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Abstract

In this work, we study the structure of non-refinable chains of prime ideals in the (real closed) rings
S(M) and S∗(M) of semialgebraic and bounded semialgebraic functions on a semialgebraic set
M ⊂ R

m. We pay special attention to the prime z-ideals of S(M) and the minimal prime ideals of
both rings. For the last, a decomposition of each semialgebraic set as an irredundant finite union
of closed pure dimensional semialgebraic subsets plays a crucial role. We prove moreover the
existence of maximal ideals in the ring S(M) of prefixed height whenever M is non-compact.

1. Introduction

A subset M ⊂ Rm is said to be basic semialgebraic if it can be written as

M = {x ∈ Rm : f1(x) > 0, . . . , fr(x) > 0, g(x) = 0} := {f1 > 0, . . . , fr > 0, g = 0}

for some polynomials f1, . . . , fr , g ∈ R[x] := R[x1, . . . ,xm]. The finite unions of basic semi-
algebraic sets are called semialgebraic sets. Pure dimensional semialgebraic sets, that is, those
semialgebraic sets, for which the local dimension function M → R, p �→ dimp(M) is a constant
function, will play a crucial role in this work. A continuous function f : M → R is said to be semi-
algebraic if its graph is a semialgebraic subset of Rm+1. Usually, a semialgebraic function means
a function that is not necessarily continuous and whose graph is semialgebraic. However, since all
semialgebraic functions occurring in this article are continuous, we assume the continuity condi-
tion whenever we refer to them. Similarly, a continuous semialgebraic map ϕ : M → N between
semialgebraic sets will be called a semialgebraic map.

The sum and product of functions, defined pointwise, endow the set S(M) of semialgebraic
functions on M with a natural structure of a commutative ring (whose unity is the function with
constant value 1). It is obvious that the subset S∗(M) of bounded semialgebraic functions on M is a
real subring of S(M). In the following, we denote with S�(M) either S(M) or S∗(M) if the involved
statements or arguments are valid for both rings.

As is well-known, the rings S�(M) are particular cases of the so-called real closed rings introduced
by Schwartz in the 1980s (see [20]). The theory of real closed rings has been deeply developed till
now in a fruitful attempt to establish new foundations for semi-algebraic geometry with relevant
interconnections to model theory, see [5, 6, 19–25, 28–30]. Moreover, this theory, which generalizes
the classical techniques concerning the semi-algebraic spaces of Delfs–Knebusch (see [8]), provides
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a powerful machinery to approach problems concerning certain rings of real-valued functions and
contributes to achieve a better understanding of the algebraic and topological properties of such rings.
We highlight some of them:

(1) Rings of real-valued continuous functions on Tychonoff spaces;
(2) rings of semi-algebraic functions on semi-algebraic sets of an arbitrary real closed field and,

more generally,
(3) rings of definable continuous functions on definable sets in o-minimal expansions of fields.

For the sake of completeness, we recall the characterization of real closed rings that adapts better
to the content of this work; see [21] for a ring theoretic analysis of the concept of real closed rings.
As such a characterization is quite involving, we quote only some of the involved objects without
entering into further details.

Definition 1.1 A ring A is real closed if it satisfies the following conditions:

(i) A is a reduced ring.
(ii) The support map supp : Specr (A) → Spec(A), α �→ pα = α ∩ (−α) is identifying, that is,

it is a homeomorphism, which induces a bijection between the constructible subsets of
Specr (A) and those of Spec(A).

(iii) For each p ∈ Spec(A) we have:
(a) The quotient field R := qf(A/p) is a real closed field and A/p is integrally closed in R,

and
(b) Each Q ∈ Spec(A/p) is convex with respect to the unique ordering of A/p.

(iv) A finite sum of radical ideals of A is a radical ideal of A.

Of course, Spec(A) denotes the Zariski spectrum of A endowed with the Zariski topology while
Specr (A) denotes the real spectrum of A endowed with the spectral topology. We refer the reader to
[2, Section 7.1] for further details concerning the real spectrum of a ring A and its constructible subsets.

1.1. Main results

The main purpose of this work is to understand the structure of non-refinable chains of prime ideals
of the ring S∗(M) for an arbitrary semialgebraic set M ⊂ Rm (not necessarily locally closed). This
somehow completes the work already began in [12], in which we studied some algebraic, topological
and functorial properties of the Zariski and maximal spectra of the rings S�(M) for an arbitrary
semialgebraic set M ⊂ Rm. Moreover, our results generalize some similar already known ones for the
o-minimal context in the exponentially bounded and polynomially bounded cases that are developed
under the assumption of local closedness (see [28] for further details). We also recall here that S∗(M)

can be understood as the ring of holomorphy of the real closed ring S(M) in the sense of [29, p. 40].
This provides some valuable information in relation with the chains of prime ideals containing an
ideal b of S∗(M). To that end, one can use Gelfand–Kolmogorov’s Theorem for rings with normal
spectrum and the related results concerning rings of holomorphy (see [29, §10]) applied to the pair
of rings S∗(M) ⊂ S(M).

Of course, many of the results we obtain in this work are still valid for an arbitrary real closed
field but to ease the exposition we only focus on the field R. Next, we point out our main results in
more detail.
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1.1.1 Let m be a maximal ideal of S(M) and m∗ the unique maximal ideal of S∗(M) containing the
prime ideal m ∩ S∗(M). Then all non-refinable chains of prime ideals in S∗(M) whose last member
is m∗ contain m ∩ S∗(M) and they share the members of the chain that are between both ideals
(see Proposition 5.1). If M is moreover locally compact, the immediate successor of m ∩ S∗(M)

in such a chain is characterized topologically in Theorem 6.1; in fact, we show in Theorem 6.8
how far the previous description works if M is not locally compact. Such a characterization is
inspired by the analogous results for classical rings of continuous functions (see [15, 14.27; 17]).
The proof of Theorem 6.1 is a paradigm of how the algebraic and topological arguments mix in a
subtle way.

1.1.2 In addition, we present several examples (see Examples 5.5 and 5.6), which illustrate different
types of chains of prime ideals. In the same manner, we approach the computation of the height of
each maximal ideal m∗ in S∗(M) by using suitable semialgebraic compactifications of M . In fact,
we prove the existence of a semialgebraic compactification X of M and a non-refinable chain of
prime ideals in S(X) whose length equals ht(m∗) and which has m∗ ∩ S(X) as its last member (see
Corollaries 5.8 and 5.9). However, such a chain need not to be a chain of maximal length among
those ending with m∗ ∩ S(X) (see Remark 5.10).

