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In this work we present a full geometric characterization of the 1-dimensional
polynomial and regular images of Rn. In addition, given a polynomial image S
of Rn, we compute the smallest positive integer p := p(S) such that S is a polynomial
image of Rp. Analogously, given a regular image S′ of Rn, we determine the smallest
positive integer r := r(S′) such that S′ is a regular image of Rr.
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1. Introduction

A map f := (f1, . . . , fm) : Rn → Rm is a polynomial map if each of its components fi ∈ R[x] := R[x1,

. . . , xn]. A subset S of Rm is a polynomial image of Rn if there exists a polynomial map f : Rn → Rm such
that S = f(Rn). Let S be a subset of Rm; we define

p(S) :=
{

smallest p � 1 such that S is a polynomial image of Rp,

+∞ otherwise.

More generally, a map f := (f1, . . . , fm) : Rn → Rm is a regular map if each component fi is a regular
function of R(x) := R(x1, . . . , xn), that is, each fi = gi

hi
is a quotient of polynomials such that the zero set

of hi is empty. Analogously, a subset S of Rm is a regular image of Rn if it is the image S = f(Rn) of Rn

under a regular map f and we define the invariant

r(S) :=
{

smallest r � 1 such that S is a regular image of Rr,

+∞ otherwise.
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Obviously r(S) � p(S) and by Tarski’s Theorem (see [1, 2.8.8]) the dimension dimS of S is less than or
equal to both of them. Of course the inequalities dimS � r(S) � p(S) can be strict and it may happen that
the second invariant is finite while the third is infinite, even if S ⊂ R (see Lemma 3.1).

A celebrated theorem of Tarski–Seidenberg [1, 1.4] says that the image of any polynomial map (and more
generally of a regular map) f : Rm → Rn is a semialgebraic subset S of Rn, that is, it can be written as
a finite boolean combination of polynomial equations and inequalities, which we will call a semialgebraic
description. By elimination of quantifiers S is semialgebraic if it has a description by a first order formula
possibly with quantifiers. Such a freedom gives easy semialgebraic descriptions for topological operations:
interiors, closures, borders of semialgebraic sets are again semialgebraic.

In an Oberwolfach week [7] Gamboa proposed to characterize the semialgebraic sets of Rm that are
polynomial images of Rn for some n � 1. The interest of polynomial (and also regular) images is far from
discussion since there are many problems in Real Algebraic Geometry for that such sets can be reduced to
the case S = Rn (see [2,3] or [5,6] for further comments). Examples of such problems are

• optimization of polynomial (and/or regular) functions on S,
• characterization of the polynomial (or regular) functions that are positive semidefinite on S (Hilbert’s

17th problem and Positivestellensatz).

As we have already pointed out in [2], there are some straightforward properties that a regular image
S ⊂ Rm must satisfy: it has to be pure dimensional, connected, semialgebraic and its Zariski closure has to be
irreducible. Furthermore, S must be by [4, 3.1] irreducible in the sense that its ring N (S) of Nash functions
on S is an integral domain. Recall here that a Nash function on an open semialgebraic subset U ⊂ Rm is an
analytic function that satisfies a non-trivial polynomial equation, that is, there exists P ∈ R[x, y] such that
P (x, f(x)) = 0 for all x ∈ U . Now the ring N (S) of Nash functions on S is the collection of all functions
on S that admit a Nash extension to an open semialgebraic neighborhood U of S in Rm and it is endowed
with the usual sum and product (for further details see [4]).

In this work we focus our attention on the one dimensional case and present a full geometric characteri-
zation of the polynomial and regular one dimensional images of Rn; in fact, we compute the exact value of
the invariants p and r for all of them. We will see in this work that in the one dimensional case the only
three possible values for both invariants p and r are 1, 2 or +∞. In fact, all possibilities with the restriction
1 � r � p � +∞ are attained except for the pair r = 1 and p = 2, which is not attainable (see Theorems 1.1
and 1.3, Propositions 1.2 and 1.4, Corollary 1.5 and Lemma 3.1 to complete the picture). We provide the
following table illustrating the situation.

