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Abstract

We show that convex polyhedra in Rn and their interiors are images of regular maps Rn → Rn.
As a main ingredient in the proof, given an n-dimensional, bounded, convex polyhedron K ⊂ Rn

and a point p ∈ Rn \ K, we construct a semialgebraic partition {A, B, T} of the boundary ∂K of
K determined by p, and compatible with the interiors of the faces of K, such that A and B are
semialgebraically homeomorphic to an (n − 1)-dimensional open ball and T is semialgebraically
homeomorphic to an (n − 2)-dimensional sphere. Finally, we also prove that closed balls in Rn

and their interiors are images of regular maps Rn → Rn.

1. Introduction

This work generalizes to the n-dimensional setting the results concerning (real) regular images
of the Euclidean plane developed by the third author in [8]. In fact, those results find their
origin in the pioneer work concerning regular images of Euclidean spaces initiated by the first
two authors in [5, 6]. Before entering into further detail, we recall some terminology. Given a set
X ⊂ Rn, a regular function on X is a quotient f = F1/F2 of polynomials F1, F2 ∈ R[x1, . . . , xn]
such that F2(x) �= 0 for every x ∈ X; and a map f = (f1, . . . , fm) : X → Rm is a regular map on
X if each component fi of f is a regular function onX. As one can expect, we say that a subset S
of Rm is a regular image of Rn if there exists a regular map f : Rn → Rm such that S = f(Rn).

For every affine hyperplane H ⊂ Rn there exists a polynomial � ∈ R[x1, . . . , xn] of degree 1
such that H = {x ∈ Rn : �(x) = 0} ≡ {� = 0}, and the sets

H+ = {x ∈ Rn : �(x) � 0} ≡ {� � 0} and H− = {x ∈ Rn : �(x) � 0} ≡ {� � 0}
are called the closed half-spaces defined by H. Observe that H+ and H− are the closures
in Rn of the connected components of Rn \H; hence, they are completely determined by H.
However, assigning H+ and H− to these half-spaces depends on the choice of the equation �;
of course, they are easily interchanged just considering −� instead of � to define H.

A convex polyhedron in Rn is a subset K ⊂ Rn that can be written as a finite intersection
K =

⋂r
i=1H

+
i , where each H+

i is a closed half-space. We use the notation K = 〈H+
1 , . . . , H

+
r 〉.

For convenience we allow this family of hyperplanes to be empty, and in such a case K = Rn.
The dimension dim(K) of a convex polyhedron K corresponds to its dimension as a topological
manifold with boundary.

In [8], the author proved the following statement.

Theorem 1.1. Each 2-dimensional convex polygon in R2 and its interior are regular images
of R2.
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The purpose of this article is to prove that the previous statement can be generalized for
n-dimensional convex polyhedra in Rn for n � 2; namely, we have the following theorem. In
what follows, we assume n � 2.

Theorem 1.2. Each n-dimensional convex polyhedron in Rn and its interior are regular
images of Rn.

Of course, if K ⊂ Rn is a d-dimensional polyhedron for some 0 � d < n, then K is contained
in some d-dimensional affine subspace of Rn that can be identified with Rd × {0} after an affine
change of coordinates. Thus, it follows from Theorem 1.2 that K is a regular image of Rd. This
is why we are mostly concerned along this paper with n-dimensional polyhedra of Rn.

To prove that the interior Int(K) of an n-dimensional bounded convex polyhedron K ⊂ Rn is
the image of Rn under a regular map Rn → Rn, it becomes crucial the partition of its boundary
∂K = K \ Int(K) (see Theorem 3.1) determined by an exterior point p ∈ Rn \ K, a construction
that has interest by its own. Roughly speaking it works as follows in the generic case. Fix a
point p that belongs neither to K nor to any of the hyperplanes containing the facets of K. Each
ray R from p intersects K in either the empty set or in a compact segment IR = [aR, bR], which
is a singleton in case aR = bR. Next, we define the sets A = {aR : R ∩ Int(K) �= ∅}, B = {bR :
R ∩ Int(K) �= ∅} and T = ∂K \ (A 
 B), which constitute a partition of the boundary ∂K such
that A and B are open subsets of ∂K homeomorphic to the n-dimensional open ball and T is a
closed subset of ∂K homeomorphic to the (n− 1)-dimensional sphere. Moreover, A, B and T

are compatible with the faces of K. We use the sets A, B and T to prove in Proposition 4.4 and
Corollary 4.5 the part of Theorem 1.2 concerning interiors of n-dimensional convex polyhedra.
Moreover, as we see at the end of Section 3, the previous partition can be generalized, with some
extra care, by choosing as p an arbitrary point p ∈ Rn \ K and eliminating the boundedness
hypothesis on K; see Remark 3.4.

Once we know that the interiors of convex polyhedra are regular images of Euclidean spaces,
the next step is to prove that also convex polyhedra themselves share the same property. This
requires us to generalize the techniques about scaffolds (see Section 5) already introduced in
[8, 4.7] in the 2-dimensional case. However, such generalization is not straightforward and
needs a careful and subtle analysis of the behaviour of the restriction to K of suitable central
projections π : Rn ��� Rn (see Lemma 5.1 and Corollary 5.8).

The interest of deciding whether a semialgebraic set is a regular image of Rn is out of any
doubt, and it lies in the fact that the study of certain classical problems in Real Geometry con-
cerning this kind of sets is reduced to the analysis of those problems on Rn, for which many more
tools have been developed. Let us recall some of them. Suppose that f : Rn → Rn is a regular
map and let S = f(Rn). Then the optimization of a given regular function g : S → R is equiv-
alent to the optimization of the composition g ◦ f on Rn, and in this way one can forget about
contour conditions. Another classical problem is the characterization of those regular functions
g : Rn → R that are either strictly positive or positive semidefinite on S. In case S is a basic
closed semialgebraic set, these problems have been solved in [7]; see also [3, 4.4.3]. Note that g
is strictly positive or positive semidefinite on S if and only if g ◦ f is strictly positive or positive
semidefinite on Rn, respectively, and both last questions are decidable, using, for instance, [7].
For more details about these applications and others, see [5, Section 1; 6, Section 1].

In [6], the first two authors introduced the invariant r(S) for a semialgebraic set S ⊂ Rn, as
the least integer among those m � 1 such that S = f(Rm) for some regular map f : Rm → Rn,
or r(S) = +∞ if such an integer does not exist. It is proved there that r(S) � dimS. Hence,
Theorem 1.2 says that if S is either a convex polyhedron or its interior as a topological manifold
with boundary, then r(S) = dimS.
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The article is organized as follows. In Section 2, we present the basic definitions and some
relevant results about the geometry of convex polyhedra of Rn. Section 3 is devoted to construct
the aforementioned partition of the boundary ∂K of an n-dimensional bounded convex
polyhedron determined by an exterior point. In fact, we also sketch how this construction can
be also extended to unbounded convex polyhedra (see Remark 3.4). Next, in Section 4 we prove
the second part of Theorem 1.2, namely, the interior of an n-dimensional convex polyhedron K

is a regular image of Rn. We study first the bounded case (see Proposition 4.4) whose proof runs
by induction on the number of vertices of K. We start this proof by showing the statement
for an n-simplex in Lemma 4.1. However, the general case of bounded convex polyhedra is
much more involved, and it requires the already mentioned partition of the boundary of the
polyhedron, which is in the core of the proof of Proposition 4.4. At the end of this section, we
achieve the unbounded case in Corollary 4.5 using Proposition 4.4 for bounded polyhedra and
the reduction to the bounded case (Proposition 2.7). In Section 5, we prove the first part of
Theorem 1.2. By means of Lemma 2.3, the problem is focused on polyhedra having at least one
vertex, and this case is solved in Proposition 5.2. To approach Proposition 5.2, one requires
the notion of d-scaffold of a d-dimensional face E of a polyhedron K ⊂ Rn which, as already
mentioned, extends to the n-dimensional setting the notion introduced by the third author in [8,
4.7] and plays a crucial role in the proof of Proposition 5.2. Such a d-scaffold is a semialgebraic
topological manifold Γ semialgebraically homeomorphic to E satisfying Int(Γ) ⊂ Int(K) and
∂Γ = ∂E. Finally, observe that the closed ball and its interior can be, respectively, seen as
‘limits’ of bounded convex regular polyhedra and their interiors, when the number of faces
tends to infinity. Thus, it seems natural to ask whether they are regular images of Rn or not.
We answer both questions in the affirmative in Section 6 and so r(Bn) = r(Bn) = n, where Bn

and Bn denote the open and the closed n-dimensional ball, respectively.

2. Preliminaries on convex polyhedra

We begin this section by recalling certain terminology and properties concerning convex
polyhedra. The references we have used concerning polyhedra and convex sets are [1, 2].

2.1. Convex polyhedra and their faces

Let K ⊂ Rn be an n-dimensional convex polyhedron. By Berger [2, 12.1.5] there exists a unique
family {H1, . . . , Hm} of affine hyperplanes of Rn (which is empty if K = Rn) whose cardinality
is minimal among those satisfying the equality K =

⋂m
i=1H

+
i = 〈H+

1 , . . . , H
+
m〉. This family

{H1, . . . , Hm} is, in particular, irredundant and will be called the minimal presentation of
K. The facets of K are the intersections Fi = Hi ∩ K (if any) for i = 1, . . . ,m. Of course,
Rn is the unique polyhedron of Rn without facets. Note that each Fi = 〈H−

i ,H
+
1 , . . . , H

+
m〉

is a polyhedron contained in Hi. We also say that F1, . . . , Fm are the (n− 1)-faces of K. For
0 � j � n− 2, a subset of K is a j-face of K if it is a facet of some (j + 1)-face of K. In particular,
the 0-faces are the vertices of K and the 1-faces are the edges of K; note that if K has a vertex,
then m � n (see [2, 12.1.8–9]). In general, a face of K (which is not ‘registered’ as a facet) will
be denoted by E to distinguish it from the facets F1, . . . , Fm, and the affine subspace generated
by E will be denoted by W to distinguish it from the hyperplanes H1, . . . , Hm containing the
facets F1, . . . , Fm.

2.1.1. Observe that, for each i = 1, . . . ,m, the polyhedron Ki =
⋂

j �=iH
+
j contains K

properly and it is called the polyhedron obtained from K by eliminating the facet Fi. Note
that the number of facets of K exceeds in one unit the number of facets of Ki. Of course, not
all polyhedra are bounded, but every bounded polyhedron K is the convex hull of its set of
vertices {v1, . . . , vr}, and we write K = [v1, . . . , vr] (see [1, 11.1.8]).
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Next, given any set T ⊂ Rn, we denote by IntRn(T ) the relative interior of T in Rn and
by ClRn(T ) its relative closure in Rn. Next, let X ⊂ Rn denote either the polyhedron K or
one of its faces. Note that X is a topological manifold with boundary, and denote by ∂X
its boundary and by Int(X) = X \ ∂X its interior, that is, the largest topological manifold
(without boundary) contained inX. In case X = {v} is a singleton, we use the usual convention
and write Int(X) = X and ∂X = ∅. The dimension dimX = dim(Int(X)) of X is its dimension
as a topological manifold with boundary. Observe that Int(X) coincides with the relative
interior of X in the affine subspace of Rn generated by X, and that X = ClRn(Int(X)).

Note that each affine hyperplane H ⊂ Rn coincides with the boundary ∂H+ = ∂H− of the
closed half-spaces defined by H. On the other hand, observe that affine transformations are
polynomial mappings and so all our statements do not depend on affine changes of coordinates.
Thus, all through this work, we will freely use (affine) changes of coordinates. We denote by
Bn(p, r) the open ball of Rn centred at the point p ∈ Rn with radius r > 0, and by Bn(p, r) its
closure.

In the following result, we represent the boundary and the interior of a polyhedron in terms
of its minimal presentation; namely, we have the following lemma.

Lemma 2.1. Let K ⊂ Rn be an n-dimensional convex polyhedron, let {H1, . . . , Hm} be the
minimal presentation of K and let {F1, . . . , Fm} be the facets of K. Then ∂K =

⋃m
i=1 Fi and

Int(K) =
⋂m

i=1(H
+
i \Hi).

Proof. By Berger [2, 12.1.5], ∂K =
⋃m

i=1 Fi =
⋃m

i=1(K ∩Hi), and consequently,

Int(K) = K \ ∂K = K

∖
m⋃

i=1

(K ∩Hi) =
m⋂

j=1

H+
j ∩

m⋂
i=1

(Rn \Hi) =
m⋂

i=1

(H+
i \Hi),

as required.

2.2. Degenerate and nondegenerate polyhedra

A convex polyhedron in Rn is nondegenerate if it has at least one vertex. Otherwise, we say
that the polyhedron is degenerate. Let us present now some properties concerning degenerate
convex polyhedra.

Lemma 2.2. Let K ⊂ Rn be an n-dimensional convex polyhedron containing a line L. Then
K is degenerate and each face E of K is a degenerate convex polyhedron that contains a line
LE parallel to L. In particular, the edges of K, if any, are lines parallel to L.

Proof. We may assume that K � Rn and let {H1, . . . ,Hm} be the minimal presentation
of K. We claim that each Hi is parallel to L. Otherwise Hi ∩ L is a unique point, and so
L �⊂ H+

i . Therefore, L �⊂ K, which is a contradiction.
Next, we prove the result for the facets of K. Fix a facet Fi = K ∩Hi of K and a point

pi ∈ Fi. Let us prove that Fi contains the line Li parallel to L and passing through pi. Indeed,
for j = 1, . . . ,m the hyperplane Hj is parallel to L, and so either Li ⊂ Hj or Li is parallel
to Hj . In particular, Li ⊂ Hi because pi ∈ Li ∩Hi. Observe also that pi ∈ K ∩ Li ⊂ H+

j ∩ Li.

Therefore, Li ⊂ H+
j and this implies

Li ⊂ Hi ∩
m⋂

j=1

H+
j = Hi ∩ K = Fi.
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Now, given an arbitrary face E of K, there exist, by Berger [2, 12.1.9], some facets F1, . . . , Fs

of K such that E =
⋂s

j=1 Fj . Pick a point p ∈ E and note that, since the line LE parallel to L
and passing through p is contained in each facet Fj for 1 � j � s, it is also contained in E. To
complete the proof, it suffices to see that K has no vertex. Indeed, suppose that there exists a
vertex E of K. Since E is a face of K, it should contain the line LE , which is impossible.

Lemma 2.3. Let K ⊂ Rn be an n-dimensional convex polyhedron. The following assertions
are equivalent.

(i) The polyhedron K is degenerate.
(ii) Either K = Rn or there exist 1 � k � n− 1 and a nondegenerate convex polyhedron

P ⊂ Rn−k such that, after a change of coordinates, K = Rk × P.

