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A B S T R A C T  

We obtain new necessary conditions for an n-dimensional semialgebraic 

subset of R '~ to be a polynomial image of I~ n. Moreover, we prove that 

a large family of planar bidimensional semialgebraic sets with piecewise 

linear boundary are images of polynomial or regular maps, and we 

estimate in both cases the dimension of their generic fibers. 

1. In t roduc t ion  

The present work continues the study of polynomial and regular images of 

euclidean spaces began in our [FG]. A map f = ( f l , - - . ,  f~): ~n ~ l~m is 

a polynomial  map  if each component f / i s  a polynomial of ~ [x l , . . . ,  Xn]. A 
subset S of ]~m is a polynomial  image of I~ n if there exists a polynomial map 

/:  ~n ~ l~rn such that S = f(~n). 
Let S be a subset of ]R m . We define 

f least p _> 1 such that S is a polynomial image of R p, 
p(S) [ ec otherwise. 
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Ultimately, one of the aims of our efforts is to characterize in an efficient way 

those subsets S with finite p(S). At present, this seems, in most cases, a difficult 

matter.  For instance, we do not even know if the invariant p is finite for very 

simple sets like S = {y > 0, y - x 2 - 1 < 0} C R2. 

As we have announced above we also deal with regular images of euclidean 

spaces. A map f = ( f l , . . - ,  fm): IRa --+ ll~m is a r e g u l a r  m a p  if each component 

fi  is a regular function of ]~(Xl,.. .  ,Xn), that  is, each component f~ = gi /hi  is 

a quotient of polynomials such that  the zero set of h~ is empty. A subset S of 

~m is a r e g u l a r  image  of l~ n if it is the image S = ] ( R  n) of ll~ n by a regular 

map f .  Analogously, for a subset S C I~ "~ we define the invariant 

r(S) = ~ least r _> 1 such that  S is a regular image of l~ r,  
~ otherwise. 

Again a natural question is to characterize in an efficient way those subsets S 

with finite r(S). 

In Real Algebraic Geometry we know about several problems for semialgebraic 

sets S which are either polynomial or regular images, that  i n a  certain sense can 

be reduced to the case S = ~n. Examples of such problems are: 

• optimization of polynomial and /or  regular functions on S, 

• characterization of the polynomial or regular functions which are positive 

semidefinite on S, 

• the study of the 17th Hilbert problem for S, 

• computation of trajectories inside S which are parametrizable by polyno- 

mial maps. 

For the benefit of the reader, we recall a few definitions and results that  

appear in our previous work [FG]. Firstly, a subset T C ll~ ~n is i r r e d u c i b l e  if 

its Zariski closure ~--zar is an irreducible algebraic set. We showed in [FG] that  if 

p(S) is finite, then S must be a pure dimensional, connected, semialgebraic and 

irreducible set. Moreover, the image of such an S under a polynomial function 

g: ]I~ m ----} ~ must be either unbounded or a singleton. 

Obviously, 

p(S) _> r(S) _> dim S for every semialgebraic subset S C I~ m , 

and it seems interesting to determine under what conditions on the subset S 

these inequalities are strict. As we shall see later in this work the topology and 

the shape of S play a crucial role. 

A particularly interesting case is the one when S is an open subset of R n which 

is the image of a polynomial map f :  l~ n -+ ]~n. In [FG, 1.3.1] we showed that  
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the e x t e r i o r  b o u n d a r y  (iS = S \ S of S is included into the set Sf  of points of 

the target space H n at which f is not a proper map. This set Sf  was introduced 

by Jelonek in [J1] where he proved that  it is a subset of f(H~).  He also gave 

the definition of a p a r a m e t r i c  s emi l ine  as a polynomial 1-dimensional image 

of H. Clearly, a parametric semiline is an irreducible and unbounded set. Based 

on his ideas (see [J1] and [J2]), one easily concludes that  if an open set S C H n 

has p(S) = n, then ~ a r  is a finite union of parametric semilines. 

At this point, a natural question arises: Are the given necessary conditions, 

also sufficient for an open set S C H n fulfilling them to ensure that it is a 

polynomial image of H n ? 

It is natural to begin by checking if some simple subsets of IR 2 are polynomial 

images of H 2 . This was done with the open half-plane and the open quadrant 

in our [FG]. 

In this work we shall see that  the above-mentioned properties are not suffi- 

cient. Even more we find new necessary conditions, for which at present we do 

not know whether they are sufficient. 

The paper is organized as follows. In Section 2 we obtain a factorization 

theorem for polynomial maps which we think has some interest on its own, and 

we apply it to show that  if S C H TM is a semialgebraic curve and p(S) < co, 

then p(S) <_ 2, and p(S) = 1 if and only if S is a closed subset. 

The main results of this work are in Section 3. There, we find new necessary 

conditions to have the equality p(S) = dim(S) = n for a subset S C H n . 

In Sections 5, 6 and 7 we study the invariants p(S) and r(S) for particular 

types of semialgebraic sets with piecewise linear boundary. For this purpose, we 

find useful the fact that  the set {x 2 +y~ >_ 1} is a polynomial image of 11( 2 , a fact 

proved in Section 4. Assume in particular that  S C H 2 is either a closed or open 

convex unbounded polygon with e linear sides. We prove that  p(S) is finite if 

and only if S has non-paxallel sides. Moreover, if S is open, then p(S) = 2 if 

and only if e _~ 2. For e _> 3, we have that  

2(e - 2) if S is closed, 
p(S)<_ 2(e 2 ) + 1  i f S i s o p e n .  

In contrast, if S is again open, then 

max{2, e - 1} if S has two parallel sides, 
r(S)_~ max{2, e} otherwise. 

It must be pointed out that  this class of sets allows us to show that  both 

invariants p and r can be different, even when both are finite. We also prove 
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that  several not necessarily convex sets with piecewise linear boundary are poly- 

nomial images, and we estimate their invariants p and r. The paper ends with 

the formulation of some selected open questions. 

Most of the results of this work are also true if we change the field it( of 

the real numbers by any other real closed field. This generalization is quite 

straightforward, and we will not enter here into its details. We refer the reader 

to [BCR]. 

ACKNOWLEDGEMENTS: The authors thank Prof. J. M. Ruiz for many 

fruitful discussions during the preparation of this work. We also thank Profs. 

J. Guti~rrez and D. Sevilla for pointing out several classical results used in 

Section 2. 

2. O n e - d i m e n s i o n a l  p o l y n o m i a l  images  

It is a difficult question to decide under what conditions a polynomial map 

f :  ]~n __+ ]~m factors through R d for d = dim(f(~n)) .  We prove that  this always 

happens for d = 1, and that  fact helps us to get a better understanding of one- 

dimensional polynomial images. We also see that  for d > 2 there exist examples 

of maps that  do not factorize. 

PROPOSITION 2.1: Let f = ( f l , . . . ,  fro): ~n _.4 ~m be a polynomial map whose 

image has dimension 1. Then f factors polynomially through ~, that is, there 

exist polynomial maps g: ~n _~ I~ and h: ~ --+ ~m such that f = h o g. 

Proof: Let ]~ ~--- ] ~ ( f l , ' ' ' ,  fra) be the smallest subfield of the field of rational 

functions ]R(Xl,.. •, xn) in n variables that  contains IR and f l , .  , . ,  ,fro. Note that  

t r .  deg(FIR ) = dim im f = 1, 

and that  some of the fi 's  are not constant. Then, by [N, §13], [Sch, §3. Thm. 4], 

there exists a polynomial g E R[Xl , . . . ,  xn] such that  F = ]l((g). 

Next, we are seeking polynomials h l , . . . , h m  E ~t] such that  hi(g) = fi. 

For that,  since fi E F = ~(g), we have fi -- Pi(g)/Qi(g) for some coprime 

polynomials Pi, Qi E ~[t]. By Bezout's lemma, we can write 1 = PiAi + QiBi 

for some A~, B~ E If(It]. Substituting the variable t by g we get the polynomial 

identity 

i = Pi(g)Ai(g) + Qi(g)Bi(g) = Qi(g)fiAi(g) + Qi(g)Bi(g) 

= Qi(g)(fiA~(g) + B~(g)); 
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hence, Q~(g) is a nonzero constant, and so the polynomials he = Pi(t) /Qi(g) fit 

our situation. 

Finally, the polynomial maps h = (h l , . . . , hm) :  ~ -~ l~ m and g: ]~n ~ 

satisfy f = h o g. | 

COROLLARY 2.2: Let S C ~m be a 1-dimensional polynomial image of ]~n. 

