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Abstract
Let X ⊂ R

n be a (global) real analytic surface. Then every positive semidefinite
meromorphic function on X is a sum of 10 squares of meromorphic functions on X .
As a consequence, we provide a real Nullstellensatz for (global) real analytic surfaces.
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1 Introduction

The famous Hilbert’s 17th Problem asks whether positive semidefinite functions can
be represented as sums of squares and in that case how many squares are needed.
The two parts of this question are distinguished as the qualitative and the quantitative
aspects of the problem. Recall that the Pythagoras number of a ring A is the smallest
integer p(A) ≥ 1 such that every sum of squares of A is a sum of p squares or infinity
if such an integer does not exist.

The specialists have studied both problems for different types of functions: poly-
nomial [22,67], regular [65,68], rational [13,21,59] and [15, §6], Nash [15, §8.5],
regulous [40], smooth [18,19,43], analytic, meromorphic, …and found full or partial
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solutions in many cases. Global analytic and meromorphic functions remain as the
most defying types.

1.1 Analytic Functions

Let us recall the state of the art in the local and global analytic settings. The qualitative
and quantitative problems have been widely approached for analytic set germs in both
the analytic and meromorphic contexts. Denote the ring of convergent power series
with R{x} := R{x1, . . . ,xn}. Given an analytic set germ X (at the origin), denote
the ideal of all convergent power series that vanish identically on X with J(X). The
analytic ring of X is O(X) := R{x}/J(X).

In [26,38] we proved that if X is an analytic set germ of dimension ≥ 3, both the
qualitative and quantitative questions have negative answers, that is, there are analytic
function germs on X that are positive semidefinite but they are not sums of squares
of analytic function germs on X and p(O(X)) = +∞. Thus, one is only concerned
about dimensions 1 and 2. In [66, Thm. 3.9], Scheiderer characterized the analytic
curve germs X with the property that every positive semidefinite analytic function
is a sum of squares (and in fact one square): X is a (finite) union of non-singular
independent branches, or equivalently, the ring of analytic function germs on X is

O(X) ∼= R{x1, . . . ,xn}/(xix j : 1 ≤ i < j ≤ n).

In addition, 1 ≤ p(O(X)) ≤ mult(X) for each analytic curve germ X , where
mult(X) is the multiplicity of X (see [35,60] and [58] for further results). In [27–
30,36,64] we provide the complete list of the analytic surface germs X of embedding
dimension ≤ 3 such that every positive semidefinite analytic function germ on X is a
sum of squares of analytic function germs on X (in fact only 2 squares are needed).We
refer the reader to [34] when dealing with more general residue fields (for instance, the
rational numbers). In addition, we exhibit in [28] families of analytic surface germs
X of arbitrary embedding dimension such that every positive semidefinite analytic
function germ on X is a sum of squares of analytic function germs on X (in fact
only 2 squares are needed). Concerning Pythagoras numbers, we proved in [25] that
2 ≤ p(O(X)) ≤ 2mult(X) for each analytic surface germ X , where mult(X) is the
multiplicity of X . We refer the reader to [39] when dealing with more general residue
fields (for instance, the rational numbers). The relationship between the Pythagoras
number of the ring of analytic functions germs on an analytic set germ X and the
Pythagoras numbers of the rings of analytic function germs on analytic curve germs
Y contained in X is studied in [37].

Let us now approach the global analytic setting. By Whitney’s immersion theorem
[57, Thm. 2.15.7] a real analytic manifold M of dimension d can be embedded in
R
2d+1. As open subsets of R

n are real analytic manifolds, when dealing with global
analytic subsets of an open subset�ofRn (thatwe callC-analytic subsets of� in honor
ofCartan [20]),wemay always assume (byWhitney’s immersion theoremandCartan’s
Theorem B) that they are C-analytic subsets of certain R

m . Thus, for the sake of
simplicity, we will only analyze what happens with C-analytic subsets of R

n (and this
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includes ‘a fortiori’ the general case ofC-analytic subsets of real analyticmanifolds via
analytic tubular neighborhoods, Whitney’s immersion theorem and Cartan’s Theorem
B). We will also deal with C-analytic spaces, which are introduced in Sect. 2.3.2.

Denote the sheaf of germs of analytic functions on R
n with ORn and its ring of

global sections with O(Rn) := H0(Rn,ORn ), that is, the ring of (global) analytic
functions on R

n . If X ⊂ R
n is a C-analytic set, that is, it is the zero-set of a real

analytic function f ∈ O(Rn), we associate the ideal J(X) of analytic functions on R
n

that vanish identically on X to X . We consider the sheaf of ideals JX := J(X)ORn

and the sheaf of (quotient) rings OX := ORn/JX , whose ring of global sections
O(X) := H0(X ,OX ) = O(X)/J(X) is the ring of (global) analytic functions on X .
Recall that X is coherent if for each x ∈ X the ideal JX ,x coincides with the ideal of
analytic function germs on R

n that vanishes identically on the analytic set germ Xx .
Again the dimension 3 determines a substantial change of behavior. If X is a C-

analytic set of dimension ≥ 3, both the qualitative and quantitative questions have
negative answers, that is, there are (global) analytic functions on X that are positive
semidefinite but they are not sumsof squares of analytic functions on X and p(O(X)) =
+∞ (see [26,30]). Thus, again one is only concerned about dimensions 1 and 2. The
one dimensional case is fully approached in [8]. Every positive semidefinite analytic
function on an analytic curve X is a sum of squares if and only if for each x ∈ X
the analytic curve germ Xx has the corresponding local property (and in fact only 2
squares are needed). Concerning Pythagoras numbers, if X is an analytic curve, then

p(O(X)) = sup{p(O(Xx )) : x ∈ X} + ε

where ε is either 0 or 1. The 2 dimensional case is more delicate. If X is a non-singular
analytic surface, then every positive semidefinite analytic function on X is a sum of
squares of analytic functions on X (and at most 3 squares are needed, [17,50]). In fact,
if X is in addition connected, Jaworski [50, Cor. 2] proved

p(O(X)) =
{
2 if X is non-compact,

3 if X is compact.

Analytic surfaces with singular points are approached in [30]. In particular, we prove
that if X is an analytic surface such that every positive semidefinite analytic function
on X is a sum of squares of analytic functions on X , then X is coherent and for each
x ∈ X the analytic surface germ Xx has the corresponding local property. If the local
embedding dimension of X is ≤ 3, we prove that the converse implication holds (and
in fact only 6 squares are needed). As far as we know, the quantitative problem in the
C-analytic 2-dimensional case has not been studied in detail if X has singular points
and remains as an open problem.

1.2 Meromorphic Functions

If X is an analytic set germ at the origin of R
n , we denote the total ring of fractions of

the ringO(X) of analytic function germs on X withM(X). Risler and Ruiz provided a
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full positive answer to the qualitative problem and proved in [61,62] that every positive
semidefinite meromorphic function germ on an analytic set germ X is a (finite) sum
of squares of meromorphic function germs on X . The quantitative problem in the
local setting has been completely solved by Hu [49] and Benoist [14]. If n = 1, it is
straightforward that p(M(R0)) = 1, whereas in [22] it was shown p(M(R2

0)) = 2.
Jaworski proved in [52] that 4 ≤ p(M(R3

0)) ≤ 8, whereas Hu showed in [49, §5] that
p(M(Rn

0)) ≤ 2n and p(M(R3
0)) = 4. Benoist improved Hu’s bound obtaining that

p(M(Rn
0)) ≤ 2n−1 for each n ≥ 1. Let us sketch how p(M(X)) ≤ 2d for each analytic

set germ X of dimension d. By Rückert’s parameterization theorem [64, Prop.3.4] X
embeds in R

d+1
0 as an analytic hypersurface germ through a birational model. Then,

each sum of squares of meromorphic function germs on X is the restriction of one on
R
d+1
0 , which is a sum of 2d squares of meromorphic function germs by [14]. This sum

of 2d squares restricts well to X , because the analytic equation of X in R
d+1
0 is real,

so it can be factored out from the poles of the 2d addends. If X is an analytic curve
germ and X̂ is its normalization, it holdsM(X) ∼= M(X̂) ∼= ⊕r

i=1M(R0) (where r is
the number of branches of X ), so p(M(X)) = 1. In [7] we proved that p(M(X)) ≤ 4
for each analytic surface germ X and control in addition the zero-set of poles of the
representations as sums of squares.

Theorem 1.1 ([7, Thm. 1.3]) Let X be an analytic surface germ and f ∈ O(X) a
positive semidefinite analytic function germ. Then there are analytic function germs
h0, h1, h2, h3, h4 ∈ O(X) such that h20 f = h21 + h22 + h23 + h24 and h0 is a sum of
squares in O(X) with {h0 = 0} ⊂ { f = 0}.

In the global meromorphic setting we have less information. Recall that the ring
of meromorphic functions M(X) on a C-analytic set X is the ring of global sections
of the sheaf MX , whose stalks MX ,x are the total rings of fractions of OX ,x for each
x ∈ X (see [46, VIII.B]). Each C-analytic set X ⊂ R

n has a complexification, that
is, a complex analytic subset Y of an open neighborhood � ⊂ C

n of R
n such that

Y ∩ R
n = X and for each x ∈ X the ideal JX ,x ⊗ C coincides with the ideal J(Yx ) of

OCn ,x of holomorphic function germs at x that vanish identically on the analytic germ
Yx .

As X ⊂ R
n is a C-analytic set, it has by [20,73] a system of invariant (under

conjugation) open Stein neighborhoods in a complexification Y ⊂ C
n of X . By [46,

VIII.B. Cor. 10] we conclude that M(X) is the total ring of fractions of O(X).
The qualitative and the quantitative problems are still open for each C-analytic set

X of dimension d ≥ 3. There exist only some partial results for R
n if n ≥ 3. For

instance, Bochnak-Kucharz-Shiota proved in [16] that every analytic function on R
n

whose zero-set is a discrete set is a sum of 2n+n+1 squares ofmeromorphic functions
on R

n . In addition, Ruiz showed in [63] that if the zero-set of a positive semidefinite
analytic function f on a C-analytic set X is compact, then f is a sum of squares of
meromorphic functions on X . Unfortunately, there is no bound concerning the number
of squares involved. In [51] Jaworski showed that if f is a positive semidefinite analytic
function on X whose zero-set is discrete outside a compact set, then f is a sum of
squares of meromorphic functions on X .

In [9] we propose to involve also infinite (convergent) sums of squares of analytic
functions. We showed that if the connected components of the zero-set of a positive
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semidefinite analytic function f on a real analyticmanifoldM are compact, then f is an
infinite sum of squares of meromorphic functions on M . If there exists a bound for the
number of squares needed to represent f around the (compact) connected components
of { f = 0}, then the previous sum of squares of meromorphic functions is finite. This
requires to control the zero-set of the set of poles of the representation of f as a sum
of squares of meromorphic functions around the connected components of { f = 0}
(see [9, Thm. 1.5]). In addition, we proved in [9, Prop. 1.11] that a positive answer to
the qualitative problem forM(Rn) implies the finiteness of the Pythagoras number of
M(Rn). In [2,6,31] we showed that the obstruction for a positive semidefinite analytic
function f on R

n to be a (maybe infinite) sum of squares of meromorphic functions
on R

n concentrates around the zero-sets of the invariant (under complex conjugation)
irreducible factors of f (of odd multiplicity) whose zero-sets have dimension between
1 and n − 2.

Thus, if n ≤ 2, such obstructions do not appear and let us comment what is known
for C-analytic curves and surfaces. By [12, Thm. 3.9] we know that if Y is a complex-
ification of X and (Ŷ , π) is the normalization of Y , thenM(Y ) ∼= M(Ŷ ). If in addition
X is coherent, then X̂ := π−1(X) is the real part space of Ŷ (so it is a normal real
analytic space) and M(X) ∼= M(X̂). Thus, if X is coherent, we may assume that it is
normal in order to approach the qualitative and the quantitative questions. However,
as the bounded local embedding dimension of the normalization is not guaranteed in
the 2-dimensional case, we have to deal with normal C-analytic spaces of dimension
2 instead of normal C-analytic surfaces of some R

n .
If X is a normal analytic curve, its connected components are analytically dif-

feomorphic to lines and circumferences. If {Xk}k is the collection of the connected
components of X , then

O(X) ∼=
∏
k

O(Xk) and M(X) ∼=
∏
k

M(Xk).

Thus, every positive semidefinite analytic function of X is a sum of squares of analytic
functions on X (and 2 squares are enough). In fact, p(M(X)) = maxk{p(M(Xk))} ≤ 2
and by [50, Cor. 1]

p(M(Xk)) =
{
1 if Xk is unbounded,

2 if Xk is compact.

If X is a normal C-analytic surface, we have the following result (see also [11]).

Theorem 1.2 ([7, Thm. 1.4]) Let X be a normal C-analytic surface and let f : X →
R be a positive semidefinite analytic function. Then, there exist analytic functions
g, f1, f2, f3, f4, f5 ∈ O(X) such that g2 f = f 21 + f 22 + f 23 + f 24 + f 25 and g is a
sum of squares whose zero-set {g = 0} is a discrete subset of { f = 0}.
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1.3 Main Result

Let us analyze what happens with generalC-analytic surfaces. Denote the set of points
x of a C-analytic set X ⊂ R

n at which OX ,x is not a normal ring with B(X). By [56,
Ch. VI, Thm. 5] B(X) is aC-analytic subset of X . In this work we prove the following
result, whose proof works verbatim for C-analytic spaces of dimension 2 (see Sect.
2.3.2).

