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Abstract
We examine the optimal size of risk pools with moral hazard. In risk pools,
the effective share of the own loss borne is the sum of the direct share (the
retention rate) and the indirect share borne as residual claimant. In a model
with identical individuals with mixed risk-averse utility functions, we show
that the effective share required to implement a specific effort increases in
the pool size. This is a downside of larger pools as it, ceteris paribus, reduces
risk sharing. However, we find that the benefit from diversifying the risk in
larger pools always outweighs the downside of a higher effective share. We
conclude that, absent transaction costs, the optimal pool size converges to
infinity. In our basic model, we restrict attention to binary effort levels, but
we show that our results extend to a model with continuous effort choice.

Introduction
Formal risk pools such as mutual insurance arrangements, partnerships of lawyers,
farmers, and physicians benefit from risk sharing, but are encumbered by free riding
(moral hazard). In contrast to traditional insurance arrangements where risks are
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transferred to an insurance company and its stockholders, the members of risk pools
are the residual claimants of the transferred risks. Our article addresses the following
question: In a world with independent risks, risk-averse participants, moral hazard,
and perfect enforceability of contracts, does the optimal size of the risk pool converge
to infinity if the risk-sharing arrangement is properly designed?

As a first intuition, the answer would be a straightforward “yes” due to better risk
sharing in larger pools. However, the issue is more involved in case of moral hazard.
In risk pools, part of the own loss is borne directly as a retention rate, and an additional
share indirectly as residual claimant. We will refer to the sum of these two parts as
the effective share. As the part of the own loss borne as residual claimant decreases in
the pool size, the retention rate needs to increase in order to keep effort incentives
constant. For the special case with linear marginal utility such as quadratic utility
functions, we show that it suffices to increase the retention rate to an extent that keeps
the effective share constant. It is then, indeed, straightforward to show that the utility
increases in the pool size due to better risk sharing when effort incentives are kept
constant.

For individuals with mixed risk-averse utility functions where higher-order deriva-
tives weakly alternate in sign (see, e.g., Caballé and Pomansky, 1996),1however, im-
plementing the high effort requires that the effective share increases in the pool size. In
other words, a larger part of the own loss needs to be borne by each individual. To see
the reason, consider the case with a binary effort choice. A binding incentive compati-
bility constraint (ICC) for choosing the high effort requires that the expected utility dif-
ference without own loss and with own loss is constant in the pool size, and equal to the
cost difference of high and low efforts. Due to the diversification effect of larger pools
(mean-preserving contraction), extremely low income levels become less likely even in
case with own loss. For individuals with mixed risk-averse utility functions, this ceteris
paribus decreases the incentive to avoid the own loss and thereby also decreases the in-
centive to choose the high effort. This incentive-reducing impact of larger pools needs
to be balanced by a higher effective share. This yields a countervailing effect to the ben-
efits of risk sharing in larger pools, so that it is ex ante unclear whether larger pools are
superior.

Our main result is that the benefit from improved risk sharing in larger pools always
dominates. The intuition is that the higher effective share is only needed because the
expected utility in case with an own loss increases faster than in the case without
own loss. Thus, the higher effective share just redistributes a part of the utility gain
from larger pools to the case without own loss, so that the expected utility difference
between the two cases remains constant. This ensures that the ICC is binding and that
expected utility increases in both states of the world. In our main model, we consider
only two effort levels, but we show that the superiority of larger pools carries over to
the case of continuous effort. The intuition follows from the fact that our finding does

1Mixed risk-averse utility functions include most of the commonly used von Neumann–
Morgenstern utility functions (see Eeckhoudt and Schlesinger, 2006).
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not hinge on the optimality of effort—if the same effort level is implemented for two
pools of different sizes, then expected utility is higher for the larger pool.

Our article is related to several strings of literature. First, our finding that the effective
share required for incentive compatibility increases in the pool size relates to insights
on how the expected utility of individuals with mixed risk aversion depends on the
allocation of risks between different states of the world. Eeckhoudt and Schlesinger
(2006) introduce the concept of risk apportionment to show how the optimal disaggre-
gation of harms, which can be certain losses or random variables, between different
states of nature depends on higher-order risk preferences, such as prudence (third-
order risk attitude), temperance (fourth-order), and edginess (fifth-order). Deck and
Schlesinger (2014) extend the scope of risk apportionment and provide experimental
evidence that most individuals are risk apportionate, which is equivalent to mixed
risk aversion.

Building on Eeckhoudt, Schlesinger, and Tsetlin (2009) who analyze the impact of
higher-order risk preferences on the allocation of risks, Ebert (2013) shows that higher-
order risk preferences can be characterized by the statistical moments of the distri-
bution of outcomes, where nth-degree risk aversion is equivalent to a preference for
higher (lower) odd (even) moments. In particular, prudence is related to skewness
preference, whereas temperance is related to kurtosis aversion. In our setting with
risk pools, all derivatives of the utility function can play a role in whether the utility
with or without own loss increases faster in the pool size when the effective share
is kept constant. Mixed risk aversion ensures that the effects of all derivatives go in
the same direction, so that for a constant effective share the expected utility increases
faster in the pool size in case with an own loss. As discussed above, this requires an
increase in the effective share, which, however, never outweighs the benefits from risk
sharing in larger pools.