Then, i f  S is closed in ~m it is a parametric semiline. Otherwise, the closure -S 

of S in ~m, which differs from S in just one point, is a parametric semiline. 

Proo~ By 2.1, there exist polynomial maps g: ~'~ --+ l~ and h: I~ --+ l~ "~ such 

that  S = h(g(l~n)). By [FG, 1.3(3)], g(]l~ n ) is an unbounded interval of ~. 

Without loss of generality, we may assume that  g(Rn) is one of the following 

sets: R, [0, +co) or (0, +co). 

Now, if S is closed, h - l ( S )  is a closed subset of l~ that  contains g(]~"). Thus, 

S = h(g(~n)), that  is, S is either h(]~) or h([0,+oo)). But since [0,+c~) is 

the image of the polynomial map t ~ t 2, we conclude that  S is a parametric 

semiline. 

Next, if S is not closed, then, h being a proper map, g(Rn) = (0, +oo) and 

S = S U {h(0)} is a parametric semiline. | 

Examples 2.3: (a) Note that  there exist a parametric semiline F and a point 

p 6 F, which does not disconnect F, such that  F \ {p} is not a polynomial image 

of ]~n for any n. Take, for instance, 

F =  {x 2 - y 2 + x  3 =0} .  

This set is the image of the polynomial map t ~ (t 2 - 1,t(t  2 - 1)). However, 

F \ {(-1,  0)} is not a polynomial image of ~n. Otherwise, F \ {(-1,  0)}, which 

has two branches, would be a polynomial image of (0, +oo) which has just one, 

a contradiction. 

(b) The closed and connected subset S = F ;3 {x > 0} of the parametric 

semiline F above is not a polynomial image of ~n for any n. If S were a 

polynomial image of ]~n, it would be a polynomial image of ~ (note that  it is 

closed in ~2, see 2.2). But since S is analytically reducible at the origin, it is 

not even an analytic image of ~, a contradiction. 

(c) With the terminology of the introduction it follows from the proof of 

Corollary 2.2 that  if S is a 1-dimensional set then either p(S) = co or p(S) _< 2, 

because the open interval (0, +oo) is the image of the polynomial map 

~2 __+ ~ (x, y) --+ (xy - 1) 2 + y2. 
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Remarks  2.4: The factorization property stated in Proposition 2.1 is no longer 

true for polynomial maps of rank _> 2. Take, for instance, the polynomial map 

f :  ~3 ~ II~3 

(x l ,x2 ,x3)  x3(x ,x ,xlx2), 

whose image is the cone S = {xy  = z2}. This map does not admit a polynomial 

factorization through ~2, that  is, there are no polynomial maps 

g = (gl,g2): l~ 3 --+ 1~2 and h = (h l ,h2 ,  h3): ~2 __+ ~3 

such that  f = h o g. Otherwise, since the image of g should be 2-dimensional we 

deduce that  hlh2 = h]. This implies that  hi is a reducible polynomial because, 

on the contrary, hi would divide h3 and so x2x3 = hi(g)  would divide the 

product h3(g) = x lx2x3 ,  which is imposible. The same works for h2. 

Hence, hi,  h2 are reducible and there exist nontrivial factorizations hi = FiGi  

where Fi, Gi E ll~[u, v] and i = 1, 2. Substituting u = gl, v = g2 one gets 

x~x3 = hi (g) = FI(g)G1 (g), 

= h (g) = F2(g)G (g). 

Thus, the essentially different possibilities are: 

x3) or 
( F l ( g ) , G l ( g ) )  = (XlX3,Xl)  

(F2(g) ,G2(g))  = 
o r  

( x2x3 ,x2 ) .  ( 

In any case, we conclude that  

K 2 2 = l ~ ( x l , x 2 , x 3 )  C E = l ~ ( g l , g 2 )  

which is false, since trdegR]K = 3 and t r  degRE = 2. 

In addition, note that  the cone S = {xy  = z 2} is a polynomial image of l~ 2 

via the polynomial map P: ]~2 __+ ~3 , ( s , t )  ~ (t 3 _ s ) .  ( s2 , t2 ,s t ) .  In fact, a 

direct substitution shows that  the image of P is contained in S. To check the 

converse we take a point p = (a, b, c) E S and we prove that  it is in the image 

of P.  For, if b = 0 we have that  P(~fL--~, 0) = p. Next, if b ¢ 0 we consider the 

system of polynomial equations: 

(t 3 - s)s 2 = a, 

(t 3 - s)t  2 = b, 

( t  3 - s ) s t  = c .  
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Dividing the third equation by the second one, we deduce that  

Substituting this value in the second equation, we obtain tha t  

t5 C 3 - b : o .  

This equation has a real root to, and P(~t0,  to) = p, as wanted. 

s = ~ t .  

3. A new obs truc t ion  t o  b e  a p o l y n o m i a l  image 

In this section we find general necessary conditions that  must  satisfy the exterior 

boundary of the image of a polynomial map f :  I~ n ~ l~ n . Before tha t  we have to 

introduce some terminology. Following [J2, 6.2], we recall that  a subset S C ]~n 

is ]~-uniruled if for every point a E S there exists a parametr ic  semiline L such 

tha t  a E L C S. Moreover, the set S is g e n e r i c a l l y  ]~-uniruled if there is an 

open dense subset U C S, such that  for every point a E U there is a parametr ic  

semiline L such tha t  a E L C S. 

THEOREM 3.1 : Let S C ~n be a n-dimensional semialgebraic subset and let 5S 

be its exterior boundary. Suppose that S is a polynomial image of 1~ n . Then 

there exist two semialgebraic sets So, $1 C ~n such that:  

(a) dim $1 <_ n - 2, 

(b) So is either empty or it is a closed, (n - 1)-dimensional and generically 

R-uniruled set, 

(C) 5S  C So U S I  C S A ( I S  "zar. 

Proof: Since S is a polynomial image of ~n there exists a polynomial map 

f :  ll(n ~ ~n such that  f(I~ n) -- S. As we have recalled in the introduction, 

the set S S of points at which f is not proper contains (iS. By [J2, 6.4], the set 

S S is closed, semialgebraic, l~-uniruled and d imSs  _< n - 1. Let X 1 , . . . ,  Xe be 

the irreducible components of ~ y a r .  We can suppose tha t  dim Xi M (iS <_ n - 2 
T 

if and only if 1 < i < r for some r < L Let S1 = Ui=I x i  A (iS, which is a 

semialgebraic set of dimension _~ n - 2. 

If  (iS C $1, then we take So = ~ and we are done. Otherwise, let 

T =  
i=l  i----1 

Note that  since T C Sf  M ~-~ar C S M (i--~ar, also T C S M ~-~ar. Moreover, T 

and T are semialgebraic sets and T is an open subset of T. 

Now, we will see tha t  for every x E T there exists a parametr ic  semiline L such 

tha t  x E L C T. Indeed, since S S is an R-uniruled set, for every x E T C S I 
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there exists a parametric semiline L such that  x E L C S/.  Since x E T, L is not 

contained in any of the algebraic sets X 1 , . . . ,  X~, hence L N Ui=l X~ is a finite 

set and L \ [-J~l Xi = L. On the other hand, since L C $ /  is irreducible then 

there exists r + 1 _< j _< ~ such that  L C Xj .  Moreover, since Xj  is irreducible 

and dim Xj N 5S = n - 1 = dim Xj ,  we conclude that  L C X j  C ~-~zar. Hence, 

L \  X i c  $ / \  Xi = T  
i=1 

r X and therefore, L = L \ Ui=l ~ C T. Thus, the (n 1)-dimensional closed 

semialgebraic set So = T is also generically R-uniruled. 
---z'~Z~ a r  

Finally, we see that  5S C So U $1. Since 5S c S~ n 5S , if there exists some 

x E S S \ S 1  then 

i 1 i=1 " 

and this concludes the proof. | 

Remark 3.2: (a) The set So in the previous Theorem is generically ]~-uniruled, 

but we do not know if it is in fact ~-uniruled. As far as we know the problem 

of determining which generically R-uniruled semialgebraic sets are ~-uniruled 

is still open. 

(b) Clearly, the union of ~-uniruled sets is also ~-uniruled. However, the 

irreducible components of an l~-uniruled algebraic set X C ~n have not to be 

even generically ~-uniruled. Consider, for instance, the union X C ]~3 of the 

irreducible algebraic sets 

XI: z 2 - x ( x  2 + y 2  _ 1)2 = 0, 

X2: x 2 + y2 _ 1 = 0. 

