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Abstract. In this work we approach the problem of determining which (compact) semialge-

braic subsets of Rn are images under polynomial maps f : Rm → Rn of the closed unit ball Bm
centered at the origin of some Euclidean space Rm and that of estimating (when possible) which
is the smallest m with this property. Contrary to what happens with the images of Rm under
polynomial maps, it is quite straightforward to provide basic examples of semialgebraic sets that
are polynomial images of the closed unit ball. For instance, simplices, cylinders, hypercubes,
elliptic, parabolic or hyperbolic segments (of dimension n) are polynomial images of the closed
unit ball in Rn.

The previous examples (and other basic ones proposed in the article) provide a large family
of ‘n-bricks’ and we find necessary and sufficient conditions to guarantee that a finite union of
‘n-bricks’ is again a polynomial image of the closed unit ball either of dimension n or n + 1. In
this direction, we prove: A finite union S of n-dimensional convex polyhedra is the image of the
n-dimensional closed unit ball Bn if and only if S is connected by analytic paths.

The previous result can be generalized using the ‘n-bricks’ mentioned before and we show: If
S1, . . . , S` ⊂ Rn are ‘n-bricks’, the union S :=

⋃`
i=1 Si is the image of the closed unit ball Bn+1

of Rn+1 under a polynomial map f : Rn+1 → Rn if and only if S is connected by analytic paths.

1. Introduction

A map f := (f1, . . . , fn) : Rm → Rn is polynomial if its components fk ∈ R[x1, . . . , xm] are
polynomials. Analogously, f is regular if its components can be represented as quotients fk := gk

hk
of two polynomials gk, hk ∈ R[x1, . . . , xm] such that hk never vanishes on Rm. A subset S ⊂ Rn is
semialgebraic when it has a description by a finite boolean combination of polynomial equalities
and inequalities. The category of semialgebraic sets is closed under basic boolean operations but
also under usual topological operations: taking closures (denoted by Cl(·)), interiors (denoted
by Int(·)), connected components, etc. If S ⊂ Rm and T ⊂ Rn are semialgebraic sets, a map
f : S → T is semialgebraic if its graph is a semialgebraic set. By Tarski-Seidenberg’s principle
[BCR, §1.4] the image of a semialgebraic map (and in particular of a polynomial or a regular
map) is a semialgebraic set.

In [KPS] the authors develop a computational study of images under polynomial maps f :
R3 → R2 (and the corresponding convex hulls) of compact (principal) semialgebraic subsets
{h ≥ 0} ⊂ R3, where h ∈ R[x1, x2, x3]. This includes for example the case of a 3-dimensional
closed unit ball B3 centered at the origin. In [KPS, §5.Prob.1] it is proposed the following
concrete problem:

Problem 1.1. Let P be an arbitrary (compact) convex polygon in R2. Construct explicit poly-
nomials f and g in R[u, v, w] such that P = (f, g)(B3).

Sturmfels suggested us during the 2018 Santaló Conference (presented by him) in Universidad
Complutense de Madrid to confront the previous problem taking into account our knowledge in
the subject of polynomial images of affine spaces. This suggestion was the starting point of the
present article, where we make an extended study of the n-dimensional semialgebraic subsets of
Rn that are images under a polynomial map f : Rm → Rn of the m-dimensional closed unit ball
Bm for some m ≥ n. We will be mainly concerned with the cases m = n and m = n+1, and the
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first main result is Theorem 1.3, which solves Problem 1.1 (as a particular case) in its natural
generalization to arbitrary dimension. Recall that a semialgebraic set S ⊂ Rn is connected by
analytic paths if for each pair of points p1, p2 ∈ S there exists an analytic path α : [0, 1] → S

such that α(0) = p1 and α(1) = p2. Contrary to what happens when dealing with continuous
paths, even if p1 and p2 are connected by an analytic path, and p2 and p3 are also so connected,
these may not imply that p1 and p3 are connected by an analytic path. We borrow the following
enlightening example from [Fe2, Ex.7.12].

Example 1.2. There exist (path) connected semialgebraic sets that are not connected by analytic
paths. Let S := {(4x2−y2)(4y2−x2) ≥ 0, y ≥ 0} ⊂ R2, which is a (path) connected semialgebraic
set, see Figure 1.1. We claim: The semialgebraic set S is not connected by analytic paths.

(1, 1)(−1, 1)

C1 C2

S

Figure 1.1. Semialgebraic set S := {(4x2 − y2)(4y2 − x2) ≥ 0, y ≥ 0} ⊂ R2

Proof. Pick the points p1 := (−1, 1), p2 := (1, 1) ∈ S and assume that there exists an analytic
path α : [0, 1] → S such that α(0) = p1 and α(1) = p2. Consider the closed semialgebraic sets
C1 := S ∩ {x ≤ 0} and C2 := S ∩ {x ≥ 0}, which satisfy S = C1 ∪ C2. Both C1 and C2 are
convex, so they are connected by analytic paths (in fact, they are connected by segments) and
C1 ∩ C2 = {(0, 0)}. Define C∗i := {λw : w ∈ Ci, λ ∈ R} for i = 1, 2. Note that S ∩ {x <
0} = C1 \ {(0, 0)} and S ∩ {x > 0} = C2 \ {(0, 0)} are pairwise disjoint open subsets of S. We
have 0 ∈ α−1(C1 \ {(0, 0)}) and 1 ∈ α−1(C2 \ {(0, 0)}), so t0 := inf(α−1(C2 \ {(0, 0)})) > 0.
As α is a (non-constant) analytic path, t0 ∈ Cl(α−1(C1 \ {(0, 0)})) ∩ Cl(α−1(C2 \ {(0, 0)})) and
α(t0) = (0, 0). As α−1(C1 \ {(0, 0)}) and α−1(C2 \ {(0, 0)}) are pairwise disjoint open subsets of
[0, 1], there exists ε > 0 such that

α((t0 − ε, t0)) ⊂ C1 \ {(0, 0)} and α((t0, t0 + ε)) ⊂ C2 \ {(0, 0)}.
The tangent direction to im(α|(t0−ε,t0+ε)) at α(t0) = (0, 0) is the line generated by the vector

w = lim
t→t0

α(t)− α(t0)

(t− t0)k
=

{
limt→t+0

α(t)−(0,0)
(t−t0)k

∈ C∗1 \ {(0, 0)},
limt→t−0

α(t)−(0,0)
(t−t0)k

∈ C∗2 \ {(0, 0)},

where k is the multiplicity of t0 as a root of ‖α‖. This is a contradiction (because C∗1 ∩ C∗2 =
{(0, 0)}), so S is not connected by analytic paths. �

Theorem 1.3. Let S ⊂ Rn be the union of a finite family of n-dimensional convex (compact)
polyhedra. The following assertions are equivalent:

(i) S is connected by analytic paths.
(ii) There exists a polynomial map f : Rn+1 → Rn such that f(Bn+1) = S.

Squeezing the arguments used to prove Theorem 1.3 (and increasing the complexity of the
involved constructions) we can go further and prove the following sharp result.

Theorem 1.4. Let S ⊂ Rn be the union of a finite family of n-dimensional convex (compact)
polyhedra. The following assertions are equivalent:

(i) S is connected by analytic paths.
(ii) There exists a polynomial map f : Rn → Rn such that f(Bn) = S.
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We included an independent proof of Theorem 1.3 because it is enlightening to show the
techniques we develop in this article and it is less demanding from the point of view of complexity
than the one of Theorem 1.4. In Figure 1.2 we present two examples of polygons to illustrate
Theorems 1.3 and 1.4: the first one is not connected by analytic paths, whereas the second one
is connected by analytic paths.

X8

Figure 1.2. Illustration of Theorems 1.3 and 1.4

It seems natural to make abstraction of the techniques developed in the proof of Theorem
1.3 and use them to provide further examples of polynomial images of a closed unit ball. We
will be concerned about the representativity as polynomial images of (m+1)-dimensional closed
balls of finite unions of polynomial images Sk ⊂ Rn of m-dimensional closed balls. As one can
expect, we need to ask some mild additional conditions concerning the semialgebraic sets Sk.
Let C0([0, 1]) denote the ring of continuous functions on the interval [0, 1].

Definition 1.5. We say that an n-dimensional semialgebraic set S ⊂ Rn is an m-brick if there
exists a homotopy H := (H1, . . . ,Hn) : [0, 1]×Bm → S such that:

(i) Each Hi is the restriction to [0, 1]×Bm of a polynomial of the ring C0([0, 1])[x1, . . . , xm].
(ii) H({0} ×Bm) = S and H(1, ·) is a constant map.
(iii) H({t} ×Bm) ⊂ Int(S) for each t ∈ (0, 1).

Roughly speaking, we have a family of (restrictions of) polynomial maps Hλ : Bm → S

that deforms S to a point p ∈ S and the intermediate sets are contained in Int(S). With this
definition in mind, we state the following result. Figures 1.3 and 1.4 illustrates some applications
of Theorem 1.6.

Figure 1.3. Examples of polynomial images of the 4-dimensional closed unit
ball (application of Theorem 1.6): little sheep (Schäfchen), Teddy bear, elephant.

Theorem 1.6 (Schäfchen’s theorem). Let S ⊂ Rn be the union of a finite family of m-bricks.
The following assertions are equivalent:
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(i) S is connected by analytic paths.
(ii) There exists a polynomial map f : Rm+1 → Rn such that f(Bm+1) = S.

Examples 1.7 (m-bricks). In Section 2 we present many examples of m-bricks for some m ≥ 1.
We will prove: if S ⊂ Rn is a convex n-dimensional semialgebraic set and it is the image of
the closed unit ball Bm, then it is an m-brick. Having this in mind, we find large families of
m-bricks:

(i) n-dimensional ellipsoids (E := { x
2
1

a21
+ · · ·+ x2n

a2n
≤ 1} where ai > 0) are n-bricks.

(ii) n-dimensional simplices (Lemma 2.5), n-dimensional hypercubes (Corollary 2.9) and
more generally n-dimensional products of closed unit balls (Corollary 2.11) are n-bricks.

(iii) The finite product of mi-bricks is an m-brick where m :=
∑

imi (Corollary 2.12).
(iv) If f : Rm → Rn is a polynomial map such that its image is not contained in a hyperplane,

the convex hull of f(Bm) is an (m(n + 1) + n)-brick (Corollary 2.15). In particular, if
m = 1, the convex hull of f([−1, 1]) is a (2n+ 1)-brick.

(v) If k1, . . . , kn ≥ 1, the image of Bn under f : Rn → Rn, (x1, . . . , xn) 7→ (xk11 , . . . , x
kn
n ) is

an n-brick (Corollary 2.18). We call this n-bricks spherical stars.
(vi) Truncated n-dimensional cones are n-bricks (Corollary 2.20).
(vii) n-dimensional parabolic segments are n-bricks (Lemma 2.21), whereas more general 2-

dimensional parabolic segments (Lemma 2.22) are 2-bricks.
(viii) n-dimensional elliptic sectors and segments are n-bricks (Theorem 2.23).

(ix) n-dimensional hyperbolic sectors and segments are n-bricks (Theorem 2.24).

Figure 1.4. Example of application of Theorem 1.6

By Theorem 1.6 it is possible to construct many polynomial images of the closed unit ball
combining the previous m-bricks (Figures 1.3 and 1.4).

1.1. State of the art. The problem of characterizing the polynomial images of closed unit balls
is related to the following one concerning polynomial images of affine spaces:

Problem 1.8. Characterize which (semialgebraic) subsets S ⊂ Rn are polynomial or regular
images of Rm.

The first proposal for studying this problem and related ones, like the famous ‘quadrant
problem’ [FG1], goes back to [G] (see also [E, §3.IV, p.69]). Other types of maps (like Nash,
continuous rational, etc.) have been already considered to represent semialgebraic sets as images
of affine spaces [Fe2, FFQU]. A complete solution to Problem 1.8 seems far, but we have
developed significant progresses:

General properties. We have found conditions [Fe1, FG2, FU1, U1] that a semialgebraic subset
must satisfy to be either a polynomial or regular image of Rm. The most remarkable one states
that the set of points at infinity of a polynomial image of Rm is connected [FU1]. The 1-
dimensional case was described in [Fe1]. In [FFQU] we proved the equality between the family
of regular images of R2 and the family of continuous rational images of R2.

Nash images. In [Fe2] it is provided a full characterization of the semialgebraic subsets S ⊂ Rm
that are Nash images of Rn: A d-dimensional semialgebraic set S ⊂ Rn is the image of Rd
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under a Nash map f : Rd → Rn if and only if S is connected by analytic paths. Parallel to
the elaboration of the current work, Carbone–Fernando have obtained a full characterization
of the Nash images of the closed unit ball [CF]: A compact d-dimensional semialgebraic set
S ⊂ Rn is the image of the closed unit ball Bd under a Nash map f : Rd → Rn if and only
if S is connected by analytic paths. As a straightforward consequence, we show there: a d-
dimensional compact semialgebraic set S ⊂ Rn connected by analytic paths is the image of any
d-dimensional semialgebraic set T ⊂ Rm under a suitable Nash map f : Rm → Rn, whereas a
general d-dimensional semialgebraic set S ⊂ Rn connected by analytic paths is the image of any
non-compact d-dimensional semialgebraic set T ⊂ Rm under a suitable Nash map f : Rm → Rn.

Representation of semialgebraic sets as polynomial or regular images of Rn. We have proposed
constructions to represent as either polynomial or regular images of Rn semialgebraic sets that
can be described by linear equalities and inequalities. In [Fe1, FG1, FGU1, FGU2, FGU3, FGU4,
FU2, FU3, FU4, FU5, U2] we have analyzed the cases of convex polyhedra and their interiors,
together with their respective complements and we have provided a full answer [FU5, Table 1].

Optimization of the ‘open quadrant problem’. It is difficult to determine which is the minimum
degree for a polynomial map that has a given semialgebraic set as image. We have tried to
find the least degree of the components of a polynomial map f : R2 → R2 whose image is
the open quadrant Q := {x > 0, y > 0}. We have shown that it is bounded above by 16 (see
[FG1, FGU2, FU4]) and we know that it can be lowered down until 8, which seems to be the
sharpest bound.

1.2. Alternative models. The image of a polynomial map f : Rm → Rn is either a point or an
unbounded semialgebraic set. Thus, it is not posible to compare the polynomial images of closed
unit balls with the polynomial images of affine spaces. However, we can compare polynomial
images of closed unit balls with regular images of affine spaces and we will see that the first
family is a subfamily of the second (Corollary A.2). Of course, such inclusion is the maximum
one can aspire because regular images of affine spaces contain polynomial images of affine spaces.

We have chosen the closed unit ball to represent semialgebraic sets as polynomial images
because of its good properties. The closed unit ball is a compact manifold with boundary and
its boundary is a homogeneous manifold. There exist other spaces like an n-sphere (which is a
compact manifold without boundary) to represent as polynomial images semialgebraic sets. We
claim: There exists no polynomial map from an m-dimensional closed unit ball onto the n-sphere
Sn := {x2

1 + · · ·+ x2
n+1 = 1}.

If f := (f1, . . . , fn+1) : Rm → Rn+1 is a polynomial map such that f(Bm) = Sn, then
f2

1 + · · · + f2
n+1 = 1 on the open ball Bm. Using the Taylor’s expansion of f2

1 + · · · + f2
n+1 at

the origin, we deduce that f2
1 + · · · + f2

n+1 = 1 on Rm, so deg(f1), . . . ,deg(fn+1) ≤ 0, that is,
f1, . . . , fn+1 are constant polynomials, which is a contradiction.

An n-sphere projects onto an n-dimensional closed unit ball. This means that family of
polynomial images of the n-dimensional closed unit ball is a subfamily of the family of polynomial
images of the n-sphere. However, if we consider regular images instead of polynomial images,
both families coincide (Corollary A.5).

1.3. Related problems and open questions. The effective representation of a semialgebraic
subset S ⊂ Rn as a polynomial or a regular image of a closed unit ball Bm may help the handling
of classical problems in Real Geometry by reducing them to its study in Bm.

Positivstellensätze. A widespread studied problem is the algebraic characterization of those poly-
nomial or regular functions g : Rn → R that are either strictly positive or positive semidefinite
on a semialgebraic set S ⊂ Rn. When S is a basic closed semialgebraic set, these problems were
solved in [S] (see also [BCR, Cor.4.4.3]). For convex (compact) polyhedra we refer the reader to
[Ha], where stronger Positivstellensätze are obtained, specially for strictly positive polynomials.
The obtained certificate of positiveness is the best possible one.

Let f : Rm → Rn be a polynomial map and denote S := f(Bm). Note that g is strictly positive
(respectively positive semidefinite) on S if and only if g ◦ f is strictly positive (respectively
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positive semidefinite) on Bm and both questions are decidable by [S]. This provides an algebraic
characterization of positiveness for polynomial and regular functions on semialgebraic sets that
are polynomial images of Bm. As a consequence of Theorem 1.3, we deduce a Positivstellensatz
certificate for finite unions (connected by analytic paths) of n-dimensional convex (compact)
polyhedra. By Theorem 1.6 the same happens with finite unions (connected by analytic paths)
of n-dimensional convex semialgebraic sets S that are polynomial images of the closed unit ball.

Optimization. Suppose that f : Rm → Rn is either a polynomial or a regular map and let S :=
f(Bm). Then the optimization of a given regular or polynomial function g : S→ R is equivalent
to the optimization of the composition g◦f on Bm. In this way one can strongly simplify contour
conditions, but one has to evaluate whether the increase of the complexity (concentrated mainly
in one variable, see the proofs of Theorems 1.3, 1.4 and 1.6) of the composition g◦f is preferable
to the existence of contour conditions.

Alternatively, let T ⊂ Rn be a compact semialgebraic set and let h : T → R be a continuous
semialgebraic function. Compact semialgebraic sets are triangulable and by [BCR, Thm.9.4.1]
also continuous semialgebraic functions on compact semialgebraic sets can be ‘triangulated’.
Thus, a continuous semialgebraic function on a compact semialgebraic set could be assumed
(up to a suitable triangulation) as a continuous function on a finite simplicial complex that is
affine on each simplex of the complex. Optimization problems for this type of functions are
‘straightforwardly’ approached.

The usual algorithms to triangulate a compact semialgebraic set S ⊂ Rn (and continuous
semialgebraic maps) [BCR, Ch.9] are based on the use of cylindrical decompositions, which
have doubly exponential complexity in the number n of variables involved in describing S. More
precisely, its complexity is in general (`d)O(1)n where O(1) represents a constant, ` is a bound
on the number of polynomials need to describe S and d is a bound on the degrees of a family of
polynomials describing S, see [BPR, Ch.11]. If S has piecewise linear boundary, the complexity of

cylindrical decomposition is `O(1)n , which is still doubly exponential in the number n of variables
involved in describing S.