Theorem 1.3 (Hilbert’s 17th problem) Let X be a C-analytic surface and f :
X → R a positive semidefinite analytic function. Then there exist analytic functions
g, f1, . . . , f10 ∈ O(X) such that g2 f = ∑10

i=1 f 2i and {g = 0} ⊂ { f = 0} ∪ B(X).
In addition,

p(M(X)) ≤
{
5 if X is coherent,

10 if X is non-coherent.

As we use the normalization of (X ,OX ) to prove Theorem 1.3, it seems difficult to
get rid of the set B(X) in the zero-set {g = 0} of the denominator g.

1.4 Real Nullstellensatz

In close relation to Hilbert’s 17th problem there is a classical result in Real Geometry:
the real Nullstellensatz [69]. Given an ideal a of a (commutative unital) ring A we
define its real radical ideal as

r
√
a :=

{
f ∈ A : f 2m +

∑r

i=1
a2i ∈ a, ai ∈ A,m, r ≥ 1

}
.

If X ⊂ R
n is a C-analytic set and a is an ideal of O(X), we define its saturation

as ã := H0(X , aOX ). In addition, we denote Z(a) := {x ∈ X : f (x) = 0 ∀ f ∈
a}. As a direct consequence of Theorem 1.3 and [3], we obtain the following real
Nullstellensatz.

Corollary 1.4 (Real Nullstellensatz) Let X be a C-analytic set of dimension ≤ 2 and
a an ideal of O(X). Then J(Z(a)) = r̃

√
a.

The fact that the set B(X) of non-normal points of X appears in the set of poles of
a representation of a positive semidefinite analytic function on a C-analytic surface X
as sums of squares of meromorphic functions makes it difficult, even in the coherent
case, to obtain a weak Positivstellensatz in the sense of [1].

Structure of the Article

The article is organized as follows. In Sect. 2 we present some preliminary concepts
and results that will allow us to prove Theorem 1.3 in Sect. 3. We will treat a ‘full
approximation’ result (Theorem 2.1) with special care in Sect. 2, which has interest
on its own, concerning approximation of continuous functions on the real part space
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of a Stein space (endowed with an anti-involution) by invariant holomorphic functions
defined in the whole Stein space.

2 Preliminaries

In the following holomorphic refers to the complex case and analytic to the real case.
For a further reading about complex analytic spaces we refer to [46], whereas we remit
the reader to [44,71] for the theory of real analytic spaces. We denote the elements of
O(X) := H0(X ,OX ) with capital letters if (X ,OX ) is a complex analytic space and
with lowercase letters if (X ,OX ) is a real analytic space.

A positive semidefinite (global) analytic function on a real analytic space (X ,OX )

is an element f ∈ O(X) such that f (x) ≥ 0 for each x ∈ X . We denote the set of all
sums of (resp. p) squares of the ring O(X) of analytic functions on X with

∑
O(X)2

(resp.
∑

pO(X)2).

2.1 General Terminology

Denote the coordinates in C
n with z := (z1, . . . , zn) where zi := xi + √−1yi .

Consider the conjugation · : C
n → C

n, z �→ z := (z1, . . . , zn) of C
n , whose set of

fixed points is R
n . A subset A ⊂ C

n is invariant if A = A. Obviously, A ∩ A is the
biggest invariant subset of A. Let � ⊂ C

n be an invariant open set and F : � → C

a holomorphic function. We say that F is invariant if F(z) = F(z) for each z ∈ �.
This implies that F restricts to a real analytic function on � ∩ R

n . Conversely, if f
is analytic on R

n , it can be extended to an invariant holomorphic function F on some
invariant open neighborhood � of R

n . If F : � → C is a holomorphic function and
� is invariant, then

�(F) : � → C, z �→ F(z)+F(z)
2 and �(F) : � → C, z �→ F(z)−F(z)

2
√−1

are invariant holomorphic functions that satisfy F = �(F) + √−1�(F).

2.2 Reduced Analytic Spaces [44, §I.1]

Let K := R or C and (X ,OX ) be either a complex or real analytic space. Let FX be
the sheaf of K-valued functions on X and ϑ : OX → FX the morphism of sheaves
defined for each open set U ⊂ X by

ϑU (s) : U → K, x �→ s(x),

where s(x) is the class of s module the maximal ideal mX ,x of OX ,x . Recall that
(X ,OX ) is reduced if ϑ is injective. Denote the image of OX under ϑ with Or

X . The
pair (X ,Or

X ) is called the reduction of (X ,OX ) and (X ,OX ) is reduced if and only
if OX = Or

X . The reduction is a covariant functor from the category of K-analytic
spaces to the one of reduced K-analytic spaces.
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2.3 Anti-involution and Complexifications [44, §II.4]

Let (Y ,OY ) be a complex analytic space. An anti-involution on (Y ,OY ) is a morphism
σ : (Y ,OY ) → (Y ,OY ) such thatσ 2 = idY and it transforms the sheaf of holomorphic
sections OY into the sheaf of antiholomorphic sections OY . We denote the sheaf of
(σ -)invariant holomorphic sections with Oσ

Y : if U ⊂ Y is open, then H0(U ,Oσ
Y ) :=

{F ∈ H0(U ,OY ) : F = F ◦ σ }.

2.3.1 Real Part Space

Let (Y ,OY ) be a complex analytic space endowed with an anti-involution σ . Let
Y σ := {x ∈ Y : σ(x) = x} and define the sheaf OY σ := Oσ

Y |Y σ . The R-ringed space
(Y σ ,OY σ ) is called the real part space of (Y ,OY ) (with respect to σ ), whereas Y \Y σ

is the imaginary part of (Y ,OY ). By [44, Thm. II.4.10] (Y σ ,OY σ ) is a real analytic
space if Y σ �= ∅.

2.3.2 Complexification and C-analytic Spaces [44, §III.3]

A real analytic space (X ,OX ) is a C-analytic space if it satisfies one of the following
two equivalent conditions:

(1) Each local model of (X ,OX ) is defined by a coherent sheaf of ideals, which is not
necessarily associated to a well reduced structure (see Sect. 2.4).

(2) There exists a complex analytic space (Y ,OY ) endowed with an anti-involution σ

whose real part space is (X ,OX ).

The complex analytic space (Y ,OY ) is called a complexification of X and it satisfies
the following properties:

(i) OY ,x = OX ,x ⊗ C for each x ∈ X .
(ii) The germ of (Y ,OY ) at X is unique up to an isomorphism.
(iii) X has a fundamental system of invariant open Stein neighborhoods in Y .
(iv) If X is reduced, then Y is also reduced.

For further details see [20,44,71,73].

2.3.3 Irreducible Components of a C-analytic Space

A C-analytic space is irreducible if it is not the union of two C-analytic subspaces
different from itself. In addition, X is irreducible if and only if it admits a fundamental
system of invariant irreducible complexifications. Given a C-analytic space X , there
exists a unique irredundant (countable) locally finite family of irreducible C-analytic
subspaces {Xi }i≥1 such that X = ⋃

i≥1 Xi . The C-analytic subspaces Xi are called
the irreducible components of X . For further details see [32,73]. It is important to point
out that M(X) ∼= ∏

i∈I M(Xi ). Thus, when dealing with meromorphic functions, it
is common to assume that X is irreducible in order to study the properties of the ring
M(X). If such is the case, M(X) is the quotient field of the integral domain O(X).
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2.3.4 Full Approximation

Wenowpresent the following result concerning approximationof continuous functions
on the real part space of a Stein space (endowed with an anti-involution) by invariant
holomorphic functions defined in the whole Stein space.

Theorem 2.1 (Full approximation) Let (Y ,OY ) be a Stein space endowed with an
anti-involution σ and (X ,OX ) its real part space. Let g : X → R be a continuous
function and ε : X → R a strictly positive continuous function. Then

(i) There exists an invariant holomorphic function F : Y → C such that |F |X − g| <

ε.
(ii) There exists an invariant holomorphic function B : Y → C such that 0 < B|X < ε

and {B = 0} = ∅.
(iii) If {y j } j≥1 ⊂ Y is a discrete subset of Y , we may assume F(y j ) �= 0 for each

j ≥ 1.

Proof (i) By [54,72] there exist an integer N ≥ 1 and an injective proper invariant
holomorphic map ϕ : Y → Z := ϕ(Y ) ⊂ C

N such that Z is a (global) analytic subset
of C

N invariant under the usual conjugation · of C
N and the following diagram is

commutative

Y
ϕ

σ

Z

·

C
N

·

Y
ϕ

Z C
N

Let Z∗ := ϕ(X) = {z ∈ Z : z = z}. Consider the continuous function g′ :=
g◦(ϕ|X )−1 : Z∗ → R and the strictly positive continuous function ε′ := ε◦(ϕ|X )−1 :
Z∗ → R. As Z∗ ⊂ R

N is closed, there exist continuous extensions g∗ : R
N → R of

g′ and ε∗ : R
N → R of ε′ toR

N . Using a suitable partition of unity, wemay assume ε∗
is strictly positive onR

N . ByWhitney’s approximation theorem [57, §1.6] there exists
an analytic function f ∗ : R

N → R such that | f ∗ − g∗| < 1
2ε

∗. This analytic function
f ∗ extends to an invariant (under conjugation) holomorphic function F∗ : � → C

where � is an invariant neighborhood of R
n in C

n . Following the proof of Whitney’s
approximation theorem [57, §1.6], one realizes that it is possible to assume � = C

N .
To that end (see [57, §1.6.11, pp. 34–35]), it is enough to construct an exhaustion by

compact sets {Km}m≥1 ofRN (that is,RN = ⋃
m≥1 Km and Km ⊂ Int(Km+1) for each

m ≥ 1) and invariant open neighborhoodsUm ⊂ C
N of Km such thatCN = ⋃

m≥1Um

and

Re((z1 − x1)
2 + · · · + (zN − xN )2) > 1

2 dist(Km, R
N \ Km+1)

for each z := (z1, . . . , zN ) ∈ Um and each x := (x1, . . . , xN ) ∈ R
N \ Km+1. If

zi := ai + √−1bi , a := (a1, . . . , aN ) and b := (b1, . . . , bN ), we obtain

Re((z1 − x1)
2 + · · · + (zN − xN )2) = ‖a − x‖2 − ‖b‖2 > ‖a − x‖ − ‖b‖
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if ‖a − x‖ + ‖b‖ > 1. Denote the closed (resp. open) ball of center y ∈ R
N and radio

r > 0 with BN (y, r) (resp. BN (y, r)). Define Km := BN (0, rm) and

Um := {(a1 + √−1b1, . . . , aN + √−1bN ) : (a1, . . . , aN )

∈ BN (0, rm + 1
2 ), bi ∈ (−m,m) ∀ i}

where rm+1 := rm + 1 + 2
√
Nm and r0 = 0 (that is, rm := m + √

Nm(m + 1)).
Observe that

dist(Km, R
N \ Km+1) = rm+1 − rm = 1 + 2

√
Nm

and if z ∈ Um and x ∈ R
N \ Km+1, then

Re((z1 − x1)
2 + · · · + (zN − xN )2) > rm+1 − (rm + 1

2 ) − √
Nm

= 1 + 2
√
Nm − 1

2 − √
Nm = 1

2
+ √

Nm = 1

2
dist(Km, R

N \ Km+1).

For this choice the approximating analytic function f ∗ : R
n → R provided in [57,

§1.6] extends to an invariant holomorphic function F∗ : C
N → C. Define F :=

F∗ ◦ ϕ : Y → C, which is an invariant holomorphic function. We have

|F |X − g| = |F∗ ◦ ϕ|X − g ◦ (ϕ|X )−1 ◦ ϕ|X |
= | f ∗ ◦ ϕ|X − g∗ ◦ ϕ|X | < 1

2ε
∗ ◦ ϕ|X = 1

2ε,

which proves (i).
For the rest of the proof we keep the notations introduced above.
(ii) Define

ε∗
0 := ε∗

2(1 + ε∗)
<

1

2
.

By (i) there is an invariant holomorphic function A∗ : C
N → C such that |A∗|RN −

1
ε∗
0
| < ε∗

0 , so

1

2ε∗
0

<
1 − (ε∗

0)
2

ε∗
0

< A∗|RN .