Obviously, the cylinder X2 is ~-uniruled. On the other hand, X1 is the union 

of the circumference C = {z = 0,x 2 + y2 = 1} and the image of the map 

(s,t) ~ (t 2 , s , t ( t  4 + s 2 - 1)). Note that for each point a E X1 \ (x < 0} 

there exists a parametric semiline L C X1 through a. Hence, X is ]~-uniruled. 

However, for each point b E X1 N {x < 0} = C N {x < 0} there is no parametric 

semiline through b contained in X1; hence, X1 is not even generically ll~-uniruled. 
| 

Next, we show that  any real algebraic subset of a hyperplane of II~ ~ is the 

union of some of the irreducible components of the Zariski closure of the exterior 
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boundary of some polynomial image S C II~ n of I~ n. Hence, it seems that  there 

should not be many restrictions for the irreducible components of codimension 

_> 2 of the Zariski closure of the exterior boundary 5S. 

PROeOSITION 3.3: Let F 1 , . . . ,  Fr E ~[ul , . . . , un] be polynomials in n variables 

which do not vanish simultaneously at the origin. Then there is a polynomial 

map f:  ~nq-1 ~ ~n-{-X whose image is the set S = I~ n+l \ X ,  where 

x = {F1 = 0 , . . . ,  F r  = 0, u +l = 0} u {u ,  = 0 , . . . ,  = 0, u +l < 0}. 

Proof: Let f = ( f l , . . .  , f~ , fn+ l ) :  ~n+l __+ li~n+l be the polynomial map 

defined by 

f i (x)  = Xn+lX~ for i = 1 , . . .  ,n; 
~ n 

fn+l(X) : Xn+12 Fk(Xn+lXl, .. • ,Xn+lXn) 2 -[-Xn+l E X  2. 
k----1 i----1 

An straightforward computation shows that  the polynomials f l , . . . ,  fn+l satisfy 

the equality 

(*) x3 ~+1 E Fk( f l ,  . . . ,  f~)2 _ x~+lf~+l  + f~ = O, 
k=l  i=1 

and that  f ( x l , . . . , x n , O )  = O, and so 0 C i m f .  

Now, let us see that  i m f  = S. For each point u = ( u l , . . .  ,u~,un+l)  E li{ ~+1 , 

consider the polynomial 

P~(T) = T 3 E Fk ( u l , . . . ,  Un) 2 -- un+,T + ui.  
k : l  i : 1  

We claim that  this polynomial has a nonzero root in ~ if and only if u E S \ {0}. 
n 2 Indeed, if u E S and ~i=1 ui ~ 0 then Pu is a polynomial of odd degree and 

n 2 = 0, and u C S \ {0}, P~(0) ¢ 0. Hence, it has a nonzero real root. If ~i=1 ui 

then Un+l > 0 and so 
i ~tn_t_ 1 

0 • Ek----1 Fk(0) 2 

is a nonzero root of P~. 

Conversely, if u ~ S then either P~ is a nonzero constant polynomial (which 

has no root in ll~) or its only root is zero (this last happens if Ul . . . . .  Un = 0 
T and U~+x < 0). If u = 0 then P~ = ~ k = l  Fk(O) 2T3 whose unique root is zero. 

Using the identity (*) one deduces that  if u E im f \  {0} then P~ has a nonzero 

root and therefore u E S \ {0}. Thus, we only have to check the converse. 
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Let u E S \ {0} and let Xn+l be a nonzero root of Pu and x~ = u J X n + l  for 

i = 1 . . . .  , n. Computing a little and using that  Xn+l is a nonzero root of Pu 

one deduces tha t  f ( x l , . . .  ,Xn+l) = u, as wanted. I 

As an easy consequence of Theorem 3.1, we get the following obstruction for 

a n-dimensional semialgebraic subset of ~n to be a polynomial image of ~n.  

COROLLARY 3.4: Let S C ~n be a n-dimensional  semialgebralc set and let 

X C 1~ n be a (n - 1)-dimensional algebraic set. Suppose  that  X A-S is bounded  

and that  dim(X N (iS) = n - 1. Then  S is not  a polynomial  image of l~  n . 

Proof." We proceed by the way of contradiction. Suppose that  S C ~'~ is a 

polynomial image of ~*~. By 3.1 there exist two semialgebraic sets So, $1 C ~'~ 

such that:  

(a) d i m S l _ < n - 2 ,  

(b) So is either empty  or it is a closed, (n - 1)-dimensional and generically 

~-uniruled set, 

(c) (iS c So u S, c S n (iS zar. 

Since d im(X n (iS) = n - 1 and (iS C So U $1, also d im(X N (iS n So) = n - 1. 
_-~--zar 

Hence, X and So share an irreducible component  Y of dimension n - 1 such 

that  d im(Y n (iS) = n - 1. Let x E Y n (iS n So be a point such that  x does not 

belong to any of the other irreducible components o f  S - ~  ar (such a point exists 

because dim(Y N (iS) = n - 1). Since So is a generically R-uniruled set, we can 

choose x such tha t  there exists a parametr ic  semiline L C So through it. 

Next, we want to see tha t  L C Y C X.  Since L C So, we have that  

~-~ar C So • L being irreducible, we deduce tha t  x E L C Z for some 
~--=---z ar 

irreducible component  Z of So . In fact, we necessarily have Z = Y. 

Hence, we get tha t  L C So N X  C S N X  which is a bounded set, a 

contradiction because the parametr ic  semilines are unbounded. I 

R e m a r k  3.5: The previous result does not extend to an algebraic set X of 

codimension _> 2. Take, for instance, the octant 

S = {Xl > 0, x2 > 0, x3 > 0) c ~3, 

which by [FG, 1.6] is a polynomial image of ~3. Now, we consider the line 

X = {x3 = 0,Xl + x 2  = 1}. Note that  d i m X  N (iS = 1 and that  

X A S  = {x3 = 0 ,x l  + x2 = 1,Xl > 0,x2 _> 0}, 

which is a bounded set. 
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Example 3.6: The semialgebraic sets 

S = {xl * 1 0 , . . . , x n  *~ 0,Xl + " " + X n  > 1}, 

where *i denotes either > or _>, are not polynomial images of ~n. 

consider X = {Xl + . . .  + Xn = 1 }. It is clear that  

X N S - -  {Xl q - ' " - [ - X n  = 1,Xl > 0 , . . . , X n  ~_ 0} ---- X N ( ~ S  

Indeed, 

is bounded and has dimension n - 1. Then by 3.4 we conclude that  such sets S 

are not polynomial images of ~ .  

Note that  for n = 2 the previous example solves a question proposed in 

[FG, 4.1.1]. In fact, we have the following more general result: 

COROLLARY 3.7: Let S C ]~2 be an open convex polygon with linear sides. 

Then S is a polynomial image of I~ 2 i f  and only i f  S has only two sides, that is, 

S is at~nely equivalent to the open quadrant. 

Proof: First, suppose that  S is a polygon with more than two sides. Then S 

has a bounded side t?. Since S is convex then ~ar N S = ~, which is a bounded 

segment. Thus, by 3.4, we conclude that  S is not a polynomial image of R 2 . 

Conversely, if S has only two sides, then S is affinely equivalent to the open 

quadrant. Now, it follows from [FG, 1.7] that  S is a polynomial image of ~2. 
| 

Next, we show that  Theorem 3.1 can be slightly improved for n = 2. This is 

a consequence of the fact that  we know stronger properties for the set Sf  of a 

polynomial map f :  ll~ 2 ~ ~2 than for the general case; compare the results in 

[J2, 4.2] and [J2, 6.4]. In fact, Jelonek announced, in the 2003 Network workshop 

on real algebra (Dortmund), a related result from which it follows that  p(S) > 3 

for the set 

S = {x > 0,y > 0 , x -  y + 4  > 0 }  

(a question proposed in [FG, 4.1.1]). 

THEOREM 3.8: Let S C R 2 be a 2-dimensional semialgebraic subset and let ~S 

be its exterior boundary. Suppose that S is a polynomial image of ]~2. Then 

~S is either empty or there exist a finite set F and a finite family of parametric 

semilines L 1 , . . . ,  Lr such that 

i=l 
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Proo~ Since S is a polynomial image of ll~ 2 , there is a polynomial map 

f :  R2 ~ ]~2 such that  f(l~ 2) = S. By [J2, 4.2], the set 85 is either empty 

or a finite union of parametric semilines L 1 , . . . ,  Ls. We can suppose that  there 

exists an integer r such that  the set Li N 5S is finite (or empty) if and only if 

r < i _< s. Thus, the set F = (L~+I U. - -  U Ls) N 5S  is a finite subset of (~S. 