Next, our article relates to research on the optimal size of risk pools. As we focus
on formal risk pools where losses are observable and risk transfers of each member
can be specified in an explicit and perfectly enforceable contract, informal risk pools
are an important risk-sharing arrangement in developing countries. In informal risk
pools, adjusting the retention rate optimally to the pool size and enforcing ex ante
agreements may be difficult or impossible (Bold, 2009). Many articles on informal
partnerships confirm that moral hazard increases in the pool size and conclude that
stable pools might hence be of limited size (see, e.g., Genicot and Ray, 2003; Bramoullé
and Kranton, 2007). If the retention rate is not adjusted to larger pools, then effort
incentives decrease in the pool size, and the optimal pool size is reached when the
marginal benefits from better risk sharing are equal to the marginal costs from lower
effort (see the simulations in Lee and Ligon, 2001). Our result is complementary, as
it shows that larger pools are unambiguously superior when the retention rate is
adjusted to ensure incentive compatibility.

Ligon and Thistle (2005) suggest adverse selection as an explanation for the fact that
mutuals are often small compared to stock insurers. In a separating equilibrium, mutu-
als attract low-risk consumers and offer higher expected indemnities, but are smaller
in size than stock insurers in order to be unattractive for high-risk consumers. Another
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reason for limited pool sizes are transaction costs, which are neglected in our model.
In particular, adjusting retention rates optimally may be expensive when types are
heterogeneous (see, e.g., Murgai et al., 2002). For the points we wish to make, however,
transaction costs would not add much to the existing literature, taking transaction
costs into account, the optimal pool size would be reached when, after accounting
for the required increase in the effective share, the marginal benefit of improved risk
diversification is equal to marginal transaction costs. Barigozzi et al. (2017) consider
moral hazard in risk pools in an infinitely repeated game. Analogous to market games,
the incentive to free ride increases in the number of participants, so that the efficient
effort level may only be self enforcing in small pools.

As mutual insurance companies play an important role in life insurance (Zanjani,
2007) and in particular for property–casualty insurance,2 partnerships of, for example,
lawyers, farmers, and physicians can also be interpreted as risk pools. In the theoretical
parts of their mainly empirical articles on moral hazard problems in partnerships,
Gaynor and Gertler (1995) and Lang and Gordon (1995) restrict attention to quadratic
utility functions, and neither consider higher-order utility effects or the optimal pool
size. Examples for more specialized risk pools are Risk Retention Groups (RRG), which
were formed in the United States during the liability insurance crises in the 1970s and
1980s.3

An important part of the literature discusses why mutual insurance companies and
stock insurers coexist in the same insurance markets. Stock insurers generally offer
contracts in which policyholders transfer risks for a fixed premium and diversify
their risk on the market, while policyholders in mutuals are owners and thus residual
claimants of the insurance pool. As this can be a serious downside of small mutuals,
Smith and Stutzer (1995) show that mutuals can be superior to stock insurers in case of
economy-wide aggregate risk and moral hazard problems. Mayers and Smith (2013)
point out that mutuals may have limited access to capital markets, which may dimin-
ish the control of the management by owners. Laux and Mürmann (2010) argue that
mutuals may have comparative advantages in raising external capital, when stock
insurers face free-rider and commitment problems. Among others empirical stud-
ies, Cummins, Weiss, and Zi (1999) provide evidence for the theoretical finding that
mutual insurance companies are more successful in personal lines that require less
managerial discretion with respect to individualized pricing and underwriting (May-
ers and Smith, 1988). Thus, whether mutuals or stock insurers are preferable depends
on the specific market and firm situation. Ligon and Thistle (2008) show that mutual
insurance arrangements are equivalent to a fairly priced stock insurance policy with
the same coverage plus a zero mean background risk. When the pool size converges to

2According to the Federal Insurance Office, four mutual insurance groups, State Farm Mutual
Automobile Insurance (1), Liberty Mutual Insurance (2), Nationwide Mutual Group (6), and
USAA Insurance (10), were ranked under the top 10 property–casualty insurance providers in
the United States in 2014.

3One important advantage of the RRG are lower regulation standards (Leverty, 2011). In 1981,
the U.S. Congress passed the Products Liability Risk Retention Act to allow a new type of
insurance vehicle, the Risk Retention Groups, to cover product liability exposures. In 1986, the
Act was expanded to allow the RRG to cover all casualty risks except workers’ compensation.
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infinity, then insurance contracts of a mutual converge to contracts offered by a stock
insurer.4 Thus, neglecting all other issues such as transaction costs and heterogeneity
of policyholders, stock insurers and infinitely large mutuals are equivalent and both
superior to smaller mutuals.

