces of K are the intersections Fi := Hi ∩ K for 1 ≤ i ≤ m;

just the convex polyhedron Rn has no facets. Each facet Fi := H−
i ∩ ⋂m

j=1 H+
j is a

polyhedron contained in Hi. For inductive processes, we will denote Ki,× := ⋂
j �=i H+

j ,

which is a convex polyhedron that strictly contains K and satisfies K = Ki,× ∩ H+
i .
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On Complements of Convex Polyhedra as Polynomial and Regular Images 7

A convex polyhedron K ⊂ Rn is a topological manifold, whose interior Int(K) is

a topological manifold without boundary, which coincides with the topological interior

of K in Rn if and only if dim(K) = n. The boundary of K is ∂K = K \ Int(K); in particular,

if K is a singleton, Int(K) = K and ∂K = ∅. By Berger [1, 12.1.5], ∂K = ⋃m
i=1 Fi, and so

Int(K) = K \
m⋃

i=1

(K ∩ Hi) =
m⋂

j=1

H+
j ∩

m⋂
i=1

(Rn \ Hi) =
m⋂

i=1

(H+
i \ Hi).

For 0 ≤ j ≤ n− 2, we define inductively the j-faces of K as the facets of the

( j + 1)-faces of K, which are again convex polyhedra. As usual, the 0-faces are the ver-

tices of K and the 1-faces are the edges of K; obviously if K has a vertex, then m ≥ n

(see [1, 12.1.8–9]). In general, we denote by E a generic face of K to distinguish it from the

facets F1, . . . ,Fm of K; the affine subspace generated by E is denoted by W to be distin-

guished from the affine hyperplanes H1, . . . , Hm generated by the facets F1, . . . ,Fm of K.

In what follows, given two points p, q ∈ Rn, we denote by p̄q := {λp+ (1 − λ)q : 0 ≤
λ ≤ 1} the (closed) segment connecting p and q. On the other hand, given a point p∈ Rn

and a vector 
v ∈ Rn, we denote by p
v := {p+ λ
v : λ ≥ 0} the (closed) half-line of extreme

p and direction 
v. The boundary of the segment S := p̄q is ∂S = {p, q} and its interior is

Int(S) = S \ {p, q}, while the boundary of the half-line H := p
v is ∂H = {p} and its interior

is Int(H) = H \ {p}.
The affine maps are those maps that preserve affine combinations; hence, affine

maps are polynomial maps that preserve convexity and so they transform convex poly-

hedra onto convex polyhedra. As usual, the linear map (or derivative) associated with an

affine map f : Rn → Rm is denoted by 
f : Rn → Rm. It will be common to use affine bijec-

tions f : Rn → Rn, that will be called changes of coordinates, to place a convex polyhe-

dron, or more generally a semialgebraic set S, in convenient positions. As usual we say

that S and f(S) are affinely equivalent.

A convex polyhedron of Rn is nondegenerate if it has at least one vertex; oth-

erwise, the convex polyhedron is degenerate. Next, we recall a natural characterization

of degenerate convex polyhedra (see [6, Section 2.2]).

Lemma 2.1. Let K ⊂ Rn be an n-dimensional convex polyhedron. The following asser-

tions are equivalent:

(i) K is degenerate;

(ii) K = Rn or there exists a nondegenerate convex polyhedron P ⊂ Rk, where

1 ≤ k≤ n− 1, such that after a change of coordinates K = P × Rn−k;

(iii) K contains a line �. �
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8 J. F. Fernando and C. Ueno

3 Complement of Basic Nowhere Dense Semialgebraic Sets

The purpose of this section is to reduce the proof of Theorem 1.1 to the case of an

n-dimensional convex polyhedron. To that end, we prove in this section the following

more general result. Given polynomials g1, . . . , gr ∈ R[x] consider the basic semialgebraic

set S := {g1 ∗1 0, . . . , gr ∗r 0} ⊂ Rn, where each ∗i represents either the symbol > or ≥.

Theorem 3.1. Let S � Rn be a proper basic semialgebraic set. Then Rn+1 \ (S × {0}) is a

polynomial image of Rn+1. �

Remark 3.2. In particular, if K ⊂ Rn is a convex polyhedron of dimension d< n which

is not a hyperplane, then Rn \ K and Rn \ Int(K) are polynomial images of Rn. �

Lemma 3.3. Let Λ ⊂ Rn be a (non necessarily semialgebraic) set and let g ∈ R[x] be a

polynomial. Then there are polynomial maps fi : Rn+1 → Rn+1 such that

f1(R
n+1 \ (Λ × {0})) = Rn+1 \ ((Λ ∩ {g ≥ 0}) × {0}) and

f2(R
n+1 \ (Λ × {0})) = Rn+1 \ ((Λ ∩ {g > 0}) × {0}). �

Proof. Define x := (x1, . . . , xn) and consider the polynomial maps

f1 : Rn+1 → Rn+1, (x, xn+1) �→ (x, xn+1(1 + x2
n+1g(x))),

f2 : Rn+1 → Rn+1, (x, xn+1) �→ (x, xn+1(1 + x2
n+1g(x))(g2(x) + (xn+1 − 1)2)).

Let us see that those maps satisfy the desired conditions. Indeed, define

�a := {x1 = a1, . . . , xn = an} ⊂ Rn+1

for each a := (a1, . . . , an) ∈ Rn, and observe that f1(�a) = f2(�a) = �a. For each a∈ Rn, con-

sider the univariate polynomials

⎧⎨
⎩αa(t) := t(1 + t2g(a)),

βa(t) := t(1 + t2g(a))(g2(a) + (t− 1)2),
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On Complements of Convex Polyhedra as Polynomial and Regular Images 9

which arise when we, respectively, substitute x = a and xn+1 = t in the last coordinates

of f1 and f2. Observe that αa has odd degree and

f1(�a \ {(a, 0)}) = {a} × αa(R \ {0})) =
⎧⎨
⎩�a \ {0} if g(a) ≥ 0,

�a if g(a) < 0.

This comes from the following facts:

⎧⎪⎪⎨
⎪⎪⎩

lim
t→±∞ αa(t) = ±∞ and α−1

a (0) = {0} if g(a) ≥ 0,

lim
t→±∞ αa(t) = ∓∞ and α−1

a (0) = {0,±√−1/g(a)} if g(a) < 0.

Since Rn+1 = ⋃
a∈Rn �a, one has

Rn+1 \ {Λ × {0}} =
⋃

a∈Rn\Λ
�a ∪

⋃
a∈Λ∩{g≥0}

(�a \ {(a, 0)}) ∪
⋃

a∈Λ∩{g<0}
(�a \ {(a, 0)})

and so

f1(R
n+1 \ (Λ × {0})) =

⋃
a∈Rn\Λ

�a ∪
⋃

a∈Λ∩{g≥0}
(�a \ {(a, 0)}) ∪

⋃
a∈Λ∩{g<0}

�a

= ((Rn \ (Λ ∩ {g ≥ 0})) × R) ∪ ((Λ ∩ {g ≥ 0}) × (R \ {0}))

= Rn+1 \ ((Λ ∩ {g ≥ 0}) × {0}).

The argument for the polynomial map f2 is analogous. The polynomial βa has

odd degree and

f2(�a \ {(a, 0)}) = (a, βa(R \ {0})) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�a \ {0} if g(a) > 0,

�a if g(a) = 0,

�a if g(a) < 0.

This comes from the following facts:

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

lim
t→±∞ βa(t) = ±∞ and β−1

a (0) = {0} if g(a) > 0,

lim
t→±∞ βa(t) = ±∞ and β−1

a (0) = {0, 1} if g(a) = 0,

lim
t→±∞ βa(t) = ∓∞ and β−1

a (0) = {0,±√−1/g(a)} if g(a) < 0.
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10 J. F. Fernando and C. Ueno

Thus, since

Rn+1 \ {Λ × {0}} =
⋃

a∈Rn\Λ
�a ∪

⋃
a∈Λ∩{g≤0}

(�a \ {(a, 0)}) ∪
⋃

a∈Λ∩{g>0}
(�a \ {(a, 0)}),

we conclude that

f2(R
n+1 \ (Λ × {0})) =

⋃
a∈Rn\Λ

�a ∪
⋃

a∈Λ∩{g≤0}
�a ∪

⋃
a∈Λ∩{g>0}

(�a \ {(a, 0)})

= ((Rn \ (Λ ∩ {g > 0})) × R) ∪ ((Λ ∩ {g > 0}) × (R \ {0}))

= Rn+1 \ ((Λ ∩ {g > 0}) × {0}),

as needed. �

Now, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1. Let S := {g1 ∗1 0, . . . , gr ∗r 0} be a proper basic semialgebraic sub-

set of Rn, where each ∗i ∈ {>, ≥}. We proceed by induction on the number r of inequal-

ities needed to describe S. Since S � Rn, we may assume that 0 /∈ S. If r = 1, we have

S := {g1 ∗1 0} and we consider the polynomial map

f0 : Rn+1 → Rn+1, (x1, . . . , xn+1) �→ (x1xn+1, . . . , xnxn+1, xn+1),

whose image is Rn+1 \ (Λ × {0}), where Λ := Rn \ {0}. We apply Lemma 3.3 to g := g1 and

we choose

f :=
⎧⎨
⎩ f1 if {g ∗1 0} = {g ≥ 0},

f2 if {g ∗1 0} = {g > 0}.

Since 0 /∈ S, we have Λ ∩ S = S; hence, the composition f ◦ f0 satisfies the equality

( f ◦ f0)(R
n+1) = f(Rn+1 \ (Λ × {0})) = Rn+1 \ ((Λ ∩ S) × {0}) = Rn+1 \ (S × {0}),

as wanted.

Suppose now that the result holds for each proper basic semialgebraic set of

Rn described by r − 1 ≥ 1 inequalities, and let S := {g1 ∗1 0, . . . , gr ∗r 0} be a proper basic

semialgebraic subset of Rn. We choose Λ := {g1 ∗1 0, . . . , gr−1 ∗r−1 0} (that we may assume

to be proper because otherwise S := {gr ∗r 0} can be described using just one inequality

and this case has already been studied) and, by the inductive hypothesis, there is a
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On Complements of Convex Polyhedra as Polynomial and Regular Images 11

polynomial map f0 : Rn+1 → Rn+1 such that f0(R
n+1) = Rn+1 \ (Λ × {0}). By Lemma 3.3 for

g := gr, and choosing

f :=
⎧⎨
⎩ f1 if {g ∗r 0} = {g ≥ 0},

f2 if {g ∗r 0} = {g > 0},

there exists a polynomial map f : Rn+1 → Rn+1 such that

f(Rn+1 \ (Λ × {0})) = Rn+1 \ ((Λ ∩ {gr ∗r 0}) × {0}) = Rn+1 \ (S × {0}).