Now, we see that  if 1 < i < r then Li C S N S S  -~ar. First, we recall that  S f  C -S. 
---:---zar 

On the other hand, since Li is an irreducible algebraic set of dimension 1 and 

Li N (~S is infinite then L-:~ zar C ~--~zar. Hence, Li C S n ~-~ar. 

Finally, since 5S C Sf ,  we have 

8 

 s: snsz:U( snL ) 
i : 1  

= U( snL /u ( snL )cUL uFcsn s , 
i=1 i = r + l  i=1 

as wanted. | 

To finish this section, we show that  for every integer r _> 1 there exists 

a polynomial image S C tl~ 2 of ~2 whose exterior boundary has r connected 

components which are simultaneously bounded and 1-dimensional. 

PROPOSITION 3.9: Let J C ~ be a finite union o f  (bounded or unbounded)  

disjoint closed proper  intervals o f  ~. Then  the set S = ~2 \ ( j  x {0}) is a 

polynomial  image o[ ~2. 

Proof: First, since J is a proper subset of l~, the (topological) boundary J \  

of J in ~ has at least one point. Let a E ll~ be such a point and let F E R[T] be 

a polynomial such that  J = {t E l~: F ( t ) ( a  - t) ~_ 0}. To construct such F,  let 

Fr(J)  = {a, a2 , . . .  ,a~}, and 

G ( T )  = c(a - T ) ( T  - a2) " " (T  - at)  

where ~ = 4-1 is chosen so that  G is nonpositive on J.  Take the polynomial 

F ( T )  = e ( T  - a2) . " . (T  - at) .  In particular, note that  F(a)  ¢ O. 

Next, we consider the polynomial map f = (f l ,  f2): N2 _+ 11~2 given by 

f l  = a - x2 F(a) (1  - xy) ,  

F ( a  - x2 F(a ) (1  - xy )  ) - F(a)(1 - xy)  
~ z 

x 
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Note that  f2 is in fact a polynomial in the variables x, y. A straightforward 

computation shows that  the polynomials f l ,  ]2 satisfy the equality 

(,) x3f2 - x 2 F ( f l )  -t- (a - f l )  : 0. 

Now, let us see that  i m f  = S U {(a,0)}. Consider, for (u ,v)  E ~2, the 

polynomial 

P(~,v)(T) : T3v  - T 2 F ( u )  + (a - u).  

We claim that  this polynomial has a nonzero root in ]I{ if and only if (u, v) E S. 

Indeed, if v ~ 0 and u ~£ a then P(~,v) is a polynomial of odd degree such 

that  P(~,v)(0) ~ 0. Hence, it has a nonzero real root. If (u, v) E S and u : a 

then 0 = F ( a ) / v  is anonzero  root of P(u,v). If (u,v) E S and v = 0 then 

0 = v / F ( a ) ( a  - u ) / F ( a )  is a nonzero root of P(u,v). 

Conversely, if (u,v) • S then v = 0 and F(a ) (a  - u) <_ 0, that  is, P(u,v) has 

no real root or its unique root is 0 (the latter only happens if u = a). 

Using the identity (.) and that  F(a)  ~t 0 one deduces that  P(~,v) has a nonzero 

root for each (u,v) C i m f  \ {(a, 0)} and therefore (u ,v)  C S.  Conversely, let 

(u, v) E S and let x be a nonzero root of P(~,~,) and y = (u - a + x 2 F ( a ) ) / x 3 F ( a ) .  

Computing a little and using that  x is a nonzero root of P(u,v) one deduces that  

f ( x ,  y) -- (u, v). 

Note that  im f = S U {(a, 0)} and that  the fiber of the point (a, 0) is {(0, 0)}. 

Let ~: ~2 __+ ~2 be a polynomial map whose image is I~ 2 \ {(0, 0)} (which exists 

by [FG, 1.5]). The composition g = f o ~ has S as its image. | 

Remark 3.10: (i) The previous result does not go against 3.4 because all the 

bounded connected components of 5S are contained in the line {v = 0}, which 

intersects S at an unbounded set. 

(ii) Note that  the map f constructed in the last proposition has finite fibers 

on the points of S N { v  = 0}. This allows us, again using [FG, 1.5], to degenerate 

some of the intervals of J into points. 

4. Exterior of  the disc 

Let T = (x ~ + y2 > 1) be the complementary set of the closed disc of radius 

one centered at the origin of ]~2. We prove here that  p(T) = 3 and p(T) = 2. 

We will use this in the next section to estimate the invariant p for unbounded 

convex polygons. 
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PROPOSITION 4.1: Let D C ](2 be the open disc of  radius one centered at the 

origin. Its complementary set S = ](2 \ D is a polynomial image of](  2 . In other 

words, p(S) = 2. 

Proof." First, let us explain how we construct a suitable candidate for a poly- 

nomial map f -- (P,Q): ](2 _+ ](2 such that  f(](2) = S. Since we need 

that  p2 + Q2 >_ 1, a natural choice is to look for P , Q , R  • ~[x,y] such that  

p2 + Q2 = 1 + R 2. Hence, 

( P -  1 ) ( P +  1) = ( R -  Q) (R  + Q). 

Equivalently, there should exist auxiliary polynomials ~, ~, e, h • ~[x, y] such 

that  

P - l = ¢ h ,  P + I = ~ g ,  R - Q = ~ ¢  and R + Q = h e .  

In particular, this implies that  2 = ~ - Ch. Thus, we need a pair polynomials 

~, ~b • ]~[x, y] whose common zero set in C 2 is empty. After several trials we 

have taken ~ = xy  - 1 and ¢ = x~ - y, because they simplify the rest of the 

proof. 

Next, we choose g, h • ](Ix, y] such that  

2 = ~ - g,h = ~ - (x(p - y)h  = ~(~ - xh) + yh. 

In fact, for the sake of simplicity we look for ~, h • ]~x] satisfying the previous 

equation. After expanding that  expresion we get 

2 = ( x ( e -  xh) + h)y + x h -  ~. 

Thus, we must take h = 2x and ~ = 2(x 2 - 1). Putt ing all together we get that  

hf - ~¢  hf + ¢ ~  
P = ¢ h + l ,  Q -  2 and R -  ~ ,  

where 

y)  = x y  - 1, ¢ ( x ,  = x ( x y  - 1 )  - y ,  

g(x,y) = 2(x 2 - 1) and h(x ,y )  = 2x. 

Since p2 + Q2 = 1 + R 2 > 1, it is clear that  f(lI( 2 ) C S. Next, we check that 

in fact f(](2) = S. Since ] ( 0 , - 2 5 )  = (1,b) and ] ( 1 , 2 b +  1) = ( -1 ,5 )  for all 

b E ](, we are only left to check that  all (a,b) • S with a 2 ¢ 1 belong to ](](2). 

In what follows we always suppose that  we are in this situation. 
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Consider the resultant A(X) of P ( X ,  Y )  - a, Q ( X ,  Y )  - b with respect to Y, 

given by 

where 

A ( X )  = ~ X ( X  2 - 1)H(X),  

H ( X )  = 16X2(X s - 1) 2 - 8 b X ( X  s - 1) + 1 - a 2. 

We claim that  for all a, b as above, there exists a real root x of H different from 

- 1 ,  0, 1. Suppose this is true for a moment. Then the univariate polynomial 

P ( x , Y )  - a  has degree one (note that  x ¢ - 1 , 0 ,  1) and has a common (real) 

root 
1 a + l  - - _ - } -  

Y x 2 x ( x  s - 1) 

with the polynomial Q(x ,  Y )  - b (recall that  A(x) = 0). Thus, f ( x ,  y) = (a, b). 