The remainder of the article is organized as follows: “The Model for Two Effort Lev-
els” section introduces the model for two effort levels. The “Stage 2: Individual Ef-
fort Choices” section derives the individual effort choices, and the “Stage 1: Optimal
Choice of the Effective Share ˇn” section derives the optimal effective shares. The “Im-
pact of the Pool Size on Incentive Compatibility” section analyzes the impact of the
pool size on incentive compatibility. The optimal pool size is derived in “The Impact
of Pool Size on Expected Utility” section. The “Continuous Effort” section extends to
continuous effort. The “Conclusion” section concludes.

The Model for Two Effort Levels
There are n identical risk-averse individuals with initial wealth W0. Each individual
i faces the risk of a loss L < W0 and can exert unobservable effort xi ∈ {0, 1} at cost
C (xi) = cxi where c > 0. Choosing effort xi = 1 reduces the loss probability from p0
(associated with the effort xi = 0) to p1 where 0 < p1 < p0 < 1.

Individual losses are assumed to be independent, which is a reasonable assumption
for many risk pools such as risk sharing for accidents, liability for medical malpractice,
or sharing contracts in law firms. We consider a strictly increasing and strictly con-
cave analytic utility function u(W) where (−1)lul ≤ 0 for all l≥ 3 (mixed risk aversion).
The set of functions satisfying these conditions contains the usually used utility func-
tions for risk aversion with u′ > 0 and u′′ < 0, including quadratic utility functions,
logarithmic functions, and exponential utility functions. Effort costs are additively
separable and W denotes the individual’s final wealth.

We consider the following game: at stage 0, each individual decides whether to join the
risk pool or not. If an individual does not join the pool, no other insurance is available
for the type of risk considered. At stage 1, the n individuals who joined the pool agree
cooperatively on a retention rate ˛n ∈ [0, 1) that maximizes an objective function that
aggregates the expected utilities of the pool members.5 As individuals and retention
rates are identical, this also maximizes the expected utility of each single pool member.
We restrict attention to retention rates that are independent of the number of losses
(linear sharing rules). A retention rate ˛n in stage 1 is feasible if and only if it is in the
core, that is, if there is no coalition ñ < n that yields a higher payoff for all ñ members
of the (sub) coalition.6

4We are grateful to an anonymous referee for pointing out this equivalence.
5We write ˛n ∈ [0, 1) in order to allow for the full-insurance case, but we exclude no-insurance
(˛n = 1) as this is identical to the case where an individual does not participate in the pool.

6Observe that when the members of the pool agree on ˛n, there is no private information as all
pool members are identical, and because effort costs C (xi) and loss probabilities depending
on the effort chosen are common knowledge. Furthermore, ˛n depends only on losses and not
(directly) of efforts chosen; that is, private information does not matter for the enforcement of
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Figure 1
Timeline

When setting ˛n, the pool members take into account that in stage 2, each pool member
will choose the effort level that maximizes her individual utility; depending on n, ˛n,
and the anticipated effort choices of all other pool members. Thus, effort is chosen non-
cooperatively and, due to the unobservability of the effort choice, the pool members
cannot sign a contract contingent on effort. It follows that if the pool members want to
implement a specific effort-level vector, they need to take incentive compatibility into
account.

In stage 3, verifiable losses occur. Transfers are made through the risk pool in stage 4.
Figure 1 summarizes the timeline of the game that we solve by backward induction.

Suppose for the moment that low effort maximizes utility even for n = 1, that is, for
the no-insurance case. Then, low effort is a fortiori optimal for larger pools as the risk
is maximum without insurance.7 But then, there is no incentive problem, and pool
members will optimally agree on ˛n = 0 irrespective of the pool size. Larger pools are
then superior due to the pure insurance effect. To exclude this trivial solution where
low effort is always optimal, we introduce the following assumption:

Assumption 1: High effort maximizes expected utility in the no-insurance case,
that is,

(p0 − p1) [u (W0) − u (W0 − L)] > c.

Note that Assumption 1 does not exclude that low effort is optimal for larger pools, as
losses can then be divided among all pool members. Assumption 1 is thus compatible
with a setting where high effort is optimal for small pools, whereas low effort may be
optimal for large pools.

the sharing rule agreed upon. Therefore, we can apply the basic concept of a core of a coalitional
game with transferable payoffs (see, e.g., Osborne and Rubinstein, 1994, p. 258).

7Formally, this is implied by the proof of Lemma 1 below. Thus, for all pool sizes, incentives for
high effort are maximum for ˛n = 1. But as this is identical to n = 1, there is no equilibrium
with high effort for any n if low effort is optimal for n = 1 (note that there are no externalities
for ˛ = 1, so that the individually rational behavior is also socially optimal).
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In the following, we first assume that the members of the pool always want to im-
plement high effort. We then extend to the case where low effort is superior for large
pools.