Consequently, B∗ := exp(−1 − (A∗)2) satisfies

0 < B∗|RN = exp(−1 − (A∗)2)|RN <
1

1 + (A∗)2|RN
≤ 1

2A∗|RN
< ε∗

0 < ε∗

and {B∗ = 0} = ∅.
(iii) Let usmodify the F∗ constructed in (i). If F∗ = 0, then |g∗| < 1

2ε
∗. By (ii) there

exists an invariant holomorphic function B∗ : C
N → C such that 0 < B∗|RN < 1

2ε
∗
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and {B∗ = 0} = ∅. Thus, |g∗ − B∗|RN | ≤ |g∗| + |B∗|RN | < ε∗ and B∗(y j ) �= 0
for each j ≥ 1. Assume in the following F∗ �= 0. By [48, §2.5, Ex. 10, pp. 64–
65] there exists a strictly positive continuous function δ∗ : R

N → R such that if
ϕ := (ϕ1, . . . , ϕN ) : R

N → R
n is a continuous map and satisfies |ϕi (x)−xi | < δ∗(x)

for each x ∈ R
n and each i = 1, . . . , N , then |F∗|RN −F∗|RN ◦ϕ| < 1

2ε
∗. By (ii) there

exists an invariant holomorphic function B∗ : C
N → C such that 0 < B∗|RN < δ∗

and {B∗ = 0} = ∅. For each λ := (λ1, . . . , λN ) ∈ C
N define 
λ := idN

C
+λB∗. If

λ ∈ (−1, 1)N , we have |F∗|RN − F∗|RN ◦
λ| < 1
2ε

∗. Fix j ≥ 1. As B∗(y j ) �= 0 and
{F∗ = 0} is a hypersurface of C

N , also {F∗(y j + λB∗(y j )) = 0} is a hypersurface
of C

N . Thus, S j := {F∗(y j + λB∗(y j )) = 0} ∩ R
N is a C-analytic set of dimension

≤ N − 1. As this happens for each j ≥ 1, we have T := (−1, 1)N \ ⋃
j≥1 S j �= ∅

and it is enough to pick λ ∈ T to have in addition F∗ ◦ 
λ(y j ) �= 0 for each j ≥ 1,
as required. ��

2.4 C-analytic Sets

The concept of C-analytic sets was introduced by Cartan in [20, §7, §10]. Recall that
a subset X ⊂ R

n is C-analytic if there exists a finite set S := { f1, . . . , fr } of real
analytic functions fi on R

n such that X is the common zero-set of S. This property is
equivalent to the following:

(1) There exists a coherent sheaf of ideals I on R
n such that X is the zero-set of I.

(2) There exist an open neighborhood � of R
n in C

n and a complex analytic subset
Z of � such that Z ∩ R

n = X .

2.4.1 Well Reduced Structure

Given aC-analytic set X ⊂ R
n , the largest coherent sheaf of ideals I having X as zero-

set is J(X)ORn by Cartan’s Theorem A, where J(X) is the set of all analytic functions
on R

n that are identically zero on X . The coherent sheaf OX := ORn/J(X)ORn is
called the well reduced structure of X . The C-analytic set X endowed with its well
reduced structure is a C-analytic space, so it has a well-defined complexification as
commented above. By [54,72] the only limitation that a C-analytic space has to be
embedded in some R

N as a C-analytic set is the local embedding dimension, which
has to be bounded by a common constant at all points of the C-analytic space.

2.4.2 Set of Points of Non-coherence of a C-analytic Set

A C-analytic set X ⊂ R
n is coherent if the sheaf JX of germs of analytic functions

vanishing identically on X is an ORn -coherent sheaf of modules. AsORn is a coherent
sheaf of rings, JX is coherent at x ∈ R

n if and only if it is of finite type at x ∈ R
n ,

that is, there exists an open neighborhood U of x in R
n and finitely many sections

fi ∈ H0(U , JX ) such that for each y ∈ U the germs f1,y, . . . , fr ,y generate the
stalk JX ,y as an OX ,y-module. By Cartan’s Theorem A X is coherent at x ∈ X if
and only if JX ,x = J(X)ORn ,x . Thus, X is non-coherent at x ∈ X if and only if
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JX ,x �= J(X)ORn ,x . We refer the reader to [4,24,42,70] for a precise study of the
set N (X) of points of non-coherence of the C-analytic set X . Classical examples of
non-coherent C-analytic sets are Cartan’s or Whitney’s umbrellas.

2.5 Singular and Regular Points

Let (Y ,OY ) be a reduced complex analytic space and y ∈ Y . We say that y ∈ Y is a
regular point of Y ifOY ,y is a regular local ring. Otherwise, we say y ∈ Y is a singular
point of Y . In the (reduced) complex case the regularity of OY ,y is equivalent to the
smoothness of the analytic set germ Yy (use for instance the Jacobian criterion). We
denote the set of regular points of Y with Reg(Y ) and the set of singular points of Y
with Sing(Y ).

2.5.1 Singular Set of a C-analytic Space

Let (X ,OX ) be aC-analytic space and (Y ,OY ) a complexification of X . We define the
singular locus of X as Sing(X) := Sing(Y ) ∩ X . Observe that (Sing(X),OX |Sing(X))

is a C-analytic space of dimension strictly smaller than the dimension of X . The
complement Reg(X) := X \Sing(X) is the set of regular points of X and corresponds
to the set of those points x ∈ X such that the stalk OX ,x is a local regular ring (recall
here that OX ,x is a regular local ring if and only if its complexification OX ,x ⊗R C

is a regular local ring). Thus, Sing(X) depends only on X and not in the chosen
complexification.

We say that x ∈ X is a smooth point of X if there exists a neighborhood U ⊂ X
of x such thatU is analytically diffeomorphic to an open subset of R

n . It is important
to distinguish between regular and smooth points because in the real case they are
different concepts ( [4, Ex. 2.2] or [33, Ex. 2.1]), although each regular point is always
a smooth point.

2.6 Normalization of Complex Analytic Spaces

One defines the normalization of a complex analytic space in the following way [56,
VI.2] (see also [5,47] for an equivalent approach for Stein spaces that involves inte-
gral closure and Fréchet’s topology). A complex analytic space (Y ,OY ) is normal
if for each y ∈ Y the local analytic ring OY ,y is reduced and integrally closed. A
normalization ((Ŷ ,OŶ ), π) of a complex analytic space (Y ,OY ) is a normal com-
plex analytic space (Ŷ ,OŶ ) endowed with a proper surjective holomorphic map
π : Ŷ → Y with finite fibers such that Ŷ \ π−1(Sing(Y )) is dense in Ŷ and the
restriction π | : Ŷ \ π−1(Sing(Y )) → Y \ Sing(Y ) is an analytic isomorphism. The
normalization ((Ŷ ,OŶ ), π) of a reduced complex analytic space (Y ,OY ) always exists
and is unique up to isomorphism [56, VI.2. Lem. 2 & VI.3. Thm. 4].
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2.6.1 Complex Analytic Spaces Endowed with an Anti-involution

Let (Y ,OY ) be a (reduced) complex analytic space endowed with an anti-involution
σ and ((Ŷ ,OŶ ), π) its normalization. By [44, Prop. IV.3.10] there exists an anti-
involution σ̂ of Ŷ that makes the following diagram commutative

Ŷ
σ̂

π

Ŷ

π

Y
σ

Y

Denote the real part space of Y with X := Y σ and the real part space of Ŷ with
X̂ := Ŷ σ̂ . Let Oσ

Y and Oσ̂
Ŷ
be the subsheaves of invariant holomorphic functions of

OY and OŶ . The pairs (X ,OX := Oσ
Y |X ) and (X̂ ,OX̂ := Oσ̂

Ŷ
|X̂ ) are C-analytic spaces

and (Y ,OY ) and (Ŷ ,OŶ ) are corresponding complexifications for these real analytic
spaces. The restriction map π |X̂ : X̂ → X induces a real analytic morphism between
(X̂ ,OX̂ ) and (X ,OX ). The restriction map

π |X̂\π−1(Sing(X)) : X̂ \ π−1(Sing(X)) → X \ Sing(X)

is an analytic diffeomorphism and, as π : X̂ → X is proper, Cl(X \ Sing(X)) ⊂
π(X̂) ⊂ X . Observe that Cl(X \ Sing(X)) is the set of points x ∈ X such that
dim(Xx ) = dim(X). Thus, if X is pure dimensional, X = Cl(X \ Sing(X)) and
π : X̂ → X is surjective.

In addition, X̂ ⊂ π−1(X) and the previous inclusion in general could be strict.
By [44, Lem. IV.3.13] the equality X̂ = π−1(X) is guaranteed if X is a coherent
C-analytic space. In addition, if such is the case, (X̂ ,OX̂ ) is by [44, Thm. IV.3.14] a
coherent real analytic space and (Ŷ ,OŶ ) is a (normal) complexification of (X̂ ,OX̂ ).

2.6.2 C-analytic Spaces of Dimension≤ 2

If (X ,OX ) is a C-analytic space, the normality of a complexification (Y ,OY ) and
the coherence of (X ,OX ) are independent concepts if X has dimension ≥ 3 ( [71,
Esempio, p. 211]). Let us analyze what happens if the dimension of X is ≤ 2. If X has
dimension 1, then it is coherent [24,42]. In addition, the normality of a complexification
(Y ,OY ) implies that Y is non-singular [56, Thm. VI.2.2], so X is also non-singular.

If X has dimension 2, it is not coherent in general, but the normality of a com-
plexification (Y ,OY ) implies that Y has only isolated singularities and by [44, Prop.
III.2.8] or [56, V.§1, Prop. 5, p. 94] we deduce (X ,OX ) is coherent.

In [4, §5] we provide a careful study of the set N (X) of points of non-coherence
of a C-analytic set X ⊂ R

n . We keep the notations introduced in Sect. 2.6.1. If X is
a C-analytic space of dimension 2, then N (X) = π(Cl(π−1(X) \ X̂) ∩ X̂), which is
the discrete subset of X .
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Remarks 2.2 Let (X ,OX ) be a C-analytic space of dimension 2. Let us keep the nota-
tions introduced in Sects. 2.6.1 and 2.6.2.

(i) Each connected component of Cl(π−1(X) \ X̂) meets X̂ .
Suppose Cl(π−1(X)\ X̂) has a connected component C1 that does not meet X̂ . Let

S := π−1(X) \ (C1 ∪ σ̂ (C1)) and W ⊂ Ŷ an invariant neighborhood of S such that
Cl(W ) ∩ C1 = ∅. Let U be an open neighborhood of C1 that does not meet Cl(W ).
Define T := Ŷ \ (W ∪ U ∪ σ̂ (U )), which is a closed subset of Ŷ that does not meet
π−1(X). As π is proper, � := π−1(Y \ π(T )) is an open neighborhood of π−1(X).
Substitute Ŷ by � and Y by π(�) = Y \ π(T ). Let U ′ be the connected component
of Ŷ that contains C1 and does not meet X̂ . Note that U ′ has dimension ≥ 1 because
(Y ,OY ) is a reduced complex analytic space. As C1 does not meet X̂ , we deduce
U ′ ∩ σ̂ (U ′) = ∅. Then Y1 := π(U ′) and Y2 := π(̂σ (U ′)) are irreducible components
of Y and Y1 �= Y2. Observe that Y1 ∩ X = π(C1) = π(̂σ (C1)) = Y2 ∩ X (recall that
π ◦ σ̂ = σ ◦ π ). Define Y ′ := π(Y \ (U ′ ∪ σ̂ (U ′))) ∪ (Y1 ∩ Y2) ⊂ Y and observe that
X is the real part space of the reduced complex analytic space (Y ′,OY ′) endowed with
the anti-involution σ |Y ′ : Y ′ → Y ′. If x ∈ π(C1), thenOY ′,x = OX ,x ⊗RC = OY ,x , so
Y ′
x = Yx , which is a contradiction because Y1 �= Y2. Thus, each connected component

of Cl(π−1(X) \ X̂) meets X̂ , as required.
(ii) X is coherent if and only if π−1(X) \ X̂ = ∅.
If π−1(X) \ X̂ = ∅, then N (X) = π(Cl(π−1(X) \ X̂) ∩ X̂) = ∅. Suppose X is

coherent and π−1(X) \ X̂ �= ∅. By (i) each connected component of Cl(π−1(X) \ X̂)

meets X̂ , so N (X) = π(Cl(π−1(X) \ X̂) ∩ X̂) �= ∅, which is a contradiction. Thus,
π−1(X) \ X̂ = ∅, as required. ��
Corollary 2.3 If X is a non-coherent irreducible C-analytic space of dimension 2,
then X̂ is pure dimensional, C := Cl(π−1(X) \ X̂) is an invariant analytic set of real
dimension 1 such that π−1(X) = X̂ ∪ C, X̂ ∩ C is a discrete subset of X̂ and the
irreducible components of C have dimension 1. In addition, π(X̂) = Cl(X \Sing(X))

and Cl(X \ π(X̂)) ⊂ π(C).

Proof As (Ŷ ,OŶ ) is a normal complex analytic space of dimension 2, the analytic set
Sing(Ŷ ) has dimension 0, so Sing(X̂) = Sing(Ŷ ) ∩ X̂ has also dimension 0 and X̂ is
pure dimensional.

As π has finite fibers and π ◦ σ̂ = σ ◦ π , π−1(Sing(X)) is an analytic set of real
dimension ≤ 1 and it is invariant. Let C be the union of the irreducible components of
π−1(Sing(X)) (as an analytic set of real dimension 1) that are not contained in X̂ . Then
C is invariant, π−1(X) = X̂ ∪C and X̂ ∩C is a discrete set. As π−1(X \Sing(X)) =
X̂ \ π−1(Sing(X)),

C = Cl(π−1(Sing(X)) \ X̂) = Cl(π−1(X) \ X̂).

As X is non-coherent, C �= ∅ (Remark 2.2(ii)). By Remark 2.2(i) each connected
component ofC meets X̂ , soC has no isolated points. Thus, the irreducible components
ofC have dimension 1. As X̂ \π−1(Sing(X)) is dense in X̂ and π : X̂ → X is proper,

π(X̂) = Cl(π(X̂ \ π−1(Sing(X)))) = Cl(X \ Sing(X)).
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As π−1(X) = X̂ ∪ C , we conclude Cl(X \ π(X̂)) ⊂ π(C), as required. ��

2.7 Multiplicity Along an Irreducible Complex Analytic Curve

Let (Y ,OY ) be a normal Stein space of pure dimension 2. Recall that Sing(Y ) is a
discrete set. Let Z ⊂ Y be an irreducible analytic subspace of dimension 1 (recall that
OZ := OY /JZ ). Let us define the multiplicity multZ (F) along Z of F ∈ O(Y ) (see
[10] and [11, §2] for similar results in the real analytic setting).