It would be interesting to compare both complexities and decide which procedure is more
effective.

Questions regarding complexity. The algorithms developed in Theorems 1.3, 1.4 and 1.6 are
constructive. Natural questions arise when considering the issue of complexity and we refer the
reader to [Fe3, Rem.4.8] for some estimations concerning the piecewise linear case:

Question 1.4. Fix m to be either n or n+ 1. Which is the minimum degree of a polynomial map
f : Rm → Rn such that f(Bm) is a prescribed finite union S (connected by analytic paths) of
n-dimensional convex polyhedra?

Question 1.5. Fix m ≥ 1 and let Si be an m-brick for i = 1, . . . , r such that S =
⋃r
i=1 Si is

connected by analytic paths. Which is the minimum degree of a polynomial map f : Rm+1 → Rn
such that f(Bm+1) = S?

Structure of the article. The article is organized as follows. Main basic examples of poly-
nomial maps of the closed unit ball are collected in Section 2. Some of these examples will
be useful for our subsequent constructions. In Section 3 we present a ‘Smart curve selection
lemma’, which is the key for the main results of this work (see also [Fe3]). In Section 4 we prove
Theorems 1.3 and 1.4, whereas in Section 5 we prove Theorem 1.6. The article ends with three
appendices. In the first one we approach the questions concerning alternative models for regular
images proposed in §1.2. In the second one we provide proofs to some of the results in Section
2. We have postponed them in order to make the exposition smoother. In the third appendix
we present an explicit example concerning Theorem 1.3.

Acknowledgements. The authors are deeply indebted with Prof. Safey el Din for very helpful
and enlightening comments and inspiring talks during the preparation of this work. The authors
would also like to point out that some of the figures included in this article have been made
using Geogebra.
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2. Relevant families of bricks

In this section we approach the key examples of m-bricks already presented in Examples 1.7
and some additional ones. Before that we prove the following preliminary result, which shows
that convex polynomial images of an m-dimensional closed unit ball are m-bricks. A set S ⊂ Rn
is strictly radially convex (with respect to a point p ∈ Int(S)) if for each ray ` with origin at p,
the intersection ` ∩ S is a segment whose relative interior is contained in Int(S). Convex sets
are particular examples of strictly radially convex sets (with respect to any of its interior points
[Be, Lem.11.2.4]).

Lemma 2.1. Let S ⊂ Rn be a strictly radially convex set with respect to a point p ∈ Int(S) that
is in addition a polynomial image of the closed unit ball Bm. Then S is an m-brick.

Proof. Let F : Rm → Rn be a polynomial map such that F (Bm) = S. The continuous semial-
gebraic map H : [0, 1]×Bm → S, (t, x) 7→ tp+ (1− t)F (x) satisfies the conditions in Definition
1.5, so S is an m-brick, as required. �

As an immediate application, one shows that n-ellipsoids are n-bricks. In general a convex
semialgebraic set S ⊂ Rn is an m-brick if and only if it is the image of Bm under a polynomial
map f : Rm → Rn.

If S ⊂ Rn, denote by ∂S := Cl(S) \ Int(S) the boundary of S. The reader can produce other
examples of m-bricks as an application of the following result.

Lemma 2.2. Let F : Rm → Rn be a polynomial map and let S := F (Bm). Suppose F−1(∂S) ∩
Bm ⊂ ∂Bm. Then S is an m-brick.

Proof. The continuous semialgebraic map H : [0, 1]×Bm → S, (t, x) 7→ F ((1− t)x) satisfies the
conditions in Definition 1.5, so S is an m-brick, as required. �

The following result lighten the conditions to be an m-brick and show that what we need is
to be able to deform polynomially S (as a polynomial image of Bm) to put it inside Int(S), see
also Lemma 5.1.

Lemma 2.3 (Characterization of m-bricks). Let S ⊂ Rn be a semialgebraic set. The following
assertions are equivalent:

(i) S is an m-brick.
(ii) There exists a map H := (H1, . . . ,Hn) : [0, 1]×Bm → Rn and ε > 0 such that:

• Hi ∈ C0([0, 1])[x1, . . . , xm] for i = 1, . . . , n.
• H({0} ×Bm) = S and H({t} ×Bm) ⊂ Int(S) for each t ∈ (0, ε).

Proof. The implication (i) =⇒ (ii) is clear. Let us prove the converse implication. We modify
H to have a homotopy H := (H1, . . . ,Hn) : [0, 1] × Bm → Rn that satisfies the conditions in
Definition 1.5. Consider the homotopy

H ′ : [0, 1]×Bm → S, (t, x) 7→

{
H(t, x) if t ∈ [0, ε2 ],

H( ε2 , (
2

2−ε)(1− t)x) if t ∈ [ ε2 , 1].

The reader can check that H ′ satisfies all the conditions in Definition 1.5. �

Using the fact that m-bricks are compact, one deduces the following.

Corollary 2.4. Let S ⊂ Rn be an m-brick and let F : Rn → Rn be a polynomial map such that
F |S is injective. Then F (S) is an m-brick.

2.1. Simplices. We begin with the case of an n-simplex, that is, a simplex of dimension n.

Lemma 2.5 (n-simplex). Let ∆n := {0 ≤ y1, . . . , 0 ≤ yn, y1 + · · ·+ yn ≤ 1} be the n-simplex of

vertices the origin and the points ei := (0, . . . , 0,
(i)

1 , 0, . . . , 0). Then ∆n is an n-brick.



8 JOSÉ F. FERNANDO AND CARLOS UENO

Proof. The images of the closed unit ball Bn under f : Rn → Rn, (x1, . . . , xn) 7→ (x2
1, . . . , x

2
n) is

∆n, as required. �

We prove next that each n-dimensional convex (compact) polyhedron K ⊂ Rn is an m-brick
where m+ 1 is the number of vertices on K. In Theorem 1.4 we will prove that K is an n-brick.

Corollary 2.6. Let K ⊂ Rn be the n-dimensional convex (compact) polyhedron of vertices
v0, . . . , vm. Then K is an m-brick.

Proof. As v0, . . . , vm are the vertices of an n-dimensional convex (compact) polyhedron, n ≤ m
and we may assume v0, . . . , vn are affinely independent. Let

π : Rm → Rn, (x1, . . . , xm)→ (x1, . . . , xn)

be the projection onto the first n coordinates. Denote ej := (0, . . . , 0,
(j)

1 , 0, . . . , 0) ∈ Rm−n for
j = 1, . . . ,m− n. Write

ui :=

{
(vi, 0) if i = 0, . . . , n,

(vi, ei−n) if i = n+ 1, . . . ,m.

The points u0, . . . , um ∈ Rm are affinely independent and π(ui) = vi for i = 0, . . . ,m. If
∆ := {

∑m
k=0 λiui : λi ≥ 0,

∑m
k=0 λi = 1} is the m-simplex of vertices u0, . . . , um, then π(T) = K.

By Lemma 2.5 we conclude K is an m-brick, as required. �

2.2. Products of closed balls. All the semialgebraic sets S ⊂ Rn treated in this subsection
are convex and n-dimensional, so to prove that they are m-bricks, it is enough to prove that
they are polynomial images of Bm. We prove first that n-dimensional cylinders and simplicial
prisms are n-bricks (Figure 2.1). This latter case is particularly interesting for the proofs of
Theorems 1.3, 1.4 and 1.6.

Closed ball Cylinder

Hypercube

PrismLemma 2.7 C
or

ol
la

ry
2.

8

C
orollary

2.9

Figure 2.1. Examples of n-bricks and some relations between them

Lemma 2.7 (Cylinder). Let Cn := Bn−1 × [−1, 1] ⊂ Rn. Then Cn is an n-brick.

Proof. Consider the polynomial functions g(t) := t(3− 4t2) and h(t) :=
√

3(1− 4
9t

2). Observe

that g(±1) = ∓1, g(±1
2) = ±1, g|[−1,1] has a global maximum at t = 1

2 , a global minimum

at t = −1
2 and it is strictly increasing on [−1

2 ,
1
2 ] (Figure 2.2). In addition, h1 := th satisfies

h1(0) = 0, h1(
√

3
2 ) = 1 and h1|[0,1] has a global maximum at t =

√
3

2 (Figure 2.2). The polynomial

function g∗ := g(
√

1− t2)2 = (1− t2)(4t2 − 1)2 satisfies g∗([0, 1]) = [0, 1] (Figure 2.2).
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Denote x := (x1, . . . , xn) and x′ := (x1, . . . , xn−1). Define the polynomial maps

G : Rn → Rn, x := (x′, xn) 7→ (x′, g(xn)),

H : Rn → Rn, x := (x′, xn) 7→ (x′h(‖x′‖), xn).

We claim:

Sn := G(Bn) = {‖x′‖2 ≤ 3
4 , |xn| ≤ 1} ∪ {3

4 ≤ ‖x
′‖2 ≤ 1, x2

n ≤ g∗(‖x′‖)} ⊂ Cn.

Write Bn =
⋃
x′∈Bn−1

Ix′ where Ix′ := {x′} × {x2
n ≤ 1− ‖x′‖2} and observe that

G(Bn) =
⋃

x′∈Bn−1

G(Ix′) =
⋃

x′∈Bn−1

{x′} × g({x2
n ≤ 1− ‖x′‖2}).

We distinguish two cases:

Case 1. If ‖x′‖2 ≤ 3
4 , then {x′} × [−1

2 ,
1
2 ] ⊂ Ix′ ⊂ {x′} × [−1, 1], so g(Ix′) = {x′} × [−1, 1].

Case 2. If 3
4 ≤ ‖x

′‖2 ≤ 1, then Ix′ ⊂ {x′} × [−1
2 ,

1
2 ]. As g is odd and strictly increasing on

[−1
2 ,

1
2 ], we have

G(Ix′) = {x′} × {x2
n ≤ g(

√
1− ‖x′‖2)2 = g∗(‖x′‖)}

and the claim follows.

−1 −0.5 0.5 1

−1

−0.5

0.5

1

0.2 0.4 0.6 0.8 1 1.2 1.4

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

Figure 2.2. Graphs of g, h1 and g∗

Let us check: H(Cn) ⊂ Cn and H({‖x′‖2 ≤ 3
4 , |xn| ≤ 1}) = Cn.

If (x′, xn) ∈ Cn, then ‖x′‖ ≤ 1, so we deduce ‖x′h(‖x′‖)‖ = |h1(‖x′‖)| ≤ 1 and H(x′, xn) =
(x′h(‖x′‖), xn) ∈ Cn. If x′ ∈ ∂Bn−1, then

H({λx′ : λ ∈ [0,
√

3
2 ]} × [−1, 1])

= {h1(λ)x′ : λ ∈ [0,
√

3
2 ]} × [−1, 1] = {µx′ : µ ∈ [0, 1]} × [−1, 1],
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so H({‖x′‖2 ≤ 3
4 , |xn| ≤ 1}) = Cn.

Consequently, H(G(Bn)) = Cn and f := H ◦ G : Rn → Rn is a polynomial map such that
f(Bn) = Cn (Figure 2.3), as required. �

G H
Bn Sn Bn−1 × [−1, 1]

Figure 2.3. The cylinder Bn−1 × [−1, 1] as a polynomial image of Bn

Corollary 2.8 (Simplicial prism). Let ∆n ⊂ Rn be an n-simplex of vertices v0, . . . , vn. Then
the product ∆n × [−1, 1] is an (n+ 1)-brick.

Proof. After an affine change of coordinates we assume ∆n is the n-simplex of vertices v0 = 0

and vi = ei for i = 1, . . . , n. By Lemma 2.7 there exists a polynomial map f0 : Rn+1 → Rn+1

such that f0(Bn+1) = Bn × [−1, 1]. By Lemma 2.5 there exists a polynomial map f1 : Rn → Rn
such that f1(Bn) = ∆n. Thus, the polynomial map f := (f1, xn+1) ◦ f0 : Rn+1 → Rn+1 satisfies
f(Bn+1) = (f1, xn+1)(f0(Bn+1)) = (f1, xn+1)(Bn × [−1, 1]) = ∆n × [−1, 1], as required. �

Let us check next that n-dimensional hypercubes and more generally n-dimensional products
of balls are n-bricks.

Corollary 2.9 (Hypercube). The n-dimensional hypercube Qn := [−1, 1]n ⊂ Rn is an n-brick.

Proof. Write Cn := Bn−1 × [−1, 1]. By Lemma 2.7 there exists a polynomial map f0 : Rn → Rn
such that f0(Bn) = Bn−1 × [−1, 1]. In addition, B1 = [−1, 1] = Q1, so the first step of the
induction process holds. By induction hypothesis there exists a polynomial map f1 : Rn−1 →
Rn−1 such that f1(Bn−1) = Qn−1. Consider the polynomial map f := (f1, xn) ◦ f0 : Rn → Rn,
which satisfies

f(Bn) = (f1, xn)◦f0(Bn) = (f1, xn)(Bn−1× [−1, 1]) = f1(Bn−1)× [−1, 1] = Qn−1× [−1, 1] = Qn,

as required. �

For each p ∈ Rn and each ρ > 0 denote by Bn(p, ρ) the closed ball of center p and radius ρ
and Bn(p, ρ) the open ball of center p and radius ρ.

Lemma 2.10. There exists a polynomial map f : Rn → Rn such that f([−1, 1]n) = Bn and
f(Bn(0, 1 + ε)) = Bn for each ε > 0 small enough.

Proof. If n = 1, consider the polynomial function f : R → R, t 7→ 1
2 t(3 − t

2). Assume n ≥ 2

and consider the univariate polynomial h := t2 (t−n)2(n−1)

(n−1)2(n−1) . Observe that h(0) = 0, h(n) = 0,

h(1) = 1 and

h′ =
1

(n− 1)2(n−1)
(2t(t− n)2(n−1) + 2(n− 1)t2(t− n)2(n−1)−1) =

2nt(t− n)2(n−1)−1

(n− 1)2(n−1)
(t− 1).

Thus, h′ is positive on (0, 1) and it is negative on (1, n). Consequently, 1 is an absolute maximum
of h on the interval [0, n], so h(t) ≤ 1 on [0, n].

Recall that Bn ⊂ [−1, 1]n ⊂ Bn(0,
√
n) and consider the polynomial map

f : Rn → Rn, x 7→ h(‖x‖2)x.
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Observe that f(Bn) = Bn and f(Bn(0,
√
n)) = Bn. Thus, f([−1, 1]n) = Bn and f(Bn(0, 1+ε)) =

Bn for each 0 < ε <
√
n− 1, as required. �

Corollary 2.11 (Products of closed balls). Let n1, . . . , n` be positive integers and denote n :=∑`
i=1 ni. Then the product S :=

∏`
i=1 Bni ⊂ Rn has dimension n and it is an n-brick.

Proof. By Lemma 2.10 there exist polynomial maps fi : Rni → Rni such that fi([−1, 1]ni) = Bni .

Consequently, the image of [−1, 1]n =
∏`
i=1[−1, 1]ni under the polynomial map

f :
∏̀
i=1

Rni →
∏̀
i=1

Rni , (x1, . . . , x`) 7→ (f1(x1), . . . , f`(x`))

is S. By Corollary 2.9 there exists a polynomial map h : Rn → Rn such that h(Bn) = [−1, 1]n.
The image of Bn under the composition F := f ◦ h is S, as required. �

2.3. Products of bricks. As a straightforward consequence of the previous result, we show
that finite products of mi-bricks is an m-brick where m :=

∑
imi.

Corollary 2.12 (Products of bricks). Let m1, . . . ,m` be positive integers and m :=
∑`

i=1mi.

Let Si ⊂ Rni be an ni-dimensional mi-brick for i = 1, . . . , ` and denote n :=
∑`

i=1 ni. Then the

product S :=
∏`
i=1 Si ⊂ Rn has dimension n and it is an m-brick.

Proof. For each i = 1, . . . , ` let Hi := (Hi1, . . . ,Hini) : [0, 1] × Bmi → Si be a homotopy such
that

(i) Hij ∈ C0([0, 1])[xi1, . . . , ximi ] for each i, j.

(ii) Hi({0} ×Bmi) = Si and Hi(1, ·) is a constant map.

(iii) Hi({t} ×Bmi) ⊂ Int(Si) for each t ∈ (0, 1).

As Int(S) =
∏`
i=1 Int(Si), one can check that the continuous semialgebraic map

H := (H1, . . . ,H`) := (Hij , 1 ≤ i ≤ `, 1 ≤ j ≤ ni) : [0, 1]×
∏̀
i=1

Bmi → S,

(t, x1, . . . , x`) 7→ (H1(t, x1), . . . ,H`(t, x`))

satisfies:

(i) Hij ∈ C0([0, 1])[xi1, . . . , ximi ] for each i, j.

(ii) H({0} ×
∏`
i=1 Bmi) =

∏`
i=1 Si and H(1, ·) is a constant map.

(iii) H({t} ×
∏`
i=1 Bmi) ⊂

∏`
i=1 Int(Si) = Int(S) for each t ∈ (0, 1).

To finish one applies Corollary 2.11. �

2.4. Convex hulls of semialgebraic sets. Let X ⊂ Rn and denote by conv(X) the convex
hull of X, that is, the smallest convex set that contains X. We have

conv(X) :=
{ r∑
k=0

λkxk : r ≥ 1, x0, . . . , xr ∈ X, λ0, . . . , λr ≥ 0,

r∑
k=0

λk = 1
}
.

Caratheodory’s theorem provides a finitary description of the convex hull of a subset of Rn.

Theorem 2.13 (Caratheodory, [Be, Theorem 11.1.8.6]). Let X ⊂ Rn be a subset. A point
x ∈ conv(X) if and only if there exist n+1 points x0, . . . , xn ∈ X and non-negative real numbers
λ0, . . . , λn such that

∑n
k=0 λk = 1 and

∑n
k=0 λkxk = x. Consequently,

conv(X) =
{ n∑
k=0

λkxk : x0, . . . , xn ∈ X, λ0, . . . , λn ≥ 0,
n∑
k=0

λk = 1
}
.
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Consider the n-simplex

∆n :=
{

(λ1, . . . , λn) ∈ Rn : λ1 ≥ 0, . . . , λn ≥ 0,
n∑
k=1

λk ≤ 1
}
.

Corollary 2.14. Let S ⊂ Rn be a semialgebraic set. Then conv(S) is the image of S×n+1· · · ×S×∆n

under the polynomial map

ϕ : Rn × n+1· · · × Rn × Rn → Rn, (x0, x1, . . . , xn, λ := (λ1, . . . , λn)) 7→
n∑
k=0

λkxk

where λ0 := 1−
∑n

k=1 λk.