Finally, the composition f ◦ f0 provides us

( f ◦ f0)(R
n+1) = f(Rn+1 \ (Λ × {0})) = Rn+1 \ (S × {0}),

as wanted. �

4 Trimming Tools of Type One

The purpose of this section is to present and develop the main tools that we will use

in Section 5 to prove the part of Theorem 1.1 concerning complements of n-dimensional

convex polyhedra.

4.1 First trimming position and trimming maps of type I

Consider in Rn the natural fibration arising from the projection

πn : Rn → Rn, (x1, . . . , xn) �→ (x1, . . . , xn−1, 0).

The fiber π−1
n (a, 0) is a line parallel to the vector 
en := (0, . . . , 0, 1) for each a∈ Rn−1. Given

an n-dimensional convex polyhedron K ⊂ Rn, the intersection

Ia := π−1
n (a, 0) ∩ K (4.1)

may be either empty or a closed interval (bounded or not). Denote by F ⊂ Rn−1 the

set of all points a∈ Rn−1 such that Int(K) ∩ π−1
n (a, 0) = ∅ and observe that the points

a∈ F satisfy either Ia = ∅ or Ia ⊂ ∂K; in the latter case, Ia is contained in a facet of K.
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12 J. F. Fernando and C. Ueno

It holds that

Int(K) ∩ π−1
n (a, 0) =

⎧⎨
⎩∅ if a∈ F,

IntIa otherwise;

hence Int(K) = ⊔
a∈Rn−1\F IntIa.

Lemma 4.1. Let K ⊂ Rn be an n-dimensional convex polyhedron, let a∈ Rn−1 be such

that Ia �= ∅ and take p∈ ∂ Ia. Then there is a facet F of K nonparallel to 
en such that

p∈ F. �

Proof. It is enough to prove that there is a facet F of K passing through p, which

does not contain Ia. To that end, we proceed by induction on the dimension n of K.

If n= 1, Ia = K and obviously p belongs to a facet of K that does not contain Ia. For

n> 1, we pick a facet F0 of K passing through p. If F0 does not contain Ia, we are done;

otherwise, F0 is an (n− 1)-dimensional convex polyhedron such that Ia = π−1
n (a, 0) ∩ F0.

Thus, by induction hypothesis, there is a facet E of F0 passing through p, but which does

not contain Ia. Since dim E = n− 2 and dim F0 = n− 1, there is a facet F of K such that

E = F0 ∩ F; since Ia ⊂ F0 but Ia �⊂ E, we conclude that Ia �⊂ F, as wanted. �

Definition 4.2.

(1) An n-dimensional convex polyhedron K ⊂ Rn is in weak first trimming posi-

tion if:

(i) for each a∈ Rn−1 the set Ia is bounded.

If K satisifies also that:

(ii) the set AK := {a∈ Rn−1 : an−1 ≤ 0, Ia �= ∅, (a, 0) �∈ Ia} is bounded,

we shall say that K is in strong first trimming position.

Besides, if AK = ∅ we say that the strong first trimming position of

K is optimal.

(2) On the other hand, we say that the (weak or strong) first trimming position

of K ⊂ Rn is extreme with respect to the facet F if F ⊂ {xn−1 = 0} and K ⊂
{xn−1 ≤ 0}.

To handle better these concepts, we will abbreviate “first trimming position” by

writing FT-position (Figure 1). �
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On Complements of Convex Polyhedra as Polynomial and Regular Images 13

(a)

(b)

(c)

Fig. 1. (a) A convex polygon in strong FT-position; (b) a convex polygon in optimal strong FT-

position, and (c) a convex polyhedron in strong FT-position.

Lemma 4.3. Let K ⊂ Rn be an n-dimensional convex polyhedron in strong FT-position.

Then there is N > 0 such that

A :=
⋃

a∈AK

∂Ia ⊂ AK × [−N, N]. �

Proof. Indeed, since K is in strong FT-position, the set Ia is bounded for each a∈
Rn−1. By Lemma 4.1, for each a∈ AK the extrems (a, pa) and (a, qa) of the interval

Ia = {a} × [pa, qa] belong to facets of K that are not parallel to the vector 
en. Let F1, . . . ,Fs

be the facets of K nonparallel to the vector 
en and hi := b0i + b1ix1 + · · · + bnixn be a degree

1 equation of the hyperplane Hi generated by Fi for 1 ≤ i ≤ s. Since Fi is nonparallel

to the vector 
en, we may assume that bni = 1. Define gi := −b0i − b1ix1 − · · · − bn−1,ixn−1

and observe that for each a∈ AK, there are 1 ≤ i, j ≤ s such that gi(a) = pa and gj(a) = qa;

hence, pa, qa ∈ {g1(a), . . . , gs(a)}. Since AK is bounded, its closure ĀK is compact, and

so the continuous functions gi are bounded over ĀK; hence, there is N > 0 such that

pa, qa ∈ [−N, N] for each a∈ AK, as wanted.
�

Definition 4.4. Let P , Q ∈ R[x] be two nonzero polynomials such that degxn
(Q(a,xn)) ≤

2 degxn
(P (a,xn)) for each a∈ Rn−1 and Q is strictly positive on Rn. Denote by βP ,Q the

regular function

βP ,Q(x) := xn

(
1 − xn−1

P 2(x)

Q(x)

)
,
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14 J. F. Fernando and C. Ueno

and define the trimming map FP ,Q of type I associated with P and Q as the regular map

FP ,Q : Rn → Rn, x := (x1, . . . , xn) �→ (x1, . . . , xn−1, βP ,Q(x)).

Observe that if Q := M > 0 is constant, then FP ,M is a polynomial map.

Recall that the degree of a rational function h := f/g ∈ R(x) := R(x1, . . . ,xn) is the

difference between the degrees of the numerator f and the denominator g. �

Remark 4.5. The following properties are straightforward.

(i) For each a∈ Rn−1, the regular function βa
P ,Q(xn) := βP ,Q(a,xn) ∈ R(xn) (which

depends just on the variable xn) has odd degree ≥ 1; hence, βa
P ,Q(R) =

R for each a∈ Rn−1. In addition, if a′ := (a1, . . . , an−2) ∈ Rn−2 we have

βP ,Q(a′, 0,xn) = xn.

(ii) For each a∈ Rn−1 the equality FP ,Q(π−1
n (a, 0)) = π−1

n (a, 0) holds, and so we

have FP ,Q(Rn) = Rn.

(iii) The set of fixed points of FP ,Q is {xn−1xnP (x) = 0}.
(iv) The condition degxn

(Q(a,xn)) ≤ 2 degxn
(P (a,xn)) for each a∈ Rn−1 holds if

degxn
(Q) ≤ 2 deg(P ) = 2 degxn

(P ).

(iv) Let K ⊂ Rn be an n-dimensional convex polyhedron and let F1, . . . ,Fr

be the facets of K that are contained in hyperplanes nonparallel to 
en.

Let f1, . . . , fr ∈ R[x] be degree 1 polynomial equations of the hyperplanes

H1, . . . , Hr, respectively, generated by the facets F1, . . . ,Fr, and define P :=
f1 · · · fr. Then P is identically zero on the facets F1, . . . ,Fr and has degree

deg(P ) = degxn
(P ) = r. �

Next, we recall the following elementary polynomial bounding inequality.

Lemma 4.6. Let P ∈ R[x] be a polynomial of degree d≥ 0, let M be the sum of the abso-

lute values of the nonzero coefficients of P and let m be a positive integer such that

d≤ 2m. Then |P (x)| ≤ M(1 + ‖x‖2)m for each x ∈ Rn. �

Proof. Write P := ∑
aν �=0 aνxν , where ν := (ν1, . . . , νn), x := (x1, . . . ,xn) and xν := xν1

1 · · ·xνn
n .

For each x := (x1, . . . , xn) ∈ Rn we have

|xν | = |x1|ν1 · · · |xn|νn ≤
n∏

i=1

(1 + ‖x‖2)νi/2 ≤ (1 + ‖x‖2)m;
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On Complements of Convex Polyhedra as Polynomial and Regular Images 15

hence

|P (x)| ≤
∑
aν �=0

|aν ||xν | ≤
∑
aν �=0

|aν |(1 + ‖x‖2)m = M(1 + ‖x‖2)m,

as wanted. �

Lemma 4.7. Let P ∈ R[x] be a nonzero polynomial such that d := deg(P ) = degxn
(P ).

Then the following conditions are satisfied.

(i) For each Q ∈ R[x] strictly positive with degxn
(Q) ≤ 2 deg(P ), the partial

derivative ∂βP ,Q

∂xn
has constant value 1 on the set {xn−1 P (x) = 0}.

(ii) For each compact K ⊂ Rn there is a positive integer MK such that if M ≥ MK ,

the partial derivative ∂βP ,M

∂xn
is strictly positive over the set K ∩ {xn−1 ≤ 0}.

(iii) The strictly positive polynomials QM := M(1 + x2
n−1)(1 + ‖x‖2)d have

degxn
(QM) = 2 deg(P ) = 2 degxn

(P ) and there is M0 > 0 such that the partial

derivative
∂βP ,QM

∂xn
is strictly positive on the set {xn−1 ≤ 0} for each M ≥ M0. �

Proof. Observe first that

∂βP ,Q

∂xn
=

(
1 − xn−1

P 2(x)

Q(x)

)
− xn−1xn

P (x)

Q(x)

(
2

∂ P

∂xn
(x) − ∂Q

∂xn
(x)

P (x)

Q(x)

)

so that (i) clearly holds.

To prove (ii), denote by MK ≥ 0 the maximum of the continuous function

Rn → R, x := (x1, . . . , xn) �→
∣∣∣∣2xn−1xnP (x)

∂ P

∂xn
(x)

∣∣∣∣
over the compact K ∩ {xn−1 ≤ 0}. If M ≥ MK , then ∂βP ,M

∂xn
is strictly positive on K ∩ {xn−1 ≤ 0}.