Fix a point z ∈ Z \ Sing(Y ). As OZ ,z is a unique factorization domain, the ideal
JZ ,z is principal, say JZ ,z = HzOY ,z and Fz = AzH

αz
z for some Az ∈ OY ,z \ JZ ,z and

some integer αZ ≥ 0. This integer αz is the multiplicity multZ (F). Let us show that
this definition is consistent:
2.7.1. The number αz does not depend on the chosen generator of JZ ,z .

Assume Fz = BzG
βz
z for another generator Gz of JZ ,z and Bz ∈ OY ,z \ JZ ,z .

Suppose αz ≤ βz and write Hz = CzGz for some Cz ∈ OY ,z \ JZ ,z . As BzG
βz
z =

Az(CzGz)
αz , we have BzG

βz−αz
z = AzC

αz
z /∈ JY ,z , so βz − αz = 0.

2.7.2. The number αz is constant on some branch of the analytic curve germ Zz .
If y ∈ Z is close to z, we have Fy = AyH

αz
y and Hy is a generator of JZ ,y (recall

that Stein spaces are coherent). As Az /∈ JZ ,z , A cannot vanish identically on all
branches of Zz , so that A(y) �= 0 for y close to z in the branches of Zz on which
Az is not identically zero. We conclude αy = αz for each y ∈ Z close to z such that
A(y) �= 0.
2.7.3. There exists a global analytic function G ∈ O(Y ) that vanishes on Z and whose
germ at z generates JZ ,z for each z ∈ Z outside a discrete set D ⊂ Z .Wemay assume
in addition that {G = 0} avoids any discrete subset E of Y that does not meet Z .

Pick a ∈ Z \ (Sing(Y ) ∪ Sing(Z)). By Cartan’s Theorem A the ideal JZ ,a is
generated by finitely many Fi ∈ O(Y ) that vanish identically on Z . We may assume
F1,a ∈ JZ ,a\J2Z ,a . DefineG := F1 and observe thatGa = AaHa where Aa /∈ JZ ,a . By
Sect. 2.7.2 a is isolated in Z ∩{A = 0}, hence Gy generates JZ ,y for each y ∈ Z \ {a}
close enough to a. Consider the coherent sheaf of ideals I := (GOY : JZ ) of OY .
Observe that Iy = OY ,y if and only if Gy generates JZ ,y . Thus, the support

Z ′ := supp(OY /I) = {y ∈ Y : Gy does not generate JZ ,y}

is a closed analytic subspace of Y that does not contain a. As Z is irreducible, D :=
Z ′ ∩ Z is a discrete set, so Gz generates JZ ,z for each z ∈ Z \ D.

Let E1 := {z ∈ E : G(z) = 0} and E2 := {z ∈ E : G(z) �= 0}. By Cartan’s
TheoremB there exists an invariant holomorphic function H ∈ O(Y ) such that H |Z =
0, H(z) = 1 for each z ∈ E1 and H(z) = 0 for each z ∈ E2. Then G + H2 satisfies
the required properties.
2.7.4 Fix x ∈ Z \ (Sing(Y ) ∪ Sing(Z) ∪ D). We have Fx = AxG

αx
x with Ax /∈ JZ ,x .

By Sect. 2.7.2 Ax is a unit for z ∈ Z \ D close to x . Consequently, αz = αx , G
αx
z |Fz

and Fz|Gαx
z . Consider the coherent sheaf of ideals J := (Gαx : F)∩ (F : Gαx ) of OY .
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The support

Z ′′ := supp(OY /J) = {z ∈ Y : Gαx
z � | Fz or Fz � |Gαx

z }

is an analytic subset of Y that does not contain x , so D′ := Z ∩ Z ′′ is a discrete set
because Z is irreducible. Thus, αz = αx for each z ∈ Y \ (Sing(Y ) ∪ D ∪ D′).
2.7.5 If x ∈ Z \ Sing(Y ), we conclude by Sects. 2.7.2 and 2.7.3 that αx = αz for each
z close to x . Hence, by Sect. 2.7.3 αx = αz if x, z ∈ Z \ Sing(Y ).
2.7.6 Consequently, multZ (F) is well-defined and: If multZ (F) = α, there exists a
discrete set E such that Fz/Gα

z is a unit for z ∈ Z \ E . If F does not vanish identically
at Z , we write multZ (F) = 0.
2.7.7 It is possible to modify the analytic function G constructed in 2.7.3 to avoid any
prescribed analytic subspace Z ′ ⊂ Y of dimension 1 that meets Z in a discrete set.

Assume we have constructed H , F ∈ O(Y ) such that

(i) Z ⊂ {H = 0} and {H = 0} ∩ Z ′ is a discrete set.
(ii) Z ′ ⊂ {F = 0} and {F = 0} ∩ Z is a discrete set.

Define G ′ := FG + H2 and observe that Z ⊂ {G ′ = 0} and Z ′ ∩ {G ′ = 0} =
Z ′ ∩ {H = 0} is a discrete set. As multZ (H2) ≥ 2, we deduce multZ (G ′) = 1.

To finish we show how to construct H . The construction of F is analogous. As Z
is a coherent analytic subspace, there exist by [41] finitely many Hi ∈ O(Y ) such that
Z = {H1 = 0, . . . , Hs = 0}. For each irreducible component Z ′

j of Z
′ of dimension

1 we choose one of its points z j /∈ Z . The set {z j } j≥1 constitutes a discrete subset of
Z ′. For each j consider the linear equation

x1H1(z j ) + · · · + xs Hs(z j ) = 0,

which is not identically zero because z j /∈ Z = {H1 = 0, . . . , Hs = 0}. Thus, L j :=
{x1H1(z j )+· · ·+xs Hs(z j ) = 0} is a hyperplane for each j and C

s \⋃
j≥1 L j �= ∅.

Let λ := (λ1, · · · , λs) ∈ C
s \ ⋃

j≥1 L j . Then, H := λ1H1 + · · · + λs Hs satisfies
Z ⊂ {H = 0} and {H = 0} ∩ Z ′ = ∅.

3 Proof of Theorem 1.3

Let (Y ,OY ) be a reduced complex analytic space endowed with an anti-involution
σ : Y → Y . Consider theC-analytic space (X := Y σ ,OX ). LetC ⊂ Y be an invariant
analytic space of real dimension 1without isolated points. AssumeC is a closed subset
of Y and D := X ∩ C is a discrete set. We write C = ⋃

i≥1 Ci , where the Ci are the
irreducible components of C (as an analytic space of real dimension 1). Recall that Ci

is isomorphic either to R or S
1 via an analytic parameterization (use normalization).

In the second case we compose with ϕ : R → S
1, t �→ (cos(t), sin(t)). Thus, for

each i ≥ 1 there exists a surjective analytic map αi : R → Ci .
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3.1 Eliminating One Dimensional Zero-sets from the Real Part Space

We assume in the following that X ∪ C has a system of open invariant Stein neigh-
borhoods in Y . A paracompact locally connected and locally compact space Y with
countablymany connected components (which are clopen subsets of X ) has an exhaus-
tion by compact sets, that is, there exists a family of compact sets {Km}m≥1 such that
X = ⋃

m≥1 Km and Km ⊂ Int(Km+1) for each m ≥ 1. Thus, reduced complex
analytic spaces admit exhaustions by compact sets.

Lemma 3.1 Assume (Y ,OY ) is a normal Stein space of dimension 2 and let F ∈
O(Y ) be an invariant holomorphic function such that F |X ≥ 0 and {F |X = 0} has
dimension ≤ 1. Then there exist invariant holomorphic functions G, H1, H2 ∈ O(Y )

such that {Hi |X = 0} is a discrete set contained in {F |X = 0}, Hi |X ≥ 0 and
H2
1 F = (G2 + F2)H2.

Proof Let Z ⊂ Y be the complexification of the 1-dimensional part of {F |X = 0}
and {Z j } j≥1 the collection of the irreducible components of Z (as a complex analytic
space). For each j ≥ 1 the intersection Z j ∩ X has dimension 1 (so Z j is in particular
invariant). Thus, multZ j (F) = 2m j for somem j ≥ 1. As the family {Z j } j≥1 is locally
finite, JZ j ,z = OY ,z for each z ∈ Y and each j ≥ 1 except for at most finitely many

indices. Consider the coherent sheaf of ideals F := ∏
j≥1 J

m j
Z j

of OY . Let {K}≥1 be
an exhaustion of Y by compact sets. We may assume Z ∩ Int(K) �= ∅ and pick a
point

x ∈ Z \
( ⋃
k �=

Zk ∪ Sing(Z) ∪ Sing(Y )
)
.

Using Cartan’s Theorem A and the previous exhaustion we find a countable system
{G}≥1 ⊂ O(Y ) of global generators of F. We reorder the indices  in such a way
that multZ

(G) = m and G,x
∈ J

m

Z,x
\ J

m+1
Z,x

. Observe that Gk,x
∈ J

m

Z,x
for

each k,  ≥ 1. Define μ := maxK
{|G|} + 1 and substitute G by 1

2μ
G in order

to have maxK
{|G|} < 1

2 . Let us show how to pick suitable values 0 < λ < 1 such
that: G := ∑

≥1 λG satisfy multZk (G) = mk for each k ≥ 1 and {F = 0} ∩ {G =
0} ∩ X ⊂ Z . Thus, multZ

(G2 + F2) = 2m for each  ≥ 1.
Let us choose (λ)≥1 ∈ � := ∏

≥1(0, 1) to guarantee Gxk ∈ J
mk
Zk ,xk

\ J
mk+1
Zk ,xk

for

each k ≥ 1.WriteG,xk = Gmk
k,xk

ζ,xk , where ζ,xk ∈ OY ,xk is an invariant holomorphic

germ for each  ≥ 1 and ζk,xk = 1. Observe that Gxk = Gmk
k,xk

(
∑

≥1 λζ,xk ). Conse-
quently, we need

∑
≥1 λζ,x

(xk) �= 0 for each k ≥ 1. Define Sk := {(λ)≥1 ∈ � :∑
≥1 λζ,x

(xk) = 0}.
As D := {F = 0} ∩ (X \ Z) = {ym}m≥1 is a discrete set, to have {F =

0} ∩ {G = 0} ∩ X ⊂ Z it is enough to choose (λ)≥1 ∈ � in such a way that
G(ym) = ∑

≥1 λG(ym) �= 0 for each m ≥ 1. Define Tm := {(λ)≥1 ∈ � :∑
≥1 λG(ym) = 0}.
Consequently, it is enough to pick (λ)≥1 ∈ � \ (

⋃
k≥1 Sk ∪ ⋃

m≥1 Tm).
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Consider the coherent sheaf of ideals G := (F : G2 + F2)OY whose stalks are

Gz = {ξz ∈ OYz : ξz(G
2
z + F2

z ) ∈ FzOYz }.

We have Gz = OYz if and only if Fz divides G2
z + F2

z . The support of the coherent
sheaf OY /G meets X in the discrete set of points z ∈ X at which Fz does not divide
G2

z + F2
z .

Using Cartan’s Theorem A and the exhaustion {K}≥1 we find a countable system
{A}≥1 ⊂ O(Y ) of (global) invariant generators of G. Define ρ := maxK

{|A|} +
1 and substitute A by 1

2ρ
A in order to have maxK

{|A|} < 1
2 . Define A :=∑

≥1 A
2
 , which is an invariant holomorphic function such that A|X ≥ 0 and it has a

discrete zero-set contained in {F |X = 0}. Observe that A′ := A(G2 + F2)/F ∈ O(Y )

is an invariant holomorphic function such that A′|X ≥ 0 and it has a discrete zero-
set contained in {F |X = 0}. Thus, A′2F = A′A(G2 + F2) and it is enough to take
H1 := A′ and H2 := A′A. ��

3.2 Eliminating One Dimensional Zero-sets from the Imaginary Part

In view of Lemma 3.1 it is enough to represent invariant holomorphic functions F ∈
O(Y ) as sums of squares of meromorphic functions such that F |X ≥ 0 and {F |X = 0}
is a discrete set. Next, we prove that that we may assume in addition that F |C is also a
discrete set. Before we state such result we propose the following preliminary lemma.

Lemma 3.2 Assume (Y ,OY ) is a Stein space and let F,G ∈ O(Y ) be invariant holo-
morphic functions. Let {ym}m≥1 be a discrete set such that G(ym)F(ym) �= 0 for
each m ≥ 1. Let {am}m≥1 ⊂ C be such that am ∈ R if σ(ym) = ym. Then there
exists an invariant holomorphic function A ∈ O(Y ) with empty zero-set such that
(GFA2)(ym) = am for each m ≥ 1.

Proof Let bm ∈ C be such that exp(2bm) = am
G(ym)F(ym)

. Observe that

exp(2bm) = exp(2bm) = am
G(σ (ym))F(σ (ym))

.