Consequently, the convex hull of a polynomial image of the m-dimensional closed unit ball is
an (m(n+ 1) + n)-brick.

Corollary 2.15. Let S ⊂ Rn be a polynomial image of the m-dimensional closed unit ball. Then
conv(S) is an (m(n+ 1) + n)-brick.

Proof. Let f : Rm → Rn be a polynomial map such that f(Bm) = S. Then conv(S) is the image

of B
n+1
m ×∆n under the polynomial map

F : Rm(n+1)+n → Rn, (y0, y1 . . . , yn, λ := (λ1, . . . , λn)) 7→
(

1−
n∑
k=1

λk

)
f(y0) +

n∑
k=1

λkf(yk).

As B
n+1
m ×∆n is by Corollary 2.12 an (m(n+1)+n)-brick, we deduce S is an (m(n+1)+n)-brick,

as required. �

Examples 2.16 (Toeplitz’s spectrahedra and Caratheodory’s orbitopes). There are some spec-
trahedra that are convex hulls of semialgebraic sets that are either polynomial or regular images
of some closed unit ball.

(i) The Toeplitz spectrahedron

S :=
{

(x, y, z) ∈ R3 :


1 x y z
x 1 x y
y x 1 x
z y x 1

 is positive semidefinite
}

is the convex hull of the cosine moment curve

C := {(cos(θ), cos(2θ), cos(3θ)) : θ ∈ [0, π]} = {(t, 2t2 − 1, 4t3 − 3t) : t ∈ [−1, 1]}.
As C is a polynomial image of [−1, 1], we deduce by Corollary 2.15 that S is the image of B7

under a polynomial map f : R7 → R3.

(ii) The Caratheodory orbitopes C are the convex hulls in R2d of trigonometric moment curves

α : [0, 2π]→ R2d, θ 7→ (cos(n1θ), sin(n1θ), . . . , cos(ndθ), sin(ndθ))

where n1, . . . , nd are non-negative integers [SSS]. Recall that cos(nkθ) is a polynomial Fk in
cos(θ) of degree nk, whereas sin(nkθ) equals sin(θ) times a polynomial Gk in cos(θ) of degree
nk − 1. Thus, there exists a polynomial map

H := (F1, G1, . . . , Fd, Gd) : S1 → R2d, (u, v) 7→ (F1(u), G1(u)v, . . . , Fd(u), Gd(u)v)

such that H(S1) = α([0, 2π]). Let β : [−1, 1] → S1 be a surjective regular map (Lemma
A.4). Then P := H ◦ β : [−1, 1] → R2d is a regular map such that P ([−1, 1]) = α([0, 2π]).
By Corollaries 2.12 and 2.14 the convex hull C is the image of B4d+1 under a regular map
f : R4d+1 → R2d.
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2.5. Spherical stars. Let k1, . . . , kn ≥ 1 be positive integers, let F := {i = 1, . . . , n : ki is even}
and denote S0 :=

⋂
i∈F{xi ≥ 0}. We assume the convection x

2/2`
i := |xi|1/` for each ` ≥ 1. The

image St(k1, . . . , kn) := {x2/k1
1 + · · ·+ x

2/kn
n ≤ 1} ∩ S0 of Bn under f : Rn → Rn, (x1, . . . , xn) 7→

(xk11 , . . . , x
kn
n ) is called the spherical star of weights k1 . . . , kn.

Lemma 2.17. Let (k1, . . . , kn) ∈ {1, 2}n. Then the spherical star St(k1, . . . , kn) is convex.

Proof. Let F := {i = 1, . . . , n : ki = 2} and denote S0 :=
⋂
i∈F{xi ≥ 0}, which is a convex set.

As ki ∈ {1, 2}, also 2/ki ∈ {1, 2}. Pick two points x := (x1, . . . , xn) and y := (y1, . . . , yn) in

{x2/k1
1 + · · ·+ x

2/kn
n ≤ 1}. We claim: λx+ (1− λ)y ∈ St(k1, . . . , kn) for each λ ∈ [0, 1].

Fix i ∈ {1, . . . , n}. If ki = 2, then

(λxi + (1 − λ)yi)
2/ki = |λxi + (1 − λ)yi| ≤ λ|xi| + (1 − λ)|yi| = λx

2/ki
i + (1 − λ)y

2/ki
i .

If ki = 1, then

(λxi + (1− λ)yi)
2/ki = (λxi + (1− λ)yi)

2 = λ2x2
i + (1− λ)2y2

i + 2λ(1− λ)xiyi

≤ λ2x2
i + (1− λ)2y2

i + λ(1− λ)(x2
i + y2

i ) = λx2
i + (1− λ)y2

i = λx
2/ki
i + (1− λ)y

2/ki
i .

Consequently,
n∑
i=1

(λxi + (1− λ)yi)
2/ki ≤ λ

n∑
i=1

x
2/ki
i + (1− λ)

n∑
i=1

y
2/ki
i ≤ 1.

Thus, St(k1, . . . , kn) is convex as it is an intersection of two convex sets. �

Corollary 2.18. Let k1, . . . , kn be positive integers. Then the spherical star St(k1, . . . , kn) is an
n-brick.

Proof. Let F := {i = 1, . . . , n : ki is even} and let S0 :=
⋂
i∈F{xi ≥ 0}. Define

k′i :=

{
1 if ki is odd,

2 if ki is even.

We have F = {i = 1, . . . , n : k′i = 2}. By Lemma 2.17 the spherical star St(k′1, . . . , k
′
n) is convex.

Consider the polynomial map

f : Rn → Rn, (x1, . . . , xn) 7→ (x
k1/k′1
1 , . . . , xkn/k

′
n

n ).

Then f |St(k′1,...,k
′
n) is injective and f(St(k′1, . . . , k

′
n)) = St(k1, . . . , kn). By Lemma 2.4 we conclude

St(k1, . . . , kn) is an n-brick. �

2.6. Images of revolution. Let m, ` ≥ 1 and write x′ := (x1, . . . , xm−1). Denote by S` ⊂ R`+1

the sphere of center the origin and radius 1. Taking advantage of the equality

Bm+` = ϕ(Bm × S`) where ϕ : Bm × S` → Bm+`, (x′, xm;u) 7→ (x′, xmu) (2.1)

we prove that the revolution of certain polynomial images of Bm are polynomial images of Bm+`.

Lemma 2.19 (Images of revolution). Let F1, . . . , Fk ∈ R[x′, x2
m] be nonzero polynomials and let

S ⊂ Rk be the image of Bm under the polynomial map F := (F1, . . . , Fk−1, xmFk) : Rm → Rk.
Denote x′′ := (xm, . . . , xm+`) and let ψ : S × S` → Rk+`, (x′, xm;u) 7→ (x′, xmu). Then T :=
ψ(S× S`) is the image of Bm+` under the polynomial map

G := (F1(x′, ‖x′′‖), . . . , Fk−1(x′, ‖x′′‖), x′′Fk(x′, ‖x′′‖)) : Rm+` → Rk+`.

Proof. As F1, . . . , Fk ∈ R[x′, x2
m], we have F1(x′, ‖x′′‖), . . . , Fk(x′, ‖x′′‖) ∈ R[x′, x′′], so G is a

polynomial map. In addition, if (y∗, yk) ∈ S where y∗ := (y1, . . . , yk−1), then (y∗,−yk) ∈ S.
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Let x := (x′, xmu) ∈ Bm+` where (x′, xm) ∈ Bm and u ∈ S` (see (2.1)). As F1, . . . , Fk ∈
R[x′, x2

m],

G(x′, xmu) = (F1(x′, ‖xmu‖), . . . , Fk−1(x′, ‖xmu‖), xmuFk(x′, ‖xmu‖))
= (F1(x′, xm), . . . , Fk−1(x′, xm), xmFk(x

′, xm)u) ∈ T,

so G(Bm+`) ⊂ T. Pick (y∗, y∗∗) ∈ T where y∗ := (y1, . . . , yk−1) and y∗∗ := (yk, . . . , yk+`). If
y∗∗ = 0, then (y∗, 0) ∈ S and there exists (x′, xm) ∈ Bm such that F (x′, xm) = (y∗, 0). The
point (x′, xm, 0, . . . , 0) ∈ Bm+` and

G(x′, xm, 0, . . . , 0) = (F1(x′, xm), . . . , Fk−1(x′, xm), xmFk(x
′, xm), 0, . . . , 0) = (y∗, 0, . . . , 0),

so (y∗, y∗∗) ∈ G(Bm+`). Assume next y∗∗ 6= 0. Then (y∗, ‖y∗∗‖) ∈ S and u := y∗∗

‖y∗∗‖ ∈ S`. Let

(x′, xm) ∈ Bm be such that F (x′, xm) = (y∗, ‖y∗∗‖). Then, (x′, xmu) ∈ Bm+` (see (2.1)) and

G(x′, xmu) = (F1(x′, ‖xmu‖), . . . , Fk−1(x′, ‖xmu‖), xmuFk(x′, ‖xmu‖))
= (F1(x′, xm), . . . , Fk−1(x′, xm), xmFk(x

′, xm)u) = (y∗, y∗∗) = y.

Thus, T ⊂ G(Bm+`), as required. �

2.7. Bricks with quadratic boundaries. We present next families of semialgebraic sets of
Rn that are m-bricks for some m ≥ 1 and whose boundaries are contained in finite unions of
hypersurfaces of degrees ≤ 2. To make the exposition smoother we present the main statements
here and postpone most of the proofs until Appendix B. A first easy example is the following:

Corollary 2.20 (Truncated cone). The truncated cone S := {x2
1 + · · ·+ x2

n−1 ≤ x2
n, a ≤ xn ≤ b}

for a < b is an n-brick.

Proof. It is enough to observe that the convex semialgebraic set S is the image of the cylinder
Bn−1×[a, b] under the polynomial map f : Rn → Rn, (x1, . . . , xn) 7→ (x1xn, . . . , xn−1xn, xn). �

2.7.1. Parabolic segments. Consider the following two types of parabolic segments:

(i) Pn := {0 ≤ xn ≤ 2(1− ‖x′‖2)}.
(ii) S

p
a := {x− y2 ≥ 0,

√
ay ≥ x} ⊂ R2 for each a > 0 (Figure 2.4).

a

√
a

S
p
a

x

y

Figure 2.4. Parabolic segment S
p
a

Lemma 2.21 (Parabolic segments 1). The parabolic segment Pn is an n-brick.

Proof. The parabolic segment Pn, which is a convex set, is the image of the cylinder Bn−1×[−1, 1]
under the polynomial map f : Rn−1 × R, (x′, xn) 7→ (x′, (1− ‖x′‖2)(xn + 1)). �

Lemma 2.22 (Parabolic segments 2). The parabolic segment S
p
a is a 2-brick.
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2.7.2. Elliptic sectors and segments. For each α with 0 < α ≤ π consider the following semial-
gebraic subsets of R2 (Figures 2.5) that we describe using polar coordinates, that is, (x, y) =
(ρ cos(θ), ρ sin(θ)) ≡ (ρ, θ) where (ρ, θ) ∈ [0,+∞)× (−π, π]:

• The triangle Teα := {−α ≤ θ ≤ α, 0 ≤ ρ cos(θ) ≤ 1}.
• The elliptic sector De

α := {0 ≤ ρ ≤ 1,−α ≤ θ ≤ α}.
• The elliptic segment Seα := {−α ≤ θ ≤ α, cos(α) ≤ ρ cos(θ) ≤ cos(θ)}.

Teα
α

x

y

De
α

α

x

y

Seαα

x

y

Figure 2.5. Triangle Teα, elliptic sector De
a and elliptic segment Sea

The previous semialgebraic sets are generalized to the n-dimensional case by means of Lemma
2.19 (for m = k = 2 and ` = n− 2). Define

• The n-dimensional cone Teα,n := {(a, bu) : (a, b) ∈ Teα, u ∈ Sn−2}.
• The n-dimensional elliptic sector De

α,n := {(a, bu) : (a, b) ∈ De
α, u ∈ Sn−2}.

• The n-dimensional elliptic segment Seα,n := {(a, bu) : (a, b) ∈ Seα, u ∈ Sn−2}.

Theorem 2.23. Each elliptic sector De
α,n and each elliptic segment Seα,n (where 0 < α ≤ π) are

n-bricks.

2.7.3. Hyperbolic sectors and segments. Consider the hyperbola H := {x2 − y2 = 1} and recall
the relation cos(2θ) = cos2(θ)− sin2(θ) and its consequences:( cos(θ)√

cos(2θ)

)2
−
( sin(θ)√

cos(2θ)

)2
= 1,

x2 − y2 = (ρ cos(θ))2 − (ρ sin(θ))2 = ρ2 cos(2θ).

Define for each 0 < α < π
4 the following semialgebraic sets (Figures 2.6), which we describe

again using polar coordinates.

• The triangle Thα :=

{
−α ≤ θ ≤ α, ρ cos(θ) ≤ cos(α)√

cos(2α)

}
.

• The hyperbolic sector Dh
α := {−α ≤ θ ≤ α, ρ2 cos(2θ) ≤ 1}.

• The hyperbolic segment Shα :=

{
−α ≤ θ ≤ α, cos(θ)√

cos(2θ)
≤ ρ cos(θ) ≤ cos(α)√

cos(2α)

}
.

The previous semialgebraic sets are generalized to the n-dimensional case by means of Lemma
2.19 (for m = k = 2 and ` = n− 2). Define

• The n-dimensional cone Thα,n := {(a, bu) : (a, b) ∈ Thα, u ∈ Sn−2}.
• The n-dimensional hyperbolic sector Dh

α,n := {(a, bu) : (a, b) ∈ Dh
α, u ∈ Sn−2}.

• The n-dimensional hyperbolic segment Shα,n := {(a, bu) : (a, b) ∈ Shα, u ∈ Sn−2}.

Theorem 2.24. Each hyperbolic sector Dh
α,n and each hyperbolic segment Shα,n (where 0 < α <

π
4 ) are n-bricks.
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Thαα
x

y

Dh
αα

x

y

Shαα
x

y

Figure 2.6. Triangle Thα, hyperbolic sector Dh
α and hyperbolic segment Shα

3. Drawing polynomial paths inside semialgebraic sets

The main purpose of this section is to prove Lemma 3.1, which has a great influence in the
proofs of Theorems 1.3, 1.4 and 1.6.

Let S1, S2 ⊂ Rn be two open semialgebraic sets. A (polynomial) bridge between S1 and S2 is
the image Γ of a polynomial arc α : [−1, 1] → Rn such that α([−1, 0)) ⊂ S1 and α((0, 1]) ⊂ S2.
The point α(0) is called the base point of Γ. Recall that a map f : S→ Rm on a semialgebraic
set S ⊂ Rn is Nash if there exists an open semialgebraic neighborhood U ⊂ Rn of S and a
smooth and semialgebraic map F : U → Rm that extends f . Recall that Nash maps on open
semialgebraic sets are analytic maps [BCR, Prop.8.1.8].

Let α : [a, b]→ Rn be a continuous semialgebraic path. By [BCR, Prop.2.9.10] there exists a
minimal finite set η(α) ⊂ [a, b] such that α|[a,b]\η(α) is a Nash map. By [BCR, Prop.8.1.12] and
after reparameterizing α locally at a, b (if necessary) we may assume that α is analytic at the
points a, b, so η(α) ⊂ (a, b).

•

• • • •

q1

q2 q3 q4

q5

•

•

• •

•

•

p1

p2

p3 p4

p5

p6

•

• • • •

q1

q2 q3 q4

q5

•

•

• •

•

•

p1

p2

p3 p4

p5

p6

Figure 3.1. Illustration of the statement of Lemma 3.1

Lemma 3.1 (Smart polynomial curve). Let S1, . . . , S` ⊂ Rn be connected open semialgebraic

sets (not necessarily pairwise different) and denote S :=
⋃`
i=1 Si. Pick points pi ∈ Cl(Si) and

assume there exists a bridge Γi between Si and Si+1. Denote by qi ∈ Cl(Si) ∩ Cl(Si+1) the base
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point of Γi. Fix real values s0 := 0 < t1 < · · · < t` < 1 =: s` and si ∈ (ti, ti+1) for i = 1, . . . , `−1.
Then there exists a polynomial path α : R→ Rn that satisfies:

(i) α([0, 1]) ⊂ S ∪ {p1, . . . , p`, q1, . . . , q`−1}.
(ii) α(ti) = pi for i = 1, . . . , `.
(iii) α((ti, si)) ⊂ Si, α((si, ti+1)) ⊂ Si+1 and α(si) = qi for each i.

In addition, if ε > 0 and β : [0, 1] → S ∪ {p1, . . . , p`, q1, . . . , q`−1} is a continuous semialgebraic
path such that η(β) ⊂ (0, 1) \ {t1, . . . , t`, s1, . . . , s`−1}, β(η(β)) ⊂ S and satisfies conditions (ii)
and (iii) above, we may assume that ‖α− β‖ < ε.

The previous result (illustrated in Figure 3.1) is improved in [Fe3] in two directions: it is
extended to general semialgebraic sets that are connected by analytic paths (using Nash paths
instead polynomial paths) and we provide a constructive version using Bernstein’s polynomials.
The proof of Lemma 3.1 we present here is not constructive, but its presentation is shorter and
less demanding than the one in [Fe3]. We begin with some preliminary results.

3.1. Polynomial approximation combined with interpolation. We consider on the space
Cν([a, b],R) of differentiable functions of class Cν on the interval [a, b] the Cν compact-open
topology. Recall that a basis of open neighborhoods of g ∈ Cν([a, b],R) in this topology is
constituted by the sets of the type:

Uνg,ε := {f ∈ Cν([a, b],R) : ‖f (`) − g(`)‖[a,b] < ε : ` = 0, . . . , ν}
where ε > 0 and ‖h‖[a,b] := max{h(x) : x ∈ [a, b]}. Observe that Cν([a, b],Rn) = Cν([a, b],R)×
(n)
· · · × Cν([a, b],R) and we endow this space with the product topology. If X ⊂ [a, b], one defines
analogously the Cν compact-open topology of the space Cν(X,Rn). The following result is well-
known and its proof follows straightforwardly from [H, §2.5. Ex.10, pp. 64-65] using standard
arguments.

Lemma 3.2. Let U ⊂ Rn be an open set and let ϕ : U → Rm be a C` map for some 0 ≤ ` ≤ ν.
Consider the map ϕ∗ : Cν([a, b], U) → C`([a, b],Rm), f 7→ ϕ ◦ f , where both spaces are endowed
with their C` compact-open topologies. Then ϕ∗ is continuous.

In addition, one has the following.