S R or [0,+∞) − [0, 1) (0,+∞) (0, 1) Any non-rational algebraic curve
r(S) 1 1 1 2 2 +∞
p(S) 1 2 +∞ 2 +∞ +∞

We recall that the study of one dimensional polynomial images of Rn was partially and naively approached
before in our previous work [3, §2] but without presenting any conclusive result.

Notations and terminology. Before stating our main results whose proofs are developed in Section 3 after
the preparatory work of Section 2, we recall some preliminary standard notations and terminology. We
write K to refer indistinctly to R or C and denote the hyperplane of infinity of the projective space KPm

with H∞(K) := {x0 = 0}, which contains Km as the set KPm \H∞(K) = {x0 = 1}. If m = 1, we denote the
point of infinity of the projective line KP1 with {p∞} := {x0 = 0}.

For each n � 1 denote the complex conjugation with

σn : CPn → CPn, z = (z0 : z1 : · · · : zn) �→ z = (z0 : z1 : · · · : zn).
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Clearly, RPn is the set of fixed points of σn. A set A ⊂ CPn is called invariant if σ(A) = A. It is well-known
that if Z ⊂ CPn is an invariant non-singular (complex) projective variety, then Z ∩ RPn is a non-singular
(real) projective variety. We also say that a rational map h : CPn ��� CPm is invariant if h ◦ σn = σm ◦ h.
Of course, h is invariant if its components can be chosen as homogeneous polynomials with real coefficients;
hence, by restriction it provides a real rational map h|RPn : RPn ��� RPm.

Given a semialgebraic set S ⊂ Rm ⊂ RPm ⊂ CPm, we denote its Zariski closure in KPm with ClzarKPm(S).
Obviously, ClzarCPm(S) ∩ RPm = ClzarRPm(S) and Clzar(S) = ClzarRPm(S) ∩ Rm is the Zariski closure of S in Rm.
We denote the set of points of S that have local dimension k with S(k).

Recall that a complex rational curve is the image of CP1 under a birational (and hence regular) map
while a real rational curve is a real projective irreducible curve C such that C(1) is the image of RP1 under
a birational (and hence regular) map (see Lemma 2.1).

Main results. We begin with a geometrical characterization of the 1-dimensional polynomial images of
Euclidean spaces (that is, those with p = 1, 2, see also [3, 2.1-2]) and then determine those with p = 1.

Theorem 1.1. Let S ⊂ Rm be a 1-dimensional semialgebraic set. Then the following assertions are equivalent:

(i) S is a polynomial image of Rn for some n � 1.
(ii) S is irreducible, unbounded and ClzarCPm(S) is an invariant rational curve such that ClzarCPm(S) ∩ H∞(C)

is a singleton {p} and the germ ClzarCPm(S)p is irreducible.

In particular, if that is the case, then p(S) � 2.

Proposition 1.2. Let S ⊂ Rm be a 1-dimensional semialgebraic set that is a polynomial image of Rn for
some n � 1. Then p(S) = 1 if and only if S is closed in Rm.

The counterpart of the previous results in the regular setting consists of the full geometric characterization
of the 1-dimensional regular images of Euclidean spaces and the description of those with r = 1.

Theorem 1.3. Let S ⊂ Rm be a 1-dimensional semialgebraic set. Then the following assertions are equivalent:

(i) S is a regular image of Rn for some n � 1.
(ii) S is irreducible and ClzarRPm(S) is a rational curve.

In particular, if that is the case, then r(S) � 2.

Proposition 1.4. Let S ⊂ Rm be a 1-dimensional semialgebraic set that is a regular image of Rn for some
n � 1. Then r(S) = 1 if and only if either

(i) ClRPm(S) = S or
(ii) ClRPm(S) \ S = {p} is a singleton and the analytic closure of the germ Sp is irreducible.

Corollary 1.5. There is no 1-dimensional semialgebraic set S ⊂ Rm with p(S) = 2 and r(S) = 1.