If σ(ym) = ym , then F(ym) = F(ym) and G(ym) = G(ym), so

am
G(σ (ym))F(σ (ym))

= am
G(ym)F(ym)

∈ R

and we may assume bm ∈ R. By Cartan’s Theorem B there exists B ∈ O(Y ) such
that B(ym) = bm and B(σ (ym)) = bm for each m ≥ 1. If we substitute B by

�(B) = B+B◦σ
2 , we may assume that B is invariant and B(ym) = bm for eachm ≥ 1.

Thus, exp(B) is invariant and (exp(B)2GF)(ym) = am for eachm ≥ 1, so it is enough
to take A := exp(B). ��
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Theorem 3.3 Let F ∈ O(Y ) be an invariant function such that F |X is positive semidef-
inite and its zero-set is a discrete set. Then, after shrinking Y if necessary, there
exists G ∈ O(Y ) such that the restriction of F − G2 to X is positive semidefinite,
{F − G2 = 0} ∩ (X ∪ C) is a discrete set and {F − G2 = 0} ∩ X = {F = 0} ∩ X.

Proof Write {F = 0}∩ X = {xk}k≥1. As (Y ,OY ) is a Stein space, there exist invariant
holomorphic functions Gk1, . . . ,Gkmk ∈ O(Y ) such that the maximal ideal mxk of
OY ,xk is generated by the invariant holomorphic function germs Gk1,xk , . . . ,Gkmk ,xk
and {Gk1 = 0, . . . ,Gkmk = 0} = {xk}. The zero-set of G2

k1 +· · ·+G2
kmk

in X is {xk}.
By Lojasiewicz’s inequality there exist an integer sk ≥ 1 and a compact neighborhood
Kk ⊂ X of xk such that

(G2
k1 + · · · + G2

kmk
)4sk < F

on Kk \ {xk}. If λ := (λ1, . . . , λmk ) ∈ (0, 1)mk , then

(λ1G
2
k1 + · · · + λmkG

2
kmk

)4sk < (G2
k1 + · · · + G2

kmk
)4sk < F

on Kk \ {xk}.
Let {Ci }i≥1 be the collection of the irreducible components of C as an analytic set

of real dimension 1. Pick points yi ∈ Ci \ X ∪⋃
i �= C. As the family {Ci }i is locally

finite, {yi }i≥1 is a discrete set. For each i, k ≥ 1 consider

Hik : x1G
2
k1(yi ) + · · · + xmkG

2
kmk

(yi ) = 0.

The previous linear equation is not identically zero because {Gk1 = 0, . . . ,Gkmk =
0} = {xk}, so Hik is a hyperplane of R

mk . Thus, (0, 1)mk \⋃
j=1 Hik is not empty and

we chose λ := (λ1, . . . , λmk ) ∈ (0, 1)mk \⋃
i≥1 Hik . Define the invariant holomorphic

function

Gk := (λ1G
2
k1 + · · · + λmkG

2
kmk

)sk .

Observe that Dk := ({Gk = 0} ∩ C) \ {xk} is a discrete set (because Gk(yi ) �= 0,
so Gk |Ci �= 0 for each i ≥ 1) and {Gk = 0} ∩ X = {xk}. As Dk ∪ {xk} is a discrete
set, there exist open neighborhoods Uk ⊂ Y of xk and Vk ⊂ Y of Dk such that
Cl(Uk) ∩ Cl(Vk) = ∅. Observe that Cl({Gk = 0} ∩ Uk) ∩ Dk = ∅, so Cl({Gk =
0} ∩Uk) ∩ C ⊂ {xk}.

As {xk}k ⊂ X is a discrete set, we may assume in additionUk is invariant, Cl(Uk)∩
Cl(Uk′) = ∅ if k �= k′ and {Cl(Uk)}k is locally finite, so ⋃

k≥1 Cl(Uk) is an invariant
closed set. Thus, the family of invariant closed sets {Cl({Gk = 0} ∩ Uk) \ ({Gk =
0}∩Uk)}k is also locally finite and its union is an invariant closed subset of Y . Consider
the invariant open set � := Y \ ⋃

k≥1(Cl({Gk = 0} ∩ Uk) \ ({Gk = 0} ∩ Uk)) and
observe: each {Gk = 0} ∩Uk is an invariant closed subset of �.
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Thus, after shrinking Y if necessary, Z := ⋃
k({Gk = 0} ∩ Uk) is an invariant

closed subset of Y . Define

Fy :=
{
Gk,yOY ,y if y ∈ Uk ∩U ,

OY ,y if y ∈ Y \ Z ,

which is a coherent sheaf of ideals whose zero-set is Z . By [23] the previous coherent
sheaf is generated by d + 1 global sections where d := dim(X). Taking real and
imaginary parts of such global sections, we deduce that F is generated by 2d + 2
invariant global sections G ′

1, . . . ,G
′
2d+2. Observe that G ′

j,xk
= Gk,xk A j,xk where

A j,xk ∈ OY ,xk is invariant for each j, k ≥ 1.
In addition, {G ′

1 = 0, . . . ,G ′
2d+1 = 0} ∩ X = {xk}k . Let μ1, . . . , μ2d+2 ∈ (0, 1)

be such that

G ′ :=
2d+2∑
j=1

μ j G
′2
j

does not vanish at the points {yi }i . Thus, G ′ does not vanish identically on any of
the irreducible components Ci of C and G ′

xk = G2
k,xk

A′
xk where A′

xk ∈ OY ,xk is an
invariant holomorphic unit such that A′

xk (xk) > 0. By Lemma 3.2 there exists an
invariant holomorphic function A ∈ O(Y ) with empty zero-set such that A(xk) =

1
2A′

xk
(xk )

for each k ≥ 1. Thus, AG ′ satisfies:

• AG ′ ≥ 0 on X .
• (AG ′)2 < 1

2G
4
k < F on K ′

k \ {xk} where K ′
k ⊂ Kk is a compact neighborhood of

xk in X .

Let σ : X → [0, 1] be a continuous function such that σ(xk) = 1 for each k ≥ 1
and its support is contained in

⋃
k≥1 K

′
k . Observe that ε := (F |X + σ) exp(−2− F2)

is a strictly positive continuous function on X that takes values in the interval (0, 1).
By Theorem 2.1 there exists an invariant homomorphic function H : Y → C such
that |H |X − ε

2 | < ε
4 and H(yi ) �= 0 for each i ≥ 1, so ε

4 < H |X < 3ε
4 < 3

4 . Define
G ′′ := AG ′ exp(−1 − AG ′)H and let us check: There exists 0 < λ < 1 such that
G := λG ′′ satisfies the required properties.

Observe that G ′′(yi ) �= 0 and pick λ ∈ (0, 1) different from
√
F(yi )/G ′′(yi ) for

each i ≥ 1. Thus, (F − (λG ′′)2)(yi ) �= 0 for each i ≥ 1 and {F − (λG ′′)2 = 0}∩C is
a discrete set. We prove next F − (λG ′′)2 > 0 on X \ {xk}k≥1. On K ′

k \ {xk} it holds

(λG ′′)2 < (AG ′ exp(−1 − AG ′)H)2 < (AG ′)2 <
1

2
G4

k < F

for each k ≥ 1. On X \ ⋃
k≥1 K

′
k we have σ = 0 and

0 < H <
3ε

4
< (F + σ) exp(−2 − F2) = F exp(−2 − F2) <

F

2 + F2 .
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Thus, on X \ ⋃
k≥1 K

′
k it holds

(λG ′′)2 < G ′′2 < H2 <
( F

2 + F2

)2
<

F

2 + F2 < F,

as required. ��

3.3 Eliminating Isolated Zeros from the Imaginary Part

We will deal with normal Stein spaces (Y ,OY ) endowed with an anti-involution σ :
Y → Y . We denote the fixed space of σ with X and let C ⊂ Y be an invariant analytic
set of real dimension 1 such that X ∩C is a discrete set. Let {Ci }i≥1 be the irreducible
components of C and αi : R → Ci a surjective analytic map.

Our purpose is to represent the invariant holomorphic functions F ∈ O(Y ) such that
F |X ≥ 0 and {F = 0} ∩ (X ∪ C) is a discrete set as sum of squares of meromorphic
functions. We provide an additional reduction to assume {F = 0} ∩ C ⊂ X ∩ C .
We denote the set of all the invariant holomorphic functions on Y that are sums of k
squares of invariant holomorphic functions on Y with

∑
kO

σ (Y )2. We will use freely
that

∑
kO

σ (Y )2 is multiplicatively closed if k = 1, 2, 4, 8.

Theorem 3.4 Let F : Y → C be an invariant holomorphic function such that F |X ≥ 0
and F |Ci �= 0 for each i ≥ 1. Then, after shrinking Y if necessary, there exist invariant
holomorphic functions F ′, H1, H2 : Y → C such that:

(i) H1, H2 ∈ ∑
4O

σ (Y )2.
(ii) {F ′ = 0} ∩ C ⊂ X ∩ C and {H = 0} ∩ X = ∅ for  = 1, 2.
(iii) FH1 = F ′H2 and F ′

xOY ,x = FxOY ,x for each x ∈ X.

Before we prove the previous result we need some preliminary lemmas.

Lemma 3.5 Let Z ⊂ Y be an analytic subset of real dimension ≤ 1 and G1,G2,G3 :
Y → C holomorphic functions such that:

(i) {G1 = 0,G2 = 0,G3 = 0} does not contain any of the irreducible components
of Z.

(ii) For each z ∈ Z there exists k(z) ∈ {1, 2, 3} such that (G1,G2,G3)OY ,z =
(Gk(z))OY ,z .

Then there exists λ1, λ2, λ3 ∈ C such that (λ1G1 + λ2G2 + λ3G3)z divides G j,z for
each z ∈ Z and each j = 1, 2, 3.

Proof Write Z := D ∪⋃
i≥1 Zi , where the Zi are the irreducible components of Z of

dimension 1 and D is the union of the irreducible components of Z of dimension 0.
Note that D is a discrete subset of Y . For each i ≥ 1 let βi : R → Zi be a surjective
analytic map (which one finds using the normalization). Denote D′ := D ∩ {G1 =
0,G2 = 0,G3 = 0}.

For each p ∈ D \ D′ either G1(p) �= 0 or G2(p) �= 0 or G3(p) �= 0. Define

Tp := {(λ1, λ2, λ3) ∈ C
2 : G1(p) + λ2G2(p) + λ3G3(p) = 0},
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which is a hyperplane of C
3 through the origin.

The set D′′ := {G1 = 0,G2 = 0,G3 = 0} ∩ ⋃
i≥1 Zi is discrete. Fix i ≥ 1 and

let Ei := β−1
i (D′′), which is a discrete subset of R. Define fi j := G j ◦ βi |R\Ei for

j = 1, 2, 3 and the non-zero analytic equation

fi1(t)x1 + fi2(t)x2 + fi3(t)x3 = 0

for t ∈ R \ Ei . Consider the analytic maps

⎧⎪⎨
⎪⎩

ϕ1i : C
2 × (R \ Ei ) → C

3, (z1, z2, t) �→ z1( f3i (t), 0,− f1i (t)) + z2( f2i (t),− f1i (t), 0),

ϕ2i : C
2 × (R \ Ei ) → C

3, (z1, z2, t) �→ z1(0, f3i (t),− f2i (t)) + z2( f2i (t),− f1i (t), 0),

ϕ3i : C
2 × (R \ Ei ) → C

3, (z1, z2, t) �→ z1( f3i (t), 0,− f1i (t)) + z2(0, f3i (t),− f2i (t)).

Observe that

Si :=
⋃

t∈R\Ei

{(x1, x2, x3) ∈ C
3 : fi1(t)x1 + fi2(t)x2 + fi3(t)x3 = 0}

=
3⋃
j=1

im(ϕ j i ).

By Sard’s theorem the set C
3 \ Si is residual.

If z ∈ D′ ∪ D′′, either G1,z divides G2,z,G3,z or G2, z divides G1,z,G3,z or G3, z
divides G1,z,G2,z . Thus, there exists ηz, ξz ∈ OY ,z such that⎧⎪⎨

⎪⎩
G2,z = G1,zηz,G3,z = G1,zξz (Case 1) or

G1,z = G2,zηz,G3,z = G2,zξz (Case 2) or

G1,z = G3,zηz,G2,z = G3,zξz (Case 3).

Consequently,

λ1G1,z + λ2G2,z + λ3G3,z =

⎧⎪⎨
⎪⎩
G1,z(λ1 + λ2ηz + λ3ξz) (Case 1) or

G2,z(λ1ηz + λ2 + λ3ξz) (Case 2) or

G3,z(λ1ηz + λ2ξz + λ3) (Case 3).