Stage 2: Individual Effort Choices
Following backward induction, we start with stage 2 on the pool members’ effort
choices. Each participant’s ICC for choosing high effort in a symmetric Nash equilib-
rium is

E [u (˛n, xi = 1, x −i = 1)] ≥ E [u (˛n, xi = 0, x −i = 1)] (1)

and ˛n ∈ [0, 1) , (2)

where the effort level vector x −i = 1 means that all but ichoose high effort.8

With ˛n as share of the own loss directly borne by each individual, the remaining
part 1 − ˛n is equally shared among all members of the pool. The effective share of the
own loss borne by each individual is then the sum of the retention rate and the share
indirectly borne via the redistribution in the pool, ˇn = ˛n + 1−˛n

n . In what follows,
we focus mostly on the effective share ˇn.

Using ˇn, we can write the ICC as

p1

n−1∑

k=0

b(k; n − 1, p1)u
(

W0 − ˇnL −
(

1 − ˇn

n − 1

)
kL

)

+(1 − p1)
n−1∑

k=0

b(k; n − 1, p1)u
(

W0 −
(

1 − ˇn

n − 1

)
kL

)
− c

≥ p0

n−1∑

k=0

b(k; n − 1, p1)u
(

W0 − ˇnL −
(

1 − ˇn

n − 1

)
kL

)

+(1 − p0)
n−1∑

k=0

b(k; n − 1, p1)u
(

W0 −
(

1 − ˇn

n − 1

)
kL

)
. (3)

Lemma 1: Suppose that high effort is a Nash equilibrium for some ˜̌n. Then, any ˇn > ˜̌n

also implements high effort as a Nash equilibrium.

Proof: See the Online Appendix (von Bieberstein et al., 2017).

Lemma 1 follows immediately from the fact that the effort incentive increases in the
part of the own loss that is effectively borne via the retention rate ˛n and the re-
distribution in the pool.

8Bold letters denote vectors.
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Stage 1: Optimal Choice of the Effective Share ˇn

Suppose that n individuals have joined the pool, and assume that the pool members’
expected utility is maximized when they implement high effort. Then, the pool’s
optimization problem in stage 1 boils down to maximizing

max
ˇn

E [u (ˇn, x = 1)] (4)

subject to the ICC

E [u (ˇn, xi = 1, x −i = 1)] ≥ E [u (ˇn, xi = 0, x −i = 1)] . (5)

Define ˇmin
n as the minimum effective share required for incentive compatibility. The

following Lemma 2 expresses that when implementing high effort, the pool members
agree upon the lowest possible retention rate ˛min

n , and hence also the lowest possible

effective share ˇmin
n = ˛min

n + 1−˛min
n

n that only just ensures incentive compatibility:9

Lemma 2: Suppose high effort is optimal for pool size n. Then, subject to incentive compati-
bility, the pool members’ expected utility is maximized for ˇmin

n .

Proof: See the Online Appendix (von Bieberstein et al., 2017).

Lemma 2 implies that the ICC is binding whenever ˛min
n > 0. In the following, we will

first restrict attention to this case; the case where ˛min
n = 0 is discussed in Corollary

2. Given that the participation constraint and the ICC are fulfilled, existence of the
symmetric Nash equilibrium with high effort in stage 2 is ensured. For stage 1, we
assume cooperative behavior, so that the utility-maximizing retention rate ˛min

n is
chosen.10

In the next section, we analyze how the minimum effective share required for incentive
compatibility depends on the pool size. Then, we turn to the impact of the pool size
on expected utility.

The Impact of the Pool Size on Incentive Compatibility
To illustrate the importance of the higher derivatives of the utility function, we start
with the special case of a quadratic utility function u = W − AW2 − cxi, where A <

1
2W0

ensures that the marginal utility of wealth is positive in the relevant wealth range.
Obviously, u′′′ = 0 in this example, and higher-order risk preferences above the order
of 2 do not matter.

Quadratic utility functions are convenient as the expected utility of final wealth
can be represented by the expected value and the variance of this wealth

9Note that the existence of a ˛min
n ∈ [0, 1) is ensured by Assumption 1.

10The case in which all pool members choose to exert low effort is discussed in Corollary 1.
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(Tobin, 1958; Baron, 1977):

E[u] = E[W] − A
(

E[W]2 + Var[W]
)

− cxi. (6)

Recall from Lemma 2 that when the pool members want to implement high effort as a
Nash equilibrium, they will choose the effective share such that the ICC (3) is binding.
In our case, the expected final wealth is composed of the initial wealth, reduced by
two possible sources for losses: the part borne of the expected own loss, pˇnL, and
the expected loss of all other members in the risk pool that has to be borne by re-
distribution, p(1 − ˇn)L. Given that high effort is chosen, the expected final wealth of
each pool member is

E[W] = W0 − p1ˇnL − p1(1 − ˇn)L − c = W0 − p1L − c, (7)

and hence independent of ˇn. Similarly, as the individual risks are independent, the
variance of the final wealth is composed of the variances of the two possible sources
for losses:

Var[W] = p1(1 − p1)ˇ2
nL2 + p1(1 − p1)(n − 1)

(
1 − ˇn

n − 1

)2
L2

= p1(1 − p1)L2

(
ˇ2

n + (1 − ˇn)2

n − 1

)
. (8)

For a constant effective share ˇn, we get ∂Var[·]
∂n = −

(
p1 − p2

1
)

L2 (1−ˇn)2

(n−1)2 < 0. This ex-
presses the benefit of larger pools that the variance, and hence the risk borne by each
individual, ceteris paribus decreases in the pool size.