1.1.3 The pure dimensional semialgebraic sets enjoy a particularly useful property: the complements
of subsets of smaller dimension are dense. With the aim of using this fact, we present a finite decom-
position BM = {Bi (M)}ri=1 of any semialgebraic set M into closed pure dimensional semialgebraic
subsets of different dimensions such that dim(Bi (M) ∩ Bj (M)) < min{dim(Bi (M)), dim(Bj (M))}
if i 	= j , see Proposition and Definition 3.2. This decomposition is unique, up to reordering, and its
members Bi (M) are called the bricks of M .

1.1.4 It is worthwhile to mention that the map q �→ q ∩ S∗(M) establishes a bijection between the
sets of minimal prime ideals of S(M) and S∗(M). In fact, the decomposition BM of M plays a crucial
role in the characterization of minimal prime ideals of both rings (see Theorem 4.1). Moreover, in
our context, a radical ideal of S�(M) is prime if and only if it contains a minimal prime ideal of
S�(M) (see Lemma 5.3 and Corollary 5.4). We refer the reader to [25] for a careful study of the
main properties of the minimal points (that is, minimal prime ideals) of the Zariski spectrum of
a ring.

Furthermore, we prove that each minimal prime ideal ofS(M) is a prime z-ideal (see Corollary 4.7).
Recall that an ideal a of S(M) is a z-ideal if it contains all functions whose zeroset contains the zeroset
of a function in a (see [21, Section 2]). Taking advantage of the study of minimal prime ideals of
S(M), we analyse the main properties of the semialgebraic depth (see Definition and Proposition 2.8)
on the set of prime z-ideals of S(M).

1.1.5 Finally, we study some properties of the maximal ideals of both rings S(M) and S∗(M). In
Theorem 7.1, we prove that for each non-compact pure dimensional semialgebraic set M of dimension
d and for each 0 ≤ r < d , there exists a free maximal ideal m of S(M) such that ht(m) = r but
ht(m∗) = d, where m∗ is the unique maximal ideal of S∗(M) that contains m ∩ S∗(M). This result
guarantees the existence of maximal ideals in S(M), which are also minimal prime ideals. If M does
not have isolated points, no prime ideal of S∗(M) is simultaneously a maximal and minimal prime
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ideal (see Corollary 7.2). This kind of results are in some sense related to Bröcker’s ultrafilter theorem
(see [4, Section 4]).

1.2. Structure of the article

This work is organized as follows. In Section 2, we provide preliminary terminology and results con-
cerning Zariski and maximal spectra of rings of semialgebraic and bounded semialgebraic functions
we use along with the rest of the work. Most results in Section 2 arise from the general theory of real
closed rings commented in Section 1 as well as from [10–13]; we include them (without proofs) for
the sake of completeness. In Section 3, we present the decomposition of a semialgebraic set into bricks
and recall the main properties of the set Mlc of points in M , which admit a compact neighbourhood in
M (see [8, 9.14–9.21]). Section 4 is devoted to characterize the minimal prime ideals of S�(M) and
to study the behaviour of the semialgebraic depth on the set of prime z-ideals. In Section 5, we obtain
our main results concerning the study of chains of prime ideals of S∗(M). Section 6 is dedicated to
analyse the immediate successor of the prime ideal m ∩ S∗(M) in any non-refinable chain of prime
ideals in S∗(M) ending with a free maximal ideal m∗ of the ring S∗(M). Finally, we approach the
construction of maximal ideals in S(M) of prefixed height in Section 7.

2. Preliminaries on spectra of rings of semialgebraic functions

2.1. Generalities about semialgebraic sets and semialgebraic functions

Let M be a semialgebraic set. For each f ∈ S�(M) and each semialgebraic subset N ⊂ M , we denote
ZN(f ) := {x ∈ N : f (x) = 0} and DN(f ) := N \ ZN(f ). For N = M , we say that ZM(f ) is the
zeroset of f . We begin by writing each closed semialgebraic subset of M as the zeroset of a single
semialgebraic function on M that can be chosen bounded.

Lemma 2.1 Let Z be a closed semialgebraic subset of the semialgebraic set M ⊂ Rm. Then there
exists a bounded semialgebraic function h ∈ S∗(M) such that Z = ZM(h).

Proof . Take for instance h = min{1, dist(·, Z)}. �
Sometimes it will be useful to assume that the semialgebraic set M we are working with is bounded.

Such an assumption can be done without loss of generality, which we see in the following remark. In
what follows, we, respectively, denote the open and closed balls of Rm of centre x and radius ε > 0
with Bm(x, ε) and B̄m(x, ε); their common boundary is denoted with Sm−1(x, ε).

Remark 2.2 Let M ⊂ Rm be a semialgebraic set. The semialgebraic homeomorphism

ϕ : Bm(0, 1) → Rm, x �→ x√
1 − ‖x‖2

induces a ring isomorphism S(M) → S(N), f �→ f ◦ ϕ that maps S∗(M) onto S∗(N), where
N := ϕ−1(M). So, if necessary, we may always assume that M is bounded.

A key ingredient in the development of some results is the following semialgebraic version of the
Tietze–Urysohn extension lemma due to Delfs and Knebusch (see [7]).
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Theorem 2.3 Let N ⊂ M ⊂ Rm be a semialgebraic set such that N is closed in M . Then the
homomorphism S�(M) → S�(N), F �→ F |N is surjective.

2.2. The z-ideals of the ring S(M)

We recall the notion of a z-ideal of the ring S(M) and some remarkable properties (for a more detailed
analysis of this concept see [21, Section 2; 11, Section 3]). Whenever we consider an ideal of S�(M),
we refer to a proper ideal of S�(M).

Definition 2.4 Let M ⊂ Rm be a semialgebraic set. An ideal a of S(M) is a z-ideal if we have
g ∈ a whenever there exist f ∈ a and g ∈ S(M) satisfying ZM(f ) ⊂ ZM(g).

Remark 2.5 Let ϕ : N → M be a semialgebraic map between the semialgebraic sets N ⊂ Rn and
M ⊂ Rm and let φ : S(M) → S(N), h �→ h ◦ ϕ. If a is a z-ideal of S(N), then φ−1(a) is a z-ideal
of S(M).