Proof. Suppose that there exists a semialgebraic set S ⊂ Rm with dimS = 1, p(S) = 2 and r(S) = 1. By
Theorem 1.1 and Proposition 1.2 we deduce that S is unbounded and not closed in Rm. Thus, ClRPm(S)\S
has at least two elements: one point in H∞(R) because S is unbounded and another one in Rm since S is not
closed in Rm. But by Proposition 1.4 ClRPm(S)\S is either empty or a singleton, which is a contradiction. �
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2. Main tools

In this section we present the main tools used to prove the results presented in this article. We will use
usual concepts of (complex) Algebraic Geometry such as: rational map, regular map, normalization, etc.
and refer the reader to [8,9] for further details. We recall the following useful and well-known fact concerning
the regularity of rational maps defined on a non-singular curve (see [8, 7.1]) that will be used several times.

Lemma 2.1. Let Z ⊂ CPn be a non-singular projective curve and F :Z ��� CPm a rational map. Then F

can be (uniquely) extended to a regular map F ′ :Z → CPm. Moreover, if Z,F are invariant, then also F ′ is
invariant.

Normalization of an algebraic curve. A main tool will be the normalization (X̃,Π) of an either affine or
projective algebraic curve X, both in the real and in the complex case. The normalization is birationally
equivalent to X and therefore unique up to a biregular homeomorphism; furthermore, if X is an invariant
complex algebraic curve, we may assume that also X̃ and π are invariant. To prove this, one can construct
(X̃, π) as the desingularization of X via a finite chain of suitable invariant blowing-ups. Recall that all fibers
of Π : X̃ → X are finite and if x ∈ X is a non-singular point, then the fiber of x is a singleton. Moreover,
if X is complex, then the cardinal of the fiber of a point x ∈ X coincides with the number of irreducible
components of the germ Xx. If X ⊂ Rm is an affine algebraic curve, Y := ClzarCPm(X) and (Ỹ ⊂ CPk, Π) is
an invariant normalization of Y , we have

• (Z̃ := Ỹ ∩ RPk, Π|Z̃) is the normalization of Z := ClzarRPm(X) and Π(Z̃) = Z(1),
• (X̃ := Ỹ ∩ Rk, π := Π|

X̃
) is the normalization of X and π(X̃) = X(1). �

The following two results are crucial to prove the Main results stated in the Introduction.

Lemma 2.2. Let f : R → Rm be a non-constant rational map and S := f(R). Then

(i) f can be (uniquely) extended to an invariant regular map F : CP1 → CPm such that F (CP1) =
ClzarCPm(S).

(ii) ClzarCPm(S) is an invariant rational curve and if (CP1, Π) is an invariant normalization of ClzarCPm(S),
then there exists an invariant surjective regular map F̃ : CP1 → CP1 such that F = Π ◦ F̃ .

(iii) If f is polynomial, then we may choose Π and F̃ such that π := Π|R and f̃ := F̃ |R are polynomial. In
particular, ClzarCPm(S) ∩ H∞(C) is a singleton p and the germ ClzarCPm(S)p is irreducible.

Proof. (i) Observe that f can be naturally extended to an invariant rational map

F := (F0 : F1 : · · · : Fm) : CP1 ��� CPm

where Fi ∈ R[x0, x1] are homogeneous polynomials of the same degree d. In fact, such an extension is by
Lemma 2.1 regular and unique. As S = f(R), we deduce that F (CP1) ⊂ ClzarCPm(S) contains by [8, 2.31] a
non-empty Zariski open subset of ClzarCPm(S). Since F is proper and ClzarCPm(S) is irreducible, we conclude by
[8, 2.33] F (CP1) = ClzarCPm(S).