Next, we check that  H has a real root, necessarily different from - 1 , 0 ,  1 

because a s ~ 1. Consider the polynomial 

G ( Z )  = 16Z s - 8bZ + 1 -  a s 

which satisfies the identity G ( X ( X  2 - 1)) = H ( X ) .  Note that  the real number 

b + ~/a 2 + b 2 - 1 
Z~-- 

4 

is a nonzero root of G, because a s 7~ 1. Finally, it is enough to observe that  

there exists x E [¢ such that  x ( x  s - 1) = z, and we are done. | 

R e m a r k  4.2: In [FG, 1.4(i)] it was pointed out that  the exterior of the closed 

unitary disc T = (x 2 + y2 > 1} is not a polynomial image of R s . However, 

it is a polynomial image of ]R 3 . Indeed, by 4.1, there exists a polynomial map 

g: ]R s ~ R s such that  g(II~ 2) = T. By [FG, 1.4(iv)], there exists a polynomial 

map ]R 2 --+ I~ s whose image is the upper open half-plane ~ x (0, +oc).  Since 

I~ 3 = 11( × ]~s and R x (]~ x (0, +oc)) = I~ 2 x (0, +ec) ,  there exists a polynomial 

map I~ 3 -~ R 3 whose image is ~2 x (0, +ec).  Hence, everything reduces to 

checking that  T is the image of ~s x (0, +oc) under the polynomial map 

h: I~ 3 = 1 ~  s x ~  -~ I~ s 

(x,t) (1 + t)g(x). 

Thus, we conclude that  p(T) = 3. 
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5. C o n v e x  u n b o u n d e d  p o l y g o n s  a n d  s a w s e t s  

The main purpose of this section is to prove that  the closed (resp. open) convex 

unbounded polygons of iR a with nonparallel linear sides are polynomial images 

of some iRn. We also see tha t  other, not necessarily convex, sets with piecewise 

linear boundary  are polynomial images of some R n. We begin with the closed 

case. 

THEOREM 5.1: Let S C iR2 be a closed convex unbounded polygon with e > 3 

linear sides. Suppose that S has nonparallel sides. Then there is a polynomial 
map  f :  iR2(~-2) __+ iR2 such that f(]R 2(~-2) ) = S. 

Proof." The proof runs by induction on e. For e = 3, after an affine change 

of coordinates we can assume tha t  S is a convex unbounded polygon of ]R 2 

whose two unbounded sides are contained in the lines x = 0, y = 0, and 

S C {x > 0, y > 0}. Thus, the bounded side of S lies on a line with equation 

x/a  + y/b = 1 for positive real numbers a, b. Then S is the image of the map 

g = (aP 2, bQ2), where (P, Q): iR2 __+ iR2 is a polynomial map whose image is 

{x 2 + y2 ___ 1} (such a map exists as we have seen in 4.1). 

Suppose now e > 4. Again we can assume that  the two unbounded sides 

of S are contained in the lines x = A, y = # for some negative real numbers 

A, #, and tha t  S is contained in {x > A, y > #}. We can also suppose tha t  

a0 < 0 = al < -. • < ae-2 are the first coordinates of the vertices V0, V1, . . . ,  Ve-2 

of the boundary of S and that  the origin is the vertex V1 corresponding to al = 0. 

We write Vj = (aj, bj) for j = 0 , . . . ,  e - 2. 

Consider the convex polygons $1 = S N {y _> 0} and $2 = S N {x > 0}. 

By the induction hypothesis, we can find polynomial maps g: iR2 __+ iR2 and 

h: ]R :(e-3) -+ iR2 such that  g(iR2) = $1 and h(iR 2(e-3)) = $2. Consider the 

polynomial map  
f :  ~2 × iR2(~-3) _+ IR2 

(u,v) ~ g(u) + h(v). 

We end by proving tha t  S is its image. Indeed, it is enough to check tha t  S is 

equal to the set 

$1 + $2 = {sl + sz: 81 • $1, s2 • $2}. 

Since (0,0) • S l ~ S 2 ,  wehavethat  S = S1US2  C $ 1 + $ 2 .  To prove the 

converse let Sl • $1 and s2 • $2; we have to see tha t  Sl + s2 • S. I f  both 

Sl,S2 • S 1 N S 2  then it is clear tha t  S l + S 2  • S1NS2 C S. Thus, we may 

assume that  one of them is not in $1 N $2. We analyze the most  involved case, 

tha t  is, s2 • $2 \ $1. 
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Let f j  = {y = bj } be the horizontal line through the vertex Vj, and let k be 

such that  s2 belongs to the band R = {bk+l _< y < bk} as in Figure 1. Let A,B  

be the respective intersection points of gk+l with the lines joining the points 

Sl and s2 with the origin O. Let C be the intersection point of fk+l and the 

parallel t~ through Sl to the line OB. 

O 

' v / ' - v . E  - - - - - _~ ~ _- '2-__ _ _s~ ~ --~, _ 
A Vk+l ~ B 

Figure 1. 

y=bk 

~- - y = b~+l 
C 

Observe that  81 -]- 82 E ~. Since sl,  C E S and S is convex, it is enough to 

check that  sl + s2 is in the segment siC, or equivalently, that  Os2 is shorter 

than siC.  

For that,  note that  the sides of the triangles A O A B  and A s l A C  are parallel. 

Thus, since AB is shorter than AC, also OB is shorter than siC. But Os2 is 

shorter that  OB, and we are done. | 

COROLLARY 5.2: Let T C ~2 be an open convex unbounded polygon with e > 3 

linear sides. Suppose that T has nonparallel sides. Then there is a polynomial 
map g: ~2(e-2)+1 __+ IR2 such that g(IR 2(e-2)+1) = T. 

Proo~ First, by [FG, 1.4(iv)], there exists a polynomial map 1~2 _+ 1~2 whose 

image is the upper open half-plane ]R × (0, +oc).  Let m = 2(e - 2); since 

]l~mq-1 = ]~m--1 X I~ 2 a n d  1~ m - 1  x (I~ x (0,--[-oo)) = ]I~ m x (0, nt-(x)), 

it is enough to check that  T is the image of the restriction to ~m X (0, -]-CO) of 

a polynomial map h: ~m+l __+ ~[2. 
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We can assume that  the two unbounded sides of T are contained in the lines 

of equa t ionsx  = 0,y = 0, a n d T  C {x > 0,y > 0}. By 5.1, there exists a 

polynomial map f :  ]~m __+ 11{2 such that  f ( ~ m )  = T .  Next, consider the map 

h: ]~m+l = ]l{m × II~ --+ l~ 2 
(x, t) f(x) + t(1,1). 

A straightforward computation shows that  T = h ( R  m x (0, +co)),  as wanted. 
| 

R e m a r k s  5.3: (a) Note that  if an unbounded convex polygon S with linear sides 

had two parallel sides then it would not be a polynomial image of any l~ n . This 

is so because, S being convex, the parallel sides had to be the unbounded ones. 

Hence, the projection of S in that  direction (over an orthogonal line) would be 

a bounded set. This would imply, see [FG, 1.3.(3)], that  S is not a polynomial 

image. 

(b) For e = 3 in 5.2, we have that  each open convex unbounded polygon S 

with three linear sides is a polynomial image of R 3 . This contrasts with 3.7, 

where we prove that  these kinds of sets are not polynomial images of ~2. In 

other words, p(S) = 3. 

(c) Using the invariant p we can summarize the preceding results as follows. 

Let S be a convex unbounded polygon with e >__ 3 linear and nonparallel sides. 

We have: 
2(e - 2) if S is closed, 

p(S)_< 2(e 2 ) + 1  i f S i s o p e n .  

In what follows in this section, we will prove that  other, not necessarily convex, 

sets with piecewise linear boundary are also polynomial images of some ~n. To 

that  end, we need to introduce the following terminology. 

Defini t ion 5.4: For a given n >_ 2, a semialgebraic set S C I~ 2 is said to be a 

n - g e n e r a t i n g  se t  if it satisfies the following properties: 

* It is a polynomial image of ]~n and its boundary S \  S is piecewise linear. 

• It is either an open or a closed subset of 11{ 2 with nonempty interior. 

• There is a positive real number N > 0 such that  for every vector w = (x, y) 

of the w e d g e  W = {y  - N x  >_ 0, y + N x  >_ 0} the set S + w is contained 

in S. 

Under certain conditions, we will show (see Theorem 5.7 below) that  if S is 

a n-generating set the union of finitely many images of S under translations 

is a polynomial image of II~ n+l . These kinds of unions will be called sawse t s  
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because of the shape of their boundary. Before that,  we provide some examples 

of n-generating sets to give an idea of the aim of Theorem 5.7. 

Examples 5.5: (i) The open quadrant 

Q = { y - x > O , y + x > O }  

is a 2-generating set. The same holds for the closed quadrant 

Q = { y - z  >_ O , y + x  >_ 0}. 

(ii) Let S c If( 2 be an open convex unbounded polygon with e _> 3 linear 

sides. Suppose that  S contains a point p = (Pl,P2) and two half-lines rl ,r2 

with origin at p of the form 

rl  = { ( y - p 2 ) + Y ( x - p l ) = 0 ,  y > p 2 }  

and r 2 = { ( y - p 2 ) - Y ( x - P l ) = O ,  Y>_P2}, 

for some N > 0. Then S is a (2e - 3)-generating set. 