Lemma 3.3. Let X ⊂ [a, b] and consider the restriction map

ρ : Cν([a, b],Rn)→ Cν(X,Rn), f 7→ f |X ,
where the spaces are endowed with their respective Cν compact-open topologies. Then ρ is con-
tinuous and if in addition X ⊂ [a, b] is closed, then ρ is surjective.

We borrow the following result from [B] that combines polynomial approximation with inter-
polation on a finite set. We include full details for the sake of completeness.

Lemma 3.4. Let a < t1 < · · · < tr < b be real numbers and let f : [a, b]→ R be a Cν function.

Write aik := f (k)(ti) for i = 1, . . . , r and 0 ≤ k ≤ ν. Fix ε > 0. Then there exists a polynomial
g ∈ R[t] such that:

(i) ‖f (k) − g(k)‖[a,b] < ε for k = 0, . . . , ν.

(ii) g(k)(ti) = aik for i = 1, . . . , r and 0 ≤ k ≤ ν.

Proof. The proof is conducted in two steps:

Step 1. There exists a polynomial h ∈ R[t] such that ‖h(k) − f (k)‖[a,b] < ε for k = 0, . . . , ν
(Condition (i) in the statement).

We proceed by induction on the integer ν ≥ 0. If ν = 0, the result is classical Stone-
Weierstrass’ polynomial approximation theorem. Assume the result is true for ν− 1 ≥ 0 and let
us check that it is also true for ν.

Consider the Cν−1 function f ′ on the interval [a, b] and extend it as a Cν−1 function to a
bigger interval [a′, b′] that contains [a, b] in its interior. By induction hypotheses there exists
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a polynomial h0 ∈ R[t] such that |f (k+1) − h(k)
0 | < ε

1+(b−a) on [a′, b′] for k = 0, . . . , ν − 1. By

Barrow’s rule

f(t) = f(a) +

∫ t

a
f ′(s)ds.

Define

h(t) := f(a) +

∫ t

a
h0(s)ds,

which is a polynomial of R[t]. Observe that h′ = h0, so

‖h(k) − f (k)‖[a,b] = ‖h(k−1)
0 − f (k)‖[a,b] < ε

1+(b−a) < ε

for k = 1, . . . , ν. In addition,

‖h− f‖[a,b] =
∥∥∥∫ t

a
h0(s)ds−

∫ t

a
f ′(s)ds

∥∥∥
[a,b]

= max
[a,b]

{∣∣∣ ∫ t

a
(h0(s)− f ′(s))ds

∣∣∣}
≤ max

[a,b]

{∫ t

a
|h0(s)− f ′(s)|ds

}
< (b− a)

ε

1 + (b− a)
< ε.

Step 2. We show how to modify h in order to have also condition (ii).

Take polynomials Pik such that

P
(`)
ik (tj) =

{
0 if i 6= j or k 6= `,

1 if i = j and k = `,

for i = 1, . . . , r and 0 ≤ k, ` ≤ ν. For instance, we may take

Pik := cik(t− ti)
k
∏
j 6=i

((t− ti)ν+1 − (tj − ti)ν+1)ν+1

for cik := 1
k!

(−1)ν+1∏
j 6=i(tj−ti)(ν+1)2

.

The Taylor expansion of Pik at ti has the form

Pik =
1

k!
(t− ti)k + dik(t− ti)ν+1 + · · ·

for some dik ∈ R, whereas the Taylor expansion of Pik at tj (for j 6= i) has the form

Pik = eik(t− tj)ν+1 + · · ·

where eik :=
(
cik(tj − ti)k((ν + 1)(tj − ti)ν)ν+1

∏
m6=i,j

((tj − ti)ν+1 − (tm − ti)ν+1)ν+1
)
.

In both cases above the symbol + · · · means ‘plus terms of higher degree’ with respect to either
t− ti or t− tj depending on each case.

Define

M := max{‖P (`)
ik ‖[a,b] : 1 ≤ i ≤ r, 0 ≤ k, ` ≤ ν} and δ :=

ε

1 + r(ν + 1)M
.

Let h ∈ R[t] be a polynomial such that ‖h(k) − f (k)‖[a,b] < δ for k = 0, . . . , ν. Define

g := h+
r∑
i=1

ν∑
k=0

bikPik

where bik := aik − h(k)(ti) = f (k)(ti)− h(k)(ti) for i = 1, . . . , r and k = 0, . . . , ν. Thus,

g(`)(tj) = h(`)(tj) +
r∑
i=1

ν∑
k=0

bikP
(`)
ik (tj) = h(`)(tj) + bj` = aj` = f (`)(tj)

for j = 1, . . . , r and ` = 0, . . . , ν.
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Observe that |bik| = |f (k)(ti)− h(k)(ti)| < δ, so

‖g(`) − f (`)‖[a,b] ≤ ‖h(`) − f (`)‖[a,b] +
r∑
i=1

ν∑
k=0

|bik|‖P
(`)
ik ‖[a,b] < δ + r(ν + 1)Mδ = ε,

for each ` = 0, . . . , ν, as required. �

3.2. Polynomial paths with prescribed behavior at points and intervals. We prove
next (as a consequence of Lemma 3.4) a key result to prove Lemma 3.1. When we write a series
in the form h := akt

k + · · · , we mean that the lowest order term is akt
k (with ak 6= 0) and the

remaining terms have higher order and are not relevant for our computation.

Lemma 3.5. Let S0, . . . , Sr ⊂ Rn be connected open semialgebraic sets (not necessarily pairwise
different) and pick points zi ∈ Cl(Si−1)∩Cl(Si) for i = 1, . . . , r. Assume that there exist a Cν path
β : [a, b]→

⋃r
k=0 Sk∪{z1, . . . , zr} (for some ν ≥ 0) and values a := t0 < t1 < · · · < tr < tr+1 := b

satisfying the following properties:

(i) β((tk, tk+1)) ⊂ Sk for k = 0, . . . , r,
(ii) β(ti) = zi and β is an analytic path in a neighborhood of ti for i = 1, . . . , r,
(iii) there exist polynomials fij ∈ R[x] such that {fi1 > 0, . . . , fis > 0} ⊂ Si−1 is adherent to

zi and the analytic series (fij ◦ β)(ti − t) has the form aijt
nij + · · · where aij > 0,

(iv) there exist polynomials gij ∈ R[x] such that {gi1 > 0, . . . , gis > 0} ⊂ Si is adherent to zi
and the analytic series (gij ◦ β)(ti + t) has the form bijt

pij + · · · where bij > 0,
(v) nij , pij < ν for each i, j.

We have:

(1) There exists an open neighborhood U of β in the Cν-topology such that if α ∈ U and

α(m)(ti) = β(m)(ti) for i = 1, . . . , r and m = 0, . . . , ν − 1, then α((tk, tk+1)) ⊂ Sk for
k = 0, . . . , r.

(2) There exists a polynomial path α : [a, b] →
⋃r
k=0 Sk ∪ {z1, . . . , zr} close to β in the

Cν-topology such that α(ti) = zi for i = 1, . . . , r and α((tk, tk+1)) ⊂ Sk for i = 0, . . . , r.

Proof. We prove this result as an application of Lemma 3.4. Observe that (fij◦β)(nij)(ti) > 0 and

(gij ◦β)(pij)(ti) > 0. Thus, there exists δ > 0 such that the compact interval Ii := [ti−δ, ti+δ] ⊂
[a, b], (fij ◦ β|Ii)(nij) > 0 and (gij ◦ β|Ii)(pij) > 0 for i = 1, . . . , r and j = 1, . . . , s. Denote
J0 := [a, t1 − δ], Jk := [tk + δ, tk+1 − δ] for k = 1, . . . , r − 1 and Jr := [tr + δ, b]. By Lemmas 3.2
and 3.3 the maps

ϕij : Cν([a, b],Rn)→ Cν(Ii,R), γ 7→ fij ◦ γ|Ii ,
φij : Cν([a, b],Rn)→ Cν(Ii,R), γ 7→ gij ◦ γ|Ii ,
ψk : Cν([a, b],Rn)→ C0(Jk,R), γ 7→ dist(γ|Jk(t),Rn \ Sk)

are continuous. In addition, each function ψk(β) is strictly positive. Define

ε := min
i,j,k
{min{(fij ◦ β|Ii)(nij)},min{(gij ◦ β|Ii)(pij)},min{ψk(β)}} > 0

and consider

U0 :=

r⋂
i=1

s⋂
j=1

{γ ∈ Cν([a, b],Rn) : |ϕij(γ|Ii)(nij) − ϕij(β|Ii)(nij)| < ε}

∩
r⋂
i=1

s⋂
j=1

{γ ∈ Cν([a, b],Rn) : |φij(γ|Ii)(pij) − φij(β|Ii)(pij)| < ε}

∩
r⋂

k=0

{γ ∈ Cν([a, b],Rn) : |ψk(γ|Jk)− ψk(β|Jk)| < ε},

which is an open subset of Cν([a, b],Rn). Then there exists δ > 0 such that

U := {γ ∈ Cν([a, b],Rn) : ‖γ(m) − β(m)‖[a,b] < δ, m = 0, . . . , ν} ⊂ U0.
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We are ready to prove the assertions in the statement:

(1) We claim: If α ∈ U and α(m)(ti) = β(m)(ti) for i = 1, . . . , r and m = 0, . . . , ν, then
α((tk, tk+1)) ⊂ Sk for k = 0, . . . , r.

It holds α(Jk) ⊂ Sk, because α ∈ {γ ∈ Cν([a, b]) : |ψk(γ|Jk)− ψk(β|Jk)| < ε}. Thus, to prove
the claim it is enough to check:

α([ti − δ, ti)) ⊂ {fi1 > 0, . . . , fis > 0} ⊂ Si−1, (3.1)

α((ti, ti + δ]) ⊂ {gi1 > 0, . . . , gis > 0} ⊂ Si (3.2)

for i = 1, . . . , r. We show only (3.1) because the proof of (3.2) is analogous.

Using Taylor’s expansion, we know that α around ti has the form

α(t) =
ν−1∑
m=0

1

m!
α(m)(ti)(t− ti)m + (t− ti)νθ(t− ti)

=

ν−1∑
m=0

1

m!
β(m)(ti)(t− ti)m + (t− ti)νθ(t− ti)

where θ is a continuous map defined on an interval around 0. As β is analytic in a neighborhood
of ti, there exists a tuple of analytic series τ ∈ R{t}n such that

β(t) =

ν−1∑
m=0

1

m!
β(m)(ti)(t− ti)m + (t− ti)ντ(t− ti).

Thus, if ζ := θ − τ , which is a continuous function around 0, we deduce

α(t)− β(t) = (t− ti)νζ(t− ti)  α(ti − t)− β(ti − t) = (−t)νζ(−t).

Write x := (x1, . . . , xn), y := (y1, . . . , yn) and let z be a single variable. As the polynomial
fij(x + zy) − fij(x) vanishes on the real algebraic set {z = 0}, there exists a polynomial hij ∈
R[x, y, z] such that

fij(x + zy) = fij(x) + zhij(x, y, z).

As ν > nij , we deduce

fij(α(ti − t)) = fij(β(ti − t) + α(ti − t)− β(ti − t))

= fij(β(ti − t)) + (−1)νtνhij(β(ti − t), ζ(−t), (−1)νtν) = aijt
nij + · · · .

Consequently, (fij ◦ α)(m)(ti) = 0 for m = 0, . . . , nij − 1 and (fij ◦ α)(nij)(ti) = nij ! aij > 0. In
addition, α(ti − t) ∈ {fi1 > 0, . . . , fis > 0} for t ∈ (0, δ) close to 0.

As (fij◦β|Ii)(nij)(ti−t) > ε > 0 on [−δ, δ] and |(fij◦β|Ii)(nij)−(fij◦α|Ii)(nij)| < ε, we conclude

that (fij ◦α|Ii)(nij)(ti−t) > 0 on [−δ, δ] for each j = 1, . . . , s. Suppose there exists t∗ ∈ [ti−δ, ti)
such that α(t∗) 6∈ {fi1 > 0, . . . , fis > 0} and assume (fi1 ◦ α)(t∗) ≤ 0. As α(ti − t) ∈ {fi1 >
0, . . . , fis > 0} for t ∈ (0, δ) close to 0, there exists ξ0 ∈ (0, δ) such that (fi1 ◦ α)(ti − ξ0) = 0.
Assume by induction on m ≤ ni1−1 that there exist values 0 < ξm < · · · < ξ1 < ξ0 < δ such that
(fi1◦α)(j)(ti−ξj) = 0 for j = 0, . . . ,m. As (fi1◦α)(m)(ti) = 0 and (fi1◦α)(m)(ti−ξm) = 0, there

exists by Rolle’s theorem ξm+1 ∈ (0, ξm) such that (fi1 ◦ α)(m+1)(ti − ξm+1) = 0. In particular,

(fi1◦α)(ni1)(ti−ξni1) = 0 and ξni1 ∈ (0, δ), which contradicts the fact that (fi1◦α|Ii)(ni1)(ti−t) >
0 on [−δ, δ]. Consequently, α(t) ∈ {fi1 > 0, . . . , fis > 0} for each t ∈ [ti − δ, ti).

(2) By Lemma 3.4 there exists a polynomial tuple α ∈ R[t]n such that ‖α(m) − β(m)‖[a,b] < δ

for m = 0, . . . , ν (that is, α ∈ U) and α(m)(ti) = β(m)(ti) for i = 1, . . . , r and m = 0, . . . , ν. By
(1) we deduce α((tk, tk+1)) ⊂ Sk for k = 0, . . . , r, as required. �

Remark 3.6. If Si−1 = Si for some i = 1, . . . , r in the statement of Lemma 3.5, the condition
zi ∈ Cl(Si−1) ∩ Cl(Si) means zi ∈ Cl(Si) and condition (i) reads as β((ti−1, ti+1) \ {ti}) ⊂ Si.
The reader has to take this into account when applying Lemma 3.5 to prove Lemma 3.1.

We still need some preliminary results to prove Lemma 3.1:
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Corollary 3.7 (Connexion by polynomial paths). Let S ⊂ Rn be a connected open semialgebraic
set and let x, y ∈ S. Then there exists a polynomial path α : [0, 1] → S such that α(0) = x and
α(1) = y.

Proof. As S is connected, it is connected by semialgebraic paths [BCR, Prop.2.5.13]. Thus,
there exists a semialgebraic path β : [0, 1] → S such that β(0) = x and β(1) = y. By [BCR,
Prop.8.1.12] and after reparameterizing (if necessary) we may assume that β is Nash at the
points 0, 1 and we extended β continuously and semialgebraically to an interval [−ε, 1 + ε]. By
Lemma 3.5(2) there exists a polynomial path α : [0, 1]→ S such that α(0) = x and α(1) = y, as
required. �

Lemma 3.8 (Double polynomial curve selection lemma). Let S ⊂ Rn be an open semialgebraic
set and let p ∈ Cl(S). Then there exists a polynomial arc α : [−1, 1] → Rn such that α(0) = p,
α([−1, 1] \ {0}) ⊂ S and α([−1, 0)) ∩ α((0, 1]) = ∅.

Proof. By [BCR, Prop.8.1.13] there exists a Nash arc η := (η1, . . . , ηn) : [−1, 1] → Rn such
that η(0) = p and η((0, 1]) ⊂ S. After shrinking the domain of β we may assume that each
ηi ∈ R[[t]]alg is an algebraic analytic series. Let f1, . . . , fr ∈ R[x] be polynomials such that

η((0, ε]) ⊂ {f1 > 0, . . . , fr > 0} ⊂ S

for some 0 < ε < 1. The algebraic series fj(η) ∈ R[[t]]alg satisfies fj(η) = ajt
kj + · · · for

some aj > 0 and kj ≥ 1. Define ` := max{kj : j = 1, . . . , r} + 1. Let x := (x1, . . . , xn),
y := (y1, . . . , yn) and let z be a single variable. Write fj(x + zy) = fj(x) + zhj(x, y, z) where

hj ∈ R[x, y, z]. Let ζj ∈ R[[t∗]]alg be an algebraic series such that ξj := ηj + t`ζj ∈ R[t] is a
univariate polynomial. Denote ξ := (ξ1, . . . , ξn) and ζ := (ζ1, . . . , ζn). Then

fj(ξ(t
2)) = fj(η(t2) + t2`ζ(t2)) = fj(η(t2)) + t2`hj(η(t2), ζ(t2), t2`) = ajt

2kj + · · · ,
which is strictly positive for non-zero small values of t. Let q > ` be an odd positive integer
strictly bigger than the degrees of all the polynomials ξj(t

2). Define γ := ξ(t2)+tq(1, 0, . . . , 0) ∈
R[t]n. As the exponent q is odd and all the exponents of the non-zero monomials of the poly-
nomials ξj(t

2) are even, γ([−ε, 0)) ∩ γ((0, ε]) = ∅ if ε > 0 is small enough. Observe that

fj(γ) = fj(ξ(t
2) + tq(1, 0, . . . , 0)) = fj(ξ(t

2)) + tqhj(η(t2), ζ(t2), tq) = ajt
2kj + · · · > 0,

so for ε > 0 small enough γ : [−ε, ε]→ Rn is a polynomial arc such that γ([−ε, ε] \ {0}) ⊂ {f1 >
0, . . . , fr > 0} ⊂ S and γ(0) = 0 = p. Thus, after a linear reparameterization in order to have
[−1, 1] as the domain of γ, we deduce γ is the searched polynomial path. �

There are many ways to smooth corners of a continuous semialgebraic path. The strategy
we propose here is far from being the one with less complexity, but it is quick to be presented
as it only uses Hermite’s interpolation (and a control of the images of the paths via Nash
diffeomorphisms).

Lemma 3.9 (Smoothing a corner). Let a < τ < t0 < θ < b and let ε > 0. Pick a point x0 ∈ Rn
and let β : [a, b] → Bn(x0, ε) be a continuous semialgebraic path. Assume η(β) = {t0} and
β(t0) = x0. For each ν ≥ 0 there exists a Cν-semialgebraic path γ : [a, b] → Bn(x0, ε) such that
γ|[a,b]\(τ,θ) = β|[a,b]\(τ,θ).