The crucial question is then how the effective share ˇn required for incentive com-
patibility depends on the pool size n. As part of the proof of Proposition 1, we will
show that for a quadratic utility function, ˇmin

n is independent of n. Thus, the retention
rate increases in the pool size just to the extent that the effective share remains the
same. The reason is that the marginal utility decreases at a constant rate when the
income decreases, so that the changes in marginal utilities in response to changes in
wealth differences are identical at all levels of wealth. This implies that when the pool
size increases and ˇ is kept constant, the utilities in case with and without own loss
changes at the same degree.

For the general case with u′′′ ≥ 0, we get the following proposition:

Proposition 1: Assume a strictly increasing and strictly concave analytic utility function
u(W), where u′ > 0, u′′ < 0 and (−1)lul ≤ 0 for all l≥ 3. Suppose ˛min

n is strictly positive

for all n. Then, (i) ∂̌ min
n
∂n = 0 for u′′′ = 0, and (ii) ∂̌ min

n
∂n > 0 for u′′′ > 0.

Proof: See the Online Appendix (von Bieberstein et al., 2017).
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Proposition 1 says that the effective share of the own loss borne required for incentive
compatibility increases in the pool size, so that it is not straightforward that larger
pools lead to a higher expected utility. The reason why the effective share ˇmin

n in-
creases in the pool size with mixed risk aversion is that if ˇ is kept constant, the
expected utility in the case with an own loss increases faster in n than the expected
utility without own loss. For partial insurance, the income level is lower with an own
loss compared to no own loss, and this leads to a higher increase in utility due to risk
sharing in pools. This effect depends on the derivatives of the utility function, and all
effects go in the same direction if the derivatives of the utility function are alternating

in sign. Thus, mixed risk aversion is a sufficient condition for ∂̌ min
n
∂n > 0, and this leads

to a countervailing effect to the benefit from risk sharing.

The Impact of Pool Size on Expected Utility
We have just seen that ˇmin

n increases in the pool size for mixed risk-averse individuals
with u′′′ > 0, which reduces the benefits of larger pools. Nevertheless, the benefits from
risk sharing in larger pools always dominate.

Proposition 2: Assume a strictly increasing and strictly concave analytic utility function
u(W) where u′ > 0, u′′ < 0, and (−1)lul ≤ 0 for all l≥ 3. Suppose high effort is optimal
for all n and ˇmin

n is chosen for n. Then, the effort vector implemented by ˇmin
n is in the

core, all individuals join the pool, and the expected utility of each pool member is strictly
increasing in n.

Proof: See the Online Appendix (von Bieberstein et al., 2017).

For an intuition of the proposition, let us first stick to our assumption that high effort
is optimal for all pool sizes. The case where low effort is optimal for all pool sizes
larger than some pool size n̂ will then emerge as a simple corollary to Proposition
2. As discussed before, the negative side effect of larger pools is that for individuals
with mixed risk aversion, ˇmin

n increases in n. This, however, follows from the fact that
individuals with mixed risk-averse utility functions benefit strongly from larger pools
in case of an own loss. Thus, it is the benefit from larger pools itself that induces the
negative side effect of an increase in the required effective share, which explains why
the side effect can never dominate. Observe that the fact that the expected utility of all
pool members increases in n implies that the allocation is in the core: the maximum
utility any coalition ñ < n can reach is by agreeing on ˇmin

ñ
, and this utility is lower

than the one for the grand coalition of all n pool members.

To further sharpen the intuition for the superiority of larger pools, it is instructive to
consider the situation from a more formal point of view. When the high effort level
is implemented for two pool sizes n + 1 and n, then the utility comparison for these
two pool sizes can be written as follows:

p1E[uL(ˇmin
n+1)] + (1 − p1)E[u0(ˇmin

n+1)] > p1E[uL(ˇmin
n )] + (1 − p1)E[u0(ˇmin

n )], (9)
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where E[uL(ˇmin
n )] denotes the expected utility in case of own loss in a pool of n

participants, and E[u0(ˇmin
n )] denotes the expected utility in case without own loss. For

later reference, note that the utility comparison for the two pool sizes holds whenever
the two effort levels implemented via the effective share are identical; that is, in what
follows, we do not make use of the fact that high effort is efficient.