We recall the Nullstellensatz for the ring S(M) (see for instance [28, Section 2; 11, 3.4]).

Theorem 2.6 (Nullstellensatz) Let M ⊂ Rm be a locally compact semialgebraic set and a an ideal
of S(M). Then a is a z-ideal if and only if a is radical. In particular, if p is a prime ideal, then p is a
z-ideal.

2.3. Coheight and semialgebraic depth

We present the notion and main properties of the semialgebraic depth of a prime ideal of S(M). As
far as we know, this invariant was first introduced in [10, 4.4] where it has been used to approach the
computation of the Krull dimension of rings of semialgebraic and bounded semialgebraic functions
on a semialgebraic set. In this work, we will provide further applications of this invariant, and in
fact, we extend the results concerning the semialgebraic depth obtained in [10, 4.6] for the prime
z-ideals of S(M), where M is an arbitrary semialgebraic set (not necessarily locally compact); see
Lemma 4.10–Corollary 4.14. Before introducing this notion, we recall the concept of coheight.
Namely:

Definitions 2.7 (Coheight) Let p ⊂ q be two prime ideals of a commutative ring A with unity such
that its Krull dimension is finite. The coheight of p in q is the maximum of the integers r ≥ 0 such
that there exists a chain of prime ideals p = p0 � · · · � pr = q.

If A is a Gelfand ring (for example, the rings of semialgebraic functions, see [22]), we define the
coheight of a prime ideal p ⊂ A as the coheight of p in the unique maximal ideal of A containing p.
In particular, the height of a maximal ideal m of A is the maximum of the coheights of the minimal
prime ideals of A contained in m.

Definition and Proposition 2.8 Semialgebraic depth Let M ⊂ Rm be a semialgebraic set. We
define the semialgebraic depth of a prime ideal p of S(M) as dM(p) := min{dim(ZM(f )) : f ∈ p}.

One of the main properties of this invariant, as stated in [10, 4.4], is the following.
(2.8.1) Let p and q be two prime z-ideals of S(M) such that q � p. Then dM(p) < dM(q).
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In fact, if M ⊂ Rm is a locally compact semialgebraic set, all prime ideals of S(M) are by
Theorem 2.6 z-ideals (see [11, 3.5; 21, Section 2]), so Paragraph 2.8.1 applies to each pair of prime
ideals q � p of S(M).
(2.8.2) In this locally compact semialgebraic setting, the following is proved in [10, 4.6]:

(i) For every prime ideal p of S(M) it holds dM(p) + ht(p) ≤ dim(M).
(ii) Let p ⊂ q be prime ideals of S(M). Then the coheight of p in q is ≤ dM(p) − dM(q).

(iii) The height of a maximal ideal m of S(M) is less than or equal to the maximum of dM(p),

where p runs over the minimal prime ideals of S(M) contained in m.

2.4. Zariski spectra of rings of semialgebraic functions

We recall some remarkable properties concerning the Zariski spectra of rings of semialgebraic and
bounded semialgebraic functions on a semialgebraic set, which follow from the fact that both rings
are real closed rings (see [20, 21, 23, 28, 29]). We also refer the reader to [2, Section 1, Section 7]
for further details concerning real fields and the real spectrum of a commutative ring with unity.

The Zariski spectrum of S�(M) that we denote with Spec�
s (M) := Spec(S�(M)) for notational

simplicity is the set of all prime ideals of S�(M). This set Spec�
s (M) is usually endowed with

the Zariski topology, which has the family of sets DSpec�
s (M)(f ) := {p ∈ Spec�

s (M) : f 	∈ p}, where
f ∈ S�(M), as a basis of open sets. We write ZSpec�

s (M)(f ) := Spec�
s (M) \ DSpec�

s (M)(f ).
The field qf(S�(M)/p) is real closed, see for instance [22] or [14], so it admits a unique ordering ≤,

having the squares as its cone of non-negative elements. Therefore, the map p �→ (p, ≤) is a bijection
between the Zariski and the real spectrum of S�(M), and to simplify we identify Spec�

s (M) with the
real spectrum of S�(M). Recall that the real spectrum of a commutative ring A is the collection of
all pairs of the type (p, ≤), where p is a real prime ideal and ≤ is an ordering of the orderable field
qf(A/p). An ideal a of A is said to be real if it holds a1, . . . , ar ∈ a whenever a2

1 + · · · + a2
r ∈ a for

a1, . . . , ar ∈ A; we refer the reader to [2, §4,§7] for further details concerning the real spectrum. The
usual topology for the real spectrum of a commutative ring A is the spectral topology: In our case
the real spectrum of A := S�(M) has the family of sets

USpec�
s (M)(f1, . . . , fr) := {p ∈ Spec�

s (M) : f1 + p > 0, . . . , fr + p > 0 in qf(S�(M)/p)},
as a basis of open sets, where f1, . . . , fr ∈ S�(M). This topology coincides with the Zariski one intro-
duced before. Moreover, M (endowed with the Euclidean topology) can be embedded in Spec�

s (M)

as a dense subspace, via the embedding φ : M → Spec�
s (M), p �→ m�

p, where m�
p denotes the

maximal ideal of all functions in S�(M) vanishing at p.

2.4.1 The prime ideals of S�(M) satisfy a ‘convexity condition’, which is ubiquitous for real closed
rings. Namely: Given a prime ideal p of S�(M) and f, g ∈ S�(M) with g ∈ p and 0 ≤ f (x) ≤ g(x)

for each point x ∈ M, then also f ∈ p. This convexity condition can be translated to the ordering
of the real closed ring S�(M)/p: If 0 ≤ f + p ≤ g + p in the ring S�(M)/p, then we may assume
0 ≤ f (x) ≤ g(x) for all x ∈ M .