Proof. Consider the Nash diffeomorphism

ϕ : Bn(x0, ε)→ Rn, x 7→ x− x0√
ε2 − ‖x− x0‖2

and the continuous semialgebraic path β∗ := ϕ ◦ β : [a, b] → Rn. We have η(β∗) = {t0} and
β∗(t0) = 0. By Hermite’s interpolation there exists a polynomial map λ : [a, b]→ Rn such that

λ(k)(τ) = (β∗)(k)(τ) and λ(k)(θ) = (β∗)(k)(θ) for k = 0, . . . , ν. Consider the Cν-semialgebraic
path

γ∗ : [a, b]→ Rn, t 7→

{
λ(t) if t ∈ [τ, θ],

β∗(t) if t ∈ [a, b] \ (τ, θ).
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The composition γ := ϕ−1 ◦ γ∗ is a Cν-semialgebraic path that satisfies the required conditions.
�

3.3. Proof of Lemma 3.1. We prove next Lemma 3.1 as an application of Lemma 3.5(2).

Proof of Lemma 3.1. The proof is conducted in several setps:

Step 1. Construction of the suitable continuous semialgebraic path β. Let βi : [−1, 1]→ Γi ⊂ S

be a polynomial parameterization of the bridge Γi such that βi(0) = qi, βi([−1, 0)) ⊂ Si ∪ {qi}
and βi((0, 1]) ⊂ Si+1. By Lemma 3.8 there exists a polynomial arc αj : [−1, 1]→ Sj ∪ {pj} such
that αj(0) = pj , αj([−1, 1]\{0}) ⊂ Sj and αj([−1, 0))∩αj((0, 1]) = ∅. Denote Λj := αj([−1, 1])
and after shrinking the domains of βi and αj we may assume that the collection of semialgebraic
sets Γi \ {qi},Λj \ {pj} is a pairwise disjoint family. We reparameterize linearly the domains of
βi and αj and shrink them (if necessary) in such a way that there exist values

τ0 := s0 = 0 < t1 < ζ1 < ξ1 < s1 < θ1 < τ1 < t2 < ζ2 < · · ·
< τ`−2 < t`−1 < ζ`−1 < ξ`−1 < s`−1 < θ`−1 < τ`−1 < t` < 1 = s` =: ζ`

such that:

• αi : [τi−1, ζi]→ Λi ⊂ Si ∪ {pi} and αi(ti) = pi.
• βi : [ξi, θi]→ Γi and βi(si) = qi.

The points αi(τi−1), αi(ζi), βi−1(θi−1), βi(ξi) belong to Si, which is a connected open semial-
gebraic set, and they are pairwise different. By Lemma 3.7 there exist:

• a polynomial path γi : [θi−1, τi−1] → Si such that γi(θi−1) = βi−1(θi−1) and γi(τi−1) =
αi(τi−1),
• a polynomial path ηi : [ζi, ξi]→ Si such that ηi(ζi) = αi(ζi) and ηi(ξi) = βi(ξi).

Denote Z := {τ0, . . . , τ`−1, ζ1, . . . , ζ`, ξ1, . . . , ξ`−1, θ1, . . . , θ`−1}. Thus, concatenating all the pre-
vious polynomial paths and arcs we construct a piecewise polynomial path β : [0, 1]→ Rn such
that

(1) β([0, 1]) ⊂ S ∪ {p1, . . . , p`, q1, . . . , q`−1}.
(2) β(ti) = pi for i = 1, . . . , `.
(3) β((ti, si)) ⊂ Si, β((si, ti+1)) ⊂ Si+1 and β(si) = qi.
(4) η(β) ⊂ (0, 1)\{t1, . . . , t`, s1, . . . , s`−1} (because β|[0,1]\Z is a Nash map) and β(η(β)) ⊂ S

(because η(β) ⊂ Z and β(Z) ⊂ S).

Thus, we have provided a procedure to construct a continuous semialgebraic path β : [0, 1]→
S ∪ {p1, . . . , p`, q1, . . . , q`−1} such that η(β) ⊂ (0, 1) \ {t1, . . . , t`, s1, . . . , s`−1}, β(η(β)) ⊂ S and
satisfies conditions (ii) and (iii) in the statement.

In the following we fix a continuous semialgebraic path β : [0, 1]→ S∪{p1, . . . , p`, q1, . . . , q`−1}
such that η(β) ⊂ (0, 1) \ {t1, . . . , t`, s1, . . . , s`−1}, β(η(β)) ⊂ S and satisfies conditions (ii) and
(iii) in the statement. Note that conditions (1), (2), (3) and (4) hold for such a β.

Step 2. Computing the order of differentiability. We need to compute a positive integer ν
in order to apply Lemma 3.5(2). As each Si is a semialgebraic set and as a consequence of
conditions (1), (2), (3) and (4) above, there exist polynomials fij , gij , hij ,mij ∈ R[x] such that:

• {fi1 > 0, . . . , fis > 0} ⊂ Si is adherent to pi and (fij ◦ β)(ti − t) = aijt
eij + · · · , where

aij > 0 and eij is a positive integer.
• {gi1 > 0, . . . , gis > 0} ⊂ Si is adherent to pi and (gij ◦ β)(ti + t) = bijt

uij + · · · , where
bij > 0 and uij is a positive integer.
• {hi1 > 0, . . . , his > 0} ⊂ Si is adherent to qi and (hij ◦ β)(si − t) = cijt

vij + · · · , where
cij > 0 and vij is a positive integer.
• {mi1 > 0, . . . ,mis > 0} ⊂ Si+1 is adherent to qi and (mij ◦ β)(si + t) = dijt

wij + · · · ,
where dij > 0 and wij is a positive integer.

Define ν := 1 + max{eij , uij , vij , wij : 1 ≤ i ≤ `, 1 ≤ j ≤ s}.
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Step 3. ‘Smoothing’ the corners of the (continuous) semialgebraic path β. We smooth next the
‘corners’ of the (continuous) semialgebraic path β, which are contained in the open semialgebraic
set S. To that end, we use Lemma 3.9. In [Fe3] we present an alternative construction in terms of
Bernstein polynomials, which avoids the ‘smoothing’ of corners and the corresponding increase
in the complexity of the construction.

The mentioned ‘corners’ appear only at the points of the finite set η(β) := {λ1, . . . , λr} ⊂
(0, 1) \ {t1, . . . , t`, s1, . . . , s`−1}. Pick δ, ε > 0 small enough so that [λk − δ, λk + δ] ⊂ (0, 1) \
{t1, . . . , t`, s1, . . . , s`−1} and

β([λk − δ, λk + δ]) ⊂ B(β(λk),
ε
4) ⊂ B(β(λk), ε) ⊂ S

for k = 1, . . . , r. Define T :=
⋃r
k=1[λk−δ, λk+δ]. By Lemma 3.9 there exists a Cν-semialgebraic

path γ : [0, 1]→ S∪{p1, . . . , p`, q1, . . . , q`−1} such that γ|[0,1]\T = β|[0,1]\T and γ([λk−δ, λk+δ]) ⊂
B(β(λk),

ε
4) for k = 1, . . . , r. Consequently,

‖β(t)− γ(t)‖ ≤ ‖β(t)− β(λk)‖+ ‖β(λk)− γ(t)‖ < ε

2

if t ∈ [λk − δ, λk + δ] for k = 1, . . . , r. Thus, ‖β − γ‖ < ε
2 . Observe that γ satisfies conditions

(ii) and (iii) in the statement.

Conclusion. Final approximation. By Lemma 3.5(2) there exists a polynomial map α : R →
Rn such that ‖α − γ‖ < ε

2 and satisfies conditions (i), (ii) and (iii) in the statement. We have
in addition ‖α− β‖ ≤ ‖α− γ‖+ ‖γ − β‖ < ε, as required. �

4. Finite unions of convex polyhedra

A semialgebraic set S ⊂ Rn is a PL semialgebraic set if there exist finitely many polynomials
fij ∈ R[x] of degree ≤ 1 such that S =

⋃s
i=1{fi1 ≥ 0, . . . , fir ≥ 0}. Observe that each basic PL

semialgebraic set {fi1 ≥ 0, . . . , fir ≥ 0} is a convex polyhedron, so PL semialgebraic sets are
finite unions of convex polyhedra Ki.

The closure of the difference of two convex polyhedra is a finite union of convex polyhedra.
Thus, each PL semialgebraic set S can be written as a finite union of convex polyhedra Si such
that their relative interiors are pairwise disjoint. The boundary ∂K := Cl(K)\Int(K) of a convex
polyhedron K is a finite union of convex polyhedra of smaller dimensions. Each triangulation
of ∂K and each interior point p of K induces a standard triangulation of K. Using these facts,
one can triangulate S by means of a standard induction process based on the dimension of S.

Thus, there exist finitely many simplices σ1, . . . , σ` such that S =
⋃`
i=1 σi and σi ∩ σj is either

the empty-set or a common face of σi and σj . Consequently, PL semialgebraic sets coincide with
the realizations of finite simplicial complexes. We will use in each case the description of PL
semialgebraic sets that fits better each situation.

Let S ⊂ Rp be an n-dimensional PL semialgebraic set that is connected by analytic paths. By
[Fe2, Lem.7.1] S is pure dimensional and by [Fe2, Cor.7.10] its Zariski closure S

zar
is irreducible.

Let S1, . . . , S` be n-dimensional convex polyhedra such that S =
⋃`
k=1 Sk. We have S

zar
=⋃`

k=1 S
zar
k . The Zariski closure of an n-dimensional convex polyhedron is the affine n-dimensional

subspace spanned by it. Thus, S
zar

= S
zar
k for each k = 1, . . . , n and S

zar
is an n-dimensional

subspace, so we may assume p = n. This means that the statements of Theorems 1.3 and 1.4
are not restrictive with respect to the embedding dimension.

Before proving Theorems 1.3 and 1.4 in this section we need some preliminary results.

4.1. Semialgebraic sets connected by analytic paths. Our purpose is to establish a result
(Lemma 4.2) that relates connectedness by analytic paths with the existence of suitable bridges.
Before that we need the following result.

Lemma 4.1. Let S ⊂ Rn be an n-dimensional semialgebraic set and let α : [−1, 1] → S be an
analytic arc such that α([−1, 1] \ {0}) ⊂ Int(S). For each m ≥ 0 denote by αm the jet of degree
m of α at the origin. Then there exist m ≥ 1 and ε > 0 such that the polynomial map

ϕ : R× Rn → Rn, (t, x) 7→ αm(t) + tm+1x
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satisfies ϕ(([−ε, ε] \ {0})×Bn) ⊂ Int(S).

Proof. Let fi, gi ∈ R[x] be polynomials such that

α((0, ε]) ⊂ {f1 > 0, . . . , fr > 0} ⊂ Int(S),

α([−ε, 0)) ⊂ {g1 > 0, . . . , gr > 0} ⊂ Int(S)

for some 0 < ε < 1. Consider the series fi(α(t)), gi(α(−t)) ∈ R[[t]], which satisfy

fi(α(t)) = ait
ki + · · ·

gi(α(−t)) = bit
`i + · · ·

for some ai, bi > 0. Let m := max{ki, `i : i = 1, . . . , r} + 1. Let x := (x1, . . . , xn), y :=
(y1, . . . , yn) and let z be a single variable. Write

fi(x + zy) = fi(x) + zhi(x, y, z),

gi(x + zy) = gi(x) + zh′i(x, y, z),

where hi, h
′
i ∈ R[x, y, z]. Then

fi(αm(t) + tm+1y) = fi(αm(t)) + tm+1hi(αm(t), y, tm+1) = ait
ki + · · · ,

gi(αm(−t) + (−t)m+1y) = gi(αm(−t)) + (−t)m+1h′i(αm(−t), y, (−t)m+1) = bit
`i + · · · .

Consider the continuous semialgebraic functions

Hi : [−ε, ε]×Bn → R, (t, x) 7→ hi(αm(t), x, tm+1),

H ′i : [−ε, ε]×Bn → R, (t, x) 7→ h′i(αm(t), x, tm+1)

and let M > 0 be such that Hi([−ε, ε]×Bn), H ′i([−ε, ε]×Bn) ⊂ [−M,M ] for i = 1, . . . , r. As

fi(αm(t) + tm+1x) ≥ fi(αm(t))− tm+1|hi(αm(t), x, tm+1)| ≥ fi(αm(t))−Mtm+1,

gi(αm(−t) + (−t)m+1x) ≥ gi(αm(−t))− (−t)m+1|h′i(αm(−t), x, (−t)m+1)|
≥ gi(αm(−t))−M(−t)m+1,

after shrinking ε > 0 if necessary, we may assume

fi(αm(t) + tm+1x) > 0,

gi(αm(−t) + (−t)m+1x) > 0

for each (t, x) ∈ (0, ε]×Bn and each i = 1, . . . , r. We conclude ϕ(([−ε, ε] \ {0})×Bn) ⊂ Int(S),
as required. �

Lemma 4.2. Let S1, . . . , S` ⊂ Rn be connected open semialgebraic sets. Assume there exists a

semialgebraic set T ⊂ Rn connected by analytic paths such that S :=
⋃`
i=1 Si ⊂ T ⊂ Cl(S). Then

we can reorder the indices i in such a way that there exist bridges Γi ⊂ T between Si and
⊔i−1
j=1 Sj

for i = 2, . . . , `.

Proof. Denote Ti := Cl(Si) ∩ T. We prove the statement by induction on `. If ` = 1, there is
nothing to prove. Suppose the result is true for i− 1 < ` and let us check that it is also true for
i.

If Sj ∩ Sk 6= ∅ for some 1 ≤ j ≤ i − 1 and some i ≤ k ≤ `, we pick a point p ∈ Sj ∩ Sk and
ε > 0 such that B(p, ε) ⊂ Sj ∩ Sk. The polynomial arc α : [−1, 1]→ Rn, t 7→ p+ ε(t, 0, . . . , 0) is

a bridge between Sj ⊂
⊔i−1
j=1 Sj and Sk. We interchange the indices k and i.

Assume Sj ∩ Sk = ∅ if 1 ≤ j ≤ i− 1 and i ≤ k ≤ `. Define T′ :=
⋃i−1
j=1 Tj and T′′ :=

⋃`
j=i Tj .

Let E be the Zariski closure of
⋃`
i=1 ∂Si where ∂Si := Cl(Si) \ Si. The algebraic set E has

dimension ≤ n− 1, so it contains none of the Si. Observe that T′ ∩ T′′ ⊂ E. Let x ∈ T′ \ E and
let y ∈ T′′ \ E. As T = T′ ∪ T′′ is connected by analytic paths, there exists an analytic path
β : [−1, 1]→ T such that β(−1) = x and β(1) = y. By the identity principle for analytic maps
in a single variable F := β−1(E) is a finite set (because otherwise x, y ∈ β([−1, 1]) ⊂ E). As
x ∈ T′ \ E, y ∈ T′′ \ E and T′ ∩ T′′ ⊂ E, there exists t0 ∈ [−1, 1] such that β(t) ∈ T′ if t ≤ t0 and
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β(t) ∈ T′′ \ E if t0 < t < t0 + ε for some ε > 0. As F is a finite set, we may assume shrinking
ε if necessary that β((t0 − ε, t0)) ⊂ Sj for some j = 1, . . . , i − 1 and β((t0, t0 + ε)) ⊂ Sk for
some k = i, . . . , `. We interchange indices k and i and after a translation we assume t0 = 0. By
Lemma 4.1 we can construct from the analytic arc β a bridge between Sj and Si, as required. �

Corollary 4.3. Let S1, . . . , S` ⊂ Rn be connected open semialgebraic sets. Assume there exists a

semialgebraic set T ⊂ Rn connected by analytic paths such that S :=
⋃`
i=1 Si ⊂ T ⊂ Cl(S). Then

there exists a sequence of semialgebraic sets R1, . . . ,Rr such that {S1, . . . , S`} = {R1, . . . ,Rr}
and for each index i = 1, . . . , r − 1 there exists a bridge between Ri and Ri+1.

Proof. Consider the graph Λ whose vertices are the connected open semialgebraic sets Si and
such that there exists an edge between a pair of vertices Si and Sj if and only if there exists a
bridge Γ between the connected open semialgebraic sets Si and Sj . By Lemma 4.2 the graph Λ
is connected. Thus, there exists a path inside Λ through all its vertices. Denote by R1, . . . ,Rr
a sequence of the vertices S1, . . . , S` (including repetitions if needed) such that all the vertices
appear at least once and there exists an edge (that is, a bridge Γk inside S) between Ri and Ri+1

for i = 1, . . . , r − 1, as required. �

Polynomial map Polynomial
map

F

Graph(F )

Projection

Image(F )

Triangulation

Figure 4.1. Sketch of proof of Theorem 1.3

4.2. Proof of Theorem 1.3. We present here the first main result of this article (Figure 4.1).

Proof of Theorem 1.3. (ii) =⇒ (i) By [Fe2, Thm.1.5] there exists a Nash map g : Rn+1 → Rn+1

such that g(Rn+1) = Bn+1. Consider the Nash map f ◦ g : Rn+1 → Rn whose image is S. By
[Fe2, Main Thm.1.4] the semialgebraic set S is connected by analytic paths.

(i) =⇒ (ii) As S is the realization of a finite simplicial complex, we may assume by Lemma

4.3 that S =
⋃`
k=1 σk where each σk is an n-dimensional simplex and for each k = 1, . . . , ` − 1

there exists a bridge Γk between Int(σk) and Int(σk+1).

Denote by qk the base point of Γk. Write tk := k−1
`−1 and sk := 2k−1

2(`−1) (that is, the midpoint

between tk and tk+1). Denote by p0k, . . . , pnk the vertices of the simplex σk for k = 1, . . . , `. By
Lemma 3.1 there exists for each i = 0, . . . , n a polynomial path αi : R→ Rn such that

(i) αi([0, 1]) ⊂ S.
(ii) αi(tk) = pik for k = 1, . . . , `.
(iii) αi((tk, sk)) ⊂ Int(σk), αi((sk, tk+1)) ⊂ Int(σk+1) and αi(sk) = qk for k = 1, . . . , `.
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Denote ∆n := {x1 ≥ 0, . . . , xn ≥ 0,
∑n

k=1 xi ≤ 1} and consider the polynomial map

F : Rn × R→ Rn, (x, t) := (x1, . . . , xn, t) 7→
(

1−
n∑
i=1

xi

)
α0(t) +

n∑
i=1

xiαi(t).

Pick (x, t) ∈ ∆n × [0, 1]. As each simplex σk and its relative interior Int(σk) are convex sets,

F (x, t) =
(

1−
n∑
i=1

xi

)
α0(t) +

n∑
i=1

xiαi(t) ∈


σk ⊂ S if t = tk,

{qk} ⊂ S if t = sk,

Int(σk) ⊂ S if t ∈ (tk, sk),

Int(σk+1) ⊂ S if t ∈ (sk, tk+1),

so F (∆n × [0, 1]) ⊂ S. As

F (∆n × {tk}) =
{(

1−
n∑
i=1

xi

)
p0k +

n∑
i=1

xipik : x ∈ ∆n

}
= σk

for k = 1, . . . , `, we deduce S =
⋃`
k=1 σk ⊂ F (∆n× [0, 1]). Consequently, F (∆n× [0, 1]) = S and

by Corollary 2.8 S is a polynomial image of Bn+1, as required. �

4.3. Proof of Theorem 1.4. Our next purpose is to prove Theorem 1.4. As it is quite technical,
we have decided to break its proof into several parts and present some preliminary lemmas
to lighten notations and clarify ideas. This may increase the complexity of the construction
but make the presentation more intuitive and readable. As usual, we call facets the faces of
dimension n − 1 of a convex polyhedron of dimension n. Given a hyperplane H := {h = 0} of
Rn we represent the subspaces determined by H as H+ := {h ≥ 0} and H− := {h ≤ 0}. Denote

∆n−1 :=
{

(λ1, . . . , λn) ∈ Rn : λ1 ≥ 0, . . . , λn ≥ 0,
n∑
k=1

λk = 1
}
,

which is an (n − 1)-dimensional simplex. Write Intr(·) to refer to the relative interior of a
convex polyhedron. Assume n ≥ 2 for the following three preliminary lemmas. The first one is
illustrated in Figure 4.2.