There exists a discrete set � ⊂ C
3 such that if λ := (λ1, λ2, λ3) /∈ �,

γz :=

⎧⎪⎨
⎪⎩

λ1 + λ2ηz + λ3ξz (Case 1) or

λ1ηz + λ2 + λ3ξz (Case 2) or

λ1ηz + λ2ξz + λ3 (Case 3).

is a unit for each z ∈ D′ ∪D′′. The set S := C
3 \(

⋃
p∈D′ Tp∪⋃

i≥1 Si ∪�) is residual
andwe claim: If λ ∈ S, then Gλ := λ1G1,z+λ2G2,z+λ3G3,z divides G1,z,G2,z,G3,z
for each z ∈ Z . We distinguish several cases:
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Case 1. If z ∈ D \ D′, then Gλ(z) �= 0 (because λ /∈ ⋃
p∈D\D′ Tp), so Gλ,z divides

G1,z,G2,z,G3,z .
Case 2. If z ∈ Z \ (D∪D′′), then Gλ(z) �= 0 (because λ /∈ ⋃

i≥1 Si ), so Gλ,z divides
G1,z,G2,z,G3,z .
Case 3. If z ∈ D′ ∪ D′′, then Gλ,z = G j,zγz for some j = 1, 2, 3 such that G j,z

divides the remaining Gk,z and γz ∈ OY ,z is a unit (because λ /∈ �), so Gλ,z divides
G1,z,G2,z,G3,z , as required. ��
Lemma 3.6 Let F1, F2 : Y → C be invariant holomorphic functions such that
Fj |Ci �= 0 for j = 1, 2 and i ≥ 1 and F1,z divides F2,z for each z ∈ C. Then
there exists an invariant holomorphic function E ∈ O(Y ) with empty zero-set such
that H := F2

1 + E2F2
2 satisfies: Hz divides F2

1,z for each z ∈ C.

Proof Fix i ≥ 1 and let zi ∈ Ci \ (X ∪ {F1 = 0} ∪ {F2 = 0}). By Lemma 3.2
there exists an invariant holomorphic function E0 ∈ O(Y ) with empty zero-set such
that (F1F2E0)(zi ) ∈ C \ (R ∪ √−1R) for each i ≥ 1. Substitute F2 by E0F2. As
F1,z divides F2,z for each z ∈ C , there exist an open neighborhood V of C and a
holomorphic function A ∈ O(V ) such that F2 = F1A on V . As F1F2 = F1F1A and
(F1F2)(zi ) ∈ C \ (R ∪ √−1R) for each i ≥ 1, we deduce A(zi ) ∈ C \ (R ∪ √−1R)

for each i ≥ 1, we deduce A(zi ) ∈ C \ (R∪√−1C) for each i ≥ 1. Fix λ ∈ (0,+∞)

and write

(F2
1 + λF2

2 ) ◦ αi = (F2
1 ◦ αi )(1 + λ(A2 ◦ αi )).

Write A ◦ αi := ai + √−1bi where ai , bi ∈ O(R) \ {0} for i ≥ 1, so the set
Si := {aibi = 0} is discrete for each i ≥ 1. Consider the linear system 1 + z(ai +√−1bi )2 = 0, which we rewrite as

{
1 + z(a2i − b2i ) = 0,

zaibi = 0.
(1)

If (aibi )(t) �= 0, then (1 + λ(A ◦ αi ))(t) �= 0 for each λ ∈ R. Define

Ti := {−1/(a2i − b2i )(t) : t ∈ Si , (a2i − b2i )(t) �= 0},

which is a countable set. Let λ ∈ R \ ⋃
i≥1 Ti and take H := F2

1 + λF2
2 . We claim:

(1 + λA2) ◦ αi = 1 + λ(a2i − b2i ) + √−1aibi

is nowhere zero for each i ≥ 1.
It is enough to analyze the values t ∈ Si for each i ≥ 1. We have

(1 + λ(a2i − b2i ) + √−1aibi )(t)

= (1 + λ(a2i − b2i ))(t)

{
�= 0 if (a2i − b2i )(t) �= 0,

= 1 �= 0 if (a2i − b2i )(t) = 0,
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as required. ��
Lemma 3.7 Let F,G : Y → C be invariant holomorphic functions such that
F |Ci ,G|Ci �= 0 for each i ≥ 1 and FzOY ,z = GzOY ,z for each z ∈ C \ X. Then
there exists an invariant holomorphic function E ∈ O(Y ) with empty zero-set such
that H := FG + E2F3 satisfies: Hz divides F2

z for each z ∈ C \ X.

Proof Fix i ≥ 1 and let zi ∈ Ci \ (X ∪ {F = 0} ∪ {G = 0}). By Lemma 3.2 there
exists an invariant holomorphic function E0 ∈ O(Y ) with empty zero-set such that
(GF2E2

0)(zi ) ∈ C \ (R ∪ √−1R) for each i ≥ 1. As FzOY ,z = GzOY ,z for each
z ∈ C \ X there exists an open neighborhood V ⊂ Y of C \ X and A ∈ O(V ) such
that G = AF and {A = 0} = ∅. It holds

|F(zi )|2(AFE2
0)(zi ) = (AFF2E2

0)(zi ) = (GF2E2
0)(zi ) ∈ C \ (R ∪ √−1R),

so (AFE2
0)(zi ) ∈ C \ (R ∪ √−1R) for each i ≥ 1.

For eachλ ∈ (0,+∞)weconsider H := FG+λE2
0F

3.Wehave H |V = F2|V (A+
λE2

0 |V F |V ). Let us find λ ∈ (0,+∞) such that B := A+λE2
0 |V F |V does not vanish

on C \ X . Write A ◦ αi := ai + √−1bi and (E2
0F) ◦ αi = fi + √−1gi where

ai , bi , fi , giO(R) and fi , gi �= 0. We have

B ◦ αi = ai + √−1bi + λ( fi + √−1gi ) = (ai + λ fi ) + √−1(bi + λgi ).

Consider the linear system ai + √−1bi + z( fi + √−1gi ) = 0 that we rewrite as

{
ai + z fi = 0,

bi + zgi = 0.
(2)

The determinant of the previous linear system isai gi−bi fi , which is the imaginary part
of (AFE2

0)◦αi . As (AFE2
0)(zi ) ∈ C\ (R∪√−1R), we deduce that ai gi −bi fi �= 0.

Let Si := {ai gi − bi fi = 0}, which is a discrete set. If t ∈ R \ Si , then the linear
system (2) is incompatible and (B ◦ αi )(t) �= 0. If t ∈ Si , the linear system (2) has
rank 1 (recall that {A = 0} = ∅) and we define Tt as the maybe empty solution of the
linear system (2). The set S := ⋃

i≥1
⋃

t∈Si
Tt is countable, so (0,+∞) \ S �= ∅. If

λ ∈ (0,+∞) \ S and t ∈ Si , we have λ /∈ Tt and

((A + λE2
0F) ◦ αi )(t) = (ai + √−1bi )(t) + λ( fi + √−1gi )(t) �= 0.

Thus, {A + λE2
0F = 0} ∩ (C \ X) = ∅ and Hz divides F2

z for each z ∈ C \ X , as
required. ��

We are ready to prove Theorem 3.4.

Proof of Theorem 3.4 The proof is conducted in several steps:
Step 1. Denote D := X ∩ C . We may shrink Y in such a way that the irreducible
components of {F = 0} either meet X or meet C \ D.
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Define D′ := ({F = 0}∩C)\D, which is a discrete set because F |Ci �= 0 for each
i ≥ 1. As X , D′ are closed and disjoint sets, there exist disjoint open neighborhoods
W1, V1 ⊂ Y of X , D′. For each x ∈ C \ (D ∪ D′) we choose an open neighborhood
V x that does not meet {F = 0}. Define �0 := W1 ∪ V1 ∪ ⋃

x∈C\(D∪D′) V
x and let S

be an irreducible component of {F = 0} ∩ �0. Then

S = (S ∩ W1) ∪ (S ∩ V1) ∪
⋃

x∈C\(D∪D′)
(S ∩ V x ) = (S ∩ W1) ∪ (S ∩ V1).

As W1 ∩ V1 = ∅ and S is irreducible, either S∩W1 = ∅ or S∩ V1 = ∅. Thus, either
S meets C \ D or it meets X .

Let �1 ⊂ �0 be an invariant open Stein neighborhood of X ∪ C in Y and observe
that it satisfies the required properties. Thus, it is enough to substitute Y by �1.
Step 2. Construction of invariant holomorphic functions G, H2 : Y → C such that:

(1) G ∈ ∑
2O

σ (Y )2, {G = 0} ∩ C = D′ and {G = 0} ∩ {F = 0} ∩ X = ∅.
(2) GzOY ,z = FzOY ,z for each z ∈ C \ D.
(3) H2 ∈ ∑

2O
σ (Y )2 and H2,zOY ,z = F2

z OY ,z for each z ∈ C \ D.
(4) {H2 = 0} ∩ (X ∪ C) = {F = 0} ∩ (C \ D) = D′.

For each y ∈ D′ we have σ(y) �= y. We write D′ = D′
0 ∪ σ(D′

0) where D′
0 ∩

σ(D′
0) = ∅. For each y ∈ D′

0 we denote the connected component of {F = 0} ∩ Y
that contains y with Sy . Shrinking Y if necessary, we may assume the family {Sy}y∈D′

0

is locally finite and Sy ∩ Sy′ = ∅ if y, y′ ∈ D′
0 and y �= y′. Consider the coherent

sheaf of ideals of OY :

Jz :=
{
FzOY ,z if z ∈ ⋃

y∈D′
0
Sy,

OY ,z otherwise.

By [23] J is globally generated by three global sections G1,G2,G3 : Y → C. Define
Z := C ∪ ({F = 0} ∩ X), which is an invariant analytic set of real dimension 1. For
each z ∈ Z there exists k(z) ∈ {1, 2, 3} such that (G1,G2,G3)OY ,z = (Gk(z))OY ,z .
By Lemma 3.5 applied to Z and G1,G2,G3, there exists a global section G4 of J
such that G4,z divides G1,z,G2,z,G3,z for each z ∈ Z . In particular, Jz = G4OY ,z for
each z ∈ Z and {G4 = 0} ∩ {F = 0} ∩ X = ∅.

Define G := G4G4 ◦ σ ∈ ∑
2O

σ (Y )2, which is invariant. As C is invariant and
{G4 = 0} ∩ C = D′

0, we have {G4 ◦ σ = 0} ∩ C = σ(D′
0), so

{G = 0} ∩ C = ({G4 = 0} ∩ C) ∪ ({G4 ◦ σ = 0} ∩ C) = D′
0 ∪ σ(D′

0) = D′.

In addition, GzOY ,z = FzOY ,z for each z ∈ D′. This is because Jz = OY ,z for each
z ∈ σ(D′

0), so G4 ◦ σ(z) �= 0 for each z ∈ D′
0, and Jz = G4,zOY ,z for each z ∈ D′

0.
If x ∈ {F = 0} ∩ X , we have G(x) = (G4G4 ◦ σ)(x) = |G4(x)|2 �= 0 because

{G4 = 0} ∩ {F = 0} ∩ X = ∅. Thus, GzOY ,z = FzOY ,z for each z ∈ C \ D and
{G = 0} ∩ {F = 0} ∩ X = ∅, so G satisfies the properties (1) and (2).
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Pick zi ∈ Ci \ (D ∪ D′) for each i ≥ 1. Let λ2, λ3 ∈ (0,+∞) be such that
H := G1G1 ◦ σ + λ2G2G2 ◦ σ + λ3G3G3 ◦ σ satisfies H(zi ) �= 0 for each i ≥ 1.
Thus, H |Ci �= 0 for each i ≥ 1.

As G jG j ◦ σ ∈ ∑
2O

σ (Y )2 is invariant, {H = 0} ∩ X = {G jG j ◦ σ = 0, j =
1, 2, 3} ∩ X . As Jz = OY ,z for each z ∈ X , we deduce that {H = 0} ∩ X = ∅. As
Gz divides Hz for each z ∈ C , there exists by Lemma 3.6 an invariant holomorphic
function E2 ∈ O(Y ) such that the invariant holomorphic function

H2 := G2 + E2
2H

2 ∈ ∑
2O

σ (Y )2

has the following property: H2,z divides G2
z for each z ∈ C , so H2,zOY ,z = G2

zOY ,z

for each z ∈ C and H2,zOY ,z = G2
zOY ,z = F2

z OY ,z for each z ∈ C \ D. In particular,
{H2 = 0} ∩ (C \ D) = D′. In addition,

{H2 = 0} ∩ X = {G = 0, H = 0} ∩ X = {H = 0} ∩ X = ∅,

so H2 satisfies the properties (3) and (4).
Step 3. Construction of an invariant holomorphic function H1 ∈ ∑

3O
σ (Y )2 such

that:

(1) {H1 = 0} ∩ (X ∪ C) = {H1 = 0} ∩ C = D′,
(2) (FH1)xOY ,x = FxOY ,x for each x ∈ X and
(3) (FH1)zOY ,z = F2

z OY ,z for each z ∈ C \ D.

By Lemma 3.7 there exists an invariant holomorphic function E1 ∈ O(Y ) with
empty zero-set such that the invariant holomorphic function H1 := G + E2

1F
2 ∈∑

3O
σ (Y )2 satisfies: (FH1)z divides F2

z for each z ∈ C \ D, so (FH1)zOY ,z =
F2
z OY ,z for each z ∈ C \ D (because GzOY ,z = FzOY ,z for each z ∈ C \ D). As

{G = 0} ∩ {F = 0} ∩ X = ∅, we have {H1 = 0} ∩ X = {G = 0, F = 0} ∩ X = ∅,
so (FH1)xOY ,x = FxOY ,x for each x ∈ X . In particular, {H1 = 0} ∩ C = D′.
Step 4. After shrinking Y , the invariant function F ′ := FH1

H2
is holomorphic, {F ′ =

0} ∩ C ⊂ D and F ′
xOY ,x = FxOY ,x for each x ∈ X .

Let us check: For each z ∈ X ∪ C the germ F ′
z is holomorphic.