(ii) Let (Ỹ ⊂ CPk, Π) be a σ-invariant normalization of Y := ClzarCPm(S). Now the composition Π−1 ◦
F : CP1 ��� Ỹ defines an invariant rational map that can be extended to an invariant surjective regular
map F̃ : CP1 → Ỹ such that F = Π ◦ F̃ . Observe that Ỹ is by [8, 7.6, 7.20] a smooth curve of arithmetic
genus 0, that is, a smooth rational curve (see [8, 7.17]); hence, we may take Ỹ = CP1. Thus, (RP1, Π|RP1)
is the normalization of ClzarRPm(S) and Π(RP1) = ClzarRPm(S)(1).
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(iii) If f is polynomial, then F0 := xd0. Write Π := (Π0, . . . , Πm) and F̃ := (F̃0, F̃1) where Πi, F̃j ∈
R[x0, x1] are homogeneous polynomials and let us check that we may assume Π0 = λxe0 and F̃0 = μx�0 for
some positive integers e, � such that d = e�; hence, π := Π|R and f̃ := F̃ |R are polynomial.

Indeed, observe first that F̃ is not constant because it is surjective. Factorize

Π0 =
e∏

i=1
(aix1 − bix0) ∈ C[x0, x1]

where ai, bi ∈ C and (ai, bi) 	= (0, 0) for i = 1, . . . ,m. Let us check that all factors aix1 − bix0 are propor-
tional. Denote pi := F̃i(1, x1) and observe

e∏
i=1

(aip1 − bip0) = Π0(p0, p1) = F0(1, x1) = 1;

hence, all factors in the previous expression are non-zero constants ci ∈ C. Suppose that two of the pairs
(ai, bi) are not proportional, for instance, (a1, b1) and (a2, b2). Then (p0, p1) is the unique solution of the
linear system {

a1x1 − b1x0 = c1,

a1x2 − b2x0 = c2

and so p0, p1 ∈ C, which contradicts the fact that F̃ is not constant. Thus, we may write Π0 = ±(ax1 −
bx0)e where a, b ∈ R and (a, b) 	= (0, 0). Consider an invariant change of coordinates Ψ : CP1 → CP1 that
transforms (a : b) into (0 : 1) and define Π ′ := Π ◦ Ψ . Of course, (CP1, Π ′) is an invariant normalization of
ClzarCPm(S) with Π ′

0 = λxe0. Define F̃ ′ as the regular extension of (Π ′)−1◦F to CP1; in particular, F = Π ′◦F̃ ′.
Since λ(F̃ ′

0)e = xd0, we conclude F̃ ′
0 = μx�0.

Finally, we have Π−1(ClzarCPm(S) ∩ H∞(C)) = {(0 : 1)} and so we deduce that ClzarCPm(S) ∩ H∞(C) = {p}
is a singleton and the germ ClzarCPm(S)p is irreducible. �
Lemma 2.3. Let f := (f1, . . . , fm) : Rn → Rm be a non-constant rational map such that its image f(Rn) has
dimension 1. Then

(i) f factors through R, that is, there exist a rational function g ∈ R(x) and a rational map h : R → Rm

such that f = h ◦ g.
(ii) If f is moreover a polynomial map, we may also assume that g and h are polynomial.

Proof. Let F := R(f1, . . . , fm) be the smallest subfield of the field of rational functions R(x) in n variables
that contains R and f1, . . . , fm. Note that tr.deg(F|R) = dim(im f) = 1, so we may assume f1 /∈ R.
Thus, by Lüroth’s Theorem there exists a rational function g ∈ R(x) \ R such that F = R(g). Since
fi ∈ F = R(g), we have fi = Pi(g)

Qi(g) for some coprime polynomials Pi, Qi ∈ R[t]. Now the rational map
h := ( P1

Q1
, . . . , Pm

Qm
) : R → Rm satisfies f = h ◦ g and so (i) holds.

Suppose next that f is moreover polynomial. Following [11, Lemma 2] (see also [10, Lemma 2,
pp. 710–711]),

(2.3.1). We may assume that the Lüroth’s generator g of F is in fact polynomial.

By Bezout’s Lemma we can write now 1 = PiAi +QiBi for some Ai, Bi ∈ R[t]. Substituting the variable
t by g we get the polynomial identity
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1 = Pi(g)Ai(g) + Qi(g)Bi(g) = Qi(g)fiAi(g) + Qi(g)Bi(g) = Qi(g)
(
fiAi(g) + Bi(g)

)
;

hence, Qi(g) is a non-zero constant and so the polynomials hi := Pi(t)
Qi(g) fit our situation.