Rearranging gives

E[u0(ˇmin
n+1)] − p1 E[u0(ˇmin

n+1) − uL(ˇmin
n+1)]

︸ ︷︷ ︸
"u(ˇmin

n+1)

> E[u0(ˇmin
n )] − p1 E[u0(ˇmin

n ) − uL(ˇmin
n )]︸ ︷︷ ︸

"u(ˇmin
n )

. (10)

In this expression, the first part on either side of the utility comparison is the ex-
pected utility in the case without own loss, whereas the second parts consisting of
"u(ˇmin

n+1) and "u(ˇmin
n ) denote the differences in expected utility without own loss

and with own loss for risk pool sizes n + 1 and n, respectively. The advantage of this
representation is that the binding ICC can be written as (p0 − p1)"u(ˇmin

n+1) = c for pool
size n + 1 and (p0 − p1)"u(ˇmin

n ) = c for pool size n. Thereby, (p0 − p1)"u(ˇmin
n+1) and

(p0 − p1)"u(ˇmin
n ) capture the marginal benefits from high effort, which always equal

the marginal costs c in case of binding ICCs. As a consequence, the marginal benefit
is constant in n so that the utility comparison becomes:

E[u0(ˇmin
n+1)] > E[u0(ˇmin

n )], (11)

meaning that it is only the difference in the expected utilities from the share of the
losses from other pool members that matters for the utility comparison of the two pool
sizes. This shows immediately that the expected utility in larger pools increases both
for u′′′ = 0 and for u′′′ > 0: for u′′′ = 0, ˇn remains constant, and it is only the better
diversification of the risk from the losses of the other pool members that matters.
For u′′′ > 0, in addition ˇn increases in the pool size (recall Proposition 1), and this
decreases the share of the losses borne from other pool members and hence also
increases expected utility.

So far, we have assumed that implementing the high effort is always optimal, irrespec-
tive of the pool size. The following corollary expresses that our result on the optimality
of larger pools is independent of this assumption:

Corollary 1: Suppose that high effort is optimal for some pool sizes, but low effort for other
pool sizes. Then, the utility of each pool member is still strictly increasing in n.

Proof: See the Online Appendix (von Bieberstein et al., 2017).

To see the intuition for Corollary 1, recall that the whole argument for the superiority
of larger pools discussed after Proposition 2 is independent of whether high effort is
efficient or not—it extends to all cases where high effort is implemented for two pools
of different size. First, we show that the argument also holds when comparing two
pools that both implement low effort. Second, and a little more intricate, Proposition
2 implies that whenever the high effort is implemented for some pool size n1 < n̂ and
some pool size n2 ≥ n̂, then the utility of each pool member is higher for pool size
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n2. Importantly, this is even the case if low effort were optimal for the pool of size n2.
With low effort, the pool members would clearly agree on ˛n = 0, as this maximizes
risk sharing. Thus, when there are pool sizes where ˛n = 0 and low effort is optimal,
the comparison of the utilities from two pool sizes is as follows:

E [u (n = n2, ˛n2 = 0, x = 0)] > E
[
u

(
n = n2, ˛min

n2
, x = 1

)]
> E

[
u

(
n = n1, ˛min

n1
, x = 1

)]
.

Given that the larger pool is superior even when the pool members (suboptimally)
implement the high effort, it follows by definition of optimality that the larger pool is
also superior if the low effort is implemented. Finally, given that Proposition 2 carries
over to the case of low effort, the same kind of argument applies if low effort is efficient
for the smaller pool, and high effort for the larger pool.

So far, we have assumed that ˛min
n > 0, so that the ICC is binding. The following

corollary covers the case of full insurance where ˛min
n = 0:

Corollary 2: Suppose that ˛min
n = 0 (full-insurance) is optimal for some n. Then, the expected

utility of each pool member is still strictly increasing in n.

Proof: See the Online Appendix (von Bieberstein et al., 2017).

The proofs of Propositions 1 and 2 rely on the assumption that effort incentives are
kept constant when increasing the pool size. In particular, the ICCs are binding for
pool sizes n and n + 1. If the ICC is binding for ˛min

n = 0, the optimality of increasing
n follows directly from these propositions. If the ICC is slack for ˛min

n = 0, the pool
members can still implement the same effort incentives when increasing the pool size,
irrespective of whether this is optimal or suboptimal. The resulting expected utility
will be higher for the larger pool according to Proposition 2. If this is suboptimal for
the larger pool, expected utility would be even higher for optimal effort incentives.

Continuous Effort
We now show that our main result of the superiority of larger pools carries over to the
case with continuous effort. Assume that effort costs c (x) are convex in effort x; c′(x) >
0 and c′′(x) > 0. The loss probability p(x) > 0 is decreasing in effort at a decreasing rate,
p′(x) < 0 and p′′(x) > 0, where p(0) < 1. Furthermore, following, for example, Ligon
and Thistle (2008), suppose that limx↓0 p′(x) = −∞. These assumptions ensure that
effort chosen by each individual is always positive.