By Step 2 (3) we have {H2 = 0} ∩ (X ∪ C) = D′, so F ′
z is a holomorphic germ

for each z ∈ X ∪ (C \ D′). If z ∈ D′ ⊂ C \ D, we get:

• H2,zOY ,z = F2
z OY ,z for each z ∈ C \ D (Step 2 (3)).

• (FH1)zOY ,z = F2
z OY ,z for each z ∈ C \ D (Step 3 (3)).

Thus, H2,zOY ,z = (FH1)zOY ,z for each z ∈ C \ D. Consequently, F ′
z is holomorphic

for each z ∈ C \ D and F ′
z is a unit for each z ∈ C \ D, so {F ′ = 0} ∩ C ⊂ D.

As (FH1)xOY ,x = FxOY ,x for each x ∈ X (Step 3 (2)) and H2(x) �= 0 for each
x ∈ X (Step 2 (4)), we obtain F ′

xOY ,x = FxOY ,x for each x ∈ X , as required. ��

3.4 Eliminating Isolated Zeros from the Real Part Space

Our next purpose is to reduce our problem to represent invariant holomorphic functions
on Y with empty zero-set whose restriction to X is strictly positive as sum of squares
of meromorphic functions.
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Theorem 3.8 Let F ∈ O(Y ) be an invariant holomorphic function such that F |X ≥ 0
and {F = 0} ∩ (X ∪C) is a discrete subset of X. Then, after shrinking Y if necessary,
there exist invariant holomorphic functions H ,G ′ : Y → C such that {H = 0} = ∅,
H |X is strictly positive, {G ′ = 0} ∩ X ⊂ {F = 0} ∩ X and G ′2HF ∈ ∑

8O
σ (Y )2.

Before proving the previous result, we need a preliminary lemma.

Lemma 3.9 Let 
 : Y → C be an invariant holomorphic function. Let U be an
invariant open neighborhood of the connected components of
−1(0) that meet X ∪C
and suppose thatU does notmeet the other connected components of
−1(0). For each
invariant holomorphic function B : U → C there exists an invariant holomorphic
function A : Y → C such that 
|U divides A|U − B.

Proof Consider the coherent sheaf of ideals J ⊂ OY of OY generated by 
 and
the exact sequence of coherent sheafs 0 → J → OY → OY /J → 0. We have a
corresponding diagram of cross sections:

J(Y ) O(Y ) H0(Y ,OY /J)

J(U ) O(U ) H0(U ,OY /J)

The upper right arrow is surjective by Cartan’s Theorem B because Y is a Stein space.
The right vertical arrow is also surjective because each cross section ofOY /J onU can
be extended by zero to Y because the support of OY /J in U is closed in Y . Thus, we
have a linear surjective homomorphism ϕ : O(Y ) −→ O(U )/J(U ) ≡ H0(U ,OY /J).
Let F ∈ O(Y ) be such that ϕ(F) = B. We have F |U − B ∈ J(U ), so there exists
� ∈ O(U ) such that F |U − B = �
|U . Take A = �(F) and observe that

A|U − B = �(F |U ) − B = �(F |U − B) = �(�
|U ) = �(�)
|U ∈ J(U ),

as required. ��
We are ready to prove Theorem 3.8.

Proof of Theorem 3.8 The proof is conducted in several steps:
Step 0. Initial preparation. For each p ∈ {F = 0} ∩ X there exist by Theorem 1.1
analytic function germs h0,p, h1,p, h2,p, h3,p, h4,p ∈ OX ,p such that h20,p f p = h21,p+
h2,p+h3,p+h24,p and h0,p is a sum of squares inOX ,p with {h0,p = 0} ⊂ { f p = 0} ⊂
{p}. Multiplying the previous expression by h20,p, wemay assume that h0,p is a square.
Thus, for each p ∈ {F = 0} ∩ X there exist an invariant open neighborhood U p ⊂ Y
and invariant holomorphic functions Hi,(p) ∈ O(U p) such that H2

0,(p)F |U p = H2
1,(p)+

H2
2,(p) +H2

3,(p) +H2
4,(p), H0,(p) is the square of an invariant holomorphic function and

Cl({H0,(p) = 0}) ∩ X ⊂ {p}. We need in addition that Cl({H0,(p) = 0}) ∩ C ⊂ {p}.
To that end it is enough to check:We may assume H0,(p) is not identically zero on any
of the irreducible components of the germ of C at p.
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IdentifyYp with an analyticmodel contained inC
n
p for some n ≥ 1. For each unitary

vector v ∈ S
n consider the holomorphic map 
v : U p → C

n, x �→ x + vF2(x).
If U p is small enough, 
v is a holomorphic diffeomorphism onto its image and
F◦
v = FE2 where E ∈ O(U p) is an invariant holomorphic function such that {E =
0} = ∅ (use for instance Taylor’s expansion of F((x1, . . . ,xn) + z(y1, . . . ,yn)) at
(x1, . . . ,xn) to check the latter condition). As F |C\X does not vanish, we may choose
v ∈ R

n such thatH0,(p)◦
v is not identically zeroon anyof the irreducible components
of the germ of C at p. Thus, it is enough to substitute H0,(p) by (H0,(p) ◦ 
v)E and
Hi,(p) by Hi,(p) ◦ 
v for i = 1, 2, 3, 4.

Wemayassume in additionCl(U p)∩Cl(Uq) = ∅ if p �= q and {Cl(U p)}p∈{F=0}∩X

is a locally finite family. The union T := ⋃
p∈{F=0}∩X Cl({H0,(p) = 0}) \ U p is a

closed subset of Y that does meet X ∪ C . If we substitute Y by an invariant open
Stein neighborhood of X ∪ C contained in the open set U := Y \ T , we may assume
{H0,(p) = 0} is a closed subset of Y for each p ∈ {F = 0} ∩ X .
Step 1. Global denominator. Consider the locally principal coherent sheaf of ideals
defined by:

Jz =
{
H0,(p),zOY ,z if z ∈ U p

OY ,z if z ∈ Y \ ⋃
p∈{F=0}∩X U p.

By [23] there exist holomorphic functions G1,G2,G3 ∈ O(Y ) that generate J. As
each H0,(p),z is invariant, G1 ◦ σ ,G2 ◦ σ ,G3 ◦ σ ∈ H0(Y , J). Thus, we may assume
there exist 6 invariant holomorphic functions G1, . . . ,G6 ∈ O(Y ) that generate J.
We choose λ1, . . . , λ6 ∈ (0,+∞) such that G0 := ∑6

i=1 λi G2
i is not identically zero

on any of the irreducible components Ci of C . By Theorem 3.4 there exists (after
shrinking Y if necessary) an invariant holomorphic function G ∈ O(Y ) such that
G|X ≥ 0, {G = 0} ∩ C ⊂ X ∩ C and GxOY ,x = G0,xOY ,x for each x ∈ X . In
particular, {G = 0} ∩ (X ∪ C) ⊂ {F = 0} ∩ X .

Fix p ∈ {F = 0} ∩ X . After shrinking U p if necessary, there exists an invariant
unit Ep ∈ O(U p) such that G|U p = H0,(p)Ep. Thus, on U p we have

G2F = E2
pH

4
0,(p)F =

4∑
k=1

(EpH0,(p)Hk,(p))
2

and we substitute Hk,(p) by EpH0,(p)Hk,(p) for k = 1, 2, 3, 4.
Step 2. Global sum of squares. Define U := ⋃

p∈{F=0}∩X U p and consider the
invariant holomorphic function

Bk : U → C, z �→ Bk(z) = Hk,(p) if z ∈ U p

for k = 1, 2, 3, 4. We have G2F = ∑4
k=1 B

2
k on U .
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By Lemma 3.9 there exist invariant holomorphic functions A1, A2, A3, A4 ∈ O(Y )

such that G4F2 divides Ak |U − Bk for k = 1, 2, 3, 4. On the open set U we obtain

4∑
k=1

A2
k − G2F =

4∑
k=1

A2
k −

4∑
k=1

B2
k =

4∑
k=1

(A2
k − B2

k ).

As G4F2 divides each (Ak − Bk)(Ak + Bk) = A2
k − B2

k in O(U ), it also divides∑4
k=1 A

2
k − G2F in O(U ). Thus, there exists an invariant holomorphic function � :

U → C such that

4∑
k=1

A2
k − G2F = G4F2� �

4∑
k=1

A2
k = G2F(1 + �G2F)

inO(U ). As 1+�G2F does not vanish at any point p ∈ {F = 0}∩X , wemay assume
(after shrinking U if necessary) that 1 + �G2F is a holomorphic unit in O(U ).
Step 3. Additional square: There exists μ ∈ (0,+∞) such that the function

H0 :=
∑4

k=1 A
2
k + μ2G4F2

G2F

is holomorphic on an open neighborhood of X in Y , its restriction H0|X is strictly
positive and H0|Ci �= 0 for each i ≥ 1. In particular, G2FH0 ∈ ∑

5O
σ (Y )2.

For each μ ∈ (0,+∞) the zero-set of
∑4

k=1 A
2
k + μ2G4F2 in X is contained in

{F = 0} ∩ X . Thus, outside {F = 0} ∩ X , the restriction H0|X is strictly positive. In
addition, on U ∩ X

∑4
k=1 A

2
k

G2F
+ μ2G2F = 1 + �G2F + μ2G2F

is a strictly positive analytic function, so H0|X is a strictly positive analytic function.
Pick zi ∈ Ci \ X for each i ≥ 1. As G2F does not vanish at any point of C \ X , there
exists μ ∈ (0,+∞) such that H0(zi ) �= 0 for each i ≥ 1, so H0|Ci �= 0 for each
i ≥ 1.
Step 4. Eliminating extra zeros and conclusion. By Theorem 3.4 applied to H0 there
exist, after shrinking Y if necessary, invariant holomorphic functions H , H1, H2 :
Y → C such that

(i) H1, H2 ∈ ∑
4O

σ (Y )2.
(ii) {H = 0} ∩ C ⊂ X ∩ C and {H = 0} ∩ X = ∅ for  = 1, 2.
(iii) H0H1 = HH2 and HxOY ,x = H0,xOY ,x for each x ∈ X .

By (ii) and (iii) we conclude that H |X is strictly positive and {H = 0}∩ (X ∪C) = ∅,
so, after shrinking Y if necessary, we may assume {H = 0} = ∅. Next, we have

(GH2)
2HF = HH2G

2FH2 = (G2FH0)H1H2 ∈ ∑
8O

σ (Y )2
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and to finish it is enough to take G ′ := GH2. ��

3.5 Analytic Functions That are Locally a Square

We prove next that a real analytic function on a C-analytic space of dimension d that
is locally a square can be represented as a sum of d + 1 squares of analytic functions.

Lemma 3.10 Let (X ,OX ) be a C-analytic space of dimension d and f ∈ O(X) such
that the analytic function germ fx is a square in OX ,x for each x ∈ X. Then there
exist g1, . . . , gd+1 ∈ O(X) such that f = g21 + · · · + g2d+1.

Proof For each x ∈ X we pick a connected neighborhoodU ⊂ X such that f |U = g2U
for some gU ∈ O(U ). We collect all the previous open sets to construct an open
covering U of X . If y ∈ U1 ∩ U2, the transition function g12 := gU1g

−1
U2

= ±1 is
locally constant. Consider the coherent sheaf of ideals Ix := gU ,xOX ,x if x ∈ U .
As (X ,OX ) is a C-analytic space, it has an invariant Stein complexification (Y ,OY )

to which I extends as a coherent sheaf of ideals. As X has dimension d, there exist
by [23] h1, . . . , hd+1 ∈ O(X) such that I = (h1, · · · , hd+1)OX . Thus, there exists
a strictly positive analytic function u ∈ O(X) such that f = u(h21 + · · · + h2d+1).
Let v ∈ O(X) be a strictly positive analytic function such that u = v2. If we define
gi := vhi for i = 1, . . . , d + 1, we obtain f = g21 + · · · + g2d+1, as required. ��

Let (Y ,OY ) be a reduced complex analytic space. Denote the set of points y ∈ Y
at which OY ,y is not a normal ring with B(Y ). By [56, Ch. VI, Thm. 5] the set B(Y ) is
an analytic subset of Y . Let us show how we can construct an universal denominator
for the coherent sheaf ÕY of weakly holomorphic functions on Y . Assume in the
following that (Y ,OY ) is a Stein space endowed with an anti-involution σ : Y → Y
and let (X ,OX ) be its real part space. Observe that B(X) = B(Y ) ∩ X (see Sect.
1.3). Let ((Ŷ ,OŶ ), π) be the normalization of (Y ,OY ) and recall that OŶ = π∗(ÕY )

where ÕY is the sheaf of weakly holomorphic functions on Y . Let σ̂ : Ŷ → Ŷ be the
anti-involution of Ŷ induced by σ , which satisfies π ◦ σ̂ = σ ◦π . The following result
is inspired by [53, E. 73.a].

Lemma 3.11 (Optimal universal denominator) There exists an invariant holomorphic
function D ∈ O(Y ) such that {D|X = 0} is contained in X ∩ B(Y ), Dy is not a zero
divisor of OY ,y and DyFy ∈ OY ,y for each Fy ∈ ÕY ,y and each y ∈ Y .