2.4.2 An important consequence of the convexity that we use frequently in this work is the following:
The set of prime ideals of the ring S�(M) containing a given prime ideal p form a chain.
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It is a well-known fact that the ring S(M) of semialgebraic functions on a semialgebraic set M

can be understood as a suitable localization of the ring S∗(M) of bounded semialgebraic functions
on M . More precisely, we have:

Lemma 2.9 Let M ⊂ Rm be a semialgebraic set and W(M) ⊂ S∗(M) the multiplicative set of those
functions f ∈ S∗(M) such that ZM(f ) = ∅. Then

(i) S(M) = S∗(M)W(M) is the localization of S∗(M) at the multiplicative set W(M).
(ii) If S(M) ⊂ Spec*

s (M) denotes the set of prime ideals of S∗(M), which do not meet W(M),

then the Zariski spectrum of S(M) is in one-to-one correspondence with S(M) via the maps

j : Specs(M) → S(M), p �→ p ∩ S∗(M) and j−1 : S(M) → Specs(M), p �→ pS(M).

We compile some results concerning the Zariski spectra of the rings S(M) and S∗(M); for fur-
ther details concerning their proofs we refer the reader to [12, Section 4–5]. Recall that, given
a semialgebraic map ϕ : N → M , there exists a (unique continuous) spectral map Spec�

s (ϕ) :
Spec�

s (N) → Spec�
s (M), which extends ϕ. The next result provides a nice description of the closure

of a semialgebraic subset N ⊂ M ⊂ Rm in Spec�
s (M). Namely,

Lemma 2.10 Let N ⊂ M ⊂ Rm be semialgebraic sets andj : N ↪→ M the inclusion map. Consider
the homomorphism φ : S�(M) → S�(N), f → f |N and a prime ideal p of S�(M). Then

(i) p ∈ ClSpec�
s (M)(N) if and only if ker φ ⊂ p.

(ii) If M is moreover locally compact, p ∈ ClSpecs(M)(N) if and only if there exists h ∈ p such
that ZM(h) ⊂ ClM(N).

(iii) If N is moreover closed in M, then Spec�
s (N) ∼= ClSpec�

s (M)(N) via Spec�
s (j).

The next result can be seen as a first attempt to show the rigidity of the chains of prime ideals in
S∗(M). We will come back to this item in Section 5.

Corollary 2.11 Let N ⊂ M ⊂ Rm be semialgebraic sets such that N is closed in M . Let p ∈
ClSpec*

s (M)(N) be a prime ideal and m∗ the unique maximal ideal of S∗(M) containing p. Let m

be the unique maximal ideal of S(M) such that m ∩ S∗(M) ⊂ m∗. Then m ∈ ClSpecs(M)(N) and
m ∩ S∗(M) ∈ ClSpec*

s (M)(N).

Proof . Let j : N ↪→ M be the inclusion map and denote the induced homomorphisms with
φ1 : S(M) → S(N), f �→ f |N and φ2 : S∗(M) → S∗(N), f �→ f |N that are by Theorem 2.3
surjective. We obtain the following commutative diagrams:

S(M)
φ1 �� S(N)

S∗(M)
φ2 ��

��

��

S∗(N)

� �

��
=⇒

Spec*
s (N)

Spec*
s (j)

�� ClSpec*
s (M)(N) � � �� Spec*

s (M)

Specs(N)
Specs(j)

��
��

��

ClSpecs(M)(N)
��

��

� � �� Specs(M)
��

��

in which the first maps in the rows of the second diagram are by Lemma 2.10(iii) homeomorphisms.
Since p ∈ ClSpec*

s (M)(N), also m∗ ∈ ClSpec*
s (M)(N); in fact, n∗ = Spec*

s (j)−1(m∗) is a maximal ideal
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S∗(N) because Spec*
s (j)−1 preserves closed points. Let us consider the ideal q := Spec*

s (j)−1(p) ⊂
n∗ and let n be the unique maximal ideal of S(N) satisfying n ∩ S∗(N) ⊂ n∗. By the correspondence
theorem, Specs(j)(n) ∈ ClSpecs(M)(N) is a maximal ideal of S(M) and, in fact, it equals m because
Specs

∗(j)(n∗) = m∗. Thus, also m ∩ S∗(M) ∈ ClSpec*
s (M)(N), as required. �

Later, it will be useful to approach the study of Specs(M) by comparing it with other already
known spectra (see [12, 4.8-14]). To that end, we first need to introduce the following concept:

Definition and Proposition 2.12 Given semialgebraic sets Y ⊂ M ⊂ Rm, we denote E(Y ) :=
{f ∈ S(M) : ZM(f ) = Y } and define the spectral envelope of Y as the union L(Y ) :=⋃

f ∈E(Y ) ZSpecs(M)(f ). This set L(Y ) satisfies (by Lemma 2.10(i))

Y ⊂ ClSpecs(M)(Y ) ⊂
⋂

f ∈E(Y )

ZSpecs(M)(f ) ⊂ L(Y ).

In fact, if M is locally compact, we have the equality ClSpecs(M)(Y ) = L(Y ).

The spectral envelope has been studied in detail in [12, 4.8-14]. We now state its essential properties
without proofs that are used frequently in Sections 4 and 5.

Theorem 2.13 Let N ⊂ M ⊂ Rm be semialgebraic sets such that N is open in M and locally com-
pact. Denote Y := M \ N and letj : N ↪→ M be the inclusion map. The following properties hold:

(i) Let q ∈ Specs(N) and p := Specs(j)(q). Then dN(q) = dM(p).
(ii) Let p ∈ Specs(M) \ L(Y ). Then p is a z-ideal of S(M), q := pS(N) is a prime z-ideal of

S(N) and Specs(j)−1(p) = {q}.
(iii) The map Specs(j) : Specs(N) → Specs(M) is a homeomorphism onto its image

Specs(M) \ L(Y ).
(iv) If N � M is moreover a dense subset of M and p is a minimal prime ideal of S(M), then

p 	∈ L(Y ).

We take advantage of the following straightforward lemma concerning some general properties of
chains of prime ideals of an arbitrary ring. In its statement, the reader could observe the shadow of
the spectral envelope introduced above.

Lemma 2.14 Let A and B be two commutative rings with unity and let X ⊂ Spec(A) and Y ⊂
Spec(B) be, respectively, arbitrary unions of closed subsets of Spec(A) and Spec(B). Suppose that
there exists a homeomorphism γ : Spec(A) \ X → Spec(B) \ Y . The following properties hold:

(i) Let p0 � · · · � pr be a chain of prime ideals in A such that pr /∈ X. Then γ (p0) � · · · � γ (pr )

is a chain of prime ideals in B such that γ (pr ) 	∈ Y .
(ii) p ∈ Spec(A) \ X is a minimal prime ideal of A if and only if γ (p) ∈ Spec(B) \ Y is a minimal

prime ideal of B.