For the sake of completeness let us include the elementary proof of [11, Lemma 2] that shows state-
ment (2.3.1). Let g0 ∈ R(x) \ R be a Lüroth’s generator of F. Since the extension F|R has transcendence
degree 1, we may assume F := f1 ∈ R[x]\R. Let R,S ∈ R[t]\{0} and P,Q ∈ R[x]\{0} be pairs of relatively
prime polynomials such that

F = R(g0)
S(g0)

and g0 = P

Q
.

Consequently, we deduce

F = QrR(P/Q)
QsS(P/Q)Q

s−r

where r := deg(R) and s := deg(S). Notice that the polynomials Q, QrR(P/Q) and QsS(P/Q) are pairwise
relatively prime; once this is shown, it follows directly that H := QsS(P/Q) ∈ R and s − r � 0 by using
the fact that R[x] is a UFD.

Indeed, using R,S ∈ R[t], it is straightforward to show

gcd
(
Q,QrR(P/Q)

)
= gcd

(
Q,QsS(P/Q)

)
= gcd(P,Q) = 1.

By Bezout’s Lemma we find polynomials A1, A2 ∈ R[t] of degrees ki := deg(Ai) such that 1 = A1R+A2S.
Substituting t � P/Q and multiplying the expression with Q� where � := max{deg(A1)+deg(R),deg(A2)+
deg(S)}, we get

Q� = Q�−k1−r
(
Qk1A1(P/Q)

)(
QrR(P/Q)

)
+ Q�−k2−r

(
Qk2A2(P/Q)

)(
QrS(P/Q)

)
and so gcd(QrR(P/Q), QsS(P/Q)) divides Q�; hence,

gcd
(
QrR(P/Q), QsS(P/Q)

)
= gcd

(
QrR(P/Q), QsS(P/Q), Q�

)
= 1.

Factorize S = α(t− ξ1) · · · (t− ξs) where α ∈ R \ {0} and ξi ∈ C. We have

H = QsS(P/Q) = α(P − ξ1Q) · · · (P − ξsQ),

so (P − ξiQ) = γi ∈ C for 1 � i � s. If any two ξi’s were distinct, for instance, ξ1 	= ξ2, we would get
(ξ2 − ξ1)Q = γ1 − γ2 ∈ C; hence, Q ∈ R[x] ∩ C = R and P ∈ R[x] ∩ C = R, which contradicts the fact that
g0 = P/Q ∈ R(x) \ R. Thus, S = α(t− ξ)s where α, ξ ∈ R and s � 0.

If s = 0, we may assume Q = 1 and g := g0 = P ∈ R[x]. If s > 0, then P − ξQ = γ ∈ R and so
g0 = P/Q = ξ + γ/Q; hence, F = R(g0) = R(ξ + γ/Q) = R(γ/Q) = R(g) where g := Q ∈ R[x]. �

We finish this section with an elementary crucial example.

Example 2.4. Let us show that S1 and RP1 are regular images of R. Since RP1 is the image of S1 via the
canonical projection π : S1 → RP1, it is enough to prove that S1 is a regular image of R. To that end, we
may take for instance the regular map

f : R → S1, t �→
((

t2 − 1
t2 + 1

)2
−
(

2t
t2 + 1

)2
, 2
(
t2 − 1
t2 + 1

)(
2t

t2 + 1

))
.
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Observe that the previous map is the composition of the inverse of the stereographic projection of S1 from
(1, 0) with

g : C ≡ R2 → C ≡ R2, z = x +
√
−1y ≡ (x, y) �→ z2 ≡

(
x2 − y2, 2xy

)
.

3. Proofs of the main results

The purpose of this section is to prove Theorems 1.1 and 1.3 and Propositions 1.2 and 1.4. We begin
with the case m = 1, that is, S := I is an interval of R.

Lemma 3.1. Let I ⊂ R be an interval. Then

(i) p(I) < +∞ if and only if I is unbounded. Moreover, if such is the case, then p(I) � 2 and p(I) = 2 if
and only if I � R is open.