Proof As OY and ÕY are coherent sheaves of OY -modules,

Jy := (OY ,y : ÕY ,y) := {ξy ∈ OY ,y : ξyÕY ,y ⊂ OY ,y}

is a coherent sheaf of ideals ofOY . It holds that Jy = OY ,y if and only if y ∈ Y \B(Y ),
so B(Y ) is the support of the coherent sheaf of idealsOY /J. Pick points ym in each con-
nected componentMm ofY \Sing(Y ). As the family {Ym}m≥1 is locally finite, {ym}m≥1
is a discrete set. By [53, §52.5] there exists D′ ∈ H0(Y , J) such that D′(ym) = 1
and D′(σ (ym)) = 1 for each m ≥ 1. By the Identity principle D′

y(D
′ ◦ σ)y is a

non-zero divisor of OY ,y for each y ∈ Y . In addition, D′
y(D

′ ◦ σ)y Fy ∈ OY ,y for
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each Fy ∈ ÕY ,y and each y ∈ Y . As B(Y ) is invariant, there exist (using inductively
[53, §52.5]) finitely many holomorphic functions Di ∈ H0(Y , J) satisfying the same
properties as D′ such that B(Y ) = {D1D1 ◦ σ = 0, . . . , Dr Dr ◦ σ = 0}. Define
D := ∑r

i=1 Di Di ◦ σ and observe that D(ym) = r �= 0 for each m ≥ 1. The reader
can check readily that D satisfies the required conditions. ��

A universal denominator satisfying the conditions of Lemma 3.11 will be called
optimal universal denominator.

Corollary 3.12 Let F ∈ O(Ŷ ) be an invariant holomorphic function such that {F =
0} = ∅ and D an optimal universal denominator. Then there exists an invariant
holomorphic function A ∈ O(Y ) such that (D ◦ π)2F = A ◦ π and Ax is a square of
OY ,x for each x ∈ X.

Proof As D is a universal denominator, D2 is also a universal denominator, so there
exists A ∈ O(Ŷ ) such that (D ◦ π)2F = A ◦ π . As D, F are invariant holomorphic
functions and σ ◦ π = π ◦ σ̂ , A is also invariant. Pick x ∈ X and write π−1(x) :=
{y1, . . . , yr }. Let Wi ⊂ Ŷ be a neighborhood of yi such that Wi ∩ Wj = ∅ if i �= j
and there exists Bi ∈ O(Wi ) such that B2

i = F |Wi for i = 1, . . . , r . We may assume
W := ⋃r

i=1 Wi is invariant and define

B : W → C, y �→ Bi (y) if y ∈ Wi ,

which satisfies B2 = F |W . As π−1(x) ⊂ W and π is proper, we may assume V :=
π(W ) is an open subset of Y and π−1(V ) = W . As D is a universal denominator,
there exists B ′ ∈ O(V ) such that (D|V ◦ π)B = B ′ ◦ π , so

(B ′ ◦ π)2 = ((D|V ◦ π)B)2 = (D|V ◦ π)2F |W = A ◦ π.

As π∗ : O(V ) → O(W ), G �→ G ◦ π is injective, we conclude A|V = B ′2, so Ax is
locally a square of OY ,x , as required. ��

3.6 Proof of Theorem 1.3

We distinguish two cases:
General case: By Sect. 2.3.2 there exists a reduced Stein space (Y ,OY ) endowed
with an anti-involution σ such that (X ,OX ) is the real part space of (Y ,OY ) and
(Y ,OY ) is a complexification of (X ,OX ). By Sect. 2.6 there exists a normalization
((Ŷ ,OŶ ), π) of (Y ,OY ) and an anti-involution σ̂ of Ŷ such that σ ◦ π = π ◦ σ̂ . By
[55] (Ŷ ,OŶ ) is a Stein space. Let

X̂ = {z ∈ Y : σ̂ (z) = z}.

By Corollary 2.3 there exists a (̂σ -)invariant analytic curveC ⊂ Ŷ of real dimension 1
without isolated points such that D0 := C∩ X̂ is a discrete subset of X̂ and π−1(X) =
X̂ ∪C . As X has a system of open Stein neighborhoods in Y , by [45, M.Thm. 3] also
X̂ ∪C has a system of open Stein neighborhoods in Ŷ . As the irreducible components
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of Ŷ are its connected components, we may assume (after shrinking Ŷ if necessary)
that both X̂ ∪ C and Ŷ are connected [32, Thm. 1.2, Prop. 5.16].

Let f : X → R be a non-zero positive semidefinite analytic function. Shrinking
Y if necessary, we may assume that f extends to an invariant holomorphic function
F : Y → C. Consider the holomorphic function F ′ := F ◦ π : Ŷ → C. As
σ ◦ π = π ◦ σ̂ , we have that F ′ := F ◦ π is an invariant holomorphic function whose
restriction to X̂ is positive semidefinite. Observe that {F ′ = 0} has dimension 1.

By Lemma 3.1 there are invariant holomorphic functions G1, F1, F2 ∈ O(Ŷ ) such
that {Fi = 0} ∩ X̂ is a discrete set contained in {F ′ = 0} ∩ X̂ , Fi |X̂ ≥ 0 and
F2
1 F

′ = (G2
1 + F ′2)F2. By Theorem 3.3 there exists, after shrinking Ŷ if necessary,

an invariant holomorphic function G2 ∈ O(Ŷ ) such that the restriction of F ′
2 :=

F2 − G2
2 to X̂ is positive semidefinite, {F ′

2 = 0} ∩ (X̂ ∪ C) is a discrete set and
{F ′

2 = 0} ∩ X̂ = {F2 = 0} ∩ X̂ . By Theorem 3.4 there exist, after shrinking Ŷ if
necessary, invariant holomorphic functions F ′′

2 , H1, H2 ∈ O(Ŷ ) such that:

(i) H1, H2 ∈ ∑
4O

σ (Ŷ )2.
(ii) {F ′′

2 = 0} ∩ C ⊂ X̂ ∩ C and {H = 0} ∩ X̂ = ∅ for  = 1, 2.
(iii) F ′

2H1 = F ′′
2 H2 and F ′′

2,xOŶ ,x = F ′
2,xOŶ ,x for each x ∈ X̂ . In particular, {F ′

2 =
0} ∩ X̂ = {F ′′

2 = 0} ∩ X̂ .

By Theorem 3.8 there are, after shrinking Ŷ if necessary, invariant holomorphic func-
tions H3,G3 ∈ O(Ŷ ) such that {H3 = 0} = ∅, (H3|X̂ is strictly positive),

{G3 = 0} ∩ X̂ ⊂ {F ′′
2 = 0} ∩ X̂ = {F ′

2 = 0} ∩ X̂ = {F2 = 0} ∩ X̂ ⊂ {F ′ = 0} ∩ X̂

is a discrete set and G2
3H3F ′′

2 ∈ ∑
8O

σ (Ŷ )2.
Let D ∈ O(Y ) be an optimal universal denominator. By Corollary 3.12 we find an

invariant holomorphic function A ∈ O(Y ) such that (D ◦ π)2H3 = A ◦ π and Ax is a
square inOY ,x for each x ∈ X . By Lemma 3.10we have, after shrinking Y if necessary,
invariant holomorphic functions A1, A2, A3 ∈ O(Y ) such that A = A2

1 + A2
2 + A2

3.
Thus, if we write D′ := D ◦ π ,

D′2H3 = (A1 ◦ π)2 + (A2 ◦ π)2 + (A3 ◦ π)2 ∈ ∑
3O

σ (Ŷ )2.

Consequently, (G3D′H3)
2F ′′

2 ∈ ∑
8O

σ (Ŷ )2. We deduce

(G3D
′H3H1)

2(F2 − G2
2) = (G3D

′H3H1)
2F ′

2 = (G3D
′H3)

2H1H2F
′′
2 ∈ ∑

8O
σ (Ŷ )2,

so (G3D′H3H1)
2F2 ∈ ∑

9O
σ (Ŷ )2. Thus,

(F1G3D
′H3H1)

2F ′ = (G2
1 + F ′2)(G3D

′H3H1)
2F2 ∈ ∑

10O
σ (Ŷ )2.

As {F1G3H3H1 = 0} ∩ X̂ ⊂ {F ′ = 0} ∩ X̂ is a discrete set, F1G3H3H1 is a non-
zero divisor of O(Ŷ ). Thus, using that D′ is an optimal universal denominator, we
find E ∈ O(Y ) such that D′(F1G3H3H1) = E ◦ π , E is not a zero divisor and
{E = 0} ∩ X ⊂ B(X) ∪ ({F = 0} ∩ X). As D′2∑

10O
σ (Ŷ )2 ⊂ π∗(

∑
10(O

σ (Y ))2),
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we deduce that E2F ∈ ∑
10O

σ (Y )2 and {E = 0} ∩ X ⊂ B(X) ∪ ({F = 0} ∩ X).
This concludes the general case.
Coherent case: Let us modify the previous proof when X is coherent. If such is the
case, π−1(X) = X̂ and C = ∅ (Remark 2.2(ii)). Thus, we can work directly on X̂
and do not need to care about Ŷ . This simplifies everything and only 5 squares will
be enough. Denote ρ := π |X̂ : X̂ → X . As the irreducible components of X̂ are its
connected components, we assume X̂ is connected.

Let f ∈ O(X) be a non-zero positive definite analytic function and f ′ := f ◦ ρ.
Observe that { f ′ = 0} has dimension≤ 1. ByLemma 3.1 there exist analytic functions
g1, f1, f2 ∈ O(X̂) such that each fi is positive semidefinite, has a discrete zero-set
contained in { f ′ = 0} and f 21 f ′ = (g21+ f ′2) f2.ByStep 2of the proof ofTheorem3.8
there exist analytic functions g2, a1, a2, a3, a4 ∈ O(X̂) such that {g2 = 0} ⊂ { f2 = 0}
and g22 f2OX̂ ,x = (a21 + a22 + a23 + a24)OX̂ ,x for each x ∈ { f2 = 0}. We still need
to modify the analytic functions ai . Let {Zi }i≥1 be the irreducible components of
dimension 1 of { f ′ = 0} and pick zi ∈ Zi \ {g22 f2 = 0} for each i ≥ 1. Let
λ ∈ (0,+∞) be such that a′

1 := a1+λg22 f2 does not vanish at any of the points zi . The
set { f ′ = 0, a′

1 = 0} is discrete, so D := { f ′ = 0, a′
1 = 0, a2 �= 0} is also discrete. Let

c ∈ O(X̂) be an analytic function such that {c = 0} = D and define a′
2 := a2+cg22 f2,

a′
3 := a3 and a′

4 := a4. Observe that g22 f2OX̂ ,x = (a′2
1 + a′2

2 + a′2
3 + a′2

4 )OX̂ ,x for
each x ∈ { f2 = 0} and

{a′
1 = 0, a2 + cg22 f2 = 0, f ′ = 0, a2 �= 0}

= {a′
1 = 0, f ′ = 0, a2 �= 0} ∩ {a2 + cg22 f2 = 0}

= {c = 0} ∩ {a2 + cg22 f2 = 0} = {a2 = 0, c = 0} = ∅.

Consequently, as {c = 0, a2 = 0} = ∅, we obtain

{a′2
1 + a′2

2 + a′2
3 + a′2

4 = 0} ∩ { f ′ = 0, f2 �= 0} ⊂ {a′
1 = 0, a′

2 = 0, f ′ = 0, f2 �= 0}
= {a′

1 = 0, a2 + cg22 f2 = 0, f ′ = 0, f2 �= 0}
= {a′

1 = 0, a2 + cg22 f2 = 0, f ′ = 0, f2 �= 0, a2 �= 0} = ∅.

This means that g22 f2OX̂ ,x = (a′2
1 + a′2

2 + a′2
3 + a′2

4 )OX̂ ,x for each x ∈ { f ′ = 0}, so

(g2 f1)
2 f ′OX̂ ,x = (g21 + f ′2)g22 f2OX̂ ,x = (g21 + f ′2)(a′2

1 + a′2
2 + a′2

3 + a′2
4 )OX̂ ,x

for each x ∈ { f ′ = 0}. Let a′′
1 , a

′′
2 , a

′′
3 , a

′′
4 ∈ O(X̂) be such that

(g21 + f ′2)(a21 + a22 + a23 + a24) = a′′2
1 + a′′2

2 + a′′2
3 + a′′2

4 .

As {g2 f1 = 0} ⊂ { f ′ = 0},

u := (g2 f1)2 f ′

a′′2
1 + a′′2

2 + a′′2
3 + a′′2

4 + ((g2 f1)2 f ′)2
∈ O(X̂)
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is a strictly positive analytic function. Let v ∈ O(X̂) be a strictly positive analytic
function such that u = v2. Thus,

(g2 f1)
2 f ′ = (a′′

1v)2 + (a′′
2v)2 + (a′′

3v)2 + (a′′
4v)2 + ((g2 f1)

2 f ′v)2.

Let d ∈ O(X) be an optimal universal denominator, which satisfies {d = 0} = B(X).
Let b0, b1, b2, b3, b4, b5 ∈ O(X) be such that

bk ◦ ρ =

⎧⎪⎨
⎪⎩

(d ◦ π)g2 f1 if k = 0,

(d ◦ π)a′′
k v if k = 1, 2, 3, 4,

(d ◦ π)(g2 f1)2 f ′v if k = 5.

We obtain b20 f = ∑5
k=1 b

2
k and {b0 = 0} ⊂ { f = 0} ∪ {d = 0} = { f = 0} ∪ B(X),

as required. ��
Acknowledgements The author is very grateful to S. Schramm for a careful reading of the final version
and for the suggestions to refine its redaction.
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