To prove (iii), observe first that deg(xnP ∂ P
∂xn

) ≤ 2d and so, by Lemma 4.6, there is

M0 > 0 such that, for each M ≥ M0,

∣∣∣∣xnP (x)
∂ P

∂xn
(x)

∣∣∣∣ + |dP 2(x)| ≤ M

2
(1 + ‖x‖2)d

for each x ∈ Rn. Fix M ≥ M0 and, for simplicity, define Q := QM; observe that

∂Q

∂xn
(x)

1

Q(x)
= 2dxn

1 + ‖x‖2
.
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16 J. F. Fernando and C. Ueno

Using the facts that 2|xn−1| ≤ (1 + x2
n−1) and |xn|2 < 1 + ‖x‖2 for each x ∈ Rn, we deduce

that

∂βP ,Q

∂xn
(x) ≥

(
1 − xn−1

P 2(x)

Q(x)

)
− 2|xn−1|

Q

(∣∣∣∣xnP (x)
∂ P

∂xn
(x)

∣∣∣∣ + |dP 2(x)| |xn|2
1 + ‖x‖2

)

≥ 1

2
− xn−1

P 2(x)

Q(x)
> 0

for each x ∈ {xn−1 ≤ 0}. �

Lemma 4.8. Let K ⊂ Rn be an n-dimensional convex polyhedron in weak FT-position

and let F1, . . . ,Fr be the facets of K contained in hyperplanes nonparallel to the vector


en. Let P ∈ R[x] be a nonzero polynomial that is identically zero on F1, . . . ,Fr and has

degree deg(P ) = degxn
(P ) (see Remark 4.5). Then there is a strictly positive Q ∈ R[x] with

degxn
(Q) ≤ 2 deg(P ) such that

(i) FP ,Q(Rn \ K) = Rn \ (K ∩ {xn−1 ≤ 0});
(ii) FP ,Q(Rn \ Int(K)) = Rn \ (Int(K) ∩ {xn−1 ≤ 0}).

Moreover, if K is in strong FT-position, we can choose Q to be constant.
�

Proof. Define K′ := K ∩ {xn−1 ≤ 0} and let F ⊂ Rn−1 be the set of those a∈ Rn−1 such that

π−1
n (a, 0) ∩ Int(K) = ∅. For each a∈ Rn−1 consider the following sets:

Ma := {t ∈ R : (a, t) ∈ Rn \ K} Na := {t ∈ R : (a, t) ∈ Rn \ Int(K)},

Sa := {t ∈ R : (a, t) ∈ Rn \ K′} Ta := {t ∈ R : (a, t) ∈ Rn \ (Int(K) ∩ {xn−1 ≤ 0})}.

Observe that Ma ⊂ Na, Sa ⊂ Ta, and

Na =
⎧⎨
⎩R if a∈ F,

M̄a otherwise.

Sa =
⎧⎨
⎩Ma if an−1 ≤ 0,

R if an−1 > 0,
and Ta =

⎧⎨
⎩Na if an−1 ≤ 0,

R if an−1 > 0.

By Section 4.1, we have

(1) Rn \ K = ⊔
a∈Rn−1({a} × Ma) and Rn \ K′ = ⊔

a∈Rn−1({a} × Sa);

(2) Rn \ Int(K) = ⊔
a∈Rn−1({a} × Na);

(3) Rn \ (Int(K) ∩ {xn−1 ≤ 0}) = ⊔
a∈Rn−1({a} × Ta).
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(4.8.1) At this point, we choose Q as follows. If K is in strong FT-position, AK is bounded

(see Definition 4.2) and there is, by Lemma 4.3, an N > 0 such that A := ⋃
a∈AK

∂Ia ⊂
AK × [−N, N], where Ia := π−1

n (a, 0) ∩ K. By Lemma 4.7(ii) applied to the compact set

K := ĀK × [−N, N], there is Q := M > 0 such that the partial derivative ∂βP ,M

∂xn
is strictly

positive on K ∩ {xn−1 ≤ 0}. On the other hand, if K is in weak FT-position, there exists, by

Lemma 4.7, a strictly positive polynomial Q such that degxn
(Q) = 2 deg(P ) = 2 degxn

(P )

and the partial derivative ∂βP ,Q

∂xn
is strictly positive on the set {xn−1 ≤ 0}.

Since the map FP ,Q preserves the lines π−1
n (a, 0), to show equalities (i) and (ii) in

the statement, it is enough to check that

βa
P ,Q(Ma) = Sa and βa

P ,Q(Na) = Ta ∀a∈ Rn−1. (4.2)

To check the identities (4.2), we distinguish several cases attending to the par-

ticularities of a fixed a∈ Rn−1.

Case 1: If Ma = R, since βa
P ,Q(R) = R (see Remark 4.5(i)), we have

βa
P ,Q(Na) = βa

P ,Q(Ma) = R = Sa = Ta.

Case 2: If an−1 ≤ 0 and Ma := ]−∞, p[ ∪ ]q,+∞[, where p≤ q, there are indices 1 ≤
i, j ≤ r such that (a, p) ∈ Fi, (a, q) ∈ F j (see Lemma 4.1) and either Na = ]−∞, p] ∪ [q,+∞[

or Na = R. In this last case βa
P ,Q(Na) = βa

P ,Q(R) = R = Ta.

Next, we compute the images βa
P ,Q(Ma) and βa

P ,Q(Na) attending to the different

possible situations.

(2.a) If q ≥ 0, then βa
P ,Q(q) = q, limt→+∞ βa

P ,Q(t) = +∞ and, since an−1 ≤ 0,

βa
P ,Q(t) = t

(
1 − an−1 P 2(a, t)

Q(a, t)

)
≥ t > q ∀t > q.

Now, by continuity βa
P ,Q(]q,+∞[) = ]q,+∞[ and βa

P ,Q([q,+∞[) = [q,+∞[.

(2.b) Analogously, if p≤ 0, we have

βa
P ,Q(p) = p, lim

t→−∞ βa
P ,Q(t) = −∞ and βa

P ,Q(t) ≤ t < p ∀t < p.

Again, by continuity, βa
P ,Q(]−∞, p[) = ]−∞, p[ and βa

P ,Q(]−∞, p]) = ]−∞, p].

(2.c) Next, if q < 0, it holds that (a, 0) �∈ Ia, that is, a∈ AK and by 4.8.1 the derivative
∂βa

P ,Q

∂xn
is strictly positive on the interval [q, 0] ⊂ [−N, N]. In particular, βa

P ,Q is an increas-

ing function on the interval [q, 0]; hence βa
P ,Q(]q, 0]) = ]q, 0], because βa

P ,Q(q) = q and
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18 J. F. Fernando and C. Ueno

βa
P ,Q(0) = 0. Moreover, by (2.a), βa

P ,Q(]0,+∞[) = ]0,+∞[ and so βa
P ,Q(]q,+∞[) = ]q,+∞[ and

βa
P ,Q([q,+∞[) = [q,+∞[.

(2.d) Analogously, if p> 0, it holds that (a, 0) �∈ Ia, that is, a∈ AK and by 4.8.1 the

derivative
∂βa

P ,Q

∂xn
is strictly positive in the interval [0, p] ⊂ [−N, N]. In particular, βa

P ,Q is

an increasing function on the interval [0, p], and since βa
P ,Q(p) = p and βa

P ,Q(0) = 0, we

deduce that βa
P ,Q([0, p[) = [0, p[. Moreover, by (2.b), βa

P ,Q(]−∞, 0[) = ]−∞, 0[. Consequently,

βa
P ,Q(]−∞, p[) = ]−∞, p[ and βa

P ,Q(]−∞, p]) = ]−∞, p].

From the previous analysis we infer that βa
P ,Q(Ma) = ]−∞, p[ ∪ ]q,+∞[ = Ma = Sa

and

βa
P ,Q(Na) =

⎧⎨
⎩]−∞, p] ∪ [q,+∞[ = Ta if Na = ]−∞, p] ∪ [q,+∞[,

R = Ta if Na = R.

Case 3: If an−1 > 0 and Ma = ]−∞, p[ ∪ ]q,+∞[ with p≤ q, we have, since βa
P ,Q is a

regular function of odd degree greater than or equal to 1 with negative leading coeffi-

cient (since we have excluded by hypothesis the possibility P (a,xn) ≡ 0), that

βa
P ,Q(p) = p, lim

t→−∞ βa
P ,Q(t) = +∞;

βa
P ,Q(q) = q ≥ p, lim

t→+∞ βa
P ,Q(t) = −∞.

Once more by continuity, βa
P ,Q(Na) = βa

P ,Q(Ma) = R if p< q. For the case p= q a detailed

analysis of the derivative of βa
P ,Q (with respect to xn) shows that also in this case

βa
P ,Q(Na) = βa

P ,Q(Ma) = R holds. Indeed, by Lemma 4.7, ∂βP ,Q

∂xn
(a, p) = 1; hence, βa

P ,Q is an

increasing function on a neighborhood of p= q. Thus, there is ε > 0 such that βa
P ,Q(p−

ε) < βa
P ,Q(p) < βa

P ,Q(p+ ε), and, taking into account the behavior of the function βa
P ,Q(t)

when t → ±∞, we have

]−∞, βa
P ,Q(p)] ⊂ βa

P ,Q([p+ ε,+∞[) and [βa
P ,Q(p),+∞[ ⊂ βa

P ,Q(]−∞, p− ε]);

therefore, βa
P ,Q(Na) = βa

P ,Q(Ma) = R = Sa = Ta, and equalities (4.2) are proved. �

4.2 Placing a convex polyhedron in first trimming position

Each bounded convex polyhedron is clearly in strong FT-position; hence, our problem

concentrates on placing unbounded convex polyhedra in FT-position. In [8] we analyze

this fact carefully and we show that each three-dimensional unbounded convex poly-

hedron of R3 can be placed in strong FT-position; for n≥ 4 the situation is more deli-

cate and we prove there that there are n-dimensional unbounded convex polyhedra that
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cannot be placed in strong FT-position. Nevertheless, as we see below, it is always

possible to place an n-dimensional unbounded nondegenerate convex polyhedron in

weak FT-position. Since we are interested in developing a general winning strategy for

every dimension, we will focus on the representation of complements of convex polyhe-

dra and their interiors as regular images of Rn.

Lemma 4.9 (Weak FT-position for convex polyhedra). Let K ⊂ Rn be an n-dimensional

nondegenerate convex polyhedron and let F be one of its facets. Then, after a change of

coordinates, we may assume that K is in extreme weak FT-position with respect to F. �

Proof. As usual, we denote by H the hyperplane generated by F and by H+ the half-

space of Rn with boundary H that contains K.

If K is bounded, it is enough to consider a change of coordinates that transforms

the hyperplane H onto {xn−1 = 0} and the half-space H+ onto {xn−1 ≤ 0}. Thus, we assume

in what follows that K is unbounded.