By 5.2, it is enough to prove that  for every w in the wedge 

W = { y - N x  >_ O , y + N x  >_ 0} 

the set S + w is contained in S. Note that  for each w E W we have w = u + v 

where p + u E rl  and p + v E r2. Thus, if S + u C S and S + v c S we have that  

S + w  = ( S + u )  + v  a S + v  a S, 

and we will be done. Hence, it is enough to check that  S + ~ C S for each vector 

• (rl - p) u (r2 - p). 
Notice that  S is a finite intersection of open haif-planes, that  is, 

n 

s =  N {Zk(x,y) > 0 }  
k----1 

where each lk is a polynomial of degree one. Thus, it suffices to check that  for 

each k and each q • S we have lk(q + ~) > 0. We write ~k = lk -- Ik(O,O). Note 

that  since for all ~ _> 0 the point p + ~ • S, we have 

0 < tk(p + = zk(p) + 

Moreover, since this is so for arbitrarily large ~ > 0, we conclude that  l'k(~) _> 0. 

Hence, for all q • S we have lk(q + ~) = lk(q) + ~k(~) > 0, and we are done. 
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(iii) Let S C I~ 2 be a closed convex unbounded polygon with e _> 3 linear 

sides. Suppose that  S contains a point p = (Pl,P2) and two half-lines r l ,r2  

with origin at p of the type 

rl ---= {(y -P2) + N ( X - p l )  -= 0, y ___P2} 

and r 2 = { ( y - p 2 ) - N ( x - p l ) = 0 ,  y~P2}, 

for some N > 0. Then S is a (2e - 4)-generating set. 

The proof of this fact is analogous to the previous one, using now Theorem 

5.1 instead of Corollary 5.2. 

Before proving Theorem 5.7, we need the following technical result. 

LEMMA 5.6: Let al < a2 < .-. < ae be real numbers and let N > 0 be a 

positive real number. For 1 < j <_ ~, consider the polynomials of  degree 1 

r j ( x , y )  = y -  N ( x -  aj),  

s j ( x , y )  = y + N ( x -  aj).  

There exists a polynomial map a: ~ ~ I~ 2 whose image has cusps at the points 

pj = (aj,O), and it is contained in the semialgebraic set 

w = U{r  > 0,s  > 0}.  
j = l  

Proof: First, note that  there exists a monic polynomial P (of degree _< 4g) 

such that  

P ( j )  = aj, P ' ( j )  = P " ( j )  = 0, P ' " ( j )  = 6 for e a c h j  = 1 , . . . , g .  

Now, we check that  for ~ > 0 small enough P is an injective function in the 

intervals (j - ~, j  + c). For each j ,  we can write P(t )  = aj + (t - j )3~j ( t )  

where Aj = 1 + (t - j ) u j ( t )  for some uj E ~[[t]. Then, since )~j(j) = 1 > 0, the 

derivative 

P'( t )  = (t - j)2(3Aj(t) + (t - j),Vj(t)) 

is positive in the open set (j - e , j  + e) \ {j} for all small enough e > 0. 

The polynomial Q(t) = l'-I~=l(t - j ) 2  is positive semidefinite in IR and has 

double roots at the values j = 1 , . . .  ,g. Hence, for ~ > 0 small enough, Q is a 

decreasing function in the intervals (j - e, j)  and is increasing in the intervals 

(j, j + E). 
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For each pair (m, d) of positive integers consider the polynomial map 

~m,d = (P, ra(Q(1 + Qd))): ll~ --~ I~ 2 

and its image Fm,d = ~m,d(]~). From the properties of P and Q we deduce that  

the map ~m,d satisfies the following: 

* Its second coordinate m(Q(l+Qd)) is a decreasing function in the intervals 

( j - c , j )  and is increasing in the intervals ( j , j  +¢) for small enough ¢ > 0. 

* For each j = 1 , . . . ,  g we have ~ml, d(pj) = {j}. This follows from the choice 

of the second coordinate of ~m,d. 

* The c u r v e  Fm,d has at each pj a singularity analytically equivalent to 

the cusp given by the parametrization s ~ (s 3, s2). Indeed, if we write 

t -  j = s we have 

f P = aj + vl (8) 3 (,) 
mQ(1 + Qd) = v2(s)2 

for some analytic series vl, v2 over ~ in the variable s such that  vi(0) = 0, 

v~ (0) > 0. Our claim follows by classification of planar curve singularities. 

Next, we observe that  for ¢ > 0 small enough the image by ~m,d of the open 

interval (j - c, j + c) is contained in the wedge contained in the upper half- 

plane y > 0 and delimited by the half-lines joining the point pj with the points 

(~m,d(j --C) and ~m,d (J + E); see Figure 2. This is a straightforward consequence 

of the expression (*) of ~m,d. More precisely, the clue is that  P - aj has order 

3 (with respect to s) and mQ(1 + Qd) has order 2. 

~ ~ m , d ( j  + e) 

Figure 2. 

In what follows we fix d _> 1 such that  deg(P) < deg(Q(1 + Qd)) (for instance, 

d = 1 + deg(P)) and we look for m such that  a = ~m,d satisfies the desired 

conditions. We fix also 0 < c < 1/2 satisfying all the previous conditions for 

the map/~ = ~l,d = (/~1,/~2)- 
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Let us define ~]1 = min{fl2(j - c), fl2(j + ¢): J = 1 , . . . ,  e}. Let 

e-1 

K =  U b + e ' , J + l - s ]  
j = l  

and ~2 = min{fl2(t): t E K}. Both ~1, ~2 are strictly positive real numbers since 

f121(0)  = {1 ,2 , . . .  ,~}. Let 0 < ~ < min{~l,O2} and let 

&(J + ~ ) ' 1  &(J-~) ...,e} 0 < # < min { f l l ( j - - ~ C - f l l ( j  ) f l l ( ; - ~ - ; - - f l l ( j )  : j = 1, . 

From our choice of e, ~ and #, we have that (Figure 3) 

e 

fl([1-c,f+e])C{y>o}uU{Y-#(x-aj)>_0,y+#(x-aj)>_0}. 
j = l  

fi(1 + ~) 

,,l, ,,t b 
pl p2 Pe 

Figure 3. 

Since deg(fl2) > deg(fll), there exists M > 0 such that if I t] > M then 

f l 2 ( t ) + # ( f l l ( t ) - a l ) > 0  and f l 2 ( t ) - p ( f l l ( t ) - a e ) > O .  

Consider the compact sets 

K '  = (K U [ - M ,  1 - ~] U [~ + c, M] )  n f l{1 ((--00, al - -  ,U, ] ) ,  

K "  = ( K  U [ - M ,  1 - ~] U [e + ~, M] )  n fl~-' ([ae + ,7/,u, +c~)), 

and the positive numbers 

&(t) &(t) 
41 = min 

t c K '  t #(al----fll(t))} and ~ 2 = m i n {  }. t E K "  ~ ( f l l - ~  = ae) 
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We denote by S the union S = {y > fl, al - ~ /#  < x < at + ~//#} U T~, where 

T, = U { y - , ( x -  aj) > 0,y + , ( x - a A  > 0}. 
j = l  

For any positive integer m > ~ = max{1/~l ,1/ (2} 

property ~m,4(~) C S. On the other hand, for p > 

S is contained in the set 

the map ~m,d has the 

0 small enough the set 

To = U{Y - p(x - at) > 0,~ + p(x - at) > 0}; 
j = l  

hence, for m > y we have ~m,d(]~) C Tp. It is straightforward to see that  if 

m > N v / p  then (Figure 4) 

vm,~(~) c TN = U {Y - N ( x  - aj) > O, ~ + N ( x  - at) >_ 0}. 
j = l  

~(~) 

\ 

\ \ \ \  A 
\X\\ /1// \\\ 

\\ //1 

Pl x p[ 

Figure 4. 

Taking a = ~m,d and 142 = TN we are done. | 
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THEOREM 5.7: Let S C ]~2 be a n-generating set and let p be a point of S. 

Let al < a2 < " -  < ae be rea/numbers  and consider the points pj = (aj, 0) 

for j = 1 , . . . ,  L Then the sawset T = U~=l (S + ~j j )  is a polynomial image ot 
~nq-1. 