(ii) r(I) � 2 and r(I) = 2 if and only if I � R is open.

Proof. (i) If f : R → R is a non-constant polynomial map, the image of f is either R or a proper closed
unbounded interval; hence, if I � R is open, then p(I) � 2. On the other hand, if p(I) = n < +∞ and
g : Rn → R is a polynomial map such that g(Rn) = I, we take x0 ∈ Rn with g(x0) 	= g(0) and consider the
non-constant polynomial map h : R → R, t �→ g(tx0); hence, h(R) ⊂ I is unbounded.

To finish it is enough to prove that the interval [0,+∞) is a polynomial image of R while (0,+∞) is a
polynomial image of R2. To that end, consider the polynomial maps

f1 : R → R, t �→ t2 and f2 : R2 → R, (x, y) �→ (xy − 1)2 + x2.

(ii) For the second part observe that a regular map f : R → R can be extended regularly to a map
F : RP1 → RP1 by Lemma 2.1. Thus, the image of F is either RP1 or a proper closed interval J of RP1. If
F (p∞) = p∞, then I = J \{p∞} is an unbounded closed interval of R. On the other hand, if F (p∞) = c ∈ R,
then J = [a, b] is a bounded closed interval of R and I is either equal to J (if F−1(c) is not a singleton)
or J \ {c} (if F−1(c) is a singleton). As I is connected, it is either [a, b] or one of the half-open bounded
intervals [a, b) or (a, b]. Thus, if I � R is open, then r(I) � 2.

To finish the proof and in view of (i), it is enough to notice that the intervals [0, 1] and (0, 1] are regular
images of R via the regular maps

f3 : R → R, t �→ t

1 + t2
+ 1

2 , f4 : R → R, t �→ 1
1 + t2

while the interval (0, 1) is a regular image of R2 via the regular map

f5 : R2 → R, (x, y) �→ (xy − 1)2 + x2

1 + (xy − 1)2 + x2 .

The concrete details are left to the reader. �
Proof of Theorem 1.1. (i) =⇒ (ii) We know that S is unbounded and by [4, 3.1] S is irreducible. Since
p(S) < +∞, there exists a regular map f : Rn → Rm such that f(Rn) = S. By Lemma 2.3 there exist
polynomial maps h : R → Rm and g : Rn → R satisfying f = h ◦ g; notice that the Zariski closures of f(Rn)
and h(R) coincide. By an application of Lemma 2.2 to the polynomial map h we conclude that ClzarCPm(S)
is an invariant rational curve such that ClzarCPm(S) ∩ H∞(C) = {p} is a singleton and the germ ClzarCPm(S)p is
irreducible.
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(ii) =⇒ (i) Let Π := (Π0 : · · · : Πm) : CP1 → ClzarCPm(S) be an invariant normalization of ClzarCPm(S); in
particular, π(RP1) = ClzarRPm(S)(1). Since ClzarCPm(S)∩H∞(C) = {p} is a singleton and the germ ClzarCPm(S)p is
irreducible, we may assume

Π−1(ClzarCPm(S) ∩ H∞(C)
)

=
{
(0 : 1)

}
;

hence, Π0 = td0 for some d � 1. Therefore π := Π|R : R ≡ RP1 \ {p∞} → Rm is a polynomial map and
since S is irreducible and 1-dimensional, S ⊂ π(R) = ClzarRPm(S)(1) \ H∞(R). Moreover, since (R, π) is the
normalization of Clzar(S), there exists by [4, 3.5] an interval I ⊂ R such that π(I) = S; in fact, since S is
unbounded, also I is unbounded. By Lemma 3.1 I and therefore S are polynomial images of R2. �
Proof of Proposition 1.2. If p(S) = 1, there exists a non-constant polynomial map f : R → Rm such that
f(R) = S. Since f is proper, S is closed in Rm.