Let {H1, . . . , Hm} be the minimal presentation of K. Since K is nondegenerate,

m ≥ n. After a change of coordinates we may assume that
⋂n

i=1 Hi = {0} is a vertex of K

and H+
i = {xi ≥ 0} for 1 ≤ i ≤ n. Consequently, if 
ei := (0, . . . , 0, 1(i), 0, . . . , 0) ∈ Rn denotes

the vector whose coordinates are all zero except for the ith which is one, we have

K ⊂ {x1 ≥ 0, . . . , xn ≥ 0} = {0} +
{

n∑
i=1

λi
ei : λi ≥ 0

}
⊂ {x1 + · · · + xn > 0} ∪ {0}.

We apply now a new change of coordinates g : Rn → Rn which transforms the half-

space {x1 + · · · + xn ≥ 0} onto {h := xn ≥ 0} and keeps fixed the vertex 0; for simplicity,

we keep the notation K for g(K), Hi for g(Hi) and H+
i for g(H+

i ). Note that h(0) < h(x)

for all x ∈ K \ {0}. Consider the basis B := {
u1 := 
g(
e1), . . . , 
un := 
g(
e1)} of Rn and its dual

basis B∗ := {
�1, . . . , 
�n}; define �i := 0 + 
�i. After the change of coordinates g, we have

H+
i = {�i ≥ 0} for i = 1, . . . , n and

K ⊂ R := {�1 ≥ 0, . . . , �n ≥ 0} = {0} +
{

n∑
i=1

λi 
ui : λi ≥ 0

}
⊂ {h := xn > 0} ∪ {0}.

Let us see now that the intersections Tc := K ∩ Π−
c of K with half-spaces Π−

c := {xn ≤ c}
are bounded. For our purposes it is enough to show that each intersection Sc := R ∩ Π−

c

is a bounded subset of Rn. If c < 0, the intersection is empty and so we may assume that

c ≥ 0. Write 
uk := (u1k, . . . , unk) for k= 1, . . . , n and observe that 0 = h(0) < h(0 + 
uk) = unk.

If y := (y1, . . . , yn) ∈ Sc, there are λ1, . . . , λn ≥ 0 such that y= 0 + λ1
u1 + · · · + λn
un. Then,
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since y∈ Π−
c ,

yn = λ1un1 + · · · + λnunn ≤ c �⇒ 0 ≤ λk ≤ max
{

c

unk
: k= 1, . . . , n

}
=: Mc

for k= 1, . . . , n; hence

‖y‖ ≤ λ1‖u1‖ + · · · + λn‖un‖ ≤ Mc(‖u1‖ + · · · + ‖un‖),

and so Tc ⊂ Sc is bounded.

Observe now that the hyperplane H that contains F is not parallel to {xn = 0}
because otherwise H+ := {xn ≤ c} (because 0 ∈ K ⊂ H+) and K ⊂ Sc would be bounded,

which is a contradiction. Thus, we choose a nonzero vector 
v ∈ 
Π0 ∩ 
H . Since the inter-

sections Pc := K ∩ {xn = c} ⊂ Sc are bounded, the intersections of the parallel lines to the

vector 
v with K are also bounded. Next, we perform an additional change of coordinates

that transforms: (1) 
v in 
en, (2) H in {xn−1 = 0}, and (3) H+ in {xn−1 ≤ 0}.
In the actual situation, for each a∈ Rn−1 the fiber Ia := π−1

n (a, 0) ∩ K is bounded,

F = K ∩ {xn−1 = 0}, and K ⊂ {xn−1 ≤ 0}; hence, K is in extreme weak FT-position with

respect to F.
�

Lemma 4.10 (Removing facets and FT-position). Let K ⊂ Rn be an n-dimensional con-

vex polyhedron and let {H1, . . . , Hm} be the minimal presentation of K. Suppose that K

is in extreme weak FT-position with respect to F1 := K ∩ H1. Then K1,× := ⋂m
j=2 H+

j is

in weak FT-position. In addition, if K is in strong FT-position, so is K1,× and if such

position of K is optimal so is that of K1,×.
�

Proof. Suppose for a while that we have already proved that K1,× is in weak FT-

position. Note that K = K1,× ∩ {xn−1 ≤ 0} because H+
1 := {xn−1 ≤ 0}. Therefore, AK = AK1,×

(see Definition 4.2); hence, AK is either bounded or empty if and only if so is AK1,× .

Consequently, if K is in strong FT-position so is K1,× and if such position of K is opti-

mal, so is that of K1,×.

Thus, it only remains to prove that the convex polyhedron K1,× is in weak FT-

position, that is, for each a := (a1, . . . , an−1) ∈ Rn−1, the intersection I′
a := K1,× ∩ π−1

n (a, 0)

is bounded. Observe first that if an−1 ≤ 0, then

I′
a = K1,× ∩ π−1

n (a, 0) = K ∩ π−1
n (a, 0),

which is bounded because K is in weak FT-position. Suppose now that an−1 > 0. If I′
a =

K1,× ∩ π−1
n (a, 0) is unbounded, it is a half-line, say K1,× ∩ π−1

n (a, 0) := q
v, where 
v := ±
en.
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Let p := (p1, . . . , pn) ∈ K ⊂ K1,×; and let us check that the half-line p
v is contained

in K1,×.

Indeed, we may assume that p �∈ q
v ∪ q(−
v) because otherwise, since K1,× is con-

vex, it is clear that p
v ⊂ K1,×.

Let x ∈ p
v \ {p} and let μ > 0 be such that x − p= μ
v. Choose a sequence {yk}k∈N ⊂
q
v \ {q} such that the sequence {‖yk − q‖}k∈N tends to +∞. For each k∈ N let ρk > 0 be

such that yk − q = ρk
v = λk(x − p), where λk := ρk/μ > 0. Note that the sequence {λk = ‖yk −
q‖/‖x − p‖}k∈N also tends to +∞. Since p, yk ∈ K1,× and this polyhedron is convex, each

segment p̄yk is contained in K1,×. Now, since yk = q + λk(x − p), we have

zk :=
(

1

1 + λk

)
q +

(
λk

1 + λk

)
x =

(
λk

1 + λk

)
p+

(
1

1 + λk

)
yk ∈ p̄yk ⊂ K1,×.

Thus, since K1,× is closed, we deduce that

x = lim
k→∞

{(
λk

1 + λk

)
x +

(
1

1 + λk

)
q
}

k∈N

= lim
k→∞

{zk}k∈N ∈ K1,×,

and the half-line p
v is contained in K1,×. Moreover, since pn−1 ≤ 0, we get p
v ⊂ {xn−1 ≤ 0},
that is, p
v ⊂ K1,× ∩ {xn−1 ≤ 0} = K. If we take now a := (p1, . . . , pn−1), we deduce

p
v ⊂ Ia = K ∩ π−1
n (a, 0);

but the latter is a bounded set because K is in weak FT-position, which is a contradic-

tion. Thus, I′
a is bounded for each a∈ Rn−1 and so K1,× is also in weak FT-position, as

wanted. �

5 Complement of a Convex Polyhedron

The purpose of this section is to prove the part of Theorem 1.1 concerning complements

of convex polyhedra. More precisely, we prove the following:

Theorem 5.1. Let n≥ 2 and let K ⊂ Rn be an n-dimensional convex polyhedron which is

not a layer. We have the following conditions:

(i) If K is bounded, then Rn \ K is a polynomial image of Rn.

(ii) If K is unbounded, then Rn \ K is a regular image of Rn. �

The proof of the previous results runs by induction on the number of facets of

K in case (i) and by double induction on the number of facets and the dimension of K
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in case (ii). The first step of the induction process in the second case concerns dimension

2, which has already been approached by the second-named author in [17] with similar

but simpler techniques. We approach first the following particular case.

Lemma 5.2 (The orthant). Let K ⊂ Rn be an n-dimensional nondegenerate convex poly-

hedron with n≥ 2 facets. Then Rn \ K is a polynomial image of Rn. �

Proof. After a change of coordinates it is enough to prove by induction on n that

p(Rn \ Q̄n) = n for each n≥ 2, where

Q̄n = {x1 ≥ 0, . . . , xn ≥ 0} ⊂ Rn.

The case n= 2 is proved in [17, Lemma 3.11]. Suppose that the statement is true for n− 1

(with n≥ 3); and we will see that it also holds for n. By induction hypothesis, there is a

polynomial map f : Rn−1 → Rn−1 such that f(Rn−1) = Rn−1 \ Q̄n−1. Define

f̂ : Rn → Rn, (x1, . . . , xn) �→ ( f(x1, . . . , xn−1), xn),

which satisfies the equality

f̂(Rn) = f(Rn−1) × R = (Rn−1 \ Q̄n−1) × R.

Let g1 : Rn → Rn be a change of coordinates such that g1((R
n−1 \ Q̄n−1) × R) = Rn \ K1,

where

K1 = {x1 ≥ 0, . . . , xn−3 ≥ 0, xn−2 + xn ≥ 0, xn−2 − xn ≥ 0} ⊂ Rn

is a convex polyhedron in optimal strong FT-position.

Indeed, let a= (a1, . . . , an−1) ∈ Rn−1 be such that the line �a := {(a1, . . . , an−1, t) :

t ∈ R} intersects K1; then a1, . . . , an−3, an−2 ≥ 0 (because an−2 + t ≥ 0 and an−2 − t ≥ 0) and

−an−2 ≤ t ≤ an−2. Thus, Ia is either the empty set or the bounded interval

Ia := K ∩ �a = {a} × [−an−2, an−2] (an−2 ≥ 0),

which contains (a, 0); hence, K1 is in optimal strong FT-position.

By Proposition 4.8, there is a polynomial map h : Rn → Rn such that h(Rn \ K1) =
Rn \ (K1 ∩ {xn−1 ≤ 0}). Moreover, there is a change of coordinates g2 : Rn → Rn such that

g2(R
n \ (K1 ∩ {xn−1 ≤ 0})) = Rn \ Q̄n.
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Thus, the composition g := g2 ◦ h ◦ g1 ◦ f̂ : Rn → Rn is a polynomial map satisfying

g(Rn) = Rn \ Q̄n. �

Proof of Theorem 5.1(i). Consider first the case when K := Δ is an n-simplex in Rn.