Proof: Let g: ~n __+ ]~2 be a polynomial map whose image is S. Since S is a 

n-generating set, there exists a positive real number N > 0 such that  for every 

vector w = (x, y) of the wedge W = {y - N x  >_ O, y + N x  >_ 0} the set S + w is 

contained in S. 

By the previous Lemma 5.6, there exists a polynomial map a: ~ -+ ~2 whose 

image has cusps at the points pj, 1 < j < £, and it is contained in the semi- 

algebraic set 

t 

14; = U { Y -  N ( x - a j )  >_ O,y + g ( x - a j )  > 0}. 
j = l  

Then T is the image of the polynomial map 

1:]~nq-1 ~ ]1~2: (X, t) ~ g(x)  -[- ol(t) -- p. 

Indeed, we claim that  for each t E 1~, we have S + a(t) - p C S + ~ j ;  hence, 

= U ( s  + - p) c U (s + wj) = T. 
tER j = l  

Since a(~) C W, our claim follows from the identity 

S + a(t)  - p = S + (a(t) - P3(t)) + (Pj(t) - P) = S + 

where 1 < j ( t )  < e satisfies 

a(t) E {y - N ( x  - aj(~)) >_ O,y + N ( x  - as(t)) > 0} = W + pj(t)- 

The other inclusion T C f(l~ n+l ) is clear because the curve a(l~) goes through 

the points p l , . . . ,  pe, and the proof is finished. | 

6. Regular images 

In contrast, to be a regular image of some ]~n is a less restrictive condition 

than to be a polynomial one. For instance, a regular image can have bounded 

projections. 
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In particular, there exist semialgebraic sets S C R 2 such that  r(S) is finite 

while p(S) = c~. Moreover, we will exhibit semialgebraic sets S C R 2 such that 

r(S) < p(S) < c~. 

The main purpose of this section is to obtain a better  estimation for the 

invariant r(S) of an open polygon S with linear sides than the one provided in 

5.3. 

PROPOSITION 6.1: Let S C R 2 be an open convex unbounded polygon with 

e >_ 2 linear sides. Suppose that S has nonparallel sides. Then there exists a 

regular map f:  R e --+ R 2 such that f (R e) = S. 

Proof: First, after an affine change of coordinates, we can assume that  the two 

unbounded sides of S are contained in the lines x = 0, y = 0, and S is contained 

in the open quadrant {x > 0, y > 0}. We proceed by induction on the number 

e of sides of S. The case e = 2 is proved in [FG, 1.7]. Suppose that  e > 2 and 

let e l , . . .  ,ee be the sides of S and let V1, . . . ,  V~-I be the vertices of S denoted 

such that  el is the side of S contained in x = 0, and that  V/ is the common 

vertex of ~i and e~+l. 

Now, consider the sub-polygon S p of S with vertices V1, . . . ,  Ve-2 and sides 

e l , . . ,  ee-2, ele_l where ele_l is the horizontal half-line contained in S U {Ve-2 } 

whose origin is the point Ve-2 (Figure 5). 

V1 

Ve_l v 

Figure 5. 

~e 

Hence, by the induction hypothesis, S'  = g(R e-1 ) for some regular map 

g: R e-1 --+ R 2 . Let v be the vector from Ve-2 to Ve-1 and consider the map 

f :  R e -+ R 2 
1 (z l , . . . , x~- l ,xe )  ~ g (x l , . . . , x e -1 )  + ~-4-~v. 
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We claim that  f (~e )  = S. First, notice that  since the image of the regular 

function Xe ~ 1/(1 + Xe 2) is the interval (0, 1] then f (~e)  = U~e(o,1](S, + Av). 

Since S is convex, we have the inequality L((1,-~,~i) < Z((1,0f,~e_l ) for all 

i = 1 , . . . , e  - 2. From this it follows that  f ( R  e) C S. Let us see now that  

S C f (~e ) .  Let p E S and let 1 be the vertical line going through p. We 

distinguish three different situations: 

(a) If l cuts ei or passes through V~ for some i = 1 , . . . ,  e - 2 then we have 

p c S'  c 

(b) If l cuts ee (and does not passes through Ve-1) then p E S t + v C f (~e) .  

(c) If 1 cuts ee-1 or passes through Ve-1 we proceed as follows. Let q be 

the intersection point of 1 and ~e-1 or q = Ve-1 depending on the situation in 

which we are. Let w be the vector from Ve-2 to q. There exists A E (0, 1] such 

that  w = Av. Finally, using the fact that  S ~ is convex, one concludes almost 

straightforwardly that  p E S' + w = S' + Av C f (~e). | 

In the open case also the polygons with parallel sides, either bounded or not, 

are regular images. In fact, we get 

THEOREM 6.2: Let S C l~ ~ be an open convex polygon with e linear sides. 

Then, 
max{2, e -  1} i f  S has two parallel sides, 

r(S)_< max{2, e} otherwise. 

Proof: Let £ be a side of S and 1 C I~ 2 be the affine line that  contains this side. 

After an affine change of coordinates (which preserves lines and convexity) we 

can suppose l: x = 0 (using coordinates (x,y)).  Now consider S embedded in 

the projective plane ~2(I~) via the map 

Consider the homography 

~:  ~2(]~) ...+ ]~2(]~),(X 0 : Xl : X2 ) ~ (X 1 : X0 : X2) 

which transforms respectively the projective lines Xl = 0, x0 = 0 into the pro- 

jective lines xo = 0, xl  = 0. This map induces the birational map ~: ~2 __+ ~2, 

defined by (x,y)  ~ ( 1 / x , y / x )  which is regular outside the line x = 0 and pre- 

serves lines and convexity there. Since S is open and S n {x = 0} = 0 then ~(S) 

is a convex unbounded open polygon of ~2 with r linear sides, where r -- e or 

r = e - 1 depending on the case. Moreover, ~(S) has nonparallel sides. 

Now, by 6.1 (if r >_ 2) and [FG, 1.4 (iv)] (if r = 1, that  is ~(S) is a half- 

plane) we know that  ~(S) is the image of a regular map f :  IR s --+ ll~ 2, where 
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s = max{2, e -  1} if the polygon S has two parallel sides and s = max{2, e} 

otherwise. Hence, S = ~ ( f (~s ) ) ,  as wanted. | 

Remark 6.3: (a) The open disc D = {u 2 + v  2 < 1} (which can be seen as 

a limit of convex open regular bounded polygons) is a regular image of R 2. 

Indeed, let P:  Ii( 2 -~ I~ 2 be a polynomial map whose image is the upper half- 

plane H = {v > 0}. With complex notation, the MSbius transform 

¢: H -+ ~2 
z= +iv (z-i)/(z+i) 

maps H onto ]D. Thus O o P is a regular map whose image is ]D. 

(b) Let S = {x > 0, y > 0, x - y + 4 > 0} C R2. This set is the image of the 

band B = {u > 0 , - 1  < v < 1} under the map 

On the other hand, by 6.2, the band $ is a regular image of ~2. Hence, the 

same holds for S. However, by 3.7, S is not a polynomial image of R2 although, 

by 5.2, it is a polynomial image of 11( 3 . In other words, 2 = r(S) < p(S) = 3. 

7. M o r e  e x a m p l e s  a n d  o p e n  q u e s t i o n s  

In this section we will prove that  the set 

s =  >o}u{2x-  > O,x-y <0} 

is a polynomial image of ]R 5. Notice that  it satisfies the known necessary 

conditions to be a polynomial image of I~ 2 , but  we do not know if it is in 

fact a polynomial image of ~2. Of course, the natural aim is to decide if such 

conditions are also sufficient. 

For that,  we start  by fixing the following notations. Given two nonzero vectors 

u = (ul, u2), v = (vl, v2) of R 2 we consider its oriented angle - I t  < Y(u, v) < 7r, 
that  is, the angle is measured from the first vector to the second in the counter- 

clockwise direction. Similarly, given two half-lines r l ,  r2 with common origin, 

we define the oriented angle A(rl,r2) of r l , r 2  as the oriented angle of their 

directional vectors. Also, we denote by u j- = ( -u2 ,  ul)  the vector of the same 

length as u and such that  Y(u, u ±) = 7r/2. The announced result is a particular 

case of the following: 
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PROPOSITION 7.1: Let w = (wl,w2) E R 2 be a nonzero vector satisfying the 

following inequalities lr/4 < ,(((1, 0), w ±) _< 7r/2. Then the open sere±algebraic 

subset 

S = {x > - 2 , x -  y > 0} U {wlx  + w2y > O , x -  y < 0} 

is a polynomial image of Nh. 

iw/ 

(-2, -2) ~ - - -  
I 

S 
U 

P 

(0, O) 

+ 

i a l x + a 2 y ~  

' ~ { a l - - a 2  A 
~ al 'U) Y=0 

i y = a  a2 
I 

,(1, -a),,""- 
y =  - 1  

1 

Figure 6. 