Expected utility is given as

E[u(ˇn, xi, x −i)] = p(xi)
n−1∑

k=0

b(k; n − 1, p(x−i))
[
u
(

W0 − ˇnL −
(1 − ˇn

n − 1

)
kL

)]

+(1 − p(xi))
n−1∑

k=0

b(k; n − 1, p(x−i))
[
u
(

W0 −
(1 − ˇn

n − 1

)
kL

)]
− c(xi). (12)
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Denote x∗
i (ˇn, x −i) as the utility-maximizing effort of individual igiven the pool size n,

the effective share ˇn, and the vector of efforts exerted by all other members, denoted
by x −i:

x∗
i := argmax

xi

E[u(ˇn, xi, x −i)]. (13)

Note first that our standard assumptions on effort costs and loss probabilities ensure
that the utility-maximizing effort level of individual iis always positive and increas-
ing in the effective share ˇn. Thus, the members of the pool can increase efforts by
agreeing on higher ˇ, and the highest implementable effort is bounded above by the
no-insurance case, ˛ = ˇ = 1. For further reference, denote xmax

n as the effort level in
the Nash equilibrium for ˇn → 1. In the following, we restrict attention to symmetric
equilibria, and denote the incentive compatible equilibrium vector as x ∗

n (ˇn).

We can then show that for any pool size, there is an interior solution for the utility-
maximizing effective share ˇ∗

n, where

ˇ∗
n := argmax

ˇn

E[u(ˇn, x ∗
n (ˇn)]. (14)

Proposition 3: For all pool sizes n, any expected utility maximizing effective share ˇ∗
n is

strictly above 1
n and strictly below 1.

Proof: See the Online Appendix (von Bieberstein et al., 2017).

Proposition 3 expresses that, for any pool size, neither no-insurance (˛n = ˇn = 1)
nor full insurance (ˇn = 1

n , i.e., ˛n = 0) can be optimal. Full insurance is dominated
because of the incentive effect, and no-insurance due to the benefit of risk sharing.

To derive our main proposition on the superiority of larger pools, we make use of two
facts.

First, as proven by Lee and Ligon (2001),11 the lowest implementable effort, which
we denote by xmin

n , decreases in the pool size. The reason is that for any pool size, the
lowest implementable effort xmin

n is reached when maximizing risk sharing, that is, for
˛ = 0. And as the effective share is then just ˇn = ˛n + 1−˛n

n = 1
n and thus decreasing

in n, the impact of the redistribution on the effort choice decreases in the pool size.

Second, we show as part of the proof of Proposition 4 that any effort level that is
implementable for small pool sizes is also implementable for larger pools by adjust-
ing the effective share ˇn accordingly. This implies immediately that our main result
carries over to the case with continuous effort: for our discrete model, we have shown
that whenever the same effort level is implemented for pool size n1 and any pool size

11Lee and Ligon (2001) restrict their attention to ˛ = 0, but this is the case to be analyzed when
considering the lowest implementable effort.
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n2 > n1, expected utility is higher for pool size n2. And as the proof was independent
of whether the high effort is efficient or not, the fact that any effort level that is imple-
mentable for n1 is also implementable for any pool size n2 > n1, it carries over to the
continuous case.

Recall that in the discrete version, we have made use of the fact that ˇmin
n+1 and ˇmin

n only
just implement the high effort for pool sizes n + 1 and n, respectively. As the ICCs are
hence binding for those minimum effective shares, we could conclude that "u(ˇmin

n+1) =
"u(ˇmin

n ). As any ˇn > ˇmin
n a fortiori implements high effort in the discrete version,

any effort x ∈ (xmin
n , xmax

n ) in the continuous version is implemented by a unique ˇn.
Thus, for any effort x∗ ∈ (xmin

n , xmax
n ), there exists a unique ˇn that implements x∗

for pool size n, and a unique ˇn+1 that implements x∗ for pool size n + 1, as given
by the first-order condition for both pool sizes. When comparing the utilities with
different pool sizes, we can again make use of the fact that ˇn+1 and ˇn implement a
given effort x∗ for pool sizes n + 1 and n, respectively. From the ICCs, we know that
"u(ˇn+1) = − c′(x∗)

p′(x∗) and "u(ˇn) = − c′(x∗)
p′(x∗) . From the identity of the right-hand sides, it

then follows immediately that "u(ˇn+1) = "u(ˇn), and the utility comparison again
reduces to E[u0(ˇn+1)] > E[u0(ˇn)]. We hence get:

Proposition 4: Suppose the effective share is chosen to maximize the pool members’ utility,
taking incentive compatibility into account. Then, with continuous effort, increasing the pool
size increases the pool members’ expected utility, that is, ∂E[u(ˇ∗

n,x∗
n(ˇ∗

n),n]
∂n > 0.

Proof: See the Online Appendix (von Bieberstein et al., 2017).