We may assume that we are working with the n-simplex Δ ⊂ Rn, which is in strong

FT-position because it is bounded, whose vertices are the points

v0 := (0, . . . , 0), vi := (0, . . . , 0, 1(i), 0, . . . , 0), for i �= n− 1 and vn−1 := (0, . . . , 0,−1, 0).

Write Δ := ⋂n+1
i=1 H ′

i
+ where {H ′

1, . . . , H ′
n+1} is the minimal presentation of Δ and order

the hyperplanes in such a way that H ′
1 := {xn−1 = 0}; hence, Δ1,× := ⋂n+1

i=2 H+
i is an

n-dimensional nondegenerate convex polyhedron with n facets. By Lemma 5.2 there is

a polynomial map g : Rn → Rn such that g(Rn) = Rn \ Δ1,×. Since Δ is in extreme strong

FT-position with respect to the facet Δ ∩ {xn−1 = 0}, we find by means of Lemmata 4.8

and 4.10 a polynomial map h : Rn → Rn such that h(Rn \ Δ1,×) = Rn \ Δ; hence, the polyno-

mial map f := h ◦ g satisfies f(Rn) = Rn \ Δ.

Now let K be an n-dimensional bounded convex polyhedron of Rn. We choose an

n-simplex Δ ⊂ Rn such that K ⊂ IntΔ. We write K := ⋂m
i=1 H+

i , where {H1, . . . , Hm} is the

minimal presentation of K, and consider the convex polyhedra {K0, . . . ,Km} defined by

K0 := Δ, K j := K j−1 ∩ H+
j for 1 ≤ j ≤ m.

Thus, Km = K and, for each 1 ≤ j ≤ m, the convex polyhedron K j = Δ ∩ (
⋂ j

i=1 H+
i ) has a

facet F j contained in the hyperplane Hj. Moreover, the set Rn \ Δ is, as we have already

seen above, the image of a polynomial map f (0) : Rn → Rn.

For each index 1 ≤ j ≤ m there is a change of coordinates h( j) : Rn → Rn such that

h( j)(H+
j ) = {xn−1 ≤ 0}; let

K′
j := h( j)(K j) = h( j)(K j−1) ∩ h( j)(H+

j ) = h( j)(K j−1) ∩ {xn−1 ≤ 0}.

By Lemma 4.8 there is a polynomial map g( j) : Rn → Rn such that

g( j)(Rn \ h( j)(K j−1)) = Rn \ (h( j)(K j−1) ∩ {xn−1 ≤ 0}) = Rn \ K′
j;

hence, the polynomial map f ( j) := (h( j))−1 ◦ g( j) ◦ h( j) satisfies f ( j)(Rn \ K j−1) = Rn \ K j.

Finally, f := f (m) ◦ · · · ◦ f (0) : Rn → Rn is a polynomial map that satisfies f(Rn) =
Rn \ Km = Rn \ K, as wanted. �
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Proof of Theorem 5.1(ii). We proceed by induction on the pair (n, m) where n denotes

the dimension of K and m denotes the number of facets of K. As we have already com-

mented, the case n= 2 has already been solved in [17, Theorem 1] (using polynomial

maps) and we do not include further details. Suppose in what follows that n≥ 3 and that

the result holds for any k-dimensional convex polyhedron of Rk which is not a layer if

2 ≤ k≤ n− 1. We distinguish two cases.

Case 1. K is a degenerate convex polyhedron. By Lemma 2.1, we may assume that

K = P × Rn−k where 1 ≤ k< n and P ⊂ Rk is a nondegenerate convex polyhedron. If k= 1,

then K is either a layer, which disconnects Rn and cannot be a regular image of Rn, or

a half-space, whose complement can be expressed as a polynomial image of Rn (see [4,

Theorem 1.6]). We now assume k> 1; by induction hypothesis Rk \ P is the image of Rk

by a regular map f : Rk → Rk; hence, Rn \ K is the image of the regular map ( f, idRn−k) :

Rk × Rn−k → Rk × Rn−k.

Case 2. K is a nondegenerate convex polyhedron. If K has n facets (and so just

one vertex), it is enough to apply Lemma 5.2. Thus, suppose that the number m of

facets of K is strictly greater than n and let {H1, . . . , Hm} be the minimal presentation

of K := ⋂m
i=1 H+

i .

By Lemma 4.9, we may assume that K is in extreme weak FT-position with

respect to F1. By Lemma 4.10, the convex polyhedron K1,× = ⋂m
j=2 H+

j is in weak FT-

position. This allows us to apply Proposition 4.8 to the convex polyhedron K1,× and to

find a regular map f : Rn → Rn such that

f(Rn \ K1,×) = Rn \ (K1,× ∩ {xn−1 ≤ 0}) = Rn \ (K1,× ∩ H+
1 ) = Rn \ K.

Now, K1,× is a convex polyhedron with m − 1 ≥ n facets, and so it is not a layer; hence,

by induction hypothesis there is a regular map g : Rn → Rn such that g(Rn) = Rn \ K1,×.

We conclude that the polynomial map h := f ◦ g satisfies

h(Rn) = f(g(Rn)) = f(Rn \ K1,×) = Rn \ K,

and we are done. �

Remark 5.3. The previous proof is constructive. Moreover, if the convex polyhedron

that appears in a certain step of the inductive process is in extreme strong FT-position

with respect to a facet F1, then by Lemma 4.8 the regular map of this step can be chosen

polynomial. In view of Definition 4.4, this reduces the complexity of the final regular
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map. Moreover, if this can be done in each inductive step, then the final regular map can

be assumed to be polynomial. �

6 Trimming Tools of Type II

In this section we develop the main tools that will be used in Section 7 to prove the part

of Theorem 1.1 concerning complements of interiors of convex polyhedra. We will use

freely the preliminaries already introduced in Section 4.1 and Lemma 4.1. We begin with

the definition of second trimming position.

Definition 6.1.

(1) An n-dimensional convex polyhedron K ⊂ Rn is in weak second trimming

position if:

(i) For each a∈ Rn−1, the set Ia := K ∩ π−1
n (a, 0) is upperly bounded

(here we endow the line π−1
n (a, 0) with the orientation induced by

the vector 
en).

We say that K is in strong second trimming position if it also satisfies the

following condition:

(ii) the set BK := {a∈ Rn−1 : Ia �= ∅, (a, 0) �∈ Ia} is bounded.

Moreover, if BK = ∅, we say that the second trimming position of K is opti-

mal.

(2) On the other hand, we say that the (either weak or strong) second trimming

position of K ⊂ Rn is extreme with respect to its facet F if F ⊂ {xn = 0} and

K ⊂ {xn ≤ 0}.

To handle better these concepts, we will abbreviate “second trimming position”

by writing ST-position (Figure 2). �

Remark 6.2. (1) Each bounded convex polyhedron is clearly in strong ST-position;

hence, the problem of placing a convex polyhedron in ST-position focuses on placing

those which are unbounded. In [8] we analyze this fact carefully and we show that each

three-dimensional polyhedron can be placed in strong ST-position; for n≥ 4 the situ-

ation is more delicate and we prove that there are n-dimensional unbounded convex

polyhedra that cannot be placed in strong ST-position. Nevertheless, note that condition
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(a)

(b)

(c)

Fig. 2. (a) Convex polygons in nonoptimal and (b) optimal strong ST-position. (c) A convex poly-

hedron in strong ST-position.

(2) in Definition 6.1 imply condition (1.i). Thus, every n-dimensional convex polyhedron

K ⊂ Rn contained in {xn ≤ 0} and such that F := K ∩ {xn = 0} is a facet of K is in extreme

weak ST-position with respect to its facet F.

(2) Let K ⊂ Rn be an n-dimensional convex polyhedron in strong ST-position.

Then there is N > 0 such that

B :=
⋃

a∈BK

∂Ia ⊂ BK × [−N, N].

This proof runs analogously to that of Lemma 4.3 and we do not include it.

The fact that, for the strong ST-position, each set Ia is just upperly bounded but not

necessarily bounded does not change the proof in a relevant way. �

Definition 6.3. Let M > 0 and let P ∈ R[x] be a polynomial such that d := deg(P ) =
degxn

(P ) ≥ 1. We write for short p := polynomic and r := regular, and consider the

function

γ ∗
P ,M(x) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
xn

(
1 − xn

P 2(x)

M

)2

if ∗ = p,

xn
(1 − xnP 2(x))2

(1 − xnP 2(x))2 + x2
nP 2(x)

(M(1+‖x‖2))2d+2

if ∗ = r,
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(which is either polynomial or regular depending on the case) and we define the trim-

ming map G∗
P ,M of type II associated to P and M as either the polynomial or regular

map (depending on ∗ = p or ∗ = r)

G∗
P ,M : Rn → Rn, x = (x1, . . . , xn) �→ (x1, . . . , xn−1, γ

∗
P ,M(x)).

Observe that in any case γ ∗
P ,M is a regular map of degree deg(γ ∗

P ,M) = degxn
(γ ∗

P ,M) ≥ 1. �

Remark 6.4. The following properties are straightforward:

(i) for each a∈ Rn−1, the regular function γ
∗,a
P ,M(xn) := γ ∗

P ,M(a,xn) ∈ R(xn) (which

depends only on the variable xn) has odd degree greater than or equal to 1;

hence, γ
∗,a
P ,M(R) = R for each a∈ Rn−1.

(ii) G∗
P ,M(π−1

n (a, 0)) = π−1
n (a, 0) for each a∈ Rn−1 and so G∗

P ,M(Rn) = Rn;

(iii) the set of fixed points of G∗
P ,M contains the set {xnP (x) = 0}. �

Next, we present some preliminary results to prove Lemma 6.8, which is the

counterpart of Lemma 4.8, concerning this time the ST-position.

Lemma 6.5. Let f, ε : Rn → R be differentiable functions whose common zero-set

{ f = 0, ε = 0} is empty. Write g := xn
f2

f2+ε2 and suppose that, for each x ∈ {xn ≤ 0}, the fol-

lowing inequalities hold:

(i) | f(x)| ≥ 1 and |xn|| ∂ f
∂xn

(x)|ε2(x) < 1
16 ;

(ii) |xnε(x)| < 1
8 , |ε(x)| < 1

2 and | ∂ε
∂xn

(x)| < 1
4 .

Then ∂g
∂xn

(x) > 1
2 for each x ∈ {xn ≤ 0} and ∂g

∂xn
(x) = 1 for each x ∈ {ε = 0}. �

Proof. We write h := ε2

f2+ε2 and observe that g = xn(1 − h), ∂g
∂xn

= 1 − h − xn
∂h
∂xn

, and

∂h

∂xn
= 2ε

f2 + ε2

∂ε

∂xn
− ε2

( f2 + ε2)2

(
2 f

∂ f

∂xn
+ 2ε

∂ε

∂xn

)
.