Lemma 4.4. Let K ⊂ Rn be an n-dimensional convex polyhedron. Let σ be an (n− 1)-dimen-
sional simplex contained in one of the facets of K and denote by v1, . . . , vn its vertices. Pick
p ∈ Int(K) and consider the simplex σ̂ of vertices {p, v1, . . . , vn}. Let h1, . . . , hn ∈ R[x] be
polynomials of degree 1 such that the hyperplane Hk := {hk = 0} contains the facet of σ̂ that
contains p, but does not contain the vertex vk. Assume σ̂ ⊂ H+

k for each k. Consider the convex

polyhedra Kk := K ∩
⋂
j 6=kH

−
j and let αk : [0, 1] → Kk ⊂ K be (continuous) semialgebraic

paths such that αk(0) = vk and αk(1) = p. Consider the (continuous) semialgebraic map
F : ∆n−1 × [0, 1]→ Rn, (λ, t) 7→

∑n
k=1 λkαk(t). Then σ̂ ⊂ F (∆n−1 × [0, 1]) ⊂ K.

•

v1 v2σ

σ̂

p

K

K1 K2

α1 α2

Figure 4.2. Sketch of proof of Lemma 4.4
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Proof. As K is convex, F (∆n−1×[0, 1]) ⊂ K. Let us prove: σ̂ ⊂ F (∆n−1×[0, 1]). As ∆n−1×[0, 1]
is compact and σ̂ = Cl(Int(σ̂)), it is enough to check: Int(σ̂) ⊂ F (∆n−1 × [0, 1]).

Let H0 := {h0 = 0} be the hyperplane generated by σ. We claim: F (∂(∆n−1 × [0, 1])) ∩
Int(σ̂) = ∅ and F (∂∆n−1 × (0, 1)) ∩ Intr(σ) = ∅.

Recall that Int(σ̂) ∪ Intr(σ) = {h0 ≥ 0, h1 > 0, . . . , hn > 0}. We have F (∆n−1 × {0}) = σ
and F (∆n−1 × {1}) = {p}. Let τj be the facet of ∆n−1 that does not contain the vertex

ej := (0, . . . , 0,
(j)

1 , 0, . . . , 0). If k 6= j, then Kk ⊂
⋂
i 6=kH

−
i ⊂ H−j . If t ∈ (0, 1) and λ :=

(λ1, . . . , λn) ∈ τj , then λj = 0 and

F (λ, t) =
∑
k 6=j

λkαk(t) ∈ H−j = {hj ≤ 0}.

Thus, F (τj × (0, 1)) ⊂ H−j , so F (τj × (0, 1))∩ (Int(σ̂)∪ Intr(σ)) ⊂ {hj > 0, hj ≤ 0} = ∅ and the
claim follows.

Suppose there exists z ∈ Int(σ̂) \ F (∆n−1 × [0, 1]). Let us construct a (continuous) semialge-
braic retraction ρ : K \ {z} → ∂σ̂ such that ρ−1(Intr(σ)) ⊂ Int(σ̂) ∪ Intr(σ).

For each x ∈ Rn \{z} let `x be the ray {z+ t ~zx : t ∈ [0,+∞)}, where ~zx denotes the vector of
initial point z and terminal point x. By [Be, 11.1.2.3 & 11.1.2.7] `x ∩ ∂σ̂ = {ρ(x)} is a singleton
and if x ∈ ∂σ̂, then ρ(x) = x. Define ρ : K \ {z} → ∂σ̂, x 7→ ρ(x). Note that ρ(x) = z + λ ~zx,
where λ is the smallest value µ > 0 such that hi(z + µ ~zx) = 0 for some i = 0, . . . , n. As
z ∈ Int(σ̂), we have hi(z) > 0 for i = 0, . . . , n. Thus,

1

λ
= max

{hi(z)− hi(x)

hi(z)
: i = 0, . . . , n

}
> 0.

Consequently,

ρ(x) = z +
1

max{hi(z)−hi(x)
hi(z)

: i = 0, . . . , n}
~zx,

so ρ : K\{z} → ∂σ̂ is a continuous map such that ρ|∂σ̂ = id∂σ̂, that is, ρ is a retraction. Observe
that

max
{hi(z)− hi(x)

hi(z)
: i = 0, . . . , n

}
=
hj(z)− hj(x)

hj(z)

for some j = 0, . . . , n if and only if ρ(x) ∈ {hj = 0}. In addition, if x ∈ K \ (Int(σ̂) ∪ Intr(σ)),
then h0(x) ≥ 0 and hi0(x) ≤ 0 for some i0 = 1, . . . , n. Thus,

h0(z)− h0(x)

h0(z)
≤ 1 ≤ hi0(z)− hi0(x)

hi0(z)
≤ max

{hi(z)− hi(x)

hi(z)
: i = 0, . . . , n

}
,

so ρ(x) 6∈ {h0 = 0, h1 > 0, . . . , hn > 0} = Intr(σ). Consequently, ρ−1(Intr(σ)) ⊂ Int(σ̂)∪Intr(σ).

Consider the continuous semialgebraic map F ∗ := ρ ◦ F : ∆n−1 × [0, 1] → ∂σ̂. Let us prove:
the restriction map F ∗|∂(∆n−1×[0,1]) : ∂(∆n−1 × [0, 1]) → ∂σ̂ has degree 1 (as a continuous map
between spheres of dimension n− 1).

Pick a point x ∈ Intr(σ). Then (F ∗)−1(x) = F−1(ρ−1(x)) ⊂ F−1(Int(σ̂)) ∪ F−1(Intr(σ)). As
F (∂(∆n−1 × [0, 1])) ∩ Int(σ̂) = ∅, F (∂∆n−1 × (0, 1)) ∩ Intr(σ) = ∅ and F (∆n−1 × {1}) = {p},
we have

F−1(Int(σ̂)) ∩ ∂(∆n−1 × [0, 1]) = ∅,
F−1(Intr(σ)) ∩ ∂(∆n−1 × [0, 1]) ⊂ ∆n−1 × {0}.

Consequently, the preimage

(F ∗)−1(x) ∩ ∂(∆n−1 × [0, 1]) = (F ∗)−1(x) ∩ (∆n−1 × {0}).
As αk(0) = vk for each k and ρ|σ = idσ, we deduce F ∗|∆n−1×{0} = F |∆n−1×{0} : ∆n−1×{0} → σ

is a homeomorphism, so (F ∗)−1(x) ∩ ∂(∆n−1 × [0, 1]) = (F |∆n−1×{0})
−1(x) is a singleton and

the restriction map F ∗|∂(∆n−1×[0,1]) has degree 1.

As F ∗|∂(∆n−1×[0,1]) extends continuously to ∆n−1× [0, 1], we deduce by [H, Thm.5.1.6(b)] that
F ∗|∂(∆n−1×[0,1]) has degree 0, which is a contradiction.
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Consequently, Int(σ̂) ⊂ F (∆n−1 × [0, 1]), as required. �

Lemma 4.5. Let K ⊂ Rn be an n-dimensional convex polyhedron and let p ∈ K. Let v, w ∈ Rn
be linearly independent vectors such that Int(K)∩{p+ tv : t > 0} 6= ∅. Then, there exists ε > 0
such that polynomial arc α : [−ε, ε]→ K, t 7→ p+ t2v + t3w satisfies α([−ε, ε] \ {0}) ⊂ Int(K),
α(0) = p and α([−ε, 0)) ∩ α((0, ε]) = ∅.

Proof. Let h1, . . . , hs be equations of degree 1 of the facets of K and denote by ~hi the linear part
of hi. Assume K = {h1 ≥ 0, . . . , hs ≥ 0}. The polynomial map

α : R→ K, t 7→ p+ t2v + t3w

satisfies α((−∞, 0)) ∩ α((0,+∞)) = ∅, because v, w are linearly independent vectors. We have

hi(p+ t2v + t3w) = hi(p) + t2~hi(v) + t3~hi(w)

for each i. As p ∈ K, it holds hi(p) ≥ 0 for each i. As

hi(p+ tv) = hi(p) + t~hi(v)

and Int(K) ∩ {p + tv : t > 0} 6= ∅, we have ~hi(v) > 0 if hi(p) = 0. Pick ε > 0 such that
hi(p + t2v + t3w) > 0 if 0 < |t| ≤ ε and i = 1, . . . , s. Thus, the polynomial arc α : [−ε, ε] → K

satisfies the required properties if ε > 0 is small enough. �

Lemma 4.6. Let K ⊂ Rn be an n-dimensional convex polyhedron. There exist polynomial
paths α1, . . . , αn : [0, 1] → K and values 0 := t0 < t1 < · · · < tm = 1 and sj ∈ (tj , tj+1) for
j = 0, . . . ,m− 1 such that:

(i) αk(0) = αk(1) =: p ∈ Int(K) for k = 1, . . . , n.
(ii) If β1, . . . , βn : [0, 1] → K are polynomial paths satisfying βk is close to αk in the Cν-

topology for ν large enough and the Taylor expansions of βk and αk coincide at the
values tj and sj up to order large enough for each pair (k, j), then K is the image of the
polynomial map Fβ : ∆n−1 × [0, 1]→ K, (λ, t) 7→

∑n
k=1 λkβk(t).

Proof. Let σ1, . . . , σ` be the simplices of dimension n − 1 of a triangulation of ∂K and let
p ∈ Int(K). Denote by vi1, . . . , vin the vertices of σi and let σ̂i be the n-dimensional simplex

of vertices {p, vi1, . . . , vin}. It holds K =
⋃`
i=1 σ̂i. Let hi1, . . . , hin ∈ R[x] be polynomials of

degree 1 such that Hik := {hik = 0} is the hyperplane generated by the facet of σ̂i that contains
p but does not contain vik. Assume σ̂i ⊂ H+

ik for each k and consider the convex polyhedra

Kik := K ∩
⋂
j 6=kH

−
ij . As p ∈ Int(K) and the Hik are independent hyperplanes through p, we

have Int(Kik) 6= ∅. Observe that p, vik ∈ ∂Kik. We will take advantage of Lemmas 3.1, 3.5(1)
and 4.4 to prove the statement.

Fix values 0 < t1 < · · · < t2`+1 < 1 and si ∈ (ti, ti+1) for i = 1, . . . , 2`. Fix k = 1, . . . , n and
i = 1, . . . , `. Let us construct: a bridge between Int(K) and Int(Kik) with base point vik and a
bridge between Int(Kik) and Int(K) with base point p.

•
•

•

• •

Γi1

Λi1

pi1

p′i1

vi1 vi2σi

σ̂i

p

K

Ki1

Ki2

Figure 4.3. Construction of the bridges Γik and Λik
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Let pik ∈ Int(Kik) and let `ik be the ray with origin vik that passes through pik. As Int(Kik) ⊂
Int(K), there exists by Lemma 4.5 a bridge Γik between Int(K) and Int(Kik) with base point vik
(see Figure 4.3). Let `′ik be the ray with origin pik that passes through p. By [Be, Lem.11.2.4]
the relative interior of the segment `′ik∩Kik is contained in Int(Kik). As p ∈ ∂Kik, the difference
`′ik \ [pik, p] ⊂ Rn \Kik. As p ∈ Int(K), we can pick a point p′ik ∈ (`′ik \ [pik, p]) ∩ Int(K). The
segment Λik := [pik, p

′
ik] provides a bridge between Int(Kik) and Int(K) with base point p (see

Figure 4.3).

Consider the family of connected open semialgebraic sets:

Sa :=

{
Int(K) if a = 2i− 1 for i = 1, . . . , `+ 1,

Int(Kik) if a = 2i for i = 1, . . . , `.

Define the points

pa :=


p if a = 1,

pik if a = 2i for i = 1, . . . , `,

p′ik if a = 2i+ 1 for i = 1, . . . , `.

qa :=

{
vik if a = 2i− 1 for i = 1, . . . , `,

p if a = 2i for i = 1, . . . , `.

(4.1)

Observe that pa ∈ Sa for 1 ≤ a ≤ 2` + 1 and qa ∈ Cl(Sa) ∩ Cl(Sa+1) for a = 1, . . . , 2`. As
we have commented above, there exists a bridge between Sa and Sa+1 with base point qa for
a = 1, . . . , 2`. By Lemma 3.1 there exist polynomial paths αk : R→ Rn that satisfies:

(i) αk([0, 1]) ⊂ Int(K) ∪ {v1k, . . . , v`k}.
(ii) αk(ta) = pa for a = 1, . . . , 2`+ 1.
(iii) αk((ta, sa)) ⊂ Sa, αk((sa, ta+1)) ⊂ Sa+1 and αk(sa) = qa.

Polynomial map Polynomial
map

Fβ

Graph(Fβ)

Projection

Image(Fβ)

Triangulation

Figure 4.4. Sketch of proof of Lemma 4.6

By Lemma 3.5(1) each polynomial path βk : R → Rn close to αk in the Cν-topology for ν
large enough and such that the Taylor expansions of βk and αk coincide at the values tj and sj
up to order large enough for each pair (k, j) satisfies:

(i) βk([0, 1]) ⊂ Int(K) ∪ {v1k, . . . , v`k}.
(ii) βk(ta) = pa for a = 0, . . . , 2`.
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(iii) βk((ta, sa)) ⊂ Sa, βk((sa, ta+1)) ⊂ Sa+1 and βk(sa) = qa.

As pa ∈ Sa for a = 1, . . . , 2a+1, we have βk((sa, sa+1)) ⊂ Sa+1 for a = 1, . . . , 2`. Let us check:
K is the image of the polynomial map

Fβ : ∆n−1 × [0, 1]→ K, (λ, t) 7→
n∑
k=1

λkβk(t).

As K is convex and βk([0, 1]) ⊂ K for k = 1, . . . , n, we deduce Fβ(∆n−1 × [0, 1]) ⊂ K. In
addition, βk(s2i−1) = vik, βk(s2i) = p and βk((s2i−1, s2i)) ⊂ S2i = Int(Kik) for each pair (i, k).
By Lemma 4.4 we have

σ̂i ⊂ Fβ(∆n−1 × [s2i−1, s2i]) ⊂ K

for i = 1, . . . , `, so K =
⋃`
i=1 σ̂i ⊂ Fβ(∆n−1 × [0, 1]) and Fβ(∆n−1 × [0, 1]) = K, as required. �

We are ready to prove Theorem 1.4. The reader can compare Figures 4.1 and 4.4 (even if they
are not completely faithful with the true constructions) to get an idea of the different complexity
between the constructions provided by the proofs of Theorems 1.3 and 1.4.

Proof of Theorem 1.4. (ii) =⇒ (i) By [Fe2, Thm.1.5] there exists a Nash map g : Rn → Rn such
that g(Rn) = Bn. Consider the Nash map f ◦ g : Rn → Rn whose image is S. By [Fe2, Main
Thm.1.4] the semialgebraic set S is connected by analytic paths.

(i) =⇒ (ii) If n = 1, then S is a compact interval, which is affinely equivalent to [−1, 1] = B1.
So we suppose n ≥ 2. By Lemma 4.3 we may assume S =

⋃r
j=1 Ki ⊂ Rn, where each Kj is an

n-dimensional convex polyhedron whose interior is denoted by Sj and there exists a bridge Γj
inside S with base point qj between Sj and Sj+1 for j = 1, . . . , r − 1.

For each j = 1, . . . , r consider the polynomial paths αjk : [0, 1]→ Cl(Sj) = Kj in the statement
of Lemma 4.6 and denote pj := αjk(0) = αjk(1). By Lemma 3.1 there exists a polynomial path
γj : [−1, 1]→ Sj ∪ Sj+1 ∪ {qj} such that γj(−1) = pj , γj(0) = qj , γj(1) = pj+1, γj([−1, 0)) ⊂ Sj
and γj((0, 1]) ⊂ Sj+1 for j = 1, . . . , r − 1. For each k = 1, . . . , n consider the concatenated
(continuous) semialgebraic path

αk := α1k ∗ γ1 ∗ α2k ∗ · · · ∗ αr−1,k ∗ γr−1 ∗ αrk : [0, N ]→ Rn

where N := 3(r − 1) + 1. Observe that η(αk) ⊂ {3j + 1, 3(j + 1) : j = 0, . . . , r − 2} and
αk(η(αk)) ⊂ {p1, . . . , pr} ⊂

⋃r
j=1 Sj for k = 1, . . . , n. Consider the semialgebraic map

Fα : ∆n−1 × [0, N ]→ Rn, (λ, t) 7→
n∑
k=1

λkαk(t),

which satisfies Fα(∆n−1 × [0, N ]) = S. Let us modify α to achieve the statement.

By Lemma 4.6 we find ν ≥ 0 large enough and a finite set of values 0 =: t0 < t1 < · · · < tm :=
N with the following property: if βk : [0, N ]→ Rn are polynomial paths such that αk and βk are
close in the Cν-topology of some of the intervals [ti, ti+1] (determined by Lemma 4.6) and the
Taylor expansions of αk and βk coincide at some of the values tj (determined by Lemma 4.6)

up to order large enough, then S =
⋃`
j=1 Kj is contained in the image of the polynomial map

Fβ : ∆n−1 × [0, N ]→ Rn, (λ, t) 7→
n∑
k=1

λkβk(t).

For each i = 0, . . . ,m−1 we may assume in addition by Lemma 3.5(1) that βk((ti, ti+1)) ⊂ Sji
for some index 1 ≤ ji ≤ r − 1 that depends only on i (and not on k). As each Sji is convex, we
deduce

Fβ(∆n−1 × (ti, ti+1)) ⊂ Sji ⊂ S

for each i = 0, . . . ,m− 1. As S is closed, Fβ(∆n−1 × [0, N ]) ⊂ S, so Fβ(∆n−1 × [0, N ]) = S. By

Lemma 2.7 we conclude that S is a polynomial image of Bn, as required. �
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5. Finite unions of m-bricks

Denote by Pd(Rm,Rn) the space of polynomial maps f : Rm → Rn whose components have
degree ≤ d. This set admits the structure of the affine space RN where

N :=

(
n+ d

d

)
m.

This N is the number of coefficients necessary to define each polynomial map of Pd(Rm,Rn).
The Euclidean topology of RN induces on Pd(Rm,Rn) the compact-open topology.

If S is an m-brick, there exists a homotopy H := (H1, . . . ,Hn) : [0, 1]×Bm → S such that:

(i) Hi ∈ C0([0, 1])[x1, . . . , xm] for i = 1, . . . , n.
(ii) H({0} ×Bm) = S and H(1, ·) is a constant map.
(iii) H({t} ×Bm) ⊂ Int(S) for each t ∈ (0, 1).

When we want to stress the associate homotopy H, we write (S, H). Define

deg(H) := max{deg(Hi) : i = 1, . . . , n}.
If d := deg(H), then Ht := H(t, ·) ∈ Pd(Rm,Rn) for each t ∈ [0, 1]. As S is a polynomial image
of Bm of dimension n, it is pure dimensional of dimension n, so S = Cl(Int(S)). If p ∈ Rn, we
denote by Fp : Rm → Rn the constant polynomial map that values p.

Lemma 5.1. Let (S, H) be an m-brick and let d ≥ deg(H). Consider the semialgebraic set

ΩS := {F ∈ Pd(Rm,Rn) : F (Bm) ⊂ Int(S)}.
We have:

(i) ΩS is an open semialgebraic set in Pd(Rm,Rn).
(ii) If F ∈ Cl(ΩS), then F (Bm) ⊂ S.
(iii) If Fy0 ∈ Pd(Rm,Rn) and y0 ∈ S, then Fy0 ∈ Cl(ΩS). In addition, if y0 ∈ Int(S), then

Fy0 ∈ ΩS.

(iv) There exists F ∈ Cl(ΩS) such that F (Bm) = S.
(v) Both Int(S) and ΩS are connected.

Proof. (i) The semialgebraicity of ΩS follows because it is described by a formula in first order
language. By definition ΩS is an open subset of Pd(Rm,Rn) endowed with the compact-open
topology.

(ii) Let F ∈ Cl(ΩS) and x0 ∈ Bm. Write y0 := F (x0). As F ∈ Cl(ΩS), there exists a
sequence {Fm}m ⊂ ΩS that converges to F . As Fm(x0) ∈ Int(S) for each m ≥ 1, we deduce
y0 = F (x0) = limm→∞ Fm(x0) ∈ Cl(Int(S)) = S.

(iii) As Cl(Int(S)) = S, there exists a sequence {yk}k ⊂ Int(S) that converges to y0. The
sequence of constant polynomial maps {Fyk}k is contained in ΩS and converges to Fy0 , so

Fy0 ∈ Cl(ΩS). If Fy0(Bm) = {y0} ⊂ Int(S), it is clear that Fy0 ∈ ΩS.

(iv) Let F := H(0, ·), which satisfies F (Bm) = S, and let {tk}k ⊂ (0, 1) be a sequence that
converges to 0. Define Fk := H(tk, ·) and observe that the sequence {Fk}k ⊂ ΩS converges to
F , so F ∈ Cl(ΩS).

(v) We prove first: Int(S) is connected.

As T := H((0, 1)×Bm) ⊂ Int(S) is connected, it must be contained in one of the components
of Int(S). Let C be another connected component of Int(S), which is an open semialgebraic
subset of Rn. The inverse image H−1(C) is an open subset of [0, 1] × Bm that does not meet
(0, 1)×Bm, so H−1(C) ⊂ {0, 1} ×Bm, which is a contradiction.

We show next: ΩS is connected by (continuous) semialgebraic paths.

We claim: for each G ∈ ΩS there exists a (continuous) semialgebraic path φ : [0, 1]→ ΩS that
connects the constant polynomial map FG(0) with G.
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Consider the (continuous) semialgebraic map

φ : [0, 1]→ Pd(Rm,Rn), t 7→ Gt

where Gt(x) = G(tx) ∈ Pd(Rm,Rn) for each t ∈ [0, 1]. Observe that

Gt(Bm) = G(tBm) = G(Bm(0, t)) ⊂ G(Bm) ⊂ Int(S),

so im(φ) ⊂ ΩS. Observe that G0 is a constant polynomial map such that G0(Bm) = {G(0)} ⊂
Int(S).

Thus, to prove that ΩS is connected by (continuous) semialgebraic paths it is enough to
show: Given two constant maps Fp, Fq ∈ ΩS there exists a (continuous) semialgebraic path
Fα : [0, 1]→ ΩS such that Fα(0) = Fp and Fα(1) = q.

As Fp, Fq ∈ ΩS are constant maps, p, q ∈ Int(S). As Int(S) is connected, there exists a
(continuous) semialgebraic path α : [0, 1] → Int(S) such that α(0) = p and α(1) = q. The
constant polynomial map Fα(t) ∈ ΩS for each t ∈ [0, 1], so Fα : [0, 1]→ ΩS provides a (continuous)
semialgebraic path that connects Fp and Fq, as required. �

Corollary 5.2. Let S1, S2 be two m-bricks and assume there exists a bridge Γ between Int(S1)
and Int(S2) with base point q. Then there exists a bridge (of constant polynomial maps) between
ΩS1 and ΩS2 with base point the constant map Fq.

Proof. Let α : [−1, 1] → S be a polynomial arc such that α([−1, 0)) ⊂ Int(S1), α(0) = q and
α((0, 1]) ⊂ Int(S2). By Lemma 5.1(iii) Fα(t) ∈ ΩS1 for each t ∈ [−1, 0), whereas Fα(t) ∈ ΩS2 for
each t ∈ (0, 1]. Thus, Fα : [−1, 1] → P(Rm,Rn), t 7→ Fα(t) defines a bridge between ΩS1 and
ΩS2 with base point Fq, as required. �

5.1. Proof of Theorem 1.6. We are ready to prove Theorem 1.6.

Proof of Theorem 1.6. (ii) =⇒ (i) By [Fe2, Thm.1.5] there exists a Nash map g : Rm+1 → Rm+1

such that g(Rm+1) = Bm+1. Consider the Nash map F ◦ g : Rm+1 → Rn whose image is S. By
[Fe2, Main Thm.1.4] the semialgebraic set S is connected by analytic paths.

(i) =⇒ (ii) Let (Si, Hi) be m-bricks for i = 1, . . . , r and let d := max{deg(Hi) : i = 1, . . . , r}.
The restriction mapHi,t := Hi(t, ·) belongs to Pd(Rm,Rn) for each t ∈ [0, 1] and each i = 1, . . . , r.
By Lemma 4.3 we may assume that there exists a bridge Γk between Int(Sk) and Int(Sk+1) with
base point qk for 1 ≤ k ≤ `− 1.

By Lemma 5.1 each ΩSi is a connected open semialgebraic subset of Pd(Rm,Rn). By Corollary
5.2 there exist bridges ∆k in Pd(Rm,Rn) connecting ΩSk and ΩSk+1

with base point the constant
map Fqk for k = 1, . . . , `− 1.

For each k = 1, . . . , ` we pick a polynomial map Fk ∈ Cl(ΩSk) such that Fk(Bm) = Sk (use
Lemma 5.1(iv)). Fix real values 0 = t1 < · · · < t` = 1 and sk ∈ (tk, tk+1) for k = 1, . . . , ` − 1.
By Lemma 3.1 there exists a polynomial path φ : R→ Pd(Rm,Rn) that satisfies:

(i) φ([0, 1]) ⊂
⋃`
k=1 ΩSk ∪ {F1, . . . , F`, Fq1 , . . . , Fq`−1

}.
(ii) φ(tk) = Fk for k = 1, . . . , `.
(iii) φ((tk, sk)) ⊂ ΩSk , φ((sk, tk+1)) ⊂ ΩSk+1

and φ(sk) = Fqk .

Thus, φ(t)(Bm) ⊂ Int(Sk) for each t ∈ (tk, sk), whereas φ(t)(Bm) ⊂ Int(Sk+1) if t ∈ (sk, tk+1)
for each k. Consider the polynomial map

Φ : [0, 1]×Bm → Rn, (t, x) 7→ φ(t)(x)

and observe that

S =
⋃̀
k=1

Sk =
⋃̀
k=1

Fk(Bm) ⊂ Φ([0, 1]×Bm) ⊂
⋃̀
k=1

Sk ∪
⋃̀
k=1

Int(Sk) ∪
`−1⋃
k=1

{qk} = S.

Thus, Φ([0, 1]×Bm) = S and by Lemma 2.7 S is a polynomial image of Bm+1, as required. �
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Appendix A. Alternative models

A regular map on a semialgebraic set S ⊂ Rm is the restriction to S of a rational map
f := (f1, . . . , fn) : Rm → Rn such that fk = gk

hk
where gk, hk ∈ R[x1, . . . , xm] and hk does not

vanish on S. We prove here some comments made in the Introduction (§1.2). The interval [−1, 1]
is the image of the regular function f : R → R, t 7→ 2t

t2+1
. By [Fe1, Prop.1.4] there exists no

regular function f : R→ R such that f(R) = (−1, 1). The situation changes for n ≥ 2.

Lemma A.1. The open and closed unit balls Bn and Bn are regular images of Rn if n ≥ 2.

Proof. Consider the polynomial map

F : Rn → Rn, (x1, . . . , xn) 7→ ((x1x2 − 1)2 + x2
1, x2(x1x2 − 1), x3, . . . , xn),

whose image is Hn := {x1 > 0}, see [FG1, Ex.1.4(iv)]. Let en+1 := (0, . . . , 0, 1) ∈ Rn+1, and
let ρ : Sn \ {en+1} → Rn be the stereographic projection from the north pole. Its inverse map
G := ρ−1 is the regular map

G : Rn → Sn \ {en+1}, (x1, . . . , xn) 7→
( 2x1

‖x‖2 + 1
, . . . ,

2xn
‖x‖2 + 1

,
‖x‖2 − 1

‖x‖2 + 1

)
. (A.1)

Notice that G(Hn) = Sn ∩Hn+1, where Hn+1 := {x1 > 0}.
Consider the projection π1 : Rn+1 → Rn, (x1, . . . , xn+1) 7→ (x2, . . . , xn+1). The composition

f := πn+1 ◦G ◦ F satisfies the equality f(Rn) = Bn.

Next, we proceed with the closed unit ball Bn. Consider the projection

π : Rn+1 → Rn, (x1, . . . , xn+1) 7→ (x1, . . . , xn).

The composition π ◦G satisfies (π ◦G)(Rn) = Bn, as required. �

We conclude the following result announced in §1.2.

Corollary A.2. The family of regular images of Bn is a subfamily of the family of the regular
images of Rn.

We can also compare the family of regular images of the open ball Bn with that of Rn. As
we have already commented, if n = 1 both families are different. For n ≥ 2 they are equal as a
consequence of Lemma A.1 and the following result.

Lemma A.3. The regular map f : Bn → Rn, x 7→ x
1−‖x‖2 is surjective.

Proof. Pick a point y ∈ Rn and let us show that there exists λ ∈ R such that f(λy) = y. If
y = 0, take any λ ∈ R. Assume y 6= 0 and write

y = f(λy) =
λy

1− λ2‖y‖2
 ‖y‖ =

λ‖y‖
1− λ2‖y‖2

 λ2‖y‖2 + λ− 1 = 0.

It is enough to take λ :=
−1+
√

1+4‖y‖2
2‖y‖2 . �

The next result (lent by A. Carbone) allows us to compare the regular images of the closed
unit ball Bn with those of the n-sphere Sn.

Lemma A.4. The n-sphere Sn ⊂ Rn+1 is a regular image of [−1, 1]n.

Proof. We proceed by induction on the dimension n. Assume first n = 1. Consider the inverse

f0 : R→ S1 \ {(0, 1)}, t 7→
( 2t

t2 + 1
,
t2 − 1

t2 + 1

)
of the stereographic projection. We have f0([−1, 1]) = S1 ∩ {y ≤ 0}. Consider the polynomial
map

f1 : R2 ≡ C→ C ≡ R2, (x, y) ≡ x+ y
√
−1 =: z 7→ z2 = x2 − y2 + 2xy

√
−1 ≡ (x2 − y2, 2xy).

The image of [−1, 1] under the regular map f := f1 ◦ f0 : R→ R2 is S1.
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Assume the result is true for dimension n− 1 and we check that it is true for dimension n.

Let g : Rn−1 → Rn be a regular map such that g([−1, 1]n−1) = Sn−1 and let f1 := (f11, f12) :
R → R2 be the regular map described above such that f1([−1, 1]) = S1. Denote x′ :=
(x1, . . . , xn−1) and en+1 := (0, . . . , 0, 1). Consider the regular map

f : Rn → Rn+1, (x′, xn) 7→ (g(x′), 0)f11(xn) + en+1f12(xn).

A straightforward computation shows that f([−1, 1]n) = Sn. �

By Corollary 2.9 and Lemma A.4 the sphere Sn is a regular image of Bn. Consequently,
having in mind that Bn is the image of Sn under the projection π : Rn+1 → Rn, (x1, . . . , xn+1) 7→
(x1, . . . , xn), we deduce the following result announced in §1.2.

Corollary A.5. The family of regular images of Bn and the family of the regular images of Sn
coincide.

Appendix B. Parabolic, elliptic and hyperbolic sectors and segments

We approach in this appendix the postponed proofs of most of the results of §2.7.

B.1. Parabolic segments. We begin by proving Lemma 2.22.

Proof of Lemma 2.22. Let T
p
a := {0 ≤ y ≤ x, x ≤

√
a} be the triangle of vertices (0, 0), (

√
a, 0)

and (
√
a,
√
a). Consider the polynomial map η : R2 → R2, (x, y) 7→ (xy, y). By Lemma 2.5 T

p
a

is a polynomial image of B2. We claim: η(Tpa) = S
p
a := {x2 − y ≥ 0,

√
ay− x ≥ 0}.

To show the inclusion η(Tpa) ⊂ S
p
a pick a point (x0, y0) ∈ η(Tpa). Thus, there exists (u0, v0) ∈ T

p
a

such that η(u0, v0) = (u0v0, v0) = (x0, y0). Observe that 0 ≤ v0 ≤ u0 and u0 ≤
√
a. Therefore,

x0 − y2
0 = u0v0 − v2

0 = v0(u0 − v0) ≥ 0 and
√
ay0 − x0 =

√
av0 − u0v0 = v0(

√
a − u0) ≥ 0.

Consequently, (x0, y0) ∈ S
p
a.

To show the inclusion S
p
a ⊂ η(Tpa) pick a point (x0, y0) ∈ S

p
a. Thus, x0−y2

0 ≥ 0 and
√
ay0−x0 ≥

0. If y0 = 0, then x0 = 0 and the image of (0, 0) ∈ T
p
a under η is (0, 0) = (x0, y0). If y0 6= 0, the

pair (u0, v0) := (x0y0 , y0) ∈ T
p
a satisfies η(u0, v0) = (x0, y0), as required. �

B.2. Elliptic sectors and segments. The proof of Theorem 2.23 is done after some prelimi-
nary work that we develop next. We prove only the 2-dimensional case. Due to the nature of
the involved polynomial maps, the n-dimensional case follows from Lemma 2.19 (for m = k = 2
and ` = n− 2) and the 2-dimensional case.

Lemma B.1. The polynomial map φ0 : R2 → R2, (x1, x2) 7→ 3−(x21+x22)
2 (x1, x2) satisfies

φ0(Teα) = De
α whenever 0 < α ≤ arcsin

(√
2
3

)
.

Proof. We show first the inclusion φ0(Teα) ⊂ De
α. Pick a point (r0, β0) ∈ φ0(Teα) (in polar

coordinates). Then there exists (ρ0, θ0) ∈ Teα = {(ρ, θ) : −α ≤ θ ≤ α, 0 ≤ ρ ≤ 1
cos(θ)} with

φ0(ρ0, θ0) = (r0, β0). In polar coordinates we obtain

φ0(ρ0, θ0) ≡ φ0(ρ0 cos(θ0), ρ0 sin(θ0))

=
3− ρ2

0

2
(ρ0 cos(θ0), ρ0 sin(θ0)) ≡

(3ρ0 − ρ3
0

2
, θ0

)
= (r0, β0).

Thus, β0 = θ0, so −α ≤ β0 ≤ α. Next, let us consider the continuous function

h : [0,+∞)→ R, ρ 7→ 3ρ− ρ3

2
. (B.1)

The function h is increasing on the interval [0, 1] and decreasing on the interval [1,+∞). In
addition, h(0) = 0 and h(1) = 1. Besides, h is nonnegative on the interval [0,

√
3]. As

1 ≤ 1

cos(β0)
≤ 1

cos(α)
≤ 1

cos
(

arcsin
(√

2
3

)) =
√

3,
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we deduce h([0, 1
cos(β0) ]) = [0, 1], so

(r0, β0) = φ0(ρ0, β0) = (h(ρ0), β0) ∈ De
α = { 0 ≤ ρ ≤ 1,−α ≤ θ ≤ α}.

To prove the inclusion De
α ⊂ φ0(Teα) pick a point (r0, β0) ∈ De

α and consider the function h
defined in (B.1). As h([0, 1]) = [0, 1], there exists ρ0 ∈ [0, 1] such that h(ρ0) = r0. Therefore,
(r0, β0) = φ0(ρ0, β0) ∈ φ0(De

α) ⊂ φ0(Teα), because De
α ⊂ Teα. Thus, De

α ⊂ φ0(Teα), as required.
�

The previous lemma sets a limit to the amplitude of the elliptic sectors we work with. This
limit can be dealt with by means of the following lemma.

Lemma B.2. The polynomial map φ1 : R2 → R2, (x1, x2) 7→ (x2
1−x2

2, 2x1x2) satisfies φ1(De
α) =

De
2α.

Proof. We identify R2 ≡ C using the standard map (x1, x2) 7→ x1 +
√
−1x2. We can interpret

φ1 : C → C, z := x1 +
√
−1x2 7→ z2 = (x2

1 − x2
2) +

√
−1(2x1x2). Using this fact the statement

follows readily. �

Lemma B.3. Fix an angle 0 < α < π
2 . The polynomial map

φ2 : R2 → R2, (x1, x2) 7→ (x2
1 − x2

2 + (1− x2
1 − x2

2) cos(2α), 2x1x2)

satisfies φ2(De
α) = Se2α.

Proof. We use again polar coordinates. Observe that

φ2(ρ, θ) ≡ φ2(ρ cos(θ), ρ sin(θ)) = (ρ2 cos(2θ) + (1− ρ2) cos(2α), ρ2 sin(2θ))

= (1− ρ2)(cos(2α), 0) + ρ2(cos(2θ), sin(2θ)).

As (ρ, θ) ∈ De
α, we have 0 ≤ ρ ≤ 1 and −α ≤ θ ≤ α. Fix θ ∈ [−α, α]. The continuous map

φ2(·, θ) : [0, 1]→ R2, ρ→ (1− ρ2)(cos(2α), 0) + ρ2(cos(2θ), sin(2θ)),

transforms [0, 1] onto the segment that connects the midpoint (cos(2α), 0) of the chord of the
elliptic segment Se2α with the point (cos(2θ), sin(2θ)) on the arc of Se2α. As −α ≤ θ ≤ α, we
conclude φ2(De

α) = Se2α, as required. �

We are ready to prove Theorem 2.23.

Proof of Theorem 2.23. Observe first that both elliptic sectors and segments are convex. By
Lemma 2.1 we have to prove that both elliptic sectors and segments are polynomial images of
Bn. By the nature of the polynomial maps proposed in Lemmas B.1, B.2, B.3 and Lemma 2.19
it is enough to deal with the 2-dimensional case. By Lemma 2.5 the triangle Teα is a polynomial

image of B2 for each 0 < α < π. Fix an angle 0 < α ≤ π and let β := α
4 < arcsin

(√
2
3

)
. By

Lemma B.1 the elliptic sector De
β is the image under a polynomial map φ0 : R2 → R2 of Teβ. By

Lemma B.2 the elliptic sector De
α = De

4β is the image under a polynomial map R2 → R2 of De
β,

so De
α is the image under a polynomial map R2 → R2 of B2 for 0 < α ≤ π.

By Lemma B.3 the elliptic segment Seα = Se4β is the image under a polynomial map φ2 : R2 →
R2 of De

2β. Consequently, Seα is the image under a polynomial map R2 → R2 of B2 for 0 < α ≤ π,
as required. �

B.3. Hyperbolic sectors and segments. The proof of Theorem 2.24 is done after some
preliminary work that we develop next. We prove only the 2-dimensional case. Due to the
nature of the involved polynomial maps, the n-dimensional case follows from Lemma 2.19 (for
m = k = 2 and ` = n− 2) and the 2-dimensional case.

Lemma B.4. The polynomial map ψ0 : R2 → R2, (x1, x2) 7→ 3−(x21−x22)
2 (x1, x2) satisfies

ψ0(Thα) = Dh
α whenever 0 < α ≤ arctan(

√
2
3).
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Proof. We show first the inclusion ψ2(Thα) ⊂ Dh
α. Pick a point (r0, β0) ∈ ψ0(Thα). Then there

exists (ρ0, θ0) such that −α ≤ θ0 ≤ α, ρ0 cos(θ0) ≤ cos(α)√
cos(2α)

and

ψ0(ρ0, θ0) ≡ ψ0(ρ0 cos(θ0), ρ0 sin(θ0)) =
3− ρ2

0 cos(2θ0)

2
(ρ0 cos(θ0), ρ0 sin(θ0))

≡
(3ρ0 − ρ3

0 cos(2θ0)

2
, θ0

)
= (r0, β0).

Thus, β0 = θ0, so −α ≤ β0 ≤ α. Consider the continuous function

hθ0 : [0,+∞)→ R, ρ 7→ 3ρ− ρ3 cos(2θ0)

2
. (B.2)

This function is increasing on the bounded interval [0, 1√
cos(2θ0)

] and decreasing on the un-

bounded interval [ 1√
cos(2θ0)

,+∞). In addition, hθ0(0) = 0 and hθ0( 1√
cos(2θ0)

) = 1√
cos(2θ0)

. Be-

sides, it is nonnegative on the interval [0,
√

3
cos(2θ0) ]. As 0 < α ≤ arctan(

√
2
3) and 1 ≤ cos(θ0)√

cos(2θ0)
,

we have

ρ0 cos(θ0) ≤ cos(α)√
cos(2α)

=
1√

1− tan2(α)
≤ 1√

1− 2
3

=
√

3 ≤
√

3 cos(θ0)√
cos(2θ0)

.

As |θ0| ≤ α ≤ arctan(
√

2
3), we deduce

0 ≤ ρ0 ≤
cos(α)

cos(θ0)
√

cos(2α)
,

1√
cos(2θ0)

≤ cos(α)

cos(θ0)
√

cos(2α)
≤

√
3√

cos(2θ0)
.

Consequently,

r0 = hθ0(ρ0) ∈ hθ0
([

0,
cos(α)

cos(θ0)
√

cos(2α)

])
=
[
0,

1√
cos(2θ0)

]
 r2

0 cos(2θ0) ≤ 1.

This means that (r0, β0) = ψ0(ρ0, θ0) ∈ Dh
α.

For the converse inclusion Dh
α ⊂ ψ0(Thα), pick a point (r0, β0) ∈ Dh

α and set θ0 := β0. We have
−α ≤ θ0 ≤ α and r2

0 cos(2θ0), so 0 ≤ r0 ≤ 1√
cos(2θ0)

. We use again the continuous function hθ0

already introduced in (B.2). As

hθ0

([
0,

1√
cos(2θ0)

])
=
[
0,

1√
cos(2θ0)

]
,

there exists ρ0 ∈ [0, 1√
cos(2θ0)

] such that hθ0(ρ0) = r0, so (ρ0, θ0) ∈ Dh
α. As Dh

α ⊂ Thα, we conclude

(r0, β0) = (hθ0(ρ0), β0) = ψ0(ρ0, θ0) ∈ ψ0(Dh
α) ⊂ ψ0(Thα), as required. �

The previous lemma sets a limit to the amplitude of the hyperbolic sectors we can work with.
This limit can be dealt with by means of the following lemma.

Lemma B.5. The polynomial map ψ1 : R2 → R2, (x1, x2) 7→ (x2
1+x2

2, 2x1x2) satisfies ψ1(Dh
α) =

Dh
α′, where α′ := arctan(sin(2α)).

Proof. We rewrite the previous map as ψ1(ρ, θ) ≡ ψ1(ρ cos(θ), ρ sin(θ)) = (ρ2, ρ2 sin(2θ)). Recall
that Dh

α = {−α ≤ θ ≤ α, ρ2 cos(2θ) ≤ 1}. Thus, 0 ≤ ρ2 ≤ 1
cos(2θ) and −α ≤ θ ≤ α. The map

η : [−α, α]→ H, θ →
( 1

cos(2θ)
,

sin(2θ)

cos(2θ)

)
provides a parameterization of the arc of hyperbola that defines the hyperbolic sector Dh

α′ where

α′ := arctan(sin(2α)) (because tan(α′) = sin(2α)
cos(2α)/

1
cos(2α)). Thus, ψ1(Dh

α) = Dh
α′ , as required. �
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Lemma B.6. Fix 0 < α < π
4 . Then the polynomial map

ψ2 : R2 → R2, (x1, x2) 7→
(
x2

1 + x2
2 + (1− x2

1 + x2
2)

1

cos(2α)
, 2x1x2

)
satisfies ψ2(Dh

α) = Shα′, where α′ := arctan(sin(2α)).

Proof. We use once more polar coordinates. We have

ψ2(ρ cos(θ), ρ sin(θ)) =
(
ρ2 +

1

cos(2α)
− ρ2 cos(2θ)

cos(2α)
, ρ2 sin(2θ)

)
=
( 1

cos(2α)
, 0
)

(1− (ρ
√

cos(2θ))2) + (ρ
√

cos(2θ))2
( 1

cos(2θ)
,

sin(2θ)

cos(2θ)

)
.

As (ρ, θ) ∈ Dh
α, it holds −α ≤ θ ≤ α, ρ2 cos(2θ) ≤ 1. Fix θ ∈ [−α, α]. The interval [0, 1√

cos(2θ)
]

for the fixed θ provides (in polar coordinates) the segment Eθ that connects the origin (0, 0) with

the point ( cos(θ)√
cos(2θ)

, sin(θ)√
cos(2θ)

) ∈ H := {x2 − y2 = 1}. We have Dh
α =

⋃
θ∈[−α,α] Eθ. Consider the

continuous map

ψ2(·, θ) :
[
0,

1√
cos(2θ)

]
→ R2,

ρ 7→
( 1

cos(2α)
, 0
)

(1− (ρ
√

cos(2θ))2) + (ρ
√

cos(2θ))2
( 1

cos(2θ)
,

sin(2θ)

cos(2θ)

)
,

which maps the interval [0, 1√
cos(2θ)

] onto the segment Lθ that connects the point ( 1
cos(2α) , 0)

with the point ( 1
cos(2θ) ,

sin(2θ)
cos(2θ)) ∈ H. Consequently, ψ2(Eθ) = Lθ. The map

η : [−α, α]→ H, θ →
( 1

cos(2θ)
,

sin(2θ)

cos(2θ)

)
provides a parameterization of the arc of hyperbola that defines the hyperbolic segment Shα′

where α′ := arctan(sin(2α)) (because tan(α′) = sin(2α)
cos(2α)/

1
cos(2α)). In addition, ( 1

cos(2α) , 0) is the

midpoint of the chord of the hyperbolic segment Shα′ . We deduce Shα′ =
⋃
θ∈[−α,α] Lθ and

ψ2(Dh
α) = ψ2

( ⋃
θ∈[−α,α]

Eθ

)
=

⋃
θ∈[−α,α]

ψ2(Eθ) =
⋃

θ∈[−α,α]

Lθ = Shα′ ,

as required. �

We are ready to prove Theorem 2.24.

Proof of Theorem 2.24. Observe first that both hyperbolic sectors and segments are strictly
radially convex. By Lemma 2.1 we have to prove that both hyperbolic sectors and segments
are polynomial images of Bn. By the nature of the polynomial maps proposed in Lemmas B.4,
B.5, B.6 and Lemma 2.19 it is enough to deal with the 2-dimensional case. By Lemma 2.5 the
triangle Thα is a polynomial image of B2 for each 0 < α < π

4 . By Lemma B.4 the hyperbolic

sector Dh
α is the image under a polynomial map ψ0 : R2 → R2 of Thα if 0 < α ≤ arctan(

√
2
3).

Suppose arctan(
√

2
3) ≤ α < π

4 . Consider the continuous function f : [0, π4 ] → [0, π4 ], x 7→
arctan(sin(2x)), which is strictly increasing and satisfies x < f(x) for each x ∈ (0, π4 ). The

restriction f |[ 1
2
,π
4

] : [1
2 ,

π
4 ] → [1

2 ,
π
4 ] is contractive. Thus, f |[ 1

2
,π
4

] has a unique fixed point, which

is π
4 . In addition, if x0 ∈ [1

2 ,
π
4 ] and xm := f(xm−1) for each m ≥ 1, then {xm}m is an increasing

sequence converging to π
4 . If we denote fm := f ◦ m· · · ◦ f , then xm = fm(x0) for each m ≥ 1.

Denote x0 := arctan(
√

2
3) and xm := f(xm−1) = fm(x0) for each m ≥ 1. Let m ≥ 1 be

such that α < xm. As fm is a strictly increasing function, there exists 0 < β < arctan(
√

2
3)
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such that fm(β) = α. By Lemma B.5 there exists a polynomial map ψ1 : R2 → R2 such that

Dh
α = Dh

fm(β) = (ψ1 ◦
m· · · ◦ψ1)(Dh

β). By Lemma B.4 the hyperbolic sector Dh
β is the image under

a polynomial map ψ0 : R2 → R2 of Thβ . Thus, Dh
α is the image of B2 under a polynomial map

R2 → R2 for each 0 < α < π
4 .

By Lemma B.6 the hyperbolic segment Shα is the image under a polynomial map ψ2 : R2 → R2

of Dh
β where 0 < β := arcsin(tan(α))

2 < α < π
4 . Consequently, Shα is the image of B2 under a

polynomial map R2 → R2 for each 0 < α < π
4 , as required. �

Appendix C. A convex hexagon as a polynomial image of B3

Let us construct explicitly (Problem 1.1) a polynomial map F : R3 → R2 such that the
image of B3 under F is the convex hexagon H of vertices (0, 0), (1, 0), (2, 1), (2, 2), (1, 2), (0, 1).
This example is inspired by one proposed by Sara Abentin de Gregorio in her Bachelor’s Thesis
(supervised by the first author). We have found a polynomial parameterization α : R→ R2, t 7→
(h(t), h(−t)) of degree 34 (the explicit expression of h is presented below) such that

α(−3) = α(3) = (0, 0), α(−2) = (1, 0), α(−1) = (2, 1),

α(0) = (2, 2), α(1) = (1, 2), α(2) = (0, 1),

and α([−3, 3]) ⊂ H (Figure C.1).

0 0,25 0,5 0,75 1 1,25 1,5 1,75 2

0,25

0,5

0,75

1

1,25

1,5

1,75

2

Figure C.1. Boundary of the convex hexagon H and auxiliary polynomial path
α : [−3, 3]→ R2.

The polynomial h ∈ R[t] is the following:
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h :=
76664779821250669077010607272790474060504126133999431

104530224145652815761417086083845114789055289966288790958080000
t
34

− 78717893577241614088318159777360793613982855123

9304806924249799602963648728748783545276701634902800000
t
33

− 912613527484440059374721830348026508601541166858620900719

12976165756012073680727638272477324594503415306159987843072000000
t
32

+
83892235220371692608393905913301582885887545485043

128342164472411029006395154879293566141747608757280000000
t
31

+
22685040173892809529211504901998267843669377577565665759314889

7526176138487002734822030198036848264811980877572792948981760000000
t
30

− 341651515368750302761136090666887873089921143003186509

14887691078799679364741837965998053672442722615844480000000
t
29

− 2312987243313117187847123345648030529341762836741812156033242153

30104704553948010939288120792147393059247923510291171795927040000000
t
28

+
739549879853169825818932859020391314048855175653852243

1526942674748685063050444919589543966404381806753280000000
t
27

+
2276284563512474920119374134981072455831492763452604504854047611

1745200263996986141408007002443327133869444841176299814256640000000
t
26

− 1844015505082748933043548683479792565506942192402271751

269155996904852960266519104470021309332297810003968000000
t
25

− 617678727783923372994726045176856180266061575815960662776038981

39546409923084415026979469020883274954677075218773296283648000000
t
24

+
191534650791625808889042148881672737990833829426795743

2793843036134117638234452351113873548663893523968000000
t
23

+
1092968886400506955836901798243093407953206769838766664682946289821

8027921214386136250476832211239304815799446269410979145580544000000
t
22

− 26872808849517631782827161438579675458460680303908554289

53831199380970592053303820894004261866459562000793600000
t
21

− 108429710987186801524931157295746273363317657983915070157800658683

123506480221325173084258957095989304858453019529399679162777600000
t
20

+
21278895451981505723409875956831063512932611500243467814443

7940101908693162327862313581865628625302785395117056000000
t
19

+
3073703987676894324210366665805746792617837392955601774090905999873

729811019489648750043348382839936801436313297219179922325504000000
t
18

− 15343314371199209768200722187083411564089297923735661841193

1443654892489665877793147923975568840964142799112192000000
t
17

− 10936887264822748056498590600656508762604715166403711626815259269679

729811019489648750043348382839936801436313297219179922325504000000
t
16

+
76038476443389770380096278588852356368626040742215775927

2460775384925566837147411234049265069825243407577600000
t
15

+
6496934190786413999058459578468782136581293765475784303435117586589

166094921676954543113313769887709754809643715918847844391321600000
t
14

− 106279014558443243149270242653074552792653941625109030932479

1642779705246861171281857982454957646614369392093184000000
t
13

− 29977661421428095114360408317401194506069501391456164973924272457861

408199383782345911041194858198608719447429471325981990453248000000
t
12

+
489624276273750826348881432522588958622036832178716706790257

5178327331756410213823247988173236059980077431598080000000
t
11

+
5444857799367724341614972148198281098432336302759938935926034370597

56587790514939870186631806000277054622646472763705210142720000000
t
10

− 14424739984071336997741067336445906355369656570801663620093

157541704537562744600442729798921202882991773712640000000
t
9

− 11695393745625246285991189606549798699384856308791698561139404628187

139373632194203754348556114778460153052073719955051721277440000000
t
8

+
1631979839386110496201193087227698207675223532405371249967

30633109215637200338974975238679122782803955999680000000
t
7

+
1135847093359630638538403956445142918501566447380671798346253777

25470327520870569142645488811853098145481308471317931520000000
t
6

− 7362117782018690715541516858507252889735560321011407953

510551820260620005649582920644652046380065933328000000
t
5

− 132022313339010089934748996284139958625614088083058661615643

11558411055895884489273367067925573721788800978176819200000
t
4 − 1

6
t
3 − 1

8
t
2 + 2.
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Consider the six triangules T1, . . . ,T6 of vertices (1, 1) and two consecutive vertices of H.
Define

α1 : [−1, 1]→ R2, t 7→ α
(5

2
t− 1

2

)
and α2 : [−1, 1]→ R2, t 7→ α

(5

2
t+

1

2

)
,

see Figures C.2 and C.3.
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Figure C.2. Parameterization
of α1 : [−1, 1]→ R2
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Figure C.3. Parameterization
of α2 : [−1, 1]→ R2

The parameterization α1 begins on vertex (0, 0) and goes all over the remaining vertices
in counterclockwise direction (Figure C.2). The parameterization α2 begins on vertex (1, 0)
and goes all over the remaining vertices in counterclockwise direction (Figure C.3). Denote
∆2 := {(x, y) ∈ R2 : x ≥ 0, y ≥ 0, 1− x− y ≥ 0}. We construct the polynomial map

G : R3 → R2, (λ, µ, t) 7→ λα1(t) + µα2(t) + (1− λ− µ)(1, 1)

that maps the triangular prism ∆2 × [−1, 1] into the convex hexagon H. Observe that H =⋃6
j=1 Tj =

⋃6
k=1G(∆2×{tk}) where tk ∈ {−1,−3

5 ,−
1
5 ,

1
5 ,

3
5 , 1} (because G(∆2× tk) is one of the

six triangules Tj considered above for each k = 1, . . . , 6), so G(∆2×[−1, 1]) = H. It only remains
to compose the previous polynomial map with the polynomial map provided in Corollary 2.8

H : R3 → R3, (x, y, z) 7→
(

3
(

1− 4

9
(x2 + y2)

)2
x2, 3

(
1− 4

9
(x2 + y2)

)2
y2, 3z − 4z3

)
that transforms B3 onto ∆2× [−1, 1]. Observe that the polynomial paths α1, α2 and α3 are not
the ones suggested in the proof of Theorem 1.3, but there we analyzed a general case and here
we take advantage of the convexity and symmetry of H.
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