The optimal effort level will generally be different for different pool sizes—intuitively,
avoiding risk becomes less important when a higher pool size allows for better
risk sharing.12 However, it is sufficient to show that a larger pool size would lead
to a higher expected utility even when the members of the pool suboptimally agreed on
an effective share ̂̌n that implements the effort that is optimal for the lower pool
size ñ, but not for the pool size n considered. But if the larger pool size leads to
higher expected utility even in this case, it a fortiori leads to higher utility when the
utility-maximizing effective share ˇn is chosen instead. Note that the utility maxi-
mizing effective share ˇ∗

n the grand coalition of all members agree upon is always
in the core; that is, there is no coalition that has an incentive to block the grand
coalition. The reason is that the best any coalition ñ < n can do is to agree on the
utility-maximizing ˇ∗

ñ
, and we know from Proposition 4 that this leads to a lower

utility.

12As this may lead to the result that low effort is optimal for large pools in the model with
discrete effort choice, our assumption limx↓0 p′(x) = −∞ ensures that positive effort is always
optimal in the continuous case.
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Conclusion
We extend the literature on risk pools, such as partnerships and mutual insurance
arrangements, to the optimal pool size in case of moral hazard. We assume that n
individuals with mixed risk-averse utility functions, for which the derivatives are
(weakly) alternating in sign, agree on the retention rate that maximizes their utility,
thereby taking the ICC for the effort choice into account. Our main result is that,
neglecting transaction costs, the optimal pool size converges to infinity. This holds both
for binary and for continuous effort. In reality, transaction costs may increase in pool
sizes, and these costs are neglected in our model. Thus, from a practical perspective,
our result shows that the optimal pool size equilibrates the benefits from better risk
sharing with transaction costs at the margin, whereas the residual claimant principle
has no impact on the optimal pool size if the retention rate is optimally adjusted.

Starting with binary effort choices, we first consider quadratic utility functions where
higher-order risk preferences such as prudence or temperance, do not matter. For
this special case, incentive compatibility for the choice of the high effort requires the
same effective share ˇmin

n of the own loss for all pool sizes, where the effective share is
defined as the sum of the retention rate and the share of the own loss borne as residual
claimant. The fact that ˇmin

n is constant in n implies that the risk from the losses of
the other pool members has no impact on effort incentives. Then, the pool size only
influences the degree of risk sharing, and each individual’s expected utility is strictly
increasing in the number of policyholders.

For individuals with mixed risk-averse utility functions, however, the incentive to
choose high effort is lower for larger pools, even when the effective share ˇn is the
same. The reason is that due to the diversification effect of larger pools extremely low
income levels become less likely even in the case with an own loss. For individuals
with mixed risk-averse utility functions, this reduces the utility-decreasing impact of
the own loss and thus decreases incentives to choose the high effort.

As a consequence, we find that the minimum effective share for incentive compatibility
increases in n. As this is an interesting insight in itself, our main result is that the benefit
from larger pools always dominates the negative impact of a higher effective share.
Thus, given that retention rates are optimally adjusted and contracts are enforceable,
the optimal pool size is infinite, even in the case with moral hazard and prudent
individuals.

For the continuous effort case, we can prove that an optimal retention rate strictly
between 0 and 1 always exists, that is, neither full- nor no-insurance is optimal. In the
Online Appendix (von Bieberstein et al., 2017), we provide a sufficient condition for
the optimal retention rate to be unique. However, we do not assume this to hold as
our proof that each participant’s utility increases in the pool size does not require the
optimal retention rate to be unique. To see this, recall first that we have shown that
for any retention rate, the effort chosen by the participants is unique. Now suppose
that there are multiple retention rates that lead to different effort levels, but still to the
same expected utility—more risk sharing with lower effort may be equally good as
less risk sharing with higher effort. As each optimal retention rate leads to the same
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utility, each of these retention rates also leads to a higher utility for larger compared to
smaller pools. Thus, it does not matter for the proof of the superiority of larger pools
on which of those retention rates the participants agree upon in the cooperative game
at stage 1.13 This follows from the proof that any effort vector that can be implemented
for n can also be implemented for ñ > n, and that this effort vector then leads to higher
utility even when it is suboptimal for ñ.

As we are interested in the impact of the pool size on utility when the retention
rate is optimally adjusted, we neglect other important issues such as heterogeneous
individuals, transaction costs, and externalities. If there are externalities of the pool
members’ activities on third parties that cannot be internalized, then it may well be
socially optimal to restrict the maximum pool size. The same result arises when the
externality depends on the pool members’ precaution effort: when the effort the pool
members coordinate upon via the retention rate decreases in the pool size, then it may
be socially optimal to restrict the pool size in order to increase the effort. Furthermore,
it needs to be mentioned that we restrict attention to a monopolistic risk pool. The
optimality of an infinite pool size in our model highlights the benefits of a monopoly
for risk pooling, but various frictions may allow for competition among pools. For
instance, some risk pools may prefer to attract only low-risk consumers and/or certain
profession members (partnerships and RRG). In addition, risk pools may have limited
sales force resources or other capacity constraints preventing them from covering the
entire market. Additionally, some consumer groups may be inert due to significant
switching costs, and may hence be reluctant to leave their actual pool. As it is thus
interesting to analyze competition between mutual insurers or different risk pools,
this is beyond the scope of this article and therefore left to future research.
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