Note that ∂g
∂xn

(x) = 1 for each x ∈ {ε = 0}. Using the inequality

∣∣∣∣xn
∂h

∂xn

∣∣∣∣ ≤ 2|xnε|
∣∣∣∣ ∂ε

∂xn

∣∣∣∣ 1

( f2 + ε2)
+ 2|xn|

∣∣∣∣ ∂ f

∂xn

∣∣∣∣ ε2 | f |
( f2 + ε2)2

+ 2|xnε|
∣∣∣∣ ∂ε

∂xn

∣∣∣∣ ε2

( f2 + ε2)2
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and taking into account for x ∈ {xn ≤ 0} the inequalities in the statement of the Lemma,

we get ∣∣∣∣xn
∂h

∂xn
(x)

∣∣∣∣ ≤ 2 · 1

8
· 1

4
· 1 + 2 · 1

16
· 1 · 1 + 2 · 1

8
· 1

4
· 1

4
= 13

64
<

1

4
.

Thus,

∂g

∂xn
(x) = 1 − h(x) − xn

∂h

∂xn
(x) ≥ 1 −

∣∣∣∣ ε2(x)

ε2(x) + f2(x)

∣∣∣∣ −
∣∣∣∣xn

∂h

∂xn
(x)

∣∣∣∣ > 1 − 1

4
· 1 − 1

4
= 1

2

as wanted. �

Lemma 6.6. Let P ∈ R[x] be a polynomial of degree d≥ 1, and set f := 1 − xnP 2,

ε := εM := xnP
M(1+‖x‖2)d+1 . Then there is M0 > 0 such that, for M ≥ M0 and x ∈ Rn,the follow-

ing inequalities hold:

(i) |xn|| ∂ f
∂xn

(x)|ε2(x) < 1
16 ;

(ii) |xnε(x)| < 1
8 , |ε(x)| < 1

2 and | ∂ε
∂xn

(x)| < 1
4 . �

Proof. First, observe that

deg
(
x3

n
∂ f

∂xn
P 2

)
≤ 4d+ 3, deg(x2

nP ) = d+ 2,

deg
(

P + xn
∂ P

∂xn

)
≤ d, deg(xnP ) = d+ 1.

Moreover, we have

∂ε

∂xn
=

(
P + xn

∂ P

∂xn

)
1

M(1 + ‖x‖2)d+1
− 2(d+ 1)x2

nP

M(1 + ‖x‖2)d+2
.

By Lemma 4.6, there is M0 > 0 such that if M ≥ M0, we have

∣∣∣∣x3
n

∂ f

∂xn
P 2

∣∣∣∣ <
M

16
(1 + ‖x‖2)2d+2 �⇒ |xn|

∣∣∣∣ ∂ f

∂xn

∣∣∣∣ ε2 <
1

16
,

|x2
nP | < M

8
(1 + ‖x‖2)d+1 �⇒ |xnε| < 1

8
,

|xnP | < M

2
(1 + ‖x‖2)d+1 �⇒ |ε| < 1

2
,
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∣∣∣∣P + xn
∂ P

∂xn

∣∣∣∣ <
M

8
(1 + ‖x‖2)d+1

2(d+ 1)|x2
nP | < M

8
(1 + ‖x‖2)d+2

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

�⇒
∣∣∣∣ ∂ε

∂xn
(x)

∣∣∣∣ <
1

4
,

and so all the inequalities in the statement hold. �

Lemma 6.7. Let P ∈ R[x] be a nonzero polynomial such that d := deg(P ) = degxn
(P ).

Then the following conditions are satisfied.

(i) For each compact set K ⊂ Rn there is MK > 0 such that if M ≥ MK , the partial

derivative
∂γ

p
P ,M

∂xn
is strictly positive on K ∩ {xn ≤ 0} and it is constantly 1 on

the set {xnP (x) = 0}.
(ii) There is M0 > 0 such that if M ≥ M0, the partial derivative

∂γ r
P ,M

∂xn
is strictly

positive on the set {xn ≤ 0} and it is constantly 1 on the set {xnP (x) = 0} for

each M > 0. �

Proof. To prove (i), observe first that

∂γ
p
P ,M

∂xn
=

(
1 − xn

P 2(x)

M

) (
1 − 3xn

P 2(x)

M
− 4x2

n
P (x)

M

∂ P

∂xn
(x)

)
.

Denote by MK ≥ 1 the maximum of the continuous function

Rn → R, x := (x1, . . . , xn) �→
∣∣∣∣4x2

n P (x)
∂ P

∂xn
(x)

∣∣∣∣
on the compact set K ∩ {xn ≤ 0}. If M ≥ MK , then

∂γ
p
P ,M

∂xn
is strictly positive over K ∩ {xn ≤ 0}.

Moreover, since xnP (x) divides
∂γ

p
P ,M

∂xn
(x) − 1, the partial derivative

∂γ
p
P ,M

∂xn
is constantly 1 on

the set {xnP (x) = 0}.
To prove (ii), note that f := 1 − xnP 2 is greater than or equal to 1 on the set {xn ≤ 0}

and apply Lemmata 6.5 and 6.6 to f , ε := xnP (x)

(M(1+‖x‖2))d+1 and g := γ r
P ,M. �

We are ready to prove the counterpart of Lemma 4.8 for the ST-position of a

convex polyhedron.

Lemma 6.8. Let K ⊂ Rn be an n-dimensional convex polyhedron in either weak or strong

ST-position and let F1, . . . ,Fr be the facets of K that are contained in hyperplanes non-

parallel to the vector 
en. Let Λ be an arbitrary subset of the hyperplane Π := {xn = 0} and
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let P ∈ R[x] be a nonzero polynomial that vanishes identically on the facets F1, . . . ,Fr,

with deg(P ) = degxn
(P ) (see Remark 4.5). We write

∗ =
⎧⎨
⎩r if the ST-position of K is only weak,

p if the ST-position of K is strong.

Then there exists M > 0 such that

G∗
P ,M(Rn \ Int(K)) = G∗

P ,M(Rn \ (Int(K) ∪ Λ)) = Rn \ IntRn(K ∩ {xn ≤ 0}). �

Proof. First, for each a∈ Rn−1 consider the sets

Ma := {t ∈ R : (a, t) ∈ Rn \ Int(K)},

Na := {t ∈ R : (a, t) ∈ Rn \ (Int(K) ∪ Λ)} =
⎧⎨
⎩Ma if (a, 0) �∈ Λ,

Ma \ {0} if (a, 0) ∈ Λ.

Ta := {t ∈ R : (a, t) ∈ Rn \ Int(K ∩ {xn ≤ 0})} = Ma ∪ [0,+∞[.

From the previous definition the following equalities follow:

Rn \ Int(K) =
⊔

a∈Rn−1

{a} × Ma, Rn \ (Int(K) ∪ Λ) =
⊔

a∈Rn−1

{a} × Na,

and Rn \ Int(K ∩ {xn ≤ 0}) =
⊔

a∈Rn−1

{a} × Ta.

(6.8.1) At this point, we choose M > 0 as follows. If K is in strong ST-position, BK

is bounded and there exists, by Remark 6.2(2), a real number N > 0 such that B :=⋃
a∈BK

∂Ia ⊂ BK × [−N, N], where Ia := π−1
n (a, 0) ∩ K. By applying Lemma 6.7(i) to the

compact set K := B̄K × [−N, N], there exists M > 0 such that the partial derivative
∂γ ∗

P ,M

∂xn
=

∂γ
p
P ,M

∂xn
is strictly positive on K ∩ {xn ≤ 0}. On the other hand, if K is in weak ST-position,

there exists, by Lemma 6.7(ii), M > 0 such that the partial derivative
∂γ ∗

P ,M

∂xn
= ∂γ r

P ,M

∂xn
is

strictly positive on the set {xn ≤ 0}.
(6.8.2) Since G∗

P ,M preserves the lines π−1
n (a, 0), to prove the statement it is enough to

show that γ
∗,a
P ,M(Ma) = γ

∗,a
P ,M(Na) = Ta for all a∈ Rn−1. Before proving this, we point out a

couple of facts:
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(6.8.3) First, if r ≤ 0 and γ
∗,a
P ,M(r) = r, then

γ
∗,a
P ,M(]−∞, r[) = ]−∞, r[. (6.1)

Indeed, observe that γ
p,a
P ,M(t) ≤ t for each t < 0. Besides, by Lemma 6.7(ii) the func-

tion γ
r,a
P ,M(t) is strictly increasing on the interval ]−∞, 0]. Since also limt→−∞ γ

∗,a
P ,M(t) =

−∞, we conclude that equality (6.1) holds. As a particular case, for r = 0 we have

γ
∗,a
P ,M(0) = 0 and therefore γ ∗.a

P ,M(] − ∞, 0[) =] − ∞, 0[.

(6.8.4) Second, if r ≥ 0 with rP (a, r) = 0, then γ
∗,a
P ,M(]r,+∞[) = [0,+∞[. Indeed, the inclu-

sion γ
∗,a
P ,M(]r,+∞[) ⊂ [0,+∞[ is trivial. To prove the converse, we define

δ∗
a(t) :=

⎧⎪⎪⎨
⎪⎪⎩

1 − tP 2(a,t)

M
if ∗ = p,

1 − tP 2(a,t) if ∗ = r,

and observe that if rP (a, r) = 0, then δ∗
a(r) = 1. Thus, since limt→∞ δ∗

a(t) = −∞, there is

t0 > r such that δ∗
a(t0) = 0. By continuity, we deduce

[0,+∞[ ⊂ γ
∗,a
P ,M([t0,+∞[) ⊂ γ

∗,a
P ,M(]r,+∞[) ⊂ [0,+∞[,

and so 6.8.4 is proved. This applies in particular to r = 0 and so, for each a∈ Rn−1,

we have

γ
∗,a
P ,M(]0,+∞[) = [0,+∞[. (6.2)

Let us prove now 6.8.2. We distinguish the following cases:

Case 1: Ma = R. Then Ma \ {0} ⊂ Na ⊂ Ma, and in view of equalities (6.1) and (6.2)

we have

R = γ
∗,a
P ,M(]−∞, 0[) ∪ γ

∗,a
P ,M(]0,+∞[) ⊂ γ

∗,a
P ,M(Na) ⊂ γ

∗,a
P ,M(Ma) ⊂ R.