Conversely, as we have seen in the proof of (ii) =⇒ (i) in Theorem 1.1, there exists a polynomial map
π : R → Rm such that (R, π) is the normalization of Clzar(S). Thus, by [4, 3.5] there exists an interval I ⊂ R
such that π(I) = S. Since S is unbounded and closed, such an interval can be chosen unbounded and closed.
Thus, by Lemma 3.1 I and therefore S are polynomial images of R. �
Proof of Theorem 1.3. (i) =⇒ (ii) By [4, 3.1] S is irreducible. Let now f : Rn → Rm be a regular map
such that f(Rn) = S. By Lemma 2.3 there exist a rational function g ∈ R(x) and a rational map h :=
(h1
h0
, . . . , hm

h0
) : R → Rm such that f = h◦g. Now we deduce by Lemma 2.2 that ClzarRPm(S) is a rational curve.

(ii) =⇒ (i) Let π : RP1 → ClzarRPm(S) be the normalization of ClzarRPm(S); recall π(RP1) = ClzarRPm(S)(1). If
S = ClzarRPm(S)(1), then S is by Example 2.4 a regular image of R. On the other hand, if S 	= ClzarRPm(S)(1), we
may assume that the image of the infinite point p∞ of RP1 under π belongs to ClzarRPm(S)(1) \ S. By [4, 3.5]
there exists now an interval I ⊂ R = RP1 \ {p∞} such that π(I) = S. By Lemma 3.1 we conclude that I

and therefore S are regular images of R2. �
Proof of Proposition 1.4. Suppose first r(S) = 1. Let f : R → Rm be a regular map such that f(R) = S ⊂
Clzar(S). By Lemma 2.2 f can be extended to a surjective regular map F : CP1 → ClzarCPm(S) and we may
decompose F = Π ◦ F̃ where F̃ : CP1 → CP1 is an invariant surjective regular map and (CP1, Π) is an
invariant normalization of CP1; we may assume p∞ ∈ Π−1(H∞(C)). Since f is a regular map,

∅ = F−1(H∞(C)
)
∩ R = (F̃ )−1(Π−1(H∞(C)

))
∩ R.

As p∞ ∈ Π−1(H∞(R)), we deduce that the image of f̃ := F̃ |R is contained in R and so f̃ : R → R is a
regular map such that f = π ◦ f̃ where π := Π|R. By Lemma 3.1 we may assume f̃(R) = R, [0,∞), [0, 1]
or [0, 1).

If f̃(R) = [0, 1], then we obtain ClRPm(S) = S. Otherwise let q := p∞ if f̃(R) = R or [0,∞) and q := 1 if
f̃(R) = [0, 1). Observe that J := f̃(R) ∪ {q} is a closed subset of RP1; hence, its image S ∪ {π(q)} under π

is a closed subset of RPm and so ClRPm(S) = S ∪{π(q)}. Thus, ClRPm(S) \S is either empty or a singleton.
Suppose now ClRPm(S) \ S = {p := π(q)}; hence, π−1(p) ∩ f̃(R) = ∅ because S = f(R) = π(f̃(R)) and

so π−1(p) ∩ J = {q}. Thus, Sp = π((f̃(R))q) and we conclude that the analytic closure of the germ Sp is
irreducible.

Conversely, by Theorem 1.3 and [4, 3.5] there exists a connected subset I ⊂ RP1 such that π(I) = S

where (RP1, π) is the normalization of ClzarRPm(S). In fact, I is the unique 1-dimensional connected component
of π−1(S). We distinguish two possibilities:

Case 1. ClRPm(S) = S. Then S is closed in RPm and so I is either RP1 or a compact interval contained in
RP1 that we may assume equal to [0, 1].
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Case 2. ClRPm(S) \ S = {p} is a singleton and the analytic closure of the germ Sp is irreducible. Observe
ClRPm(S) = π(ClRP1(I)) and since the analytic closure of the germ Sp is irreducible, we deduce that
(π|ClRP1 (I))−1(p) = {a} is a singleton. Thus, I = ClRP1(I) \ {a} and we may assume either I = [0, 1)
or I = R.

In both cases we conclude by Lemma 3.1 and Example 2.4 that S is a regular image of R, as required. �
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