Next, we compare the chains of prime ideals of S�(M) and those of S(X) = S∗(X), where X

is a semialgebraic compactification of a locally compact semialgebraic set M . Recall that a com-
pactification (X,j) of M is said to be a semialgebraic compactification of M if j : M → X is a
semialgebraic map (see also [13]).
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Lemma 2.15 Let M ⊂ Rm be a locally compact semialgebraic set and (X,j) a semialgebraic
compactification of M . Denote Y := X \ j(M) and Z := ClSpec*

s (X)(Y ) = ClSpecs(X)(Y ). Then

(i) The map Specs(j) : Specs(M) → Specs(X) is a homeomorphism onto its image
Specs(X) \ Z.

(ii) The map Spec*
s (j) : Spec*

s (M) → Spec*
s (X) is surjective and the restriction map Spec*

s (j)| :
Spec*

s (M) \ Spec*
s (j)−1(Z) → Spec*

s (X) \ Z is a homeomorphism.
(iii) For each p ∈ Spec*

s (X) \ Z the fiber Spec*
s (j)−1(p) is a singleton.

(iv) If p0 � · · · � ps is a chain of prime ideals in S(X) such that ZM(f ) 	= ∅ for all f ∈ ps , then
p0S(M) � · · · � psS(M) is a chain of prime ideals in S(M) of the same length.

(v) Given a chain of prime ideals p0 � · · · � pr in S(X), there exists a chain of prime ideals
q0 � · · · � qr in S∗(M) such that Specs(j)(qi ) = pi for i = 0, . . . , r .

Proof . Parts (ii), (iii) and (v) follow from [12, 5.1, 5.4, 5.11]. Moreover, as X is locally compact,
L(Y ) = ClSpecs(X)(Y ), so (i) and (iv) follow straightforwardly from Theorem 2.13 and Lemma 2.14(i).
Observe that the condition ZM(f ) 	= ∅ for all f ∈ ps in part (iv) guarantees pi 	∈ L(Y ) for all
i = 0, . . . , s. �

2.5. Maximal spectra

In this section, we focus our attention on a relevant subspace of Spec�
s (M): its maximal spectrum. We

expose some properties and results of this space that are useful later. For further details see [13, 29].

2.5.1 We denote the collection of all maximal ideals of S�(M) with β�
s M . As usual, we consider the

topology induced by the Zariski topology of Spec�
s (M) in β�

s M . Given f, f1, . . . , fr ∈ S�(M), we
denote in the following:

Dβ�
s M(f ) := DSpec�

s (M)(f ) ∩ β�
s M,

Uβ�
s M(f1, . . . , fr) := USpec�

s (M)(f1, . . . , fr) ∩ β�
s M,

Zβ�
s M(f ) := β�

s M \ Dβ�
s M(f ) = ZSpec�

s (M)(f ) ∩ β�
s M.

By [2, 7.1.25(ii)], β�
s M is a compact and Hausdorff space and it contains M as a dense subspace,

that is, β�
s M is a Hausdorff compactification of M . Observe that if M is compact, then the injective

continuous map φ : M → β�
s M, p �→ m�

p is in fact bijective (because in this case M is dense
and closed in β�

s M) and so β�
s M ≡ M . As it happens for rings of continuous functions (see [15,

Section 7]), the respective maximal spectra βs M and β*
s M of S(M) and S∗(M) are homeomorphic

(see [29, Section 10] or [13, 3.5] for full details). More precisely,

2.5.2 The map 	 : βs M → β*
s M , which maps each maximal ideal m of S(M) to the unique maximal

ideal m∗ of S∗(M) that contains m ∩ S∗(M), is a homeomorphism. Moreover, 	(mp) = m∗
p for all

p ∈ M .
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Thus, it is not an abuse of notation to denote every maximal ideal of S∗(M) with m∗. Moreover,
m will denote the unique maximal ideal of S(M) such that m ∩ S∗(M) ⊂ m∗.

2.5.3 Observe that the inclusion map R ↪→ S∗(M)/m∗, r �→ r + m∗ is an (injective)
homomorphism of ordered fields; in fact, it is an isomorphism because S∗(M)/m∗ is an archimedean
extension of R. Thus, since R admits a unique automorphism, there is no ambiguity to refer to
f + m∗ ∈ S∗(M)/m∗ ∼= R as a real number for every f ∈ S∗(M). In particular, if m∗ = m∗

p for
some point p ∈ M , the isomorphism S∗(M)/m∗

p → R identifies f + m∗
p with f (p). Therefore, each

bounded semialgebraic function f : M → R defines a natural extension f̂ : β*
s M → R, m∗ → f +

m∗, which is continuous because given real numbersa < b, then f̂ −1((a, b)) = Uβ*
s M(f − a, b − f ).

Of course, since M is dense in β*
s M , f̂ is the unique continuous extension of f to β*

s M .

2.5.4 In contrast to what happens when dealing with ideals of polynomial rings, the zeroset of a
prime ideal p of S�(M) does not provide substantial information about p because it is either a point
or the emptyset. An ideal a of S�(M) is said to be fixed if all functions in a vanish simultaneously
at some point of M . Otherwise, the ideal a is said to be free. The fixed maximal ideals of the ring
S�(M) are those of the form m�

p where p ∈ M . Clearly, mp ∩ S∗(M) = m∗
p for each point p ∈ M . In

fact, the equality m ∩ S∗(M) = m∗ characterizes the fixed maximal ideals of S�(M) (see [13, 3.7]).
Namely,

m
∗ is a fixed ideal ⇐⇒ m is a fixed ideal ⇐⇒ m ∩ S∗(M) = m

∗ ⇐⇒ ht(m) = ht(m∗).

3. Dismantling and local compactness of semialgebraic sets

In this section, we present a dismantling of a semialgebraic set M ⊂ Rm into pure dimensional
semialgebraic subsets that we call bricks, which are useful to characterize the minimal prime ideals
of S�(M). We recall the main properties of the set Mlc of points of a semialgebraic set M ⊂ Rm,
which have a compact neighbourhood in M (see [8, 9.14–9.21]). This requires some preparation.

Definition 3.1 Let M ⊂ Rm be a d-dimensional semialgebraic set. We denote the set of regular
points of M with Reg(M), that is, those points x ∈ M , which have a neighbourhood V x in M

analytically diffeomorphic to Rd . We denote δ(M) := M \ Reg(M). By [27], Reg(M) is an open
semialgebraic subset of M and, since it is an analytic manifold, we deduce from [26, I.3.9] that
Reg(M) is a Nash manifold. In fact, the set Reg(M) of regular points of M is non-empty and δ(M)

is a semialgebraic set of dimension ≤ d − 1.

3.1. Decomposition into pure dimensional semialgebraic bricks

A main difference between real and complex algebraic geometry is the existence of real irreducible
algebraic sets with pieces of arbitrary prescribed dimensions, see [1, 4.4]. This kind of sets have a
wilder behaviour than the pure dimensional ones. So, our next aim is to decompose a semialgebraic
set M ⊂ Rm into an irredundant finite union of closed pure dimensional semialgebraic subsets of M .
Consider the following semialgebraic sets, defined recursively: T0 := M , Mi := ClM(Reg(Ti−1)),
Ti := δ(Ti−1) \ ⋃i

k=1 Mk for i ≥ 1.
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By Definition 3.1, each Mi is either empty or a pure dimensional semialgebraic set. Moreover, it
follows from Definition 3.1 that for i ≥ 2

dim(Mi) = dim(ClM(Reg(Ti−1))) = dim(Ti−1) = dim

(
δ(Ti−2)

∖ i−1⋃
k=1

Mk

)
≤ dim(δ(Ti−2)) < dim(Ti−2) = dim(ClM(Reg(Ti−2))) = dim(Mi−1).

In particular, there are only finitely many non-empty Mis, say the first r , and so the same happens to
the Tis. Observe also

Tk = Reg(Tk) ∪ δ(Tk) ⊂ Mk+1 ∪ (δ(Tk) \ Mk+1) ⊂
k+1⋃
j=1

Mj ∪ Tk+1.

Therefore, M = T0 = ⋃r
i=1 Mi , and we have written M as a union of pure dimensional closed

semialgebraic subsets of M with dim(Mi) 	= dim(Mj ) for i 	= j and

dim(Mi ∩ Mj) < min{dim(Mi), dim(Mj )}.

Indeed, since each Mi is pure dimensional, it is enough to check that if i > j , then Mi \ Mj =
Mi \ (Mi ∩ Mj) is dense in Mi . Otherwise, there exists an open subset V ⊂ Rm such that ∅ 	=
V ∩ Mi ⊂ Mj . Since Mi = ClM(Reg(Ti−1)), we have

∅ 	= V ∩ Reg(Ti−1) ⊂ Mj ∩ Ti−1 = Mj ∩
(

δ(Ti−2)

∖ i−1⋃
k=1

Mk

)
⊂ Mj \ Mj = ∅,

which is a contradiction. Thus, dim(Mi ∩ Mj) < dim(Mi) < dim(Mj ).

3.1.1 Therefore, Mi \ ⋃
j 	=i Mj is dense in Mi . Moreover, ClM(M \ (Mi ∩ Mj)) = M if i 	= j .

Indeed, for each k = 1, . . . , r the dimension of Mk ∩ (Mi ∩ Mj) is strictly smaller than dim(Mk)

and so ClM(Mk \ (Mi ∩ Mj)) = Mk . Thus, ClM(M \ (Mi ∩ Mj)) = M .

3.1.2 Let di := dim(Mi) and Si be the set of points p ∈ M such that the germ Mp is pure dimensional
and has dimension di . Notice that Mi is the closure of Si in M .

Proposition and Definition 3.2 Let M ⊂ Rm be a semialgebraic set. Then the family
{M1, . . . , Mr} of semialgebraic subsets of M we have constructed is unique and satisfies the following
properties:

(i) Each Mi is a pure dimensional and closed subset of M .
(ii) M = ⋃r

i=1 Mi .
(iii) Mi \ ⋃

j 	=i Mj is dense in Mi .
(iv) dim(Mi) > dim(Mi+1) for i = 1, . . . , r − 1. In particular, dim(M1) = dim(M).
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We call the sets Mi the bricks of M and denote the family of bricks of M with BM := {Bi (M) :=
Mi : i = 1, . . . , r}.
Proof . We proceed by induction. If M has dimension 0, the result is trivially true. We assume that
the result is true for semialgebraic sets of dimension ≤ d − 1 and have to prove that it also holds for
d := dim(M).

Let N1, . . . , Ns be another family of semialgebraic subsets of M satisfying conditions (i) to (iv).
Let us see first that M1 = N1. Note that T := ⋃s

j=2 Nj has dimension ≤ d − 1 and so, since M1 is
pure dimensional, M1 \ T is dense in M1. Observe also

M1 \ T ⊂ M \ T =
s⋃

j=1

Nj \ T = N1 \ T ⊂ N1

and as N1 is closed in M , we get M1 ⊂ N1. By symmetry N1 ⊂ M1 and so N1 = M1.
Next, let us see S := ⋃r

i=2 Mi = T . Note that M1 ∪ T = N1 ∪ T = M = M1 ∪ S and S \ M1 is
dense in S. We have

S \ M1 ⊂ M \ M1 = (M1 ∪ T ) \ M1 = T \ M1 ⊂ T ,

and since T is closed in M , we deduce S ⊂ T . Thus, again by symmetry, S = T . Now, the families
M2, . . . , Mr and N2, . . . , Ns satisfy all properties (i) to (iv) for the set T = S, and we finish by
applying the induction hypotheses to S = T . �

Corollary 3.3 Let N ⊂ M ⊂ Rm be semialgebraic sets such that N is dense in M . Then the
families of bricks of N and M satisfy the following relations:

(i) BM = {Bi (M) = ClM(Bi (N))}i .
(ii) BN = {Bi (N) = Bi (M) ∩ N}i .

(iii) Spec*
s (j)(ClSpec*

s (N)(Bi (N))) = ClSpec*
s (M)(Bi (M)), where j : N ↪→ M is the inclusion

map for each index i.

Proof . For the first equality it is enough to check that the family of semialgebraic sets {ClM(Bi (N))}i
satisfies the properties (i)–(iv) in Proposition and Definition 3.2 relative to M . This is immediate for
properties (i), (iii) and (iv) in Proposition and Definition 3.2 because the Bi (N)s are the bricks of
N . Let us see that they also satisfy property (ii) in Proposition and Definition 3.2. Indeed, since
Bi (N) ⊂ N , we have

Bi (N)

∖ ⋃
j 	=i

ClM(Bj (N)) = Bi (N)

∖ ⋃
j 	=i

ClM(Bj (N)) ∩ N

= Bi (N)

∖ ⋃
j 	=i

ClN(Bj (N)) = Bi (N)

∖ ⋃
j 	=i

Bj (N),

which is a dense subset of Bi (N). Thus, the difference ClM(Bi (N)) \ ⋃
j 	=i ClM(Bj (N)) is dense in

ClM(Bi (N)) and we are done.
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The second part is an immediate consequence of the first one. Since Bi (N) is closed in N , we get

Bi (M) ∩ N = ClM(Bi (N)) ∩ N = ClN(Bi (N)) = Bi (N),

as wanted.
Finally, statement (iii) is a particular case of [12, 5.15] because C := Bi (M) is by Proposition and

Definition 3.2 a closed subset of M and C1 := C ∩ N = Bi (M) ∩ N = Bi (N) is dense in C. �

Corollary 3.4 Let N ⊂ M ⊂ Rm be semialgebraic sets such that N is open in M and let BM :=
{Bi (M) : 1 ≤ i ≤ r} be the family of bricks of M . Let 1 ≤ i1 < · · · < is ≤ r be those indices 1 ≤
i ≤ r such that the intersection Bi (M) ∩ N is non-empty. Then BN = {Bj (N) = Bij (M) ∩ N : 1 ≤
j ≤ s} is the family of bricks of N .

Proof . Note that each Bj (N) = Bij (M) ∩ N is an open pure dimensional semialgebraic subset of
Bij (M) with dim(Bj (N)) = dim(Bij (M)). Moreover, N = ⋃s

j=1 Bj (N) and

dim(Bj (N)) = dim(Bij (M)) > dim(Bij+1(M)) = dim(Bj+1(N)).

Finally, as N is open in M , it follows

ClBj (N)

⎛⎝Bj (N)

∖ ⋃
�	=j

B�(N)

⎞⎠
= N ∩ ClBij

(M)

⎛⎝⎛⎝Bij (M)

∖ ⋃
�	=j

Bi� (M)

⎞⎠ ∩ N

⎞⎠
= N ∩ ClBij

(M)

⎛⎝Bij (M)

∖ ⋃
�	=j

Bi� (M)

⎞⎠ = N ∩ Bij (M) = Bj (N).

This proves, using Proposition and Definition 3.2, that BN is the family of bricks of N . �

Remark 3.5 The bricks of a semialgebraic set are somehow related to the definable semialgebraic
blocks introduced in [18, 3.2]. Recall that a basic definable semialgebraic block or basic block of
dimension κ in Rn is a connected definable set U ⊂ Rn of dimension κ contained in some semi-
algebraic set A of dimension κ such that every point x of U is a C1-regular point of dimension κ in
U and in A. Dimension zero is allowed: a point is a basic block. A definable semialgebraic block
or block is the image of a basic block U under a semialgebraic map ϕ : Rn → Rm defined and con-
tinuous on a semialgebraic set containing U . For further details on the involved concepts we refer
the reader to [18].

In [18, 3.3], it is presumed that the image of a basic block under a map f : Rn → Rm with semi-
algebraic graph is the union of finitely many basic blocks. We propose a short proof for this fact here.

Indeed, let U ⊂ Rn be a basic block of dimension d and A a connected semialgebraic set that
contains U and is a C1 manifold of dimension d . Note that U is an open subset of A. Let f : A → Rm

be a map with semialgebraic graph 
. By [2, 2.9.10], 
 is the disjoint union of finitely many semi-
algebraic smooth submanifolds 
i , each of them semialgebraically diffeomorphic to (−1, 1)dim(
i ).
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Let Ai ⊂ A be the semialgebraic set such that 
i is the graph of f |Ai
. As 
i is a semialgebraic

smooth manifold, so is Ai . Note that A is the pairwise disjoint union of the Ais; hence, U = ⊔
i Ui

where Ui = Ai ∩ U . As f (U) = ⋃
i f (Ui), it is enough to show that f (Ui) is a finite union of basic

blocks. Therefore, we assume from the beginning that we are in the following situation: U is an open
definable subset of a connected semialgebraic smooth manifold A of dimension d and f : Ai → Rm

is a semialgebraic smooth map. By means of [2, 9.2.1-3] we can stratify A as a pairwise disjoint finite
union of semialgebraic smooth submanifolds Aj such that f |Aj

has constant rank. Thus, we assume
in addition that f : A → Rm has constant rank.

By the constant rank theorem [2, 9.6.1], we conclude that f is an open map and f (A) is a semi-
algebraic smooth manifold of dimension κ := d − rk(f ). Thus, f (U) is an open definable subset
of f (A); hence, f (U) is a definable C1-manifold of dimension κ contained in the semialgebraic
smooth manifold f (A) of dimension κ . To finish, we must show that f (U) is a finite union of basic
blocks, but this follows straightforwardly considering the (definable) connected components of f (U)

(use [9, 4.3]).

3.2. Local compactness of semialgebraic sets

Local closedness has been revealed in the semialgebraic setting as an important property for the
validity of results, which are in the core of semialgebraic geometry. As is well-known, the locally
closed subsets of a locally compact topological space coincide with the locally compact ones (see
for instance [3, Section 9.7. Proposition 12-13]). If M ⊂ Rm is a semialgebraic set, then ClRm(M)

and U = Rm \ (ClRm(M) \ M) are also semialgebraic sets. If M is moreover locally compact, then
U is open in Rm and so M = ClRm(M) ∩ U can be written as the intersection of a closed and an open
semialgebraic subset of Rm.

To obtain certain results for an arbitrary semialgebraic set M , we compare the rings S�(M) and
S�(Mlc) in the subsequent sections, where Mlc is the largest locally compact and dense subset of M .
It turns out that Mlc is semialgebraic, and its construction is the main goal of the next result whose
proof follows from [8, 9.14–9.21].

Theorem 3.6 Let M ⊂ Rm be a semialgebraic set. Define

ρ0(M) := ClRm(M) \ M and ρ1(M) := ρ0(ρ0(M)) = ClRm(ρ0(M)) ∩ M.

The following properties hold:
(i) Let C ⊂ M be a closed semialgebraic subset of M . Then ρ1(C) ⊂ ρ1(M).

(ii) The set Mlc := M \ ρ1(M) = ClRm(M) \ ClRm(ρ0(M)), which is semialgebraic, is the
largest locally compact and dense subset of M .

(iii) Mlc equals the set of points of M, which have a compact neighbourhood in M .

4. Minimal prime ideals and semialgebraic depth

4.1. Minimal prime ideals of rings of semialgebraic functions

In the first part of this section, we characterize the minimal prime ideals of the ring S�(M) for
an arbitrary semialgebraic set M and study some properties of this kind of ideals. For instance, all
minimal prime ideals are z-ideals. This fact will be useful in the second part of this section to approach
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the study of the semialgebraic depth of prime z-ideals of the ring S(M) of an arbitrary semialgebraic
set M . Our main result concerning minimal prime ideals of the ring S�(M) is the following.

Theorem 4.1 (Minimal prime ideals) Let M ⊂ Rm be a semialgebraic set and p a prime ideal of
S�(M). Let {Bi (M)}ri=1 be the bricks of M . Then p is a minimal prime ideal of S�(M) if and only
if there exists i = 1, . . . , r such that for each f ∈ p its zeroset ZM(f ) contains a non-empty open
subset of Bi (M).

To approach the proof of Theorem 4.1, we recall an elementary but useful criterion of minimality
for prime ideals that is used along this work (see also [16]).

Lemma 4.2 Let A be a reduced commutative ring with unity and p a prime ideal of A. Then p is a
minimal prime ideal of A if and only if for every f ∈ p there exists g ∈ A \ p such that fg = 0.

A useful consequence of the previous criterion is the following result, which reduces the proof of
Theorem 4.1 to the case S�(M) = S(M) (see also [29, 14.6; 23, Section 7; 25]).

Lemma 4.3 Let M ⊂ Rm be a semialgebraic set and Min(S�(M)) denote the family of minimal
prime ideals of the ring S�(M). Then p ∩ W(M) = ∅ for every p ∈ Min(S∗(M), and the map

ψ : Min(S∗(M)) → Min(S(M)), p �→ pS(M)

is a bijection whose inverse map is ψ−1 : Min(S(M)) → Min(S∗(M)), q �→ q ∩ S∗(M).

Proof . Let p ∈ Min(S∗(M)) and suppose by contradiction p ∩ W(M) 	= ∅. Let f ∈ p ∩ W(M);
since p is a minimal prime ideal, there exists a function g ∈ S∗(M) \ p such that fg = 0. But as
ZM(f ) is empty, it follows that ZM(g) = M , or equivalently g = 0, which is a contradiction.

This implies by Lemma 2.9 that pS(M) is a minimal prime ideal of S(M) for every minimal
prime ideal p ∈ Min(S∗(M)). Thus, the map ψ is well defined and by Lemma 2.9 injective. To prove
its surjectivity, we must show that for every q ∈ Min(S(M)) it holds q ∩ S∗(M) ∈ Min(S∗(M)).
Otherwise there would exist q ∈ Min(S(M)) and p ∈ Min(S∗(M)) such that p � q ∩ S∗(M). But
p ∩ W(M) = ∅ and so pS(M) is by Lemma 2.9 a prime ideal of S(M), which is strictly contained
in q. This is against the minimality of q, as wanted. �

Remark 4.4 If we consider in Min(S�(M)) the topology induced by the one of Spec�
s (M), it

follows from Lemma 2.9 that the map ψ in Lemma 4.3 is a homeomorphism.

We are ready to prove Theorem 4.1. As commented above, it is by Lemma 4.3 sufficient to deal
with the case S�(M) = S(M). We assume first that M is locally compact.

Proof of Theorem 4.1 for M locally compact Let p be a prime ideal of S(M). Since each brick
Bj (M) is closed in M , there exist by Lemma 2.1 semialgebraic functions gj ∈ S(M) such that
Bj (M) = ZM(gj ). Since M = ZM(g1 · · · gr) and so the product

∏r
i=1 gi = 0 ∈ p, there exists

k = 1, . . . , r such that gk ∈ p.
(4.1.1) Let us see that if p is a minimal prime ideal, such index k is unique.

Suppose by contradiction that there exists k 	= � such that gk, g� ∈ p. Then h = g2
k + g2

� ∈ p and
ZM(h) = Bk(M) ∩ B�(M). By the minimality of p there exists a function b ∈ S(M) \ p such that
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hb = 0. Thus, the function b vanishes on the dense subset M \ ZM(h) = M \ (Bk(M) ∩ B�(M)) of
M (see Proposition and Definition 3.2) and so b = 0, which is a contradiction.

We proceed now by proving the equivalence claimed in Theorem 4.1.
(=⇒) Let 1 ≤ k ≤ r be the unique index such that gk ∈ p. Let us prove now that if f ∈ p, then

ZM(f ) contains a non-empty open subset of Bk(M) = ZM(gk). Since p is a minimal prime ideal,
there exists g ∈ S(M) \ p such that fg = 0.

If ZM(f ) does not contain a non-empty open subset of the pure dimensional semialgebraic
set Bk(M), then dim(ZM(f ) ∩ Bk(M)) < dim(Bk(M)) and so Bk(M) \ (ZM(f ) ∩ Bk(M)) is a
dense subset of Bk(M) contained in ZM(g) because Bk(M) is pure dimensional. Consequently,
g|Bk(M) = 0, that is, ZM(gk) ⊂ ZM(g). This implies by Theorem 2.6 that g ∈ p, which is a
contradiction. Thus, f vanishes identically on a non-empty open subset of Bk(M), as claimed.

(⇐=) Conversely, let 1 ≤ k ≤ r be such that ZM(f ) contains a non-empty open subset of
Bk(M) for all f ∈ p. Hence, the product g := ∏

j 	=k gj 	∈ p because Bk(M) \ ZM(g) = Bk(M) \⋃
j 	=k Bk(M) is a dense subset of Bk(M) and so ZM(g) does not contain a non-empty open subset

of Bk(M). Note that M \ Bk(M) ⊂ ZM(g). Thus, gkg = 0 ∈ p, so gk ∈ p.
Fix f ∈ p and let us find a function in S(M) \ p whose product with f is zero. Note that a =

f 2 + g2
k ∈ p and Y