Thus, γ
∗,a
P ,M(Ma) = γ

∗,a
P ,M(Na) = R = Ta.

Case 2: Ma = R\]p, q[, where −∞ ≤ p< q. Observe that (a, q) ∈ ∂K and, if p> −∞,

also (a, p) ∈ ∂K. The following equalities also hold:

lim
t→−∞ γ

∗,a
P ,M(t) = −∞, γ

∗,a
P ,M(p) = p (if p> −∞),

lim
t→+∞ γ

∗,a
P ,M(t) = +∞, γ

∗,a
P ,M(q) = q.
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Now, we analyze the behavior of the function γ
∗,a
P ,M on unbounded intervals of

interest:

(2.a) If q < 0, then γ
∗,a
P ,M([q,+∞[) = γ

∗,a
P ,M([q,+∞[ \ {0}) = [q,+∞[.

Indeed, since Ma \ {0} ⊂ Na ⊂ Ma and γ
∗,a
P ,M is strictly increasing in the interval [q, 0] ⊂

[−N, N] (see 6.8.1), we deduce that γ
∗,a
P ,M([q, 0[) = [q, 0[. We conclude, using once more

equality (6.2), that

[q,+∞[ = [q, 0[ ∪ [0,+∞[ = γ
∗,a
P ,M([q,+∞[ \ {0}) = γ

∗,a
P ,M([q,+∞[).

(2.b) If q ≥ 0, then γ
∗,a
P ,M([q,+∞[) = γ

∗,a
P ,M([q,+∞[ \ {0}) = [0,+∞[, in view of 4.8.4.

(2.c) If −∞ < p< 0, then γ
∗,a
P ,M(]−∞, p]) = ]−∞, p], by equality (6.1).

(2.d) Finally, if p≥ 0, we have ]−∞, 0[ ⊂ γ
∗,a
P ,M(]−∞, p] \ {0}) ⊂ γ

∗,a
P ,M(]−∞, p]), as a conse-

quence of equality (6.1).

Putting all together, we obtain

γ
∗,a
P ,M(Ma) = γ

∗,a
P ,M(Na) =

⎧⎨
⎩Ma = Ta if q < 0,

Ma ∪ [0,+∞[ = Ta if q ≥ 0,

and the proof of 6.8.2 is complete. �

7 Complement of the Interior of a Convex Polyhedron

In this section we prove the part of Theorem 1.1 concerning the complement of the inte-

rior of a convex polyhedron. More precisely, we prove the following theorem:

Theorem 7.1. Let n≥ 2 and let K ⊂ Rn be an n-dimensional convex polyhedron which is

not a layer. We have the following conditions:

(i) If K is bounded, then Rn \ Int(K) is a polynomial image of Rn.

(ii) If K is unbounded, then Rn \ Int(K) is regular image of Rn. �

Again, the proof of the previous results runs by induction on the number of

facets of K in case (i) and by double induction on the dimension and the number of

facets of K in case (ii). The first step of the induction process in the second case concerns

dimension 2, which once more has already being approached by the second author in [17]

with similar but less involving techniques. We start by approaching a particular case.

Lemma 7.2 (The orthant). Let K ⊂ Rn be an n-dimensional nondegenerate convex poly-

hedron with n≥ 2 facets. Then Rn \ Int(K) is a polynomial image of Rn. �
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Proof. After a change of coordinates, it is enough to show, by induction on n, that

p(Rn \ Qn) = n for each n≥ 2, where

Qn := {x1 > 0, . . . , xn > 0} ⊂ Rn.

For n= 2 apply [17, Theorem 1] and assume, by induction hypothesis, that p(Rn−1 \
Qn−1) = n− 1 is true (if n≥ 3), that is, there is a polynomial map f : Rn−1 → Rn−1 such

that f(Rn−1) = Rn−1 \ Qn−1. Define

f (1) : Rn → Rn, (x1, . . . , xn) �→ ( f(x1, . . . , xn−1), xn),

which satisfies the equality

f (1)(Rn) = f(Rn−1) × R = (Rn−1 \ Qn−1) × R.

Let f (2) : Rn → Rn be a change of coordinates such that f (2)((Rn−1 \ Qn−1) × R) = Rn \
Int(K1), where

K1 := {x1 ≥ 0, . . . , xn−3 ≥ 0, xn−2 + xn ≥ 0, xn−2 − xn ≥ 0} ⊂ Rn

is a convex polyhedron in strong FT-position (see the proof of Lemma 5.2). By Lemma 4.8

there exists a polynomial map f (3) : Rn → Rn such that

f (3)(Rn \ Int(K1)) = Rn \ (Int(K1) ∩ {xn−1 ≤ 0}).

Consider now the change of coordinates

f (4) : Rn → Rn, (x1, . . . , xn) �→ (x1, . . . , xn−2, xn, xn−1);

note that K′
1 = f (4)(K1) is in extreme optimal strong ST-position with respect to the facet

F′ := f (4)(K1 ∩ xn−1 = 0) = K′
1 ∩ {xn = 0}. By Lemma 6.8 there exists a polynomial map f (5) :

Rn → Rn such that

f (5)(Rn \ (Int(K′
1) ∩ {xn ≤ 0})) = Rn \ (Int(K′

1) ∩ {xn < 0}).

Moreover, there is a change of coordinates f (6) : Rn → Rn such that

f (6)(Rn \ (Int(K′
1) ∩ {xn < 0})) = Rn \ Qn.
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Thus, the composition g := f (6) ◦ f (5) ◦ f (4) ◦ f (3) ◦ f (2) ◦ f (1) : Rn → Rn is a polynomial

map that satisfies g(Rn) = Rn \ Qn. �

Proof of Theorem 7.1(i). Suppose first that K := Δ is an n-simplex. We may assume that

its vertices are

v0 := (0, . . . , 0), vi := (0, . . . , 0, 1(i), 0, . . . , 0) for i �= n− 1, and vn−1 := (0, . . . , 0,−1, 0);

this convex polyhedron is in strong FT-position because it is bounded. We write Δ :=⋂n+1
i=1 H ′

i
+ where {H ′

1, . . . , H ′
n+1} is the minimal presentation of Δ and the hyperplanes

H ′
i are ordered in such a way that H ′

1 := {xn = 0}. Consequently, the convex polyhe-

dron Δ1,× := ⋂n+1
i=2 H ′

i
+ is convex, n-dimensional, nondegenerate, and has n facets. By

Lemma 7.2 there is a polynomial map g : Rn → Rn such that g(Rn) = Rn \ IntΔ1,×. By Lem-

mata 4.8 and 6.8, and using suitably the change of coordinates which interchanges the

variables xn−1 and xn (as we have done above in the proof of Lemma 7.2), there is a

polynomial map h : Rn → Rn such that h(Rn \ IntΔ1,×) = Rn \ IntΔ, and therefore the com-

position f := h ◦ g is a polynomial map such that f(Rn) = Rn \ IntΔ.

Now, let K be an n-dimensional bounded convex polyhedron of Rn. Let Δ be an

n-simplex such that K ⊂ IntΔ. Write K := ⋂m
i=1 H+

i , where {H1, . . . , Hm} is the minimal

presentation of K, and consider the convex polyhedra {K0, . . . ,Km} defined by

K0 := Δ, K j := K j−1 ∩ H+
j for 1 ≤ j ≤ m.

Thus, Km = K and for each 1 ≤ j ≤ m the convex polyhedron K j = Δ ∩ (
⋂ j

i=1 H+
i ) has a

facet F j contained in the hyperplane Hj. Moreover, the set Rn \ Δ is, as we have just seen

above, the image of a polynomial map f (0) : Rn → Rn.

For each index 1 ≤ j ≤ m there is a change of coordinates h( j) : Rn → Rn such that

h( j)(H+
j ) = {xn−1 ≤ 0}; denote

K′
j := h( j)(K j) = h( j)(K j−1) ∩ h( j)(H+

j ) = h( j)(K j−1) ∩ {xn−1 ≤ 0}.

By Lemmata 4.8 and 6.8, and using again suitably the change of coordinates that inter-

change the variables xn−1 and xn, there is a polynomial map g( j) : Rn → Rn such that

g( j)(Rn \ h( j)(Int(K j−1))) = Rn \ h( j)(Int(K j−1 ∩ {xn−1 ≤ 0})) = Rn \ Int(K′
j);
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hence, the polynomial map f ( j) := (h( j))−1 ◦ g( j) ◦ h( j) : Rn → Rn satisfies the equality

f ( j)(Rn \ Int(K j−1)) = Rn \ Int(K j).

Thus, the composition f := f (m) ◦ · · · ◦ f (0) : Rn → Rn is a polynomial map that satisfies

f(Rn) = Rn \ Int(Km) = Rn \ Int(K), as wanted. �

Proof of Theorem 7.1(ii). We proceed by induction on the pair (n, m) where n is the

dimension of K and m is the number of facets of K. As we have already been commented,

the case n= 2 has already solved in [17, Theorem 1] (using polynomial maps) and we do

not include further details. Suppose, in what follows, that n≥ 3 and that the result holds

for any d-dimensional convex polyhedron of Rd which is not a layer, if 2 ≤ d≤ n− 1. We

distinguish two cases:

Case 1. K is a degenerate convex polyhedron. This case runs parallel to Case 1

in the proof of Theorem 5.1(ii). By Lemma 2.1, we may assume that K = P × Rn−k where

1 ≤ k< n and P ⊂ Rk is a nondegenerate convex polyhedron. If k= 1, then K is either a

layer, which disconnects Rn and cannot be a regular image of Rn, or a half-space. It is

trivial to check that the complement of the interior of a half-space is indeed a regular

(in fact, polynomial) image of Rn. We now assume k> 1; by the induction hypothesis

Rk \ IntP is the image of Rk by a regular map f : Rk → Rk; hence, Rn \ Int(K) is the image

of the regular map ( f, idRn−k) : Rk × Rn−k → Rk × Rn−k.

Case 2. K is a nondegenerate convex polyhedron. If K has n facets (and so just

one vertex), the result follows from Lemma 7.2. Suppose now that the number m of

facets of K is strictly greater than n and let {H1, . . . , Hm} be the minimal presentation

of K := ⋂m
i=1 H+

i . We may assume, by Lemma 4.9, that K is in extreme weak FT-position

with respect to F1.

By Lemma 4.10 the convex polyhedron K1,× := ⋂m
j=2 H+

j is in weak FT-position.