Proof: We denote u = (1,0) and v -- (1 , -1) .  Let a = (al,a2) be a nonzere 

vector such that  L(u, a ±) = A(u, w±) /3 .  Note that  al > 0 and 

/ ( u , a ' ) -  Z(u'w±) < ~ 
- - °  

3 - 6  

In particular, al - a2 > 0. Consider the set 

$1 -= {y > - 1 ,  a lx  + a2y > al - a2} U {y > 0, alx  + a2y > 0}, 

which is a polynomial image of IR 3 as a consequence of 5.7 and 5.5 (i). Let 

f l :  ll( 3 --+ ~2 be a polynomial map such that  f(l~ 3) = $1 (Figure 6). 

Let gl be the unbounded side of 6S1 contained in the line alx  + a2y = O, g2 

the bounded side of 6S1 contained in the line y = 0, g3 the bounded side of (iS1 

contained in the line alx  + a2y = al - a2 and Q the unbounded side of 6S1 
contained in y = -1 .  

Next, consider the map 

f2: ~2 _~ C --4 C -~ R 2 , 
(x,y) = x + i y  ~ ( x + i y )  3 =_ (x 3 _ 3 x y 2 , 3 x 2 y _ y 3 ) .  
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The image $2 of $1 under f~ is the set contained in x > - 2  and delimited by 

the curves f2(~1), f2(~2), f2(~3) and f2(Q), which are the following: 

• f~(el) is the half-line { ( - w 2 t ,  w l t ) :  t > 0}. 
• f2(~2) is the segment that connects the points (0,0) and (a-x=-~,0). 

\ a l  

• f2(~3) is the oriented curve parametrized by a( t )  = f 2 ( - a 2 t  + 1 , a l t  - 1) 

where t E [0,1/al) .  The sign of the curvature n~(t) in the point a( t )  of 

the oriented curve parametrized by a coincides with the one of the third 

coordinate of the vector product (a I, 0) A ( a ' ,  0), whose value is 

18(al - a2)(al 2 + a ~ ) ( ( a , t  - 1) 2 + (a2t - 1) 2) 

which is strictly positive in the interval [0, 1/al) ,  since a2 - al > 0 (as 

we have seen above). Thus, when we go along this curve from t = 0 to 

t = 1 / a l  the curve always turn left. Moreover, the tangent vector at(0) 

to f2(~3) in the point f2 (1 , -1 )  = a(0) is b = 6(al, as). 

I2(ellJ 
$ 2  ~-~ f 2 ( S 1 )  

- - - 2 )  - - -~-  

c ~ , . . _  f2(~3) 

Figure 7. 

• f2(Q) is the oriented curve parametrized by fl(t) = f~ ( t  + 1 , - 1 )  where 

t >_ 0. The sign of the curvature n~(t) in the point j3(t) of the curve 

parametrized by ~ coincides with the one of the third coordinate of the 

vector product (fl', 0) A (fl", 0), whose value is 

18((t + 1) 2 + 1) 
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which is strictly positive in the interval [0, +co). Thus, when we go along 

this curve from t = 0 to +co the curve always turn left. Moreover, the 

tangent vector ~'(0) to the curve/2(Q)  in the point f2(1 , -1)  =/~(0) is 

c = (0 , -6) ;  see Figure 7. 

Next consider the polynomial maps: 

• ~ :  ~5 __+ ~4 : (x, y, z, u, v) ~ (/l(X, y, z), u, v) whose image is S1 x ]l~ 2 . 

• L :  ~4 ~ ~4:  (x,y,u,v)  ~ ( f2(x ,y) ,u ,v) .  Note that  the image of $1 × ~2 

under j~ is $2 × R2. 

• f3: ll~ 4 --+ [¢3: (x ,y ,u ,v )  --+ (x ,y  - u2,v). We have that  the image of 

$2 × I~ 2 under f3 is $3 × ~ where $3 = [J~<o(S2 + (0, A)), that  is, the 

set obtained when we slide $2 along the half-line {(0, y): y < 0}. One can 

check that  

S 3 ---- S 2 [.J {X > --2, a2x -- aly > 2al -- 2a2} U {x > 0,y < 0}. 

• f4:I~3 ~ I~2: (x ,y ,v)  --+ ( x + v 2 , y + v 2 ) .  Note that  the image of $3 × l~ 

under fa is $4 = [J~>o(S3 + ()~,)~)), that  is, the set obtained when we slide 

$3 along the half-line {(x, x): x _> 0}. One can check that  

$4 = $3 U {x > -2 ,  x -  y > 0} = S. 

Hence, S is the image of the polynomial map fo = f4 o f3 o f2 o f~: ~5 __+ ii~2. 
| 

Remarks 7.2: (i) Let Pl be the common origin of two half-lines r l ,  r2 that  do 

not lie in the same line, and let T1 be the open convex region bounded by rl and 

r2. Choose a point P2 E r2 different from Pl and a third half-line r3 with origin 

at P2 which does not intersect T1 and such that  }/(rl ,r2)l  + I.((r2,r3)l <_ 7r. 
Let T2 be the open convex region bounded by r2 and r3 (Figure 8). The set 

T = T1 U T2 is affinely equivalent to one of the sets S of the previous Proposition 

7.1; hence, T is a polynomial image of l~ 5 . 

Indeed, let 11,12 and 13 be the lines that  respectively contain rl,r2 and r3. 

We distinguish two cases: 

• If the lines 11 and 13 are parallel, let g: ~2 __+ 1~2 be an affine equivalence 

that  satisfies: 
Pl ~+ ( - 2 , - 2 ) ,  
p2 ~+ (0 ,0) ,  
11 ~ { x = - 2 } .  

One can check that,  after composing with the symmetry with respect to 

the line x - y = 0 if necessary, 

g(T) = {x > -2 ,  x -  y > 0} U {x > 0, x -  y < 0} = S. 
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• If the lines 11 and 13 are not parallel, let P3 = 11 g113. Consider the affine 

equivalence g: ~2 ~ R2 such that  

Pl  ~+ ( - 2 ,  -2 ) ,  
p2 ~+ (0, 0), 
P3 ~ ( - 2 , - 4 ) .  

One can verify that  

g ( T )  = {x > - 2 , x -  y > 0} U { 2 x -  y > 0 , x -  y <_ 0} = S. 

P2 

/ 

& 
Pl 

T1 

Figure 8. 

r l  

(ii) According to our Definition 5.4, the previous set T is a 5-generating set 

for a suitable choice of the directions of the half-lines r l ,  r2, r3. The proof is 

similar to the case of the polygons (see Example 5.5 (ii)). 

(iii) The previous Proposition 7.1 and the remarks (i) and (ii) can be refor- 

mulated for the closures of the involved sets. 

(7.3) SOME OPEN QUESTIONS. 

1. The set S = ~3 \ {x _> 0,y > 0,x + y < 1} satisfies also the necessary 

known conditions to be a polynomial image of I~ 2 . However, we do not even 

know if S is a polynomial image of some I~ n . 

2. As we have seen in 3.9, there exist polynomial images S C ]~2 of ll~ 2 whose 

exterior boundary has as many connected components as desired. Nevertheless, 

is there a bound for the number of connected components of the topological 

exterior ~2 \ ~ of a polynomial image S C ~2 of ~2 ? In particular, is the open 

set {y  > O, y - x 2 - 1 < 0} a polynomial image of ~2 ? 

3. In Section 4, we showed that  the semialgebraic set {Xl 2 + x~ > 1} is a 

polynomial image. We ask if the same holds for S = {x2+ .. .+x  2 >__ 1} for n > 3. 
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Notice that  a priori the proof for n = 2 is difficult to be generalized because it 

uses strongly the fact that  Xl 2 + x~ is a sum of two squares of polynomials. 

4. With respect to regular images, we recall that  the open convex polygons 

with e _> 2 linear sides are regular images of l~ e (see 6.2). The natural question 

here is if they are regular images of ~2. 

5. For two fixed positive integers d _< m, we define 

p(d ,m)  = sup{p(S): S C Nm,dim S = d,p(S) < oo}. 

For instance, by 2.3(c), we have p(1,m) = 2 for all m _> 1. The question is tc 
estimate this invariant for d _> 2. An analogous problem can be formulated for 
regular images. 
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