Proof. The implication (ii) =⇒ (i) is clear, by Lemma 2.2, because K contains a line. Thus,
let us prove the converse and suppose K �= Rn. Let E be a face of K of minimal dimension.
Since K is degenerate, it has no vertices and so 1 � dimE = k < n. Observe that since the
facets of E (if any) are also faces of K whose dimension is strictly smaller than the one of E,
it follows that E has no facets, and so it is affinely equivalent to Rk for some 1 � k � n− 1.
Hence, after a change of coordinates, we may assume that

E = {x ∈ Rn : xk+1 = 0, . . . , xn = 0} = Rk × {0}.
Let {H1, . . . , Hm} be the minimal presentation of K and let �i = ai1x1 + . . .+ ainxn + ai0 be
a polynomial of degree 1 such that H+

i = {�i � 0}. Since E ⊂ K,

ai1y1 + . . .+ aikyk + ai0 = �i(y, 0) � 0,

for all y ∈ Rk. Thus, ai1 = . . . = aik = 0 for 1 � i � m, that is, each �i = ai,k+1xk+1 + . . .+
ainxn + ai0. Hence, K = Rk × P where

P = {z = (zk+1, . . . , zn) ∈ Rn−k : �1(0, z) � 0, . . . , �m(0, z) � 0}
is a convex polyhedron of Rn−k. Note that there exists a face E′ of P such that E = Rk × E′

and, comparing dimensions, k = dimE = k + dimE′. Therefore, dimE′ = 0, that is, E′ is a
vertex of P, and so P is nondegenerate.

2.3. Polyhedra facing upwards

When one tries to represent a polyhedron K ⊂ Rn and its interior as regular images of Rn,
it is a great advantage to place K in a suitable way. We say that an n-dimensional convex
polyhedron K ⊂ Rn with minimal presentation H = {H1, . . . ,Hm} is facing upwards if there
exists a subfamily {Hi1 , . . . , Hin

} of H whose common intersection is a vertex v = (v1, . . . , vn)
of K such that

⋂n
j=1H

+
ij
\ {v} ⊂ {xn > vn}. Observe that v is the unique point of K with

minimum xn-coordinate and it will be called the minimum vertex of K. First of all, let us check
that, after a change of coordinates, every n-dimensional nondegenerate convex polyhedron is
facing upwards.

Lemma 2.4. Let K ⊂ Rn be an n-dimensional nondegenerate convex polyhedron. Then we
may assume, after a change of coordinates, that K is facing upwards and it does not intersect
the hyperplane {xn = 0}.

Proof. Let {H1, . . . , Hm} be the minimal presentation of K. Recall that since K is
nondegenerate, m � n. We may assume, after a change of coordinates and up to reordering the
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indices i = 1, . . . ,m, that
⋂n

i=1Hi = {0} is a vertex of K and H+
i = {xi � 0} for 1 � i � n.

Consequently,

K ⊂ {x1 � 0, . . . , xn � 0} ⊂ {x1 + . . .+ xn > 0} ∪ {0}.
Observe that after a new change of coordinates that transforms {x1 + . . .+ xn � 0} onto
{xn � 1}, we are done.

Let us see now several properties concerning polyhedra that are facing upwards.

Lemma 2.5. Let {u1, . . . , un} ⊂ Rn and let {�1, . . . , �n} ⊂ Rn,∗ be linear forms such
that �k(uk) > 0 and �j(uk) = 0 if j �= k. Then the sets K1 = {�1 � 0, . . . , �n � 0} and K2 =
{∑n

k=1 λkuk : λ1 � 0, . . . , λn � 0} coincide.

Proof. First, observe that the condition �k(uk) > 0 and �j(uk) = 0 if j �= k guarantees
that {u1, . . . , un} and {�1, . . . , �n} are, respectively, a basis of Rn and its dual space Rn,∗.
Consequently, the linear map Φ : Rn → Rn, x �→ (�1(x), . . . , �n(x)) is an isomorphism and
Φ(K1) = {y ∈ Rn : y1 � 0, . . . , yn � 0}. Note that, for each k = 1, . . . , n, there exists a real
positive number tk = �k(uk) > 0 such that wk = Φ(uk) = tkek, where ek is the vector whose
coordinates are all zero except the kth, which equals 1. Therefore,

Φ(K2) =

{
n∑

k=1

λkwk : λ1 � 0, . . . , λn � 0

}
= {(t1λ1, . . . , tnλn) : λ1 � 0, . . . , λn � 0},

that is, Φ(K1) = Φ(K2). Hence, Φ being injective, we get K1 = K2.

Lemma 2.6. Let K ⊂ Rn be an unbounded convex polyhedron facing upwards that does
not intersect the hyperplane {xn = 0}. Consider the rational map

f : Rn ��� Rn, (x1, . . . , xn) �−→
(
x1

xn
, . . . ,

xn−1

xn
,

1
xn

)
.

Then ClRn(f(K)) ⊂ Rn is a bounded convex polyhedron.

Proof. Since f can be interpreted as a transition map between two charts of the real
projective space RPn, it preserves affine subspaces and the convexity of those subsets that
do not intersect the hyperplane {xn = 0}. Hence, f(K) is a convex subset of Rn and so, by
Berger [1, 11.2.1], ClRn(f(K)) is a convex polyhedron of Rn. Now, all reduces to check that
f(K) is a bounded set.

Indeed, let H = {H1, . . . , Hm} be the minimal presentation of K. Since K is facing upwards,
we may assume, after reordering the indices i = 1, . . . ,m and applying a translation, that
the common intersection of the family {H1, . . . , Hn} ⊂ H is the vertex v = (0, . . . , 0, 1)
of K and

⋂n
j=1H

+
j \ {v} ⊂ {xn > 1}. Moreover, since

⋂n
j=1Hj = {v}, there exists a basis

B∗ = {�1, . . . , �n} of Rn,∗ such that H+
i = {�i − �i(v) � 0} for 1 � i � n. Denote Q = {�1 �

0, . . . , �n � 0}. Hence,

K ⊂
n⋂

j=1

H+
j = v + Q and Q \ {0} ⊂ {xn > 0}. (�)

Let B = {u1, . . . , un} ⊂ Rn be the dual basis of B∗. From Lemma 2.5, we deduce that

Q = {λ1u1 + . . .+ λnun : λ1 � 0, . . . , λn � 0}.
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Write uk = (u1k, . . . , unk) for k = 1, . . . , n and observe that, by (�), each unk > 0. We also define
u′k = (u1k, . . . , un−1,k) ∈ Rn−1. Let M > 0 be a positive real number such that ‖u′k‖ � Munk.

Observe that, for each point y ∈ Q, there exist nonnegative real numbers λk � 0 such that
y = λ1u1 + . . .+ λnun. Hence, (y1, . . . , yn−1) = λ1u

′
1 + . . .+ λnu

′
n, and so

√
y2
1 + . . .+ y2

n−1 = ‖(y1, . . . , yn−1)‖ �
n−1∑
k=1

λk‖u′k‖ � M

(
n−1∑
k=1

λkunk

)
� Myn.

Therefore, v being the minimum vertex of K, it follows that

K ⊂ v + Q ⊂ v + {x ∈ Rn : x2
1 + . . .+ x2

n−1 � M2x2
n, xn � 0}.

Now, a straightforward computation shows that also

K ⊂ {x ∈ Rn : x2
1 + . . .+ x2

n−1 � M2x2
n, xn � 1}.

Finally, given a point z ∈ f(K), there exists x ∈ K such that f(x) = z. Hence,

‖z‖2 = ‖f(x)‖2 =
(

1
xn

)2

+
n−1∑
k=1

(
xk

xn

)2

=
1
x2

n

+
x2

1 + . . .+ x2
n−1

x2
n

< 1 +M2,

which proves that f(K) is a bounded set.

The next result will allow us to reduce the proof of certain statements concerning convex
polyhedra to the case of bounded convex polyhedra.

Proposition 2.7 (Reduction to bounded convex polyhedra). Let K ⊂ Rn be an
n-dimensional, nondegenerate, unbounded, convex polyhedron in Rn, which in addition is facing
upwards and does not intersect the hyperplane {xn = 0}. Consider the rational map

f : Rn ��� Rn, (x1, . . . , xn) �−→
(
x1

xn
, . . . ,

xn−1

xn
,

1
xn

)
.

Then there exist an n-dimensional, bounded, convex polyhedron K′ ⊂ Rn and a face E′ of
K′ such that f is regular on K′ \ E′ and satisfies the equality f(K′ \ E′) = K. Moreover, the
restriction f |K′\E′ : K′ \ E′ → K is a biregular homeomorphism and f(Int(K′)) = Int(K).

Before proving Proposition 2.7, we need the following preliminary result.

Lemma 2.8. Let K ⊂ Rn be an n-dimensional convex polyhedron and let H ⊂ Rn be a
hyperplane such that K ⊂ H+. Then H ∩ K is either empty or a face of K.

Proof. We proceed by induction on the dimension of K. If n = dimK = 1, then we may
assume that H+ = {x � 0} ⊂ R. Observe that either K ⊂ {x > 0}, and so K ∩H = ∅, or K ∩
H = {0}, which is a face of K. Assume now the result true for polyhedra whose dimension is
smaller than n, and let K ⊂ Rn be an n-dimensional convex polyhedron. Since K ⊂ H+, we
have

Int(K) = IntRn(K) ⊂ IntRn(H+) = Int(H+),

and K ∩H ⊂ ∂K. Let F1, . . . , Fm be the facets of K. By Lemma 2.1, ∂K =
⋃m

i=1 Fi, and so

K ∩H = ∂K ∩H =
m⋃

i=1

(Fi ∩H).
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After reordering the indices i = 1, . . . ,m, we may assume that dim(F1 ∩H) � dim(Fj ∩H) for
j = 2, . . . ,m; hence, dim(K ∩H) = dim(F1 ∩H) = d � n− 1.

Next, let us check that K ∩H = F1 ∩H. Indeed, let H1 ⊂ Rn be the hyperplane of Rn

generated by F1 and suppose, by way of contradiction, that there exists a point p ∈ (K \ F1) ∩
H. Then p �∈ H1, because F1 = H1 ∩ K. Since d = dim(F1 ∩H), there exist affinely independent
points {p0, p1, . . . , pd} ⊂ F1 ∩H ⊂ H1 and observe that also the points {p0, p1, . . . , pd, pd+1 =
p} ⊂ K ∩H are affinely independent because p �∈ H1. Therefore, their convex hull T has
dimension d+ 1. But, K ∩H being convex, it contains T ; hence,

d+ 1 = dimT � dim(K ∩H) = d,

which is a contradiction. Thus, K ∩H = F1 ∩H. Since F1 ⊂ H+ ∩H1 and dimF1 = n− 1, we
deduce that F1 ⊂ H ∩H1 or, by the induction hypothesis, either F1 ∩H = F1 ∩H ∩H1 = ∅

or E = F1 ∩H = F1 ∩H ∩H1 is a face of F1, and hence of K. In the first case, K ∩H = F1

is a face of K; in the second one, either K ∩H = ∅ or K ∩H = F1 ∩H = E is a face of K, as
wanted.

Now, we are ready to prove Proposition 2.7.

Proof of Proposition 2.7. Let c0 > 0 denote the last coordinate of the minimum vertex of
K and let us consider the rational map

f : Rn ��� Rn, (x1, . . . , xn) �−→
(
x1

xn
, . . . ,

xn−1

xn
,

1
xn

)
.

By Lemma 2.6, K′ = ClRn(f(K)) is a bounded convex polygon. Since K ∩ {xn = 0} = ∅ and
f |Rn\{xn=0} : Rn \ {xn = 0} → Rn \ {xn = 0} is a regular involution, it follows that

Int(K′) = IntRn(K′) = IntRn(f(K)) = f(IntRn(K)) ⊂ f(K) ⊂ Rn \ {xn = 0}.
Thus, K′ ∩ {xn = 0} ⊂ ∂K′. Observe also that K′ ⊂ {xn � 0}, because the last coordinate of
each point in K is � c0 > 0. Moreover, E′ = K′ ∩ {xn = 0} �= ∅ because K is unbounded, and
we deduce from Lemma 2.8 that E′ is a face of K′. Note also that

K′ \ E′ = K′ \ {xn = 0} = ClRn(f(K)) \ {xn = 0} = f(K),

and consequently K = f(f(K)) = f(K′ \ E′), which proves the first part. Next, observe that the
restriction f |K′\E′ : K′ \ E′ → K is a biregular homeomorphism whose inverse is the restriction
f |K : K → K′ \ E′. To complete the proof, and since we have already seen that Int(K′) =
f(IntRn(K)) = f(Int(K)), we get f(Int(K′)) = f(f(Int(K))) = Int(K).

Remark 2.9. Observe that if H ⊂ Rn is an affine subspace that does not intersect the
hyperplane {xn = 0}, then so is f(H). Moreover, if P ⊂ Rn is a bounded convex polyhedron
that does not intersect {xn = 0}, so is f(P). Furthermore, if P ⊂ Rn is a bounded convex
polyhedron such that P ∩ {xn = 0} is a face of P, then f(P) is an unbounded convex polyhedron.
Conversely, an unbounded convex polyhedron P ⊂ Rn that does not intersect {xn = 0} is
transformed by f onto a bounded convex polyhedron P′ = ClRn(f(P)) such that P′ ∩ {xn = 0}
is a face of P′. To prove the previous facts, which are well known, recall that f can be understood
as a transition map between two charts of the real projective space RPn.

3. Partitions of the boundary of a convex polyhedron

The purpose of this section is to prove Theorem 3.1, which is the clue to demonstrate the
second part of Theorem 1.2. This result, which has its own interest, provides, for each point
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p ∈ Rn \ K, a natural partition determined by p of the boundary ∂K of the bounded convex
polyhedron K; namely, we have the following theorem.

Theorem 3.1. Let K ⊂ Rn be an n-dimensional, bounded, convex polyhedron and let
p ∈ Rn \ K be an exterior point. Let R be the collection of all rays R from p intersecting
Int(K) and, for each R ∈ R, let aR be the point in K ∩R closest to p. Let A = {aR : R ∈ R},
T = ClRn(A) \ A and B = ∂K \ ClRn(A). Then the following properties hold:

(i) The sets A,B and T are pairwise disjoint subsets of ∂K such that A and B are open in
∂K and connected, T is closed in ∂K and ∂K = A 
 B 
 T.

(ii) The boundary ∂K is homeomorphic to the (n− 1)-dimensional sphere Sn−1, and there
exist homeomorphisms ϕ1 : Bn−1(0, 1) → A 
 T and ϕ2 : Bn−1(0, 1) → B 
 T such that
ϕ1(Bn−1(0, 1)) = A, ϕ2(Bn−1(0, 1)) = B and ϕi(∂Bn−1(0, 1)) = T for i = 1, 2.

(iii) If F1, . . . , Fm are the facets of K, then there exists 1 � k < m such that, after reorder-
ing the indices if necessary, ClRn(A) =

⋃k
i=1 Fi, ClRn(B) =

⋃m
j=k+1 Fj and T =

⋃k
i=1⋃m

j=k+1 Fi ∩ Fj .
(iv) If E is a face of K and {Fi1 , . . . , Fie

} is the collection of all the facets of K containing E,
then Int(E) ⊂ A if and only if Int(Fir

) ⊂ A and Int(E) ⊂ B if and only if Int(Fir) ⊂ B
for r = 1, . . . , e.

We say that ∂K = A 
 B 
 T is the partition of ∂K determined by the point p. We approach
the proof of Theorem 3.1 in two steps. First, we prove the result for a point p not contained
in any of the hyperplanes of Rn generated by the facets of K. Next, we proceed to the general
case using the already proved situation. Before this though, we state the following technical
result, whose proof is straightforward and is not included here.

Lemma 3.2. Let p, q ∈ Rn and let 0 < δ < dist(p, q). LetH ⊂ Rn be the hyperplane passing
through q and perpendicular to the line joining p and q, and let R be the open ray with origin
at p and passing through q. Consider the semialgebraic sets

D = H ∩Bn(q, δ) and C = {p+ t(y − p) : t � 0, y ∈ D}.
Then C \ (Bn(q, δ) ∪ {p}) is an open neighbourhood in Rn of R \ (Bn(q, δ) ∪ {p}) which is
contained in the open subset Rn \H of Rn.

3.1. Proof of Theorem 3.1 with restrictions on the exterior point

First recall that if K ⊂ Rn is an n-dimensional, bounded, convex polyhedron, then, by
[1, 11.3.4], K is homeomorphic to the closed ball Bn(0, 1) via a homeomorphism ϕ :
K → Bn(0, 1). From the invariance of domain theorem, it follows that ϕ(∂K) = Sn−1 and
ϕ(Int(K)) = Bn(0, 1).

Denote by Hi the hyperplane of Rn generated by the facet Fi, for i = 1, . . . ,m. LetH+
i be the

closed half-space of Rn determined by Hi containing K and let H−
j = Rn \ (H+

j \Hj). Recall
that, by Berger [2, 12.1.5], K =

⋂m
i=1H

+
i and K �

⋂
j �=iH

+
j for each i = 1, . . . ,m. Moreover,

∂K =
⋃m

i=1 Fi (see Lemma 2.1).

3.1.1. In what follows in this proof, we fix a point p �∈ ⋃m
i=1Hi ∪ K and denote by F the

family of all rays from p intersecting K. Observe that, since p �∈ Hi, the intersection Fi ∩R
is either empty or a singleton for each R ∈ F. Moreover, the intersection K ∩R is either a
singleton or a compact segment IR ⊂ R.
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The distance to the point p defines a natural order relation in the segment IR; namely,
the smallest element aR ∈ IR is the nearest point to p and the largest one is the furthest
point bR ∈ IR to p. Given two points x, y ∈ IR, we say that x � y if dist(x, p) � dist(y, p). We
set IR = [aR, bR] = {x ∈ R : aR � x � bR} and (aR, bR) = {x ∈ R : aR < x < bR}. Observe
that IR = {(1 − λ)aR + λbR : λ ∈ [0, 1]} and, given two points x = (1 − λ)aR + λbR and y =
(1 − μ)aR + μbR in IR, we have x � y if and only if λ � μ.

In the extremal case in which K ∩R is a singleton, we have K ∩R = [aR, bR] with aR = bR,
and (aR, bR) = ∅. We keep the above notation along the rest of this proof. Next, we prove
several facts about the intervals IR and the points aR, bR.

3.1.2. Let R ∈ F and IR = [aR, bR] = K ∩R. Then aR, bR ∈ ∂K and (aR, bR) ⊂ Int(K).
Indeed, the statement is obvious if aR = bR; hence, we assume that aR �= bR and define d =
dist(aR, bR). Indeed, suppose, by way of contradiction, that aR ∈ Int(K); then, there exists
ε > 0 such that Bn(aR, ε) ⊂ K. Hence, the point aR − (ε/2d)(bR − aR) ∈ K ∩R and it is closer
to p than aR, which is a contradiction. Hence, aR ∈ ∂K and, analogously, bR ∈ ∂K.

Next, suppose that there exists a point x ∈ (aR, bR) ∩ ∂K. Since R intersects each facet of K

in at most one point, the points aR, x, bR belong to different facets of K, for example, aR ∈ F1,
bR ∈ F2 and x ∈ F3. Let H+

3 be the half-space of Rn containing K whose boundary is H3.
Observe that x ∈ H3 ∩ (aR, bR) and, consequently, either aR �∈ H+

3 or bR �∈ H+
3 , which is a

contradiction.

3.1.3. Let G = {R ∈ F : #(R ∩ ∂K) = 2}, A = {aR : R ∈ G}, B = {bR : R ∈ G} and
T = {aR : R ∈ F \ G}. Then ∂K = A 
B 
 T and both A and B are open subsets of ∂K.
In particular, T is a closed subset of ∂K. Indeed, the equality ∂K = A 
B 
 T is evident,
and so T = ∂K \ (A 
B). Hence, all reduces to prove that A and B are open subsets of
∂K. To show this, it suffices to see that fixed a ray R ∈ G with IR = [aR, bR], the points
aR and bR are interior points of the sets A and B, respectively. To prove this, we fix a point
q ∈ (aR, bR) ⊂ Int(K) and take δ > 0 such that Bn(q, δ) ⊂ Int(K). Let H be the hyperplane of
Rn passing through q and perpendicular to the line joining p and q. Let DR = Bn(q, δ) ∩H
and consider the semialgebraic set C = {p+ t(y − p) : t � 0, y ∈ DR}. By Lemma 3.2,
C \ (Bn(q, δ) ∪ {p}) is an open neighbourhood in Rn of R \ (Bn(q, δ) ∪ {p}) contained in
the open subset Rn \H of Rn. This implies, in particular, that aR, bR ∈ C \ (Bn(q, δ) ∪ {p}).
Denote by H− the closed half-space defined by H containing p, and let H+ = (Rn \H−) ∪H.
Note that Rn \H = Int(H+) ∪ Int(H−). Let FC ⊂ F be the family of rays from p passing
through a point of DR; by the conic structure of C, the equality C =

⋃
S∈FC

S holds.
Observe that if S ∈ FC , then S ∩ Int(K) �= ∅ and so S ∈ G. Thus, T ∩ C = ∅ because C =⋃
S∈FC

S. Equivalently, C ∩ ∂K ⊂ A 
B. Consider the open subsets of ∂K:

U1 = (C \ (Bn(q, δ) ∪ {p})) ∩ Int(H−) ∩ ∂K and

U2 = (C \ (Bn(q, δ) ∪ {p})) ∩ Int(H+) ∩ ∂K,

which satisfy the equality U1 ∪ U2 = C \ (Bn(q, δ) ∪ {p}) ∩ ∂K. For each S ∈ FC , let mS be
the intersection point of H and S. Observe that {mS} = S ∩DS and that there exist points
cS , dS ∈ ∂Bn(q, δ) ⊂ Int(K) such that mS ∈ (cS , dS) and S ∩Bn(q, δ) = [cS , dS ]. Therefore,

S ∩ (C \ (Bn(q, δ) ∪ {p})) ∩ K = [aS , cS) ∪ (dS , bS ].

Thus, since C \ (Bn(q, δ) ∪ {p}) ⊂ Rn \H, it follows

[aS , cS) = S ∩ (C \ (Bn(q, δ) ∪ {p})) ∩ K ∩ Int(H−) and

(dS , bS ] = S ∩ (C \ (Bn(q, δ) ∪ {p})) ∩ K ∩ Int(H+).



ON CONVEX POLYHEDRA AS REGULAR IMAGES OF Rn 857

Hence, for each ray S ∈ FC , we have

{aS} = S ∩ (C \ (Bn(q, δ) ∪ {p})) ∩ Int(H−) ∩ ∂K = S ∩ U1 and

{bS} = S ∩ (C \ (Bn(q, δ) ∪ {P})) ∩ Int(H+) ∩ ∂K = S ∩ U2.

Consequently, aR ∈ U1 =
⋃

S∈FC
S ∩ U1 ⊂ A and bR ∈ U2 =

⋃
S∈FC

S ∩ U2 ⊂ B, and this
shows that aR is an interior point of A and bR is an interior point of B, as wanted.

3.1.4. Both A and B are connected: ClRn(A) = A 
 T and ClRn(B) = B 
 T . Moreover,
A = A, B = B and T = T (see Theorem 3.1 for the definition of A, B and T). Indeed, since
p /∈ K, there exists a polynomial � ∈ R[x1, . . . , xn] of degree 1 such that �(p) < 0 and K ⊂
{� > 0}. Let H ′ be the hyperplane of Rn passing through p and parallel to the hyperplane
H = {� = 0}. Consider the central projection π : Rn \H ′ → H onto H with centre p. For every
point q ∈ K denote by Rq the ray from p passing through q. Since �(p)�(q) < 0, it follows that
π(q) = Rq ∩H.

Since K is a bounded convex polyhedron of Rn and π is a central projection, the image
P = π(K) ⊂ H is a bounded convex polyhedron contained in the hyperplane H. Note that π is
an open map and Int(K) is an open subset of Rn \H ′. Therefore, π(Int(K)) is an open subset
of H and so of P. Moreover, Int(K) being convex (see [1, 11.2.5]), its image π(Int(K)) is convex
too.

The continuous map π|K : K → H is proper, because K is compact and, consequently,

ClH(π(Int(K))) = π(ClK(Int(K))) = π(K) = P.

By Berger [1, 11.2.5], and π(Int(K)) being convex, we have

π(Int(K)) = IntH(π(Int(K))) = IntH(ClH(π(Int(K)))) = IntH(P).

Observe that, by the very definition of π,A and B, we also have

π(A) = π(B) = π(Int(K)) = IntH(P),

and the restrictions π|T , π|A and π|B are injective maps. Moreover, a point of A 
B and a
point of T are not collinear with p and so the restrictions π|A�T and π|B�T are injective as
well. Observe that π(T ) = ∂P, because

∂P 
 IntH(P) = P = π(K) = π(∂K 
 Int(K)) = π(A 
B 
 T 
 Int(K))
= π(A) ∪ π(B) ∪ π(T ) ∪ π(Int(K)) = π(T ) 
 IntH(P).

From Paragraph 3.1.3 we know that A and B are open subsets of ∂K, and therefore ∂K \B =
A 
 T and ∂K \A = B 
 T are compact sets, and so the bijective maps π|A�T : A 
 T → P and
π|B�T : B 
 T → P are in fact homeomorphisms. In particular, A and B are homeomorphic to
π(A) = π(B) = IntH(P), which is connected.

Let us check now the equalities ClRn(A) = A 
 T and ClRn(B) = B 
 T . The inclusion
ClRn(A) ⊂ A 
 T follows because A ⊂ A 
 T = ∂K \B is a closed subset in Rn. On the other
hand, the map π|K : K → H being proper,

π(ClRn(A)) = π(ClK(A)) = ClH(π(A)) = ClH(π(Int(K))) = P = π(A 
 T ),

which implies the equality ClRn(A) = A 
 T because the restriction π|A�T is injective.
Analogously one proves that ClRn(B) = B 
 T .

Next, note that a ray R ∈ G (see Paragraph 3.1.3) if and only if R ∩ Int(K) �= ∅, that is,
R ∈ R (see Theorem 3.1 for the definition of R). Hence, G = R and so A = A. Therefore,
T = ClRn(A) \ A = ClRn(A) \A = (A 
 T ) \A = T and

B = ∂K \ ClRn(A) = (A 
 T ) 
B \ ClRn(A) = (A 
 T ) 
B \ (A 
 T ) = B,

as wanted.
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3.1.5. There exist homeomorphisms ϕ1 : Bn−1(0, 1) → A 
 T and ϕ2 : Bn−1(0, 1) → B 

T such that ϕ1(Bn−1(0, 1)) = A, ϕ2(Bn−1(0, 1)) = B and ϕi(∂Bn−1(0, 1)) = T for i = 1, 2. We
use all the notation introduced in the proof of Paragraph 3.1.4. By Berger [1, 11.3.4] there
exists a homeomorphism ϕ : P → Bn−1(0, 1). By the invariance of domain theorem, we deduce
that ϕ(∂P) = ∂Bn−1(0, 1) and ϕ(IntH(P)) = Bn−1(0, 1). Now, the homeomorphisms ϕ1 and
ϕ2 we are looking for are, respectively, the compositions

ϕ1 = (π|A�T)−1 ◦ ϕ−1 : Bn−1(0, 1)−→A 
 T and ϕ2 = (π|B�T)−1 ◦ ϕ−1 : Bn−1(0, 1)−→B 
 T.

Let us check that they satisfy the required conditions. First,

ϕ1(Bn−1(0, 1)) = (π|A�T)−1(IntH(P)) = A

and ϕ2(Bn−1(0, 1)) = (π|B�T)−1(IntH(P)) = B.

Second,

ϕ1(∂Bn−1(0, 1)) = (π|A�T)−1(∂P) = T = (π|B�T)−1(∂P) = ϕ2(∂Bn−1(0, 1)),

and we are done.

3.1.6. Recall that F1, . . . , Fm denote the facets of the polyhedron K ⊂ Rn andH1, . . . ,Hm

the hyperplanes of Rn generated by them. Then we have the following conditions:
(1) Int∂K(Fi) = Int(Fi) for i = 1, . . . ,m;
(2) for each index i = 1, . . . ,m, either Int(Fi) ⊂ A or Int(Fi) ⊂ B.
We begin by proving (1). By Berger [2, 12.1.5–7], Int(Fi) = IntHi

(Fi) = Fi \
⋃

j �=i Fj , and
since each facet Fj is a closed subset of Rn, we get

Int∂K(Fi) = Fi \ Cl∂K(∂K \ Fi) = Fi

∖
Cl∂K

⎛
⎝⋃

j �=i

Fj \ Fi

⎞
⎠

= Fi

∖⋃
j �=i

Cl∂K(Fj \ Fi) = Fi

∖⋃
j �=i

Fj = IntHi
(Fi) = Int(Fi).

Next, we proceed with (2). Since A and B are, by Paragraph 3.1.3, open subsets of ∂K and
Int(Fi) is connected, to prove our claim, it is enough to check that Int(Fi) ⊂ A 
 B. Indeed,
let x ∈ Int(Fi). We must prove that the ray R from p passing through x intersects Int(K) and
that x is one of the extremes of R ∩ K.

Observe first that dist(x, p) > 0, because p �∈ K. Also dist(x,Hj) > 0 for j �= i, because
x ∈ Int(Fi) = Fi \

⋃
j �=i Fj = Fi \

⋃
j �=iHj . Thus, ε = min{dist(x, p), dist(x,Hj) : j �= i} is a

positive real number. Let us check that Bn(x, ε) ∩ (H+
i \Hi) ⊂ Int(K). Suppose, by way of

contradiction, that there exists a point

y ∈ (Bn(x, ε) ∩ (H+
i \Hi)) ∩ (Rn \ Int(K)).

By Lemma 2.1, y ∈ Rn \ Int(K) =
⋃m

j=1(R
n \ (H+

j \Hj)). Consequently, there exists j �= i such
that y ∈ Rn \ (H+

j \Hj) = H−
j and so

dist(x,Hj) = dist(x,H−
j ) � dist(x, y) < ε � dist(x,Hj),

which is a contradiction. Thus, Bn(x, ε) ∩ (H+
i \Hi) ⊂ Int(K).

Observe that, since p is an exterior point with respect to the open ball Bn(x, ε) and x ∈
Hi but p �∈ Hi, the ray R from p passing through x intersects Bn(x, ε) ∩ (H+

i \Hi) and so
R ∩ Int(K) �= ∅. Hence, R ∩ K is a closed (nontrivial) interval having x as one of its extremes
because x ∈ Fi ⊂ ∂K. Thus, x ∈ A 
 B, as wanted.
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3.1.7. Therefore, by Paragraph 3.1.6(2), we may assume the existence of k < m such that
Int(Fi) ⊂ A for i = 1, . . . , k and Int(Fi) ⊂ B for i = k + 1, . . . ,m. To ensure that k < m, just
recall that ClRn(A) = A ∪ T � ∂K =

⋃m
i=1 Fi = A ∪ T ∪ B and B is a nonempty open subset

of ∂K.

3.1.8. Moreover, with these notation we have the following properties:
(1) given indices i, j with 1 � i � k and k + 1 � j � m, the intersection Fi ∩ Fj ⊂ T;
(2) ClRn(A) =

⋃k
i=1 Fi, ClRn(B) =

⋃m
j=k+1 Fj and T =

⋃k
i=1

⋃m
j=k+1 Fi ∩ Fj .

We first prove (1). Since each facet is a convex set, it coincides, by Berger [1, 11.2.5], with
the closure of its interior. Thus, using Paragraph 3.1.4,

Fi ∩ Fj = ClHi
(IntHi

(Fi)) ∩ ClHj
(IntHj

(Fj))
= ClRn(IntHi

(Fi)) ∩ ClRn(IntHj
(Fj))

⊂ ClRn(A) ∩ ClRn(B) = (A 
 T) ∩ (B 
 T) = T.

Next, we proceed with (2). Recall that ClRn(A) ∩ B = (A 
 T) ∩ B = ∅ and Int(Fi) ⊂ B for
i = k + 1, . . . ,m. Hence,

ClRn(A)

∖
k⋃

i=1

Int(Fi) = ClRn(A)

∖
m⋃

i=1

Int(Fi) ⊂ ∂K

∖
m⋃

i=1

Int(Fi) =
m⋃

i=1

Fi

∖
m⋃

i=1

Int(Fi).

Now, since Fi ∩ IntHj
(Fj) = ∅ if i �= j, we infer that

ClRn(A)

∖
k⋃

i=1

Int(Fi) ⊂
m⋃

i=1

(Fi \ Int(Fi)).

Consequently, by Bochnak, Coste and Roy [3, 2.8.13],

dim

(
ClRn(A)

∖
k⋃

i=1

Int(Fi)

)
� dim

(
m⋃

i=1

(Fi \ Int(Fi))

)
= n− 2.

This implies, since ClRn(A) is pure dimensional of dimension n− 1, that

ClRn(A) = ClRn

(
k⋃

i=1

Int(Fi)

)
=

k⋃
i=1

Fi.

Analogously, ClRn(B) =
⋃m

j=k+1 Fj and so, using again Paragraph 3.1.5,

T = (A 
 T) ∩ (B 
 T) = ClRn(A) ∩ ClRn(B) =
k⋃

i=1

m⋃
j=k+1

Fi ∩ Fj ,

as wanted.

3.1.9. Let E be a face of K and let E = {Fi1 , . . . , Fie
} be the collection of all the facets

of K containing E. Then Int(E) ⊂ A if and only if Int(Fir
) ⊂ A for all r = 1, . . . , e. Indeed, we

may assume, after reordering the indices 1 � i � k, that E = {F1, . . . , Fe} and Int(Fi) ⊂ A for
i = 1, . . . , e. Then by Paragraph 3.1.8,

Int(E) ⊂ E =
e⋂

i=1

Fi ⊂
e⋂

i=1

ClRn(Int(Fi)) ⊂ ClRn(A) = A 
 T,
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and so all reduces to see that Int(E) ∩ T = ∅. Suppose, by way of contradiction, the existence
of a point x ∈ Int(E) ∩ T. Since x ∈ T there exists, by Paragraph 3.1.8, a facet Fs of K, with
s � k + 1, such that x ∈ Fs. Since x ∈ Int(E) ∩ Fs, we deduce that E = ClRn(E) ⊂ Fs. But
Fs ∈ E and Int(Fs) ⊂ B, which is a contradiction.

Conversely, suppose that Int(E) ⊂ A, but Int(Fij
) �⊂ A for some index 1 � j � e. By

Paragraph 3.1.6, Int(Fij
) ⊂ B, and let us check that we may choose some index 1 � s � e

such that Int(Fis
) ⊂ A. Otherwise, all Fij

∈ E satisfies Int(Fij
) ⊂ B and proceeding as in

the previous implication but swapping A for B, we deduce that Int(E) ⊂ B, which is a
contradiction. Hence, by Paragraph 3.1.8(1), Int(E) ⊂ E ⊂ Fij

∩ Fis
⊂ T, which is false.

3.1.10. Observe that under our assumptions, that is, K bounded and p �∈ ⋃m
i=1Hi, we

have already proved Theorem 3.1; namely, (i) follows from Paragraphs 3.1.3 and 3.1.4; Para-
graph 3.1.5 proves (ii); Paragraph 3.1.8(2) implies (iii), and (iv) is proved in Paragraph 3.1.9
(because Paragraph 3.1.9 also works if we substitute A by B).

Next, we proceed to prove Theorem 3.1 in case p is an arbitrary point outside K. Before
that, we need a preliminary lemma.

Lemma 3.3. Let K ⊂ Rn be an n-dimensional, convex polyhedron and let {H1, . . . , Hm}
be the minimal presentation of K. Let �i ∈ R[x1, . . . , xn] be a polynomial of degree 1 such that
H+

i = {�i � 0} for i = 1, . . . ,m. Let p ∈ Rn \ K such that

�1(p) � 0, . . . , �s(p) � 0 and �s+1(p) < 0, . . . , �m(p) < 0 for some 0 � s < m.

Then, for each ε > 0, there exists a point q ∈ Bn(p, ε), such that �1(q) > 0, . . . , �s(q) > 0 and
�s+1(q) < 0, . . . , �m(q) < 0.

Proof. Observe first that if �1(p) > 0, . . . , �s(p) > 0, then it suffices to choose q = p.
Thus, after reordering the indices 1, . . . , s, we may assume that there exists 1 � k � s
such that �1(p) = 0, . . . , �k(p) = 0 and �k+1(p) > 0, . . . , �s(p) > 0. Consider the n-dimensional
convex polyhedron K′ =

⋂k
i=1H

+
i , which contains K =

⋂m
i=1H

+
i . Note that {H1, . . . , Hk} is

the minimal presentation of K′, because {H1, . . . , Hm} is the minimal presentation of K.
Observe that p ∈ K′ and, by Lemma 2.1, p �∈ K′ \⋃k

i=1Hi = Int(K′), that is, p ∈ ∂K′. Let
δ = min{ε, dist(p,Hi) : i = k + 1, . . . ,m}, which is positive because p �∈ ⋃m

i=k+1Hi. Note that,
for each point y ∈ Bn(p, δ), we have

�k+1(y) > 0, . . . , �s(y) > 0 and �s+1(y) < 0, . . . , �m(y) < 0.

On the other hand, since p ∈ K′ = ClRn(Int(K′)), there is a point q ∈ Int(K′) ∩Bn(p, δ). Hence,
q ∈ Bn(p, ε), and it satisfies �1(q) > 0, . . . , �s(q) > 0 and �s+1(q) < 0, . . . , �m(q) < 0, as wanted.

3.2. Proof of Theorem 3.1 with no restrictions on the exterior point

Recall that H1, . . . , Hm denote the hyperplanes of Rn generated by the facets F1, . . . , Fm of
K. Since we have already proved Theorem 3.1 when p �∈ (K ∪⋃m

i=1Hi), it only remains to
consider the case in which p ∈ (

⋃m
i=1Hi) \ K. Thus, let p be such a point and, after reordering

the indices if necessary, let 1 � r1 � r2 < m be such that

p ∈
r1⋂

i=1

Hi ∩
r2⋂

i=r1+1

(H+
i \Hi) ∩

m⋂
i=r2+1

(Rn \H+
i ).
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3.2.1. We repeat for p the construction we did in Paragraph 3.1.1 for a point in
Rn \ (

⋃m
i=1Hi ∪ K). Denote by F the family of all rays R from p intersecting K. Fix R ∈ F and

observe that the intersection K ∩R is either a singleton or a compact interval IR = [aR, bR],
where aR is the point in IR closest to p and bR is the furthest one. We define in IR the
same order relation we constructed in Paragraph 3.1.1. In the extremal case in which K ∩R
is a singleton, we write K ∩R = [aR, bR], with aR = bR and so (aR, bR) = ∅. Recall also that
R = {R ∈ F : IR ∩ Int(K) �= ∅} and A = {aR : R ∈ R}. We also set T = ClRn(A) \ A and
B = ∂K \ ClRn(A). The same proof of Paragraph 3.1.2 provides us the following.

3.2.2. Let R ∈ F and IR = [aR, bR] = K ∩R. Then aR, bR ∈ ∂K. Moreover, if R ∈ R,
then (aR, bR) ⊂ Int(K). Next, by Lemma 3.3, there exists a point q ∈ ⋂r2

i=1(H
+
i \Hi) ∩⋂m

i=r2+1(R
n \H+

i ). Observe that q �∈ (K ∪⋃m
i=1Hi), and our next goal is to compare the sets

A,B and T determined by the point p, with those A′, B′ and T′ determined by the point q,
whose properties were carefully studied in the first part of the proof of Theorem 3.1. In fact,
we obtain the best possible answer.

3.2.3. With the notation introduced above, A = A′ and so B = B′ and T = T′. Indeed,
let aR ∈ A for some ray R ∈ R from p. The strategy will be the following. We will prove
first that the ray R1 from q passing through aR intersects Int(K). Consequently, aR ∈ K ∩
R1 = [aR1 , bR1 ] and, by Paragraphs 3.1.2 and 3.2.2, (aR1 , bR1) ⊂ Int(K) and aR ∈ ∂K. Thus,
aR ∈ {aR1 , bR1}. We shall see later that in fact aR �= bR1 , and so aR = aR1 ∈ A′, which proves
the inclusion A ⊂ A′. The converse inclusion A′ ⊂ A follows analogously, but interchanging the
roles of p and q, R and R1, aR and aR1 , and bR and bR1 , and we do not include the details.

Hence, let us begin by proving that the ray R1 from q passing by aR intersects Int(K).
To that end, let �1, . . . , �m ∈ R[x1, . . . , xn] be polynomials of degree 1 such that each closed
half-space H+

i = {�i � 0}. Let us check first that �i(aR) > 0 for i = 1, . . . , r2. Indeed, since
aR ∈ A, there exists a point x ∈ Int(K) ∩R with x > aR. Hence, there exists ρ > 1 such that
x = ρaR + (1 − ρ)p, and since x ∈ Int(K),

0 < �i(x) = ρ(�i(aR)) + (1 − ρ)�i(p).

But �i(p) � 0, and so �i(aR) > 0.
Next, recall that, by Lemma 2.1, Int(K) =

⋂m
i=1(H

+
i \Hi) =

⋂m
i=1{�i > 0}. Therefore, we

must check that R1 ∩
⋂m

i=1{�i > 0} �= ∅. If r2 + 1 � i � m, then we have �i(q) < 0 and, for
each ρ > 1, the point z = ρaR + (1 − ρ)q ∈ R1 ∩ {�i > 0}; namely,

�i(z) = �i(ρaR + (1 − ρ)q) = ρ�i(aR) + (1 − ρ)�i(q) > 0.

Now let i = 1, . . . , r2 and recall that �i(q) > 0. If �i(aR) − �i(q) � 0, then for each positive real
number ρ > 0 the point z = ρaR + (1 − ρ)q ∈ R1 ∩ {�i > 0}; namely,

�i(z) = ρ�i(aR) + (1 − ρ)�i(q) = �i(q) + ρ(�i(aR) − �i(q)) > 0.

On the other hand, if �i(aR) − �i(q) < 0, then the quotient λi = �i(q)/(�i(q) − �i(aR)) > 1,
because both �i(q) and �i(aR) are positive, since 1 � i � r2. Observe that if 1 < ρ < λi, then
the point z = ρaR + (1 − ρ)q ∈ R1 satisfies

�i(z) = �i(ρaR + (1 − ρ)q) = ρ�i(aR) + (1 − ρ)�i(q) = �i(q) + ρ(�i(aR) − �i(q)) > 0.

Thus, if we choose 1 < ρ < λi for all 1 � i � r2 such that �i(aR) − �i(q) < 0, then we find a
point z = ρaR + (1 − ρ)q ∈ R1 ∩

⋂m
i=1{�i > 0} = R1 ∩ Int(K).

Finally, all reduces to check that aR �= bR1 . Assume, by way of contradiction, that aR = bR1 .
Since aR ∈ A, it follows that IR = K ∩R = [aR, bR] with aR < bR. Moreover, aR ∈ ∂K and
�i(aR) > 0 for i = 1, . . . , r2, which implies the existence of r2 + 1 � j � m such that �j(aR) = 0.
On the other hand, there exists ρ > 1 such that aR = bR1 = ρaR1 + (1 − ρ)q or, equivalently,
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q = (1/(1 − ρ))aR + (−ρ/(1 − ρ))bR1 . Therefore,

0 > �j(q) = �j

(
1

1 − ρ
aR +

−ρ
1 − ρ

aR1

)
=

1
1 − ρ

�j(aR) +
ρ

ρ− 1
�j(aR1) =

ρ

ρ− 1
�j(aR1) � 0,

which is a contradiction. We are done.
To conclude the proof, observe that we have already seen in Paragraph 3.1.10 that A′ = A,

B′ = B and T′ satisfy (i)–(iv) in the Theorem 3.1, as wanted.

Remark 3.4. Theorem 3.1 can be generalized to an n-dimensional unbounded convex
polyhedron by means of Lemma 2.4 and Proposition 2.7. In such a case, ∂K is homeomorphic
to Rn−1 (see [1, 11.3.8]) and, while A is always homeomorphic to the open ball Bn(0, 1), there
are several possibilities concerning the topology of the sets B and T; namely, depending upon
the position of the point p, we may have:

(1) either B = T = ∅; or
(2) there exist homeomorphisms ϕ1 : {xn � 0} → A 
 T and ϕ2 : {xn � 0} → B 
 T such

that ϕ1({xn > 0}) = A, ϕ2({xn > 0}) = B and ϕi({xn = 0}) = T for i = 1, 2; or
(3) there exist homeomorphisms ϕ1 : Bn−1(0, 1) → A 
 T and ϕ2 : Bn−1(0, 1) \ {0} → B 
 T

such that ϕ1(Bn−1(0, 1)) = A, ϕ2(Bn−1(0, 1) \ {0}) = B and ϕi(∂Bn−1(0, 1)) = T for
i = 1, 2.

To prove all these facts, one can use Lemma 2.4, Proposition 2.7, Theorem 3.1 and the
classical Schoenflies’ Theorem (see [4]). Since this generalization of Theorem 3.1 is not necessary
for our purposes and its proof is quite cumbersome, we do not include the details here.

4. Interior of convex polyhedra as regular images of Rn

The goal of this section is to prove that the interior of a convex polyhedron of Rn is a regular
image of Rn. We begin by dealing with the most elementary example of a convex polyhedron.

Lemma 4.1. The interior of an n-simplex Δ is a regular image of Rn.

Proof. First, observe that after a change of coordinates, we may assume that Δ is the
n-simplex of vertices (1, (k). . ., 1, 0, (n−k). . . , 0), where k = 0, . . . , n. A straightforward computation
shows that

Δ = {(x1, . . . , xn) ∈ Rn : xn � 0, 1 − x1 � 0, xk−1 − xk � 0, 2 � k � n} and

Int(Δ) = {(x1, . . . , xn) ∈ Rn : xn > 0, 1 − x1 > 0, xk−1 − xk > 0, 2 � k � n}.
By Fernando and Gamboa [5, 1.6], there exists a polynomial map f1 : Rn → Rn whose image
is the n-dimensional open orthant Q0 = {x1 > 0, . . . , xn > 0}. Now, if we compose f1 with the
rational map

f2 : Rn ��� Rn, x = (x1, . . . , xn) �−→
(

1
x1 + 1

, . . . ,
1

xn + 1

)
,

we obtain a regular map f2 ◦ f1 : Rn → Rn whose image is the interior C = (0, 1)n of the closed
cube [0, 1]n. Next, consider the polynomial map

f3 : Rn −→ Rn, x = (x1, . . . , xn) �−→
⎛
⎝ k∏

j=1

xj

⎞
⎠

k=1,...,n

,
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and let us check the equality f3(C) = Int(Δ). Indeed, given a point x ∈ C, let us denote f3(x) =
y = (y1, . . . , yn). Observe that

yn =
n∏

j=1

xj > 0, 1 − y1 = 1 − x1 > 0,

and yk−1 − yk =
k−1∏
j=1

xj −
k∏

j=1

xj = (1 − xk)
k−1∏
j=1

xj > 0 for 2 � k � n.

Hence, y = f3(x) ∈ Int(Δ). Conversely, let y = (y1, . . . , yn) ∈ Int(Δ) and consider the point
x = (y1, y2/y1, . . . , yk/yk−1, . . . , yn/yn−1) ∈ Rn, which satisfies f3(x) = y. Moreover, since
0 < yn � yk < yk−1 � y1 < 1 for k = 2, . . . , n, we get, 0 < yk/yk−1 < 1 for k = 2, . . . , n and
0 < y1 < 1. Therefore, x ∈ C and, consequently, f3(C) = Int(Δ).

Finally, we conclude that the image of the regular map f3 ◦ f2 ◦ f1 : Rn → Rn is the interior
of the n-simplex Δ.

Lemma 4.2. Let K ⊂ Rn be an n-dimensional, bounded, convex polyhedron whose facets
are F1, . . . , Fm and let A =

⋃k
i=1 Fi for some 1 � k < m and B =

⋃m
j=k+1 Fj . Let Hi be the

hyperplane of Rn generated by Fi for i = 1, . . . ,m. Then there exists a rational function h :
Rn ��� R, which is regular on Rn \ (

⋃k
i=1Hi ∩

⋃m
j=k+1Hj), such that:

(i) h takes value 0 on A \ B and 1 on B \ A;
(ii) 0 < h(p) < 1 for each point p ∈ Int(K).

Proof. For each index i = 1, . . . ,m, let �i ∈ R[x1, . . . , xn] be a polynomial of degree 1 such
that Hi = {�i = 0}. The rational function defined by

h : Rn ��� R, x �−→
∏k

i=1 �
2
i (x)∏k

i=1 �
2
i (x) +

∏m
j=k+1 �

2
j (x)

satisfies the conditions in the statement.

Remark 4.3. Observe, moreover, that K \ (A ∩ B) ⊂ Rn \ (
⋃k

i=1Hi ∩
⋃m

j=k+1Hi).

We are ready to prove the second part of Theorem 1.2 in case K is bounded; namely, we
have the following proposition.

Proposition 4.4. The interior of an n-dimensional, bounded, convex polyhedron K ⊂ Rn

is a regular image of Rn.

Proof. Since dimK = n and K is, by Berger [1, 11.6.8] and Berger [2, 12.1.9], the convex
hull of the set V of its vertices, V has at least n+ 1 elements, and n+ 1 of them are affinely
independent. We proceed by induction on the cardinality of V. Observe that if #V = n+ 1,
then K is an n-simplex and, by Lemma 4.1, Int(K) is a regular image of Rn.

Let us consider an n-dimensional, bounded, convex polyhedron K whose set of vertices
is V = {v1, . . . , vs} and s > n+ 1. We may assume that its subset V′ = {v2, . . . , vs} is not
contained in a hyperplane of Rn. After a change of coordinates, we may also assume
that v1 is the origin of Rn. Consider the n-dimensional, bounded, convex polyhedron
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K′ whose set of vertices is V′, and observe that v1 ∈ Rn \ K′. Since K and K′ are,
respectively, the convex hulls of V and V′, we have, by Berger [1, 11.1.8.6], the
equalities

K =

{
s∑

i=1

λivi : λi � 0,
s∑

i=1

λi = 1

}
and K′ =

{
s∑

i=2

μivi : μi � 0,
s∑

i=2

μi = 1

}
.

Observe that K = {λp : p ∈ K′ & 0 � λ � 1} because v1 is the origin. Moreover, one can check
that

Int(K) =

{
s∑

i=1

λivi : λi > 0,
s∑

i=1

λi = 1

}

and Int(K′) =

{
s∑

i=2

μivi : μi > 0,
s∑

i=2

μi = 1

}
.

In particular, Int(K) = {λp : p ∈ Int(K′) & 0 < λ < 1}. In what follows, we use the notation
already introduced in Paragraph 3.2.1. Let R be the family of all rays from v1 that intersect
Int(K′) and let IR = K′ ∩R = [aR, bR], where aR is the nearest point of IR to v1 and bR
is the furthest one. By Paragraph 3.2.2, aR, bR ∈ ∂K′ and (aR, bR) ⊂ Int(K′) for all R ∈ R.
Observe that Int(K′) =

⋃
R∈R(aR, bR), and so Int(K) =

⋃
R∈R(0, bR), where (0, bR) = {λbR :

λ ∈ (0, 1)}.
Let A′,B′ and T′ be the sets constructed in Theorem 3.1 for the point v1 and the

polyhedron K′, and let F ′
1, . . . , F

′
m be the facets of K′. By Theorem 3.1(iii), we may assume

that there exists an index 1 � k < m such that ClRn(A′) =
⋃k

i=1 F
′
i , ClRn(B′) =

⋃m
j=k+1 F

′
j

and

T′ = ClRn(A′) ∩ ClRn(B′) =
k⋃

i=1

m⋃
j=k+1

F ′
i ∩ F ′

j .

By Lemma 4.2 and Remark 4.3, there exists a rational function h : Rn ��� R, which
is regular on K′ \ T′, such that h|A′ ≡ 0, h|B′ ≡ 1 and 0 < h(p) < 1 for any point
p ∈ Int(K′).

We claim now that the rational map

f1 : Rn ��� Rn, x = (x1, . . . , xn) �−→ (x1h(x), . . . , xnh(x)),

which is regular on K′ \ T′, maps Int(K′) ⊂ K′ \ T′ onto Int(K). To prove this, let us consider a
ray R ∈ R and recall that K′ ∩R = [aR, bR], where aR ∈ A′ and bR ∈ B′ (see Paragraphs 3.1.3
and 3.2.3). We have f1(aR) = v1, f1(bR) = bR and, since h(Int(K′)) ⊂ (0, 1), it follows that
f1((aR, bR)) = (0, bR). Thus,

f1(Int(K′)) = f1

( ⋃
R∈R

(aR, bR)

)
=
⋃

R∈R

f1((aR, bR)) =
⋃

R∈R

(0, bR) = Int(K).

By induction hypothesis, Int(K′) = f2(Rn) for a regular map f2 : Rn → Rn, and so
f = f1 ◦ f2 : Rn → Rn is a regular map satisfying f(Rn) = Int(K). We are done.

As announced, Proposition 2.7 together with Proposition 4.4, allows us to prove the second
part of Theorem 1.2 eliminating the boundedness hypothesis; namely, we have the following
corollary.

Corollary 4.5. Let K ⊂ Rn be an n-dimensional convex polyhedron. Then Int(K) is a
regular image of Rn.
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Proof. Suppose first that K is nondegenerate. Then, by Proposition 2.7, there exist a
nondegenerate, bounded, convex polyhedron K′ and a rational map h : Rn ��� Rn that is
regular on Int(K′) such that h(Int(K′)) = Int(K). By Proposition 4.4, there exists a regular
map g : Rn → Rn such that g(Rn) = Int(K′) and so f = h ◦ g : Rn → Rn is a regular map
whose image is Int(K).

Next, assume that K is degenerate. Thus, by Lemma 2.3, either K = Rn (and so K is trivially
a regular image of Rn) or, after a change of coordinates, there exist an index 1 � k � n− 1 and a
nondegenerate convex polyhedron P ⊂ Rn−k such that K = Rk × P. Observe that n = dimK =
dim Rk + dimP, that is, dimP = n− k. Note also that Int(K) = Rk × Int(P). We apply now
what we have just proved to the (n− k)-dimensional nondegenerate convex polyhedron P ⊂
Rn−k. Hence, there exists a regular map h1 : Rn−k → Rn−k whose image is Int(P). Therefore,
the regular map

f1 : Rn ≡ Rk × Rn−k −→ Rn ≡ Rk × Rn−k, (y, z) −→ (y, h1(z))

satisfies f1(Rn) = Rk × Int(P) = Int(K), and we are done.

5. Convex polyhedra as regular images of Rn

The purpose of this section is to prove the remaining part of Theorem 1.2, that is, each
n-dimensional convex polyhedron in Rn is a regular image of Rn. The key results to show this
are the following lemma, together with Corollary 4.5.

Lemma 5.1. Let K ⊂ Rn be an n-dimensional, bounded, convex polyhedron and let E be a
face of K. Let Y ⊂ ∂K be such that E ∩ Y = ∅. Then there exist a rational map f : Rn ��� Rn

and an algebraic subset Z ⊂ Rn such that Z ∩ K = ∂E, which is empty if dimE = 0, and satisfy
the following conditions:

(i) f is regular on Rn \ Z;
(ii) f(Int(K) ∪ Y ) = Int(K) ∪ Y ∪ IntE.

Assume for a while we have already proved Lemma 5.1 and let us demonstrate the following
proposition.

Proposition 5.2. Each n-dimensional, nondegenerate, convex polyhedron K ⊂ Rn is a
regular image of Rn.

Proof. First, suppose that K is unbounded. After a change of coordinates, we may assume
that K is facing upwards (use Lemma 2.4). By Proposition 2.7, there exist an n-dimensional
bounded convex polyhedron K′ ⊂ Rn, a face E′ of K′ and a rational map h : Rn ��� Rn that
is regular on K′ \ E′ and satisfies h(K′ \ E′) = K.

5.1.

Thus, to prove the statement, it is enough to prove the following condition: If K ⊂ Rn is an
n-dimensional, bounded, convex polyhedron and E0 is either the empty set or a face of K, then
there exists a regular map f : Rn → Rn whose image is K \ E0.

Indeed, for each 0 � d � n− 1, let Ed be the family of those faces of K of dimension at most
d not contained in E0 and E−1 = ∅. Recall that if E is a face of K, then either E ⊂ E0 or
E0 ∩ Int(E) = ∅.
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Let us define, for 0 � d � n− 1, the semialgebraic set

K(d) = (K \ E0)

∖⎛
⎝ ⋃

E∈Ed−1

E

⎞
⎠ = Int(K) ∪

⋃
E∈En−1\Ed−1

Int(E)

= Int(K) ∪
⋃

d�k�n−1

⋃
E∈Ek\Ek−1

Int(E),

and note that K(0) = K \ E0. Recall that, by Proposition 4.4, there exists a regular map fn :
Rn → Rn such that fn(Rn) = Int(K) = K(n). Let us check that, for each d = 0, . . . , n− 1, there
exists a rational map fd : Rn ��� Rn that is regular on K(d+1) such that fd(K(d+1)) = K(d).
Once this is proved, the image of the regular map f = f0 ◦ . . . ◦ fn : Rn → Rn is K \ E0, and
we will be done.

Thus, we fix 0 � d � n− 1 and observe that K(d) \ K(d+1) =
⋃

E∈Ed\Ed−1
Int(E). We write

Ed \ Ed−1 = {E1, . . . , Er} and note that Int(Ej) ∩ Ei = ∅ if i �= j. Moreover, K(d+1) ∩ Ei =
Yi ∩Ei = ∅ for i = 1, . . . , r, where

Yi = (K(d+1) \ Int(K)) ∪
i−1⋃
j=1

Int(Ej) ⊂ ∂K.

Now, for each i = 1, . . . , r, there exist, by Lemma 5.1, an algebraic set Zi ⊂ Rn, such that Zi ∩
K = ∂Ei ⊂ K \ K(d), and a rational map gi : Rn ��� Rn that is regular on Rn \ Zi and satisfies
gi(Int(K) ∪ Yi) = Int(K) ∪ Yi ∪ Int(Ei). Hence, the composition fd = gr ◦ . . . ◦ g1 : Rn ��� Rn

is a rational map that is regular on K(d+1) such that

fd(K(d+1)) = Int(K) ∪ Yr ∪ Int(Er) = K(d+1) ∪
r⋃

i=1

Int(Ei) = K(d),

as wanted.

As a straightforward consequence of Proposition 5.2, we prove the remaining part of
Theorem 1.2; namely, we have the following corollary.

Corollary 5.3. Every n-dimensional, convex polyhedron K ⊂ Rn is a regular image
of Rn.

Proof. In view of Proposition 5.2, we may assume that K is degenerate. Thus, by
Lemma 2.3, either K = Rn (and so K is trivially a regular image of Rn) or, after a change
of coordinates, there exist an index 1 � k � n− 1 and a nondegenerate convex polyhedron
P ⊂ Rn−k such that K = Rk × P. By Proposition 5.2, there exists a regular map g : Rn−k →
Rn−k whose image is P. Hence, the image of the regular map

f : Rn ≡ Rk × Rn−k −→ Rn ≡ Rk × Rn−k, (y, z) −→ (y, g(z))

is Rk × P = K, and we are done.

Therefore, ‘it only remains’ to prove Lemma 5.1 and, in order to prove it, we need
to introduce some terminology and technical results. A d-scaffold of a d-face E of an
n-dimensional, bounded, convex polyhedron K ⊂ Rn is a semialgebraic topological manifold
Γ semialgebraically homeomorphic to E such that Int(Γ) ⊂ Int(K) and ∂Γ = ∂E (see also [8,
4.7] for the 2-dimensional case).
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Lemma 5.4. Let K ⊂ Rn be an n-dimensional, bounded, convex polyhedron, and let E be
one of its d-faces. Define y = (x1, . . . , xd), z = (xd+1, . . . , xn), and suppose that:

(1) the polyhedron K is contained in the half-space {xn � 0}, and the hyperplane {xn = 0}
contains a facet of K;

(2) W = {xd+1 = 0, . . . , xn = 0} is the affine subspace of Rn generated by E.

Let q = (q1, . . . , qn) ∈ Int(K) and αi = qi/qn for i = d+ 1, . . . , n. Then there exist a rational
function f : Rn ��� R and a polynomial P ∈ R[x1, . . . , xd] = R[y] positive on Int(E) and
identically zero on ∂E, such that the following properties hold:

(i) The semialgebraic set Γ = {(y, αd+1P (y), . . . , αn−1P (y), P (y)) ∈ Rn : (y, 0) ∈ E} is a
d-scaffold of the d-face E contained in the affine subspace generated by E ∪ {q}.

(ii) The restriction to Γ of the projection

π : Rn −→ Rn, x = (x1, . . . , xn) �−→ (x1, . . . , xd, 0, . . . , 0) = (y, 0)

induces a semialgebraic homeomorphism between Γ and E.
(iii) There exists an algebraic set Z ⊂ Rn such that K ∩ Z = ∂E and the function f is regular

on Rn \ Z.
(iv) The function f satisfies the equalities f |∂K\∂E ≡ 1 and f |Int(Γ) ≡ 0.
(v) For every point p ∈ Int(K) \ Int(Γ) we have 0 < f(p) < 1.
(vi) If dimE = 0, then Z = ∅.

Proof. Observe first that since q ∈ Int(K) ⊂ {xn > 0}, the quotients αi = qi/qn are well
defined for i = d+ 1, . . . , n. Observe also that W can be written as

W = {xd+1 − αd+1xn = 0, . . . , xn−1 − αn−1xn = 0, xn = 0}.
Let H = {H1, . . . , Hm} be the minimal presentation of K and let �i ∈ R[x1, . . . , xn], with 1 �
i � m, be polynomials of degree 1 such that H+

i = {�i � 0}. Observe that

E = K ∩W = {(y, 0) ∈ Rn : �i(y, 0) � 0, i = 1, . . . ,m}.
After reordering the indices {1, . . . ,m} if necessary, we may assume the existence of an index
1 � r � m such that the polynomials ak(x1, . . . , xd) = �k(x1, . . . , xd, 0, . . . , 0) are not identically
zero exactly for k = 1, . . . , r. Moreover, since K is bounded, 0 does not belong to all the facets
of K and so there exists at least one index j = 1, . . . ,m such that �j(0) > 0. Note that

E = K ∩W = {(y, 0) ∈ Rn : ak(y) � 0, k = 1, . . . , r}.
Define α = (αd+1, . . . , αn) and, for each integer M > 0, consider the polynomial

PM (x1, . . . , xd) =
∏r

k=1 ak(x1, . . . , xd)
M

,

and the semialgebraic set

ΓM = {x = (y, z) ∈ Rn = Rd × Rn−d : ak(y) � 0, zi = αiPM (y),
1 � k � r, d+ 1 � i � n} = {(y, αPM (y)) ∈ Rn : (y, 0) ∈ E}.

5.1.1. We claim that Γ = ΓM is, for large enough M, the d-scaffold of E we are looking
for. Indeed, note that the restriction to ΓM of the projection

π : Rn −→ Rn, x = (x1, . . . , xn) �−→ (x1, . . . , xd, 0, . . . , 0) = (y, 0)
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induces, for each M > 0, a semialgebraic homeomorphism between ΓM and E. Hence, ∂ΓM =
{(y, αPM (y)) ∈ Rn : (y, 0) ∈ ∂E}, and since ∂E = E ∩⋃r

k=1{ak = 0}, the restriction PM |∂E ≡
0. Therefore, since E ⊂ {xd+1 = . . . = xn = 0}, it follows that ∂ΓM = ∂E.

5.1.1.1. Let us check now that

Int(ΓM ) ⊂ Int(K) for M large enough.

Observe first that

Int(ΓM ) = ΓM \ ∂ΓM = ΓM \ ∂E = {(y, αPM (y)) ∈ Rn : (y, 0) ∈ Int(E)} ⊂ {xn > 0}.

The last inclusion is due to the fact that, for each point (y, 0) ∈ Int(E), the product
a1(y) . . . ar(y) is positive, and so the nth coordinate xn of x ∈ Int(ΓM ) is positive too. For
i = 1, . . . ,m define

Ai(x1, . . . , xd, xn) = �i(x1, . . . , xd, αd+1xn, . . . , αn−1xn, xn) ∈ R[x1, . . . , xd, xn],

and note that, for k = 1, . . . , r, there exists bkn ∈ R such that Ak(y, xn) = ak(y) + bknxn. On
the other hand, �i(x1, . . . , xd, 0, . . . , 0) ≡ 0 for i = r + 1, . . . ,m, and so Ai(y, xn) = binxn for
some bin ∈ R. In fact, bin > 0 for i = r + 1, . . . ,m. To check this, note that qn > 0 because
q ∈ Int(K), and also

binqn = Ai(q1, . . . , qd, qn) = �i(q) > 0.

Next, consider the affine subspace

V = {x ∈ Rn : xi = αixn, d+ 1 � i � n− 1},

generated by E ∪ {q}. Since the hyperplane {xn = 0} contains a facet of K ⊂ {xn � 0}, we
deduce that

V ∩ K = {x ∈ Rn : xn � 0, Ak(y, xn) = ak(y) + bknxn � 0,
xi = αixn, 1 � k � r, d+ 1 � i � n− 1}.

Moreover, a straightforward computation shows that

V ∩ Int(K) = {x ∈ Rn : xn > 0, Ak(x) = ak(x) + bknxn > 0,
xi = αixn, 1 � k � r, d+ 1 � i � n− 1}.

Observe that if x = (y, z) ∈ {xn = PM (y)}, then

Ak(y, xn) = ak(y) + bknxn = ak(y) +
bkn

∏r
i=1 ai(y)
M

= ak(y)
(

1 +
bkn

∏
i�=k ai(y)
M

)
.

Since K is bounded, it is compact, and so there exists M0 > 0 such that if M � M0, then
1 + bkn

∏
i�=k ai(y)/M > 0 for each point x = (y, z) ∈ K and each k = 1, . . . , r. Fix M � M0

and observe that if x = (y, z) ∈ K ∩ {xn = PM (y)}, then

Ak(y, xn) � 0 ⇐⇒ ak(y) � 0 and Ak(y, xn) > 0 ⇐⇒ ak(y) > 0.
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Consequently,

V ∩ K ∩ {xn = PM (y)} = {x ∈ Rn : PM (y) � 0, Ak(y, xn) = ak(y) + bknPM (y) � 0,
xi = αiPM (y), 1 � k � r, d+ 1 � i � n}

= {x ∈ Rn : ak(y) � 0, xi = αiPM (y), 1 � k � r, d+ 1 � i � n}
= ΓM ,

which in particular implies that ΓM ⊂ V . Moreover,

V ∩ Int(K) ∩ {xn = PM (y)} = {x ∈ Rn : PM (y) > 0, Ak(y, xn) = ak(y) + bknPM (y) > 0,
xi = αiPM (x), 1 � k � r, d+ 1 � i � n}

= {x ∈ Rn : ak(y) > 0, xi = αiPM (x), 1 � k � r, d+ 1 � i � n}
= Int(ΓM ),

and so Int(ΓM ) ⊂ Int(K). Recall also that ∂ΓM = ∂E ⊂ ∂K and so ΓM ∩ ∂K = ∂E.
5.1.1.2. Finally, consider the rational function f : Rn ��� R given by the formula

f(x) =

∑n
j=d+1(xj − αjPM (y))2∏m

i=1 �
2
i (x) +

∑n
j=d+1(xj − αjPM (y))2

.

The function f is regular outside the zero set Z of the polynomial in the denomina-
tor

∏m
i=1 �

2
i (x) +

∑n
j=d+1(xj − αjPM (y))2. Recall that ∂K = K ∩ {x ∈ Rn :

∏m
i=1 �i(x) = 0}.

Thus, since Int(ΓM ) ⊂ Int(K) and ∂ΓM = ∂E ⊂ ∂K, we have

K ∩ Z = K ∩
{
x ∈ Rn :

m∏
i=1

�i(x) = 0

}
∩ {x ∈ Rn : xj = αjPM (y), j = d+ 1, . . . , n}

= ∂K ∩ V ∩ {xn = PM (y)} = ∂K ∩ ΓM = ∂E.

Now, a straightforward computation shows that this function f and the algebraic set Z satisfy
the conditions in the statement.

Notice finally that if dimE = 0, then E = {0} and ΓM = Int(ΓM ) = {p} is a singleton
contained in Int(K). In fact, Z = {p} ∩⋂m

i=1Hi ⊂ Int(K) ∩⋂m
i=1Hi = ∅, as wanted.

Lemma 5.5. Let K ⊂ Rn be an n-dimensional, nondegenerate, convex polyhedron, and let
v be a vertex of K. Then, after a change of coordinates, we may assume that:

(i) the vertex v is the origin;
(ii) the intersections Fi = K ∩ {xi = 0} are facets of K for i = 1, . . . , n;
(iii) for each k = 1, . . . , n− 1, the intersection Ek = K ∩ {xk+1 = 0, . . . , xn = 0} is a face

of K, and the intersections K ∩ {xj = 0, xk+1 = 0, . . . , xn = 0} are facets of Ek for
j = 1, . . . , k;

(iv) The polyhedron K satisfies K ⊂ ⋂n
i=1{xi � 0}.

Proof. We proceed by induction on n. If n = 1, then we may assume, after a change of
coordinates, that v = 0 and K is either [0, 1] or [0,+∞), and the statement follows. Assume
the result to be true for n− 1 and let us check that it holds for n. Let F be a facet of K

that contains v. After a change of coordinates in Rn, we may assume that the hyperplane of
Rn generated by F is H = {xn = 0}. Note that P = K ∩ {xn = 0} is an (n− 1)-dimensional,
nondegenerate, convex polyhedron contained in H ≡ Rn−1 × {0} and having v as one of its
vertices. By induction hypothesis, there exists a change of coordinates in Rn−1 × {0} such
that

(1) the vertex v is the origin;
(2) the intersections Gi = P ∩ {xi = 0} are facets of P for i = 1, . . . , n− 1;
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(3) for each k = 1, . . . , n− 2, the intersection E′
k = P ∩ {xk+1 = 0, . . . , xn−1 = 0} is a face

of P, and the intersections {xj = 0, xk+1 = 0, . . . , xn−1 = 0} ∩ P are facets of E′
k for

j = 1, . . . , k;
(4) The polyhedron P satisfies P ⊂ ⋂n−1

i=1 {xi � 0}.
By Berger [2, 12.1.5], the facets of P are intersections with the hyperplane H of those facets

of K that intersect H. Thus, there exist hyperplanes Hi of Rn generated by facets Fi of K such
that each facet Gi of P has the form P ∩Hi, for i = 1, . . . , n− 1. Hence,

K ∩ {xn = 0} ∩Hi = P ∩Hi = Gi = P ∩ {xi = 0} = K ∩ {xi = 0, xn = 0}.
Recall that K ∩ {xi = 0, xn = 0} is a facet of P and so its dimension equals n− 2. Hence,
Hi ∩ {xn = 0} = {xi = 0, xn = 0} and, consequently, there exist real numbers ai ∈ R such that
Hi = {xi − aixn = 0} for i = 1, . . . , n− 1.

Therefore,
⋂n−1

i=1 Hi = {t(a1, . . . , an−1, 1) : t ∈ R}. After a change of coordinates that fixes
the hyperplane {xn = 0} and transforms the vector (a1, . . . , an−1, 1) into the vector (0, . . . , 0, 1),
we may assume that Hi = {xi = 0} for i = 1, . . . , n− 1. Moreover, after changing the sign of
the variable xn if necessary, we may assume also that K ⊂ {xn � 0}. Observe that in this way
the four conditions of the statement are satisfied in a straightforward manner, as wanted.

Lemma 5.6. Let ε > 0 and let K ⊂ Rn be an n-dimensional, nondegenerate, convex
polyhedron such that:

(1) the origin is a vertex v of K;
(2) the intersections Fi = K ∩ {xi = 0} are facets of K for i = 1, . . . , n;
(3) for each k = 1, . . . , n− 1, the intersection Ek = K ∩ {xk+1 = 0, . . . , xn = 0} is a face of K

and the intersections {xj = 0, xk+1 = 0, . . . , xn = 0} ∩ K are facets of Ek for j = 1, . . . , k;
(4) The polyhedron K satisfies K ⊂ {x1 � 0, . . . , xn � 0}.

For each i = 1, . . . , n, let Ki be the polyhedron obtained from K by eliminating (See
Paragraph 2.1.1 for a precise definition of the polyhedron Ki obtained from K by eliminating
the facet Fi.) the facet Fi. Then, for each i = 1, . . . , n, there exists a point

pi ∈ (Ki ∩ {xi+1 = 0, . . . , xn = 0} ∩Bn(0, ε)) \ K

such that the affine subspace of Rn generated by {p1, . . . , pn} has dimension n− 1 and does
not intersect the n-dimensional closed orthant {x1 � 0, . . . , xn � 0}.

Proof. We proceed by induction on n. If n = 1, then either K = [0, a] where a > 0, or
K = [0,+∞). Then the point p1 = −ε/2 satisfies our requirements. Assume that the result
is true for n− 1 and let us check that it is also true for n. Consider the polyhedron
P = K ∩ {xn = 0}, which satisfies analogous conditions to (1)–(4) in the (n− 1)-dimensional
setting, and define F ′

i = P ∩ {xi = 0} = K ∩ {xi = 0, xn = 0} for i = 1, . . . , n− 1. Let Pi be
the polyhedron obtained from P by eliminating the facet F ′

i . By the induction hypothesis, for
each i = 1, . . . , n− 1 there exists a point

pi ∈ (Pi ∩ {xi+1 = 0, . . . , xn−1 = 0} ∩ (Bn(0, ε) ∩ {xn = 0})) \ P,

such that the affine subspace Ln−1 of {xn = 0} generated by {p1, . . . , pn−1} has dimension
n− 2, and Ln−1 does not intersect the semialgebraic set {x1 � 0, . . . , xn−1 � 0, xn = 0}.
Observe that

Pi ∩ {xi+1 = 0, . . . , xn−1 = 0} = Ki ∩ {xi+1 = 0, . . . , xn−1 = 0, xn = 0},
and, consequently,

p1, . . . , pn−1 ∈ (Ki ∩ {xi+1 = 0, . . . , xn−1 = 0, xn = 0} ∩Bn(0, ε)) \ K.
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Since {xn = 0} ∩ K is a facet of K that contains the vertex v = 0 and K ⊂ {xn � 0}, there
exists a point pn ∈ Kn ∩Bn(0, ε) \ K = Kn ∩Bn(0, ε) ∩ {xn < 0}. The coordinates of the point
pn = (p1n, . . . , pnn) satisfy p1n � 0, . . . , pn−1,n � 0 and pnn < 0, because Kn ∩ {xn < 0} ⊂⋂n−1

i=1 {xi � 0} ∩ {xn < 0}.
Observe that since the points {p1, . . . , pn−1} ⊂ {xn = 0} are affinely independent, the affine

subspace Ln of Rn generated by {p1, . . . , pn} has dimension n− 1. To conclude the proof, it
only remains to check that Ln ∩ {x1 � 0, . . . , xn � 0} = ∅.

Indeed, note that Ln = {(1 − λ)q + λpn : q ∈ Ln−1, λ ∈ R} and suppose, by way of
contradiction, that there exists a point z ∈ Ln ∩ {x1 � 0, . . . , xn � 0}. In particular, z =
(z1, . . . , zn) = (1 − λ)q + λpn for some point q = (q1, . . . , qn−1, 0) ∈ Ln−1 and λ ∈ R. Since 0 �
zn = λpnn and pnn < 0, it follows that λ � 0. On the other hand, since q ∈ Ln−1 and Ln−1 does
not intersect the set {x1 � 0, . . . , xn−1 � 0, xn = 0}, there exists an index i = 1, . . . , n− 1 such
that qi < 0. Observe that zi = (1 − λ)qi + λpin < 0, because λ � 0, pin � 0 and qi < 0. Thus,
z �∈ {x1 � 0, . . . , xn � 0}, which is a contradiction. Hence, Ln ∩ {x1 � 0, . . . , xn � 0} = ∅, and
we are done.

From now on we denote by
−→
W the direction of the affine subspace W ⊂ Rn, that is, the

vector subspace of Rn parallel to W .

Lemma 5.7. Let K ⊂ Rn be an n-dimensional convex polyhedron and let E be a
d-dimensional face of K for some 0 � d � n− 1. Denote by W the affine subspace of Rn

generated by E. Then there exist n− d affinely independent points p1, . . . , pn−d ∈ Rn such
that:

(i) the affine subspace L of Rn generated by {p1, . . . , pn−d} satisfies
−→
W ∩ −→

L = {0},
W ∩ L = ∅ and (L+

−→
W ) ∩ K = ∅;

(ii) for each point p ∈ K, the (n− d)-simplex [p, p1, . . . , pn−d] intersects E exactly at one
point;

(iii) [p, p1, . . . , pn−d] ∩ E ⊂ Int(E) if and only if p ∈ K \ ∂E.

Proof. First note that, applying [2, 12.1.5] recursively, there exist facets F ′
1, . . . , F

′
s of K

such that ∂E = E ∩⋃s
i=1 F

′
i .

5.1.2. For each i = 1, . . . , s, we denote by H ′
i the hyperplane of Rn generated by

F ′
i , and by H ′+

i the closed half-space of Rn containing K determined by H ′
i. Let q0 ∈

Int(E) and let ε = min{dist(q0,H ′
i) : i = 1, . . . , s}. Observe that ε > 0, because q0 �∈ ⋃s

i=1H
′
i.

Since dimK = n, there exist q1, . . . , qn−d ∈ Int(K) such that the affine subspace V of Rn

generated by q0, q1, . . . , qn−d has dimension r = n− d and E ∩ V = {q0}. After a change of
coordinates, we may assume that V = {xr+1 = 0, . . . , xn = 0}. Define P = K ∩ V and note
that Int([q0, q1, . . . , qn−d]) ⊂ Int(P) is an open subset of V . Thus, V is the affine subspace of
Rn generated by P and so Int(P) = IntV (P). Moreover, E ∩ V = {q0} is a face of P, that is, q0
is a vertex of P and

Int(P) = P \ ∂P = P \ ∂K ⊂ Int(K).

To check these last facts, it suffices to observe that P = K ∩ V , and to apply [2, 12.1.5–7]
recursively.

5.1.3. To simplify notation, we identify in what follows V = Rr × {0} ≡ Rr. By Lemma
5.5, after a change of coordinates in Rr × {0} we may assume that:

(1) The point q0 is the origin;
(2) the intersections Gi = P ∩ {xi = 0} are facets of P for i = 1, . . . , r;
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(3) for each k = 1, . . . , r − 1, the intersection Ek = P ∩ {xk+1 = 0, . . . , xr = 0} is a face of P

and the intersections Rj = {xj = 0} ∩ Ek ∩ P are facets of Ek for j = 1, . . . , k;
(4) The polyhedron P satisfies P ⊂ ⋂r

i=1{xi � 0}.
Observe that, by Berger [2, 12.1.5], the facets of P are intersections of the facets of K with
V . Moreover, all facets of K containing the point q0 ∈ Int(E) contain also E, because E is a
face of K. Thus, the facets Gi of P chosen above are intersections of P with facets Fi of K

containing E. Moreover, the hyperplane of V generated by Gi is {xi = 0} ∩ V .
We may assume, after a change of coordinates fixing V , that the d-dimensional affine subspace

W = {x1 = 0, . . . , xr = 0}. Therefore, since for i = 1, . . . , r the hyperplane Hi of Rn generated
by Fi contains the union W ∪ ({xi = 0} ∩ V ), it also contains the sum W + ({xi = 0} ∩ V ),
which implies Hi = {xi = 0} for i = 1, . . . , r. Moreover, K ⊂ {x1 � 0, . . . , xr � 0} because K is
contained either in {xi � 0} or {xi � 0} for 1 � i � r and ∅ �= P ⊂ K ∩ {x1 � 0, . . . , xr � 0}.

5.1.4. Recall that Pi and Ki denote the polyhedron obtained from P and K by eliminating
the facets Gi and Fi, respectively. By Lemma 5.6, there exists, for each i = 1, . . . , r, a point
(See Paragraph 5.1.2 for the definition of ε > 0 and H ′

i for i = 1, . . . , s.)

pi ∈ (Pi ∩ {xi+1 = 0, . . . , xr = 0} ∩ (Bn(0, ε) ∩ V )) \ P ⊂ V

such that the affine subspace L ⊂ V generated by p1, . . . , pr has dimension r − 1 = n− d−
1 and it does not intersect the semialgebraic set {x1 � 0, . . . , xr � 0} ∩ V . Observe that
Pi = Ki ∩ V and so pi ∈ (Ki ∩ V ∩ {xi+1 = 0, . . . , xr = 0}) \ (K ∩ V ) for i = 1, . . . , r. Besides,
since P = K ∩ V ⊂ {x1 � 0, . . . , xr � 0} ∩ V and L ⊂ V does not intersect P, we deduce that
L ∩ K = ∅. Moreover, since dist(pi, q0) < ε for i = 1, . . . , r, the point q0 ∈ ⋂s

i=1(H
′+
i \H ′

i) and

ε = min{dist(q0,H ′
i) : i = 1, . . . , s} = min{dist(q0, (Rn \H ′+

i ) ∪H ′
i) : i = 1, . . . , s},

it follows that {p1, . . . , pr} ⊂ ⋂s
i=1(H

′+
i \H ′

i).
Moreover, note that since

V = {xr+1 = 0, . . . , xn = 0} and pi ∈ (Pi ∩ {xi+1 = 0, . . . , xr = 0}) \ P ⊂ V,

we have pi = (p1i, . . . , pi−1,i,−pii, 0, . . . , 0), where pji � 0 for j = 1, . . . , i− 1 and pii > 0.
Observe that L does not intersect W = {x1 = 0, . . . , xr = 0} and

−→
L ∩ −→

W = {0} because−→
L ⊂ −→

V and
−→
V ∩ −→

W = {0}. In addition, L+
−→
W does not intersect K because

K ⊂ {x1 � 0, . . . , xr � 0}, W = {x1 = 0, . . . , xr = 0} and L ∩ {x1 � 0, . . . , xr � 0} = ∅.

Thus, the affine subspace L satisfies condition (i) in the statement.

5.1.5. Let us check that, for each point p = (y1, . . . , yn) ∈ K, the simplex [p, p1, . . . , pr]
intersects E in just one point. Indeed, consider the equation

−(y1, . . . , yn) = −p =
r∑

i=1

λipi − q

=
r∑

i=1

λi(p1i, . . . , pi−1,i,−pii, 0, . . . , 0) + (0, (r). . ., 0, βr+1, . . . , βn), (�)

where q = (0, (r). . ., 0,−βr+1, . . . ,−βn) is a generic point of W . The previous equation is
equivalent to a triangular system of linear equations, which has a unique solution, that we
denote as (λ1, . . . , λr, βr+1, . . . , βn), because its matrix of coefficients has maximal rank n. Note
also that since pii > 0 and each pji � 0 for j = 1, . . . , i− 1, it follows that λ1 � 0, . . . , λr � 0.
Hence, μ = 1 +

∑r
i=1 λi > 0. If we write μ0 = 1/μ and μi = λi/μ for i = 1, . . . , r, we obtain q′ =

q/μ = μ0p+
∑r

i=1 μipi , where
∑r

i=0 μi = 1, and each μi � 0. Thus, q′ ∈ [p, p1, . . . , pr] ∩W .
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Let {H1, . . . , Hm} be the minimal presentation of K. Since p ∈ K and pi ∈
⋂m

j=r+1H
+
j for

i = 1, . . . , r, we deduce that q′ ∈ [p, p1, . . . , pr] ⊂
⋂m

j=r+1H
+
j . Hence,

q′ ∈W ∩
m⋂

j=r+1

H+
j ⊂

r⋂
i=1

{xi � 0} ∩
m⋂

j=r+1

H+
j = K,

and so q′ ∈W ∩ K = E. Thus, [p, p1, . . . , pr] ∩ E �= ∅; and in fact, this intersection is a unique
point because the system (�) has a unique solution, as we have already observed. All this proves
part (ii) in the statement.

5.1.6. To complete our discussion, we will prove that [p, p1, . . . , pr] ∩ E ⊂ Int(E) if and
only if p ∈ K \ ∂E. It is clear that if p ∈ ∂E, then p ∈ [p, p1, . . . , pr] ∩ E \ Int(E). Suppose now
that p ∈ K \ ∂E and let us check that {q′} = [p, p1, . . . , pr] ∩ E ⊂ Int(E).

We distinguish two cases. Assume first that p = (y1, . . . , yn) ∈ K \ E. Then there exists an
index j ∈ {1, . . . , r} such that yj > 0. Thus, the solution (λ1, . . . , λr, βr+1, . . . , βn) of equation
(�) satisfies λ1, . . . , λr � 0 and λj > 0; hence, μ1, . . . , μr � 0 and μj > 0. Recall also that μ0 =
1/μ > 0 (see Paragraph 5.1.5) and pi ∈

⋂s
k=1(H

′+
k \H ′

k) for i = 1, . . . , r (see Paragraph 5.1.4).
Using this information, we next prove that

q′ =
q

μ
= μ0p+

r∑
i=1

μipi ∈
s⋂

k=1

(H ′+
k \H ′

k).

Indeed, let �k be a polynomial of degree 1 such that H+
k = {�k � 0}; hence, H+

k \Hk =
{�k > 0}. Since

∑r
j=0 μj = 1 and p ∈ K ⊂ ⋂s

k=1(H
′+
k \H ′

k), one deduces that

�k(q′) = �k

(
μ0p+

r∑
i=1

μipi

)
= μ0�k(p) +

r∑
i=1

μi�k(pi) � μj�k(pj) > 0,

for k = 1, . . . , s. Thus, q′ ∈ E \⋃s
k=1Hk = Int(E).

Next, if p ∈ Int(E), then the uniqueness of the solution of (�) implies that the intersection
[p, p1, . . . , pn−d] ∩ E = {p} ⊂ Int(E). This proves part (iii), and we are done.

Corollary 5.8. Let K ⊂ Rn be an n-dimensional, convex polyhedron and let E be a
d-dimensional face of K for some 0 � d � n− 1. Let W be the affine subspace of Rn generated
by E. Then there exists an affine subspace L ⊂ Rn of dimension n− d− 1 such that L ∩W = ∅,−→
L ∩ −→

W = {0} and K ∩ (L+
−→
W ) = ∅, and the projection π : Rn \ (L+

−→
W ) →W of centre L

and basis W satisfies the following conditions:
(i) π|E = idE and π(K \ ∂E) = Int(E);
(ii) for each p ∈ K, there exist q ∈ L and λ ∈ [0, 1] such that π(p) = λp+ (1 − λ)q.

Proof. First, by Lemma 5.7, there exist n− d affinely independent points p1, . . . , pn−d ∈ Rn

such that:
(1) the affine subspace L generated by p1, . . . , pn−d satisfies

−→
L ∩ −→

W = {0}, L ∩W = ∅ and
K ∩ (L+

−→
W ) = ∅;

(2) for each point p ∈ K, the (n− d)-simplex [p, p1, . . . , pn−d] intersects E in exactly one
point;

(3) [p, p1, . . . , pn−d] ∩ E ⊂ Int(E) if and only if p ∈ K \ ∂E.
By its very definition, π(x) = ({x} + L) ∩W , where {x} + L denotes the affine subspace of Rn

generated by x and L. Note that {π(p)} = [p, p1, . . . , pn−d] ∩ E for each point p ∈ K, and so
there exist λ0, λ1, . . . , λn−d � 0 such that

∑n−d
i=0 λi = 1 and π(p) = λ0p+

∑n−d
i=1 λipi.
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Now we distinguish two possibilities: On the one hand, if λ0 = 1, then π(p) = p. On the other
hand, if λ0 �= 1, then set 0 < μ =

∑n−d
i=1 λi = 1 − λ0 � 1, μi = λi/μ and q =

∑n−d
i=1 μipi ∈ L. In

any case, we have π(p) = λ0p+ (1 − λ0)q for some q ∈ L, where 0 � λ0 � 1.
A straightforward computation shows that the central projection π : Rn \ (L+

−→
W ) →W

satisfies π|E = idE and π(K \ ∂E) = Int(E), as wanted.

Finally, we are ready to prove Lemma 5.1.

5.2. Proof of Lemma 5.1

Let us define d = dimE.

5.2.1. We study first the case d = 0, that is, E = {v} = Int(E) is a vertex of K. Note that
∂E = ∅, and we choose Z as the empty set. Consider the constant map π : Rn → Rn, p �→ v.
By Lemma 5.4, there exist a regular function g : Rn → R and a point q ∈ Int(K) such that
g|∂K ≡ 1, g(q) = 0 and 0 < g(p) < 1 for all p ∈ Int(K) \ {q}. The regular map

f : Rn −→ Rn, p �−→ g(p)p+ (1 − g(p))v

satisfies the conditions of the lemma. Indeed, observe that f |∂K ≡ id∂K and f(q) = v. Moreover,
the equality f(Int(K) \ {q}) = Int(K) holds. The inclusion f(Int(K) \ {q}) ⊂ Int(K) follows at
once from [1, 11.2.4]. Conversely, let a ∈ Int(K) and consider the line L passing through the
points v and a. Let b ∈ ∂K be the point such that K ∩ L is the segment [v, b] joining the
points v and b. Suppose first that this segment does not contain q. By Berger [1, 11.2.4], the
open interval (v, b) ⊂ Int(K). Moreover, since f(v) = v and f(b) = b, and the segment [v, b]
is convex, the image of the restriction f |[v,b] : [v, b] → K is [v, b]. Thus, there exists a point
a′ ∈ (v, b) ⊂ Int(K) such that f(a′) = a, and so Int(K) ⊂ f(Int(K) \ {q}). On the other hand,
if q ∈ [v, b], then we use a similar argument substituting the segment [v, b] by [q, b]. Therefore,
for each subset Y ⊂ ∂K,

f(Int(K) ∪ Y ) = Int(K) ∪ Y ∪ {v} = Int(K) ∪ Y ∪ Int(E),

which solves this case.

5.2.2. Hence, in what follows we assume that 1 � d � n− 1. We denote by W the affine
subspace of Rn generated by E. By Corollary 5.8, there exists an (n− d− 1)-dimensional affine
subspace L of Rn such that L ∩W = ∅,

−→
L ∩ −→

W = {0}, K ∩ (L+
−→
W ) = ∅, and the projection

π : Rn \ (L+
−→
W ) →W of centre L and basis W satisfies the following conditions:

(1) π|E = idE and π(K \ ∂E) = Int(E);
(2) for all p ∈ K there exist q ∈ L and λ ∈ [0, 1] such that π(p) = λp+ (1 − λ)q.
5.2.2.1. Let us check that, after a change of coordinates, we may assume that:
(a) W = {xd+1 = 0, . . . , xn = 0} and the origin is a vertex of K;
(b) L = {x1 = 0, . . . , xd = 0, xd+1 = −1};
(c) K ⊂ {xn � 0} and the hyperplane {xn = 0} contains a facet of K.
Indeed, if d = n− 1, then we may assume that W = {xn = 0}, the origin is a vertex of K

and K ⊂ {xn � 0}. Observe that in this case E ⊂ {xn = 0} is a facet of K. From (2) above,
we deduce that L is a point contained in {xn < 0}. Thus, after a change of coordinates that
keeps fixed the closed half-space {xn � 0}, we may assume that L = {(0, . . . , 0,−1)}.

Next, consider the case 1 � d � n− 2. Let p0, . . . , pd ∈W be affinely independent points
such that p0 is a vertex of K (recall that K is bounded) and let pd+1, . . . , pn ∈ L be affinely
independent points. Observe that {p0, p1, . . . , pd, pd+1, . . . , pn} is an affine reference of Rn.
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Thus, after a change of coordinates, we may assume that

p0 = 0,

pi = (0, . . . , 0,
(i)

1 , 0, . . . , 0), for i = 1, . . . , d,

pd+1 = (0, . . . , 0,
(d+1)

−1 , 0, . . . , 0), and

pj = (0, . . . , 0,
(d+1)

−1 , 0, . . . , 0,
(j)

1 , 0, . . . , 0), for j = d+ 2, . . . , n.

After this change of coordinates,

W = {xd+1 = 0, . . . , xn = 0} and L = {x1 = 0, . . . , xd = 0, xd+1 = −1}.
Note that the equations of the facets of K containing E have the form αd+1xd+1 + . . .+
αnxn = 0. After a change of coordinates that keeps L invariant and W fixed, we may assume
that {xn = 0} contains a facet of K and K ⊂ {xn � 0}; here we are using the fact that
d � n− 2. With these coordinates, V = L+

−→
W = {xd+1 = −1} and

π : Rn \ V −→ H, x �−→
(

x1

xd+1 + 1
, . . . ,

xd

xd+1 + 1
, 0, . . . , 0

)
.

5.2.2.2. Next, we claim the following: There exist a d-scaffold Γ of the d-face E of K, an
algebraic subset Z0 ⊂ Rn and a rational function g : Rn ��� R, such that:

(i) π(Int(Γ)) = Int(E);
(ii) K ∩ Z0 = ∂E;
(iii) g is regular on Rn \ Z0;
(iv) g|∂K\∂E ≡ 1, g|Int(Γ) ≡ 0 and
(v) 0 < g(p) < 1 for every point p ∈ Int(K) \ Int(Γ).
Indeed, recall that V = L+

−→
W = {xd+1 = −1} and consider the rational map

h : Rn ��� Rn, x �−→ 1
1 + xd+1

x,

which is regular on Rn \ V and can be interpreted as the restriction to suitable charts of the
homography

Ψ : RPn −→ RPn, (x0 : x1 : . . . : xn) �−→ (x0 + xd+1 : x1 : . . . : xn).

Thus, h preserves convexity and affine subspaces not contained in V . Observe also that

h−1 : Rn ��� Rn, x �−→ 1
1 − xd+1

x,

and the projection π : Rn \ V →W ⊂ Rn \ V of centre L and basis W is the composition
π = ψ−1 ◦ ρ ◦ ψ, where

ρ : Rn −→ Rn, (x1, . . . , xn) �−→ (x1, . . . , xd, 0, . . . , 0).

Since h|Rn\V : Rn \ V → Rn \ V is a biregular diffeomorphism and K ⊂ Rn \ V , to prove claim
5.2.2.2, it is enough to show the following.

5.2.2.3. There exist a d-scaffold Γ0 of the d-dimensional face h(E) of h(K), an algebraic
subset Z ′

0 ⊂ Rn and a rational function g0 : Rn ��� R such that:
(i) ρ(Int(Γ0)) = Int(h(E));
(ii) h(K) ∩ Z ′

0 = ∂h(E);
(iii) g0 is regular on Rn \ Z ′

0;
(iv) g0|∂h(K)\∂h(E) ≡ 1, g0|Int(Γ0) ≡ 0 and
(v) 0 < g0(p) < 1 for every p ∈ Int(h(K)) \ Int(Γ0).
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Indeed, observe that h preserves the hyperplanes {xi = 0} for i = 1, . . . , n and, changing the
sign of the variable xn if necessary, we may assume that h(K) ⊂ {xn � 0}. Thus, we are under
the hypotheses of Lemma 5.4, and a straightforward computation shows that 5.2.2.3 holds.
Thus, also 5.2.2.2 holds.

5.2.2.4. Now we are ready to prove Lemma 5.1 in case 1 � d � n− 1. With the notation of
5.2.2.2, consider the rational map

f : Rn ��� Rn, p �−→ g(p)p+ (1 − g(p))π(p),

which is regular on Rn \ Z, where Z = Z0 ∪ (L+
−→
W ). Observe that Z ∩ K = Z0 ∩ K = ∂E.

Now let us check that

f(Int(K) ∪ Y ) = Int(K) ∪ Y ∪ Int(E).

Since g|∂K\∂E ≡ 1 and Y ∩ E = ∅, it follows that f is regular on Y and f |Y = idY . Thus,
f(Y ) = Y . Moreover, f(Int(Γ)) = Int(E) because g|Int(Γ) ≡ 0 and π(Int(Γ)) = Int(E) (see
5.2.2.2). Hence, it only remains to check that f(Int(K) \ ∂E) = Int(K).

Indeed, let p ∈ Int(K) \ ∂E, and observe that 0 < g(p) < 1. Thus, since p ∈ Int(K) and
π(p) ∈ Int(E) ⊂ K, we deduce from [1, 11.2.4] that f(p) ∈ Int(K). Conversely, let a ∈ Int(K)
and let π(a) ∈ Int(E) (see Paragraph 5.2.2(1)). Next, consider the line T that contains the
points a and π(a). Let b be the point of ∂K such that K ∩ T is the segment [π(a), b] joining the
points π(a) and b. Note that, again by Berger [1, 11.2.4], the open interval (π(a), b) ⊂ Int(K).
Moreover, observe that, since f(π(a)) = π(a), f(b) = b, and the segment [π(a), b] is convex, the
image of the restriction f |[π(a),b] : [π(a), b] → K is the segment [π(a), b]. Thus, there exists
a point a′ ∈ (π(a), b) ⊂ Int(K) such that f(a′) = a, which shows that Int(K) ⊂ f(Int(K)).
But in fact, since f(Int(Γ)) = Int(E) ⊂ ∂K, it follows that a′ ∈ Int(K) \ Int(Γ), and we
are done.

6. The open and the closed ball as regular images of Rn

As commented in Section 1, a closed ball and its interior can be constructed as ‘limits’ of
bounded, convex, regular polyhedra and their interiors when the number of facets tends to
infinity. In this section, we show that both are regular images of Rn and so their invariant
r coincides with their common dimension n. Of course, the centre and radius of the ball are
irrelevant, and so we just deal with the open ball Bn ⊂ Rn of centre the origin and radius
1, and its closure. We begin with the open ball. The finding of the regular map realizing Bn

as a regular image of Rn is strongly inspired by the solution for n = 2 previously obtained in
[6, 6.3.a].

Lemma 6.1. The open ball Bn ⊂ Rn of centre the origin and radius 1 is a regular image
of Rn.

Proof. Consider the inverse h of the stereographic projection

πN : Sn \ {pN} −→ Rn, y = (y1, . . . , yn+1) −→
(

y1
1 − yn+1

, . . . ,
yn

1 − yn+1

)

from the north pole pN = (0, . . . , 0, 1) of the sphere

Sn = {y = (y1, . . . , yn+1) ∈ Rn+1 : y2
1 + . . .+ y2

n+1 = 1}.
Recall that h is given by

h : Rn −→ Sn \ {pN}, x = (x1, . . . , xn) −→
(

2x1

‖x‖2 + 1
, . . . ,

2xn

‖x‖2 + 1
,
‖x‖2 − 1
‖x‖2 + 1

)
.
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Define Hn = {x ∈ Rn : x1 > 0} and observe that h(Hn) = Sn ∩ Hn+1. Consider the orthogonal
projection f : Rn+1 → Rn, y = (y1, . . . , yn+1) �→ (y2, . . . , yn+1), which satisfies (f ◦ h)(Hn) =
f(Sn ∩ Hn+1) = Bn. Note that Hn is the interior of a convex polyhedron of Rn and so there
exists, by Corollary 4.5, a regular map g : Rn → Rn such that g(Rn) = Hn. Hence, Bn = (f ◦
h ◦ g)(Rn) is a regular image of Rn.

We finally show that also the closed ball is a regular image of Rn.

Lemma 6.2. The closed ball Bn ⊂ Rn of centre the origin and radius 1 is a regular image
of Rn.

Proof. Consider first the univariate polynomial g = 16
9 t

4 − 44
9 t

2 + 28
9 ∈ R[t2] and the

product h(t) = tg(t), which satisfies the following properties:

h(0) = h(1) = 0, h

(
1
2

)
= 1 and h′

(
1
2

)
= 0.

Moreover, the derivative of h is h′(t) = 4
9 (2t− 1)(2t + 1)(5t2 − 7) and so h′|[0,1/2) > 0 and

h′|(1/2,1] < 0. This implies in particular that h([0, 1)) = [0, 1].
Next, since g ∈ R[t2], the map

f : Rn −→ Rn, (x1, . . . , xn) �−→ g(
√
x2

1 + . . .+ x2
n)(x1, . . . , xn)

is polynomial. If we restrict f to any closed segment Sv = {tv ∈ Rn : t ∈ [0, 1)} from the origin,
where v ∈ Rn is a unitary vector, then we obtain f(tv) = tg(t)v = h(t)v, and consequently

f(Sv) = {h(t)v ∈ Rn : t ∈ [0, 1)} = {sv ∈ Rn : s ∈ [0, 1]} = ClRn(Sv).

Observe that Bn =
⋃

v∈Sn Sv and Bn =
⋃

v∈Sn ClRn(Sv). Therefore,

f(Bn) = f

( ⋃
v∈Sn

Sv

)
=
⋃

v∈Sn

f(Sv) =
⋃

v∈Sn

ClRn(Sv) = Bn.

Using now Lemma 6.1, we conclude that Bn is a regular image of Rn.
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Universidad Complutense de Madrid
28040 Madrid
Spain

josefer@mat·ucm·es
jmgamboa@mat·ucm·es

Carlos Ueno
Departamento de Matemáticas
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