Thus, we can apply Proposition 4.8 to the convex polyhedron K1,×, and so there is a

regular map f (1) : Rn → Rn such that

f (1)(Rn \ Int(K1,×)) = Rn \ (Int(K1,×) ∩ {xn−1 ≤ 0}).

Observe that

Int(K1,×) ∩ {xn−1 ≤ 0} = (Int(K1,×) ∩ {xn−1 < 0}) ∪ (Int(K1,×) ∩ {xn−1 = 0})

= Int(K1,× ∩ {xn−1 ≤ 0}) ∪ Λ = Int(K) ∪ Λ,
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where

Λ := Int(K1,×) ∩ {xn−1 = 0} ⊂ K1,× ∩ {xn−1 = 0} = K ∩ {xn−1 = 0} = F1

is a subset of the interior of the facet F1 (as a topological manifold with boundary).

Let f (2) : Rn → Rn be a change of coordinates such that K′ := f (2)(K) ⊂ {xn ≤ 0} and F′
1 :=

f (2)(F1) = K ∩ {xn = 0}; by Remark 6.2, K′ is in extreme weak ST-position with respect to

the facet F1’. Denote Λ′ := f (2)(Λ).

By Lemma 6.8, there is a regular map f (3) : Rn → Rn such that

f (3)(Rn \ (Int(K′) ∪ Λ′)) = Rn \ Int(K′).

Moreover, K1,× is a convex polyhedron with m − 1 ≥ n facets; hence, it is not a layer,

and by induction hypothesis there is a regular map g : Rn → Rn such that g(Rn) = Rn \
Int(K1,×). We conclude that the regular map h := ( f (2))−1 ◦ f (3) ◦ f (2) ◦ f (1) ◦ g satisfies

h(Rn) = ( f (2))−1 ◦ f (3) ◦ f (2) ◦ f (1)(Rn \ K1,×) = ( f (2))−1 ◦ f (3) ◦ f (2))(Rn \ (Int(K) ∪ Λ))

= ( f (2))−1 ◦ f (3))(Rn \ (Int(K′) ∪ Λ′)) = ( f (2))−1(Rn \ Int(K′)) = Rn \ Int(K),

and we are done. �

Remark 7.3. Again, the previous proof is constructive. Moreover, if the convex polyhe-

dron that appears in a certain step of the inductive process is in strong FT-position with

respect to a facet F1 and it can also be placed in strong ST-position with respect to that

facet, then combining Lemmata 4.8 and 6.8 the regular map of this step can be chosen

polynomial. In view of Definitions 4.4 and 6.3, this reduces the complexity of the final

regular map. Moreover, if this can be done in each inductive step, the final regular map

can be assumed to be polynomial. �

8 Application: Exterior of the n-Dimensional Ball

The complement of a closed ball can be understood as the limit of the complements of

a suitable family of bounded convex polyhedra (consider triangulations of the closed

ball) and it is natural to wonder if this semialgebraic set is also a polynomial image

of Rn. However, this complement is never a polynomial image of Rn. Indeed, consider

the n-dimensional closed ball B̄n(0, 1) of radius 1 centered at the origin of Rn and its
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complement S := Rn \ B̄n(0, 1). Consider the (n− 1)-dimensional algebraic set

X := ∂S = S̄ \ S = {(x1, . . . , xn) ∈ Rn : x2
1 + · · · + x2

n = 1}.

Since X ∩ S̄ = X is a bounded set and dim(X ∩ ∂S) = n− 1, we deduce by Fernando and

Gamboa [5, 3.4] that S is not a polynomial image of Rn.

Nevertheless, we prove here that the complement of the open ball of Rn, which

is the limit of the complements of the interiors of a suitable family of bounded con-

vex polyhedra, is a polynomial image of Rn. The two-dimensional case was approached

in [5, 4.1] with a very specific proof which cannot be generalized to the n-dimensional

case. Our proof is based on the results obtained in the precedent sections concerning

complements of convex polyhedra. As before, we assume in this section that n≥ 2.

Proposition 8.1. The complement of an open ball of Rn is a polynomial image of Rn. �

Proof. It is enough to prove that the complement of the open ball Bn(0, 1) ⊂ Rn of

radius 1 centered at the origin is a polynomial image of Rn. To that end, consider the

n-dimensional cube C := [−1, 1]n and recall that, by Theorem 1.1, there is a polynomial

map f (1) : Rn → Rn whose image is Rn \ C. Observe also that Bn(0, 1) ⊂ C ⊂ Bn(0, n).

(8.1.1) Next, we construct a biquadratic polynomial g := gn ∈ R[t2] such that the polyno-

mial h := hn := tg defines an increasing function on the interval [n,+∞[ and satisfies the

following conditions:

h(0) = 0, h(1) = h(n) = 1, h′(n) = 0, h(]1, n[) ⊂ [1,+∞[ and h([0,+∞[) = [0,+∞[.

This implies, in particular, that h(]1,+∞[) = h([n,+∞[) = [1,+∞[ and the following

equality needed later:

h([μ,∞[) = [1,+∞[ for each 1 ≤ μ ≤ n. (8.1)

Next, let us check that the polynomial g(t) := ant4 + bnt2 + cn, where

an := 1 + 2n

2n3(1 + n)2
, bn := −1 + 2n+ 3n2 + 4n3

2n3(1 + n)2
, and cn := 3 + 6n+ 4n2 + 2n3

2n(1 + n)2
,

satisfies the required conditions. The values an, bn, and cn are obtained by imposing

conditions h(1) = h(n) = 1 and h′(n) = 0 to a polynomial of type ant5 + bnt3 + cnt.
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Indeed, h(0) = 0 and the derivative h′(t) = 5ant4 + 3bnt2 + cn of h in t= 1 becomes

h′(1) = n4 + n3 − 4n2 + n+ 1

(1 + n)n3
= (n− 1)2(n2 + 3n+ 1)

(n+ 1)n3
> 0;

hence, h is increasing on a neighborhood of t= 1. Observe that an, cn > 0 and bn < 0,

and so, by Descartes’ chain rule (see [2, 1.2.14]), the number of positive roots of h′(t)

counted with their multiplicity is at most 2. By Rolle’s Theorem we deduce using equali-

ties h(1) = h(n) = 1 that there is ξ ∈ ]1, n[ with h′(ξ) = 0. Since h′(n) = 0, the derivative h′(t)

has exactly two positive roots, which are ξ and n. This implies, since an > 0, that the

derivative h′(t) is strictly positive on the interval ]n,+∞[; consequently, h is an increas-

ing function on the interval [n,+∞[.

Let us show now that h(]1, n[) ⊂ [1,+∞[. Since h is an increasing function on a

neighborhood of t= 1 and since h(1) = h(n) = 1 and h′(t) has exactly one root in the

interval ]1, n[, we deduce that h(t) > 1 for all t ∈]1, n[. Otherwise, there would exist t0 ∈
]1, n[ such that h(t0) = 1 and, by Rolle’s Theorem, there would be ξ1 ∈ ]1,t0 [ and ξ2 ∈ ]t0, n[

such that h′(ξi) = 0 for i = 1, 2, which is a contradiction.

Finally, we prove the equality h([0,+∞[) = [0,+∞[. Indeed, h is an increasing

function on the interval ]0, ξ [, because h′(t) has no roots in ]0, ξ [ and h′(1) > 0. Since

h(ξ) > 1 = h(n) and h′(t) does not vanish in the interval ]ξ, n[, the function h is decreasing

in such interval; hence, h([0, n]) = [0, h(ξ)]. On the other hand, h(t) is increasing in the

interval [n,+∞[ and so h([n,+∞[) = [h(n),+∞[. Consequently, since h(n) ≤ h(ξ) it holds

h([0,+∞[) = h([0, n]) ∪ h([n,+∞[) = [0, h(ξ)] ∪ [h(n),+∞[= [0,+∞[.

(8.1.2) Next, since g ∈ R[t2], the map

f (2) : Rn → Rn, x := (x1, . . . , xn) �→ g(‖x‖)(x1, . . . , xn)

is polynomial. Moreover, if as usual Sn−1 := {
v ∈ Rn : ‖
v‖ = 1}, for each 
v ∈ Sn−1 we have

f (2)(t
v) = g(‖t
v‖)t
v = g(t)t
v = h(t)
v ∀t ∈ [0,+∞[ and then ‖ f (2)(t
v)‖ = h(t) ∀t ∈ [0,+∞[.

Let μ
v ∈ ]1, n[ be such that

0
v ∩ (Rn \ C) = {0 + t
v : t ∈ [μ
v,+∞[};
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we deduce from equality (8.1) that f (2)(0
v ∩ (Rn \ C)) = {0 + t
v : t ∈ [1,+∞[}. Conse-

quently,

f (2)(Rn \ C) =
⋃


v∈Sn−1

f (2)(0
v ∩ (Rn \ C)) =
⋃


v∈Sn−1

{0 + t
v : t ∈ [1,+∞[} = Rn \ Bn(0, 1).

Finally, the polynomial map f := f (2) ◦ f (1) : Rn → Rn satisfies

f(Rn) = f (2)( f (1)(Rn)) = f (2)(Rn \ C) = Rn \ Bn(0, 1),

as wanted. �

The complement of a closed ball B̄ in Rn is not a polynomial image of Rn, but we

prove next that it is, however, a polynomial image of Rn+1; hence, p(Rn \ B̄) = n+ 1.

Corollary 8.2. The complement of a closed ball B̄ of Rn is a polynomial image of Rn+1.�

Proof. It is enough to prove that Rn \ B̄n(0, 1) is a polynomial image of Rn+1. By Propo-

sition 8.1, there is a polynomial map g(1) : Rn → Rn whose image is Rn \ Bn(0, 1). On the

other hand, by Fernando and Gamboa [4, 1.4 (iv)], the image of the polynomial map

g(2) : R2 → R2, (x, y) �→ ((xy − 1)2 + x2, y(xy − 1))

is the open half-space ]0,+∞[×R. Consider now the polynomial maps

f (1) : Rn+1 → Rn, (x1, . . . , xn+1) �→ (1 + x1)g
(1)(x2, . . . , xn+1),

f (2) : Rn+1 → Rn+1, (x1, . . . , xn+1) �→ (g(2)(x1, x2), x3, . . . , xn+1).

Since f (2)(Rn+1) = ]0,+∞[ × Rn, the polynomial map f := f (1) ◦ f (2) : Rn+1 → Rn satisfies

f(Rn+1) = f (1)( f (2)(Rn+1)) = f (1)(]0,+∞[×Rn) = Rn \ B̄n(0, 1),

as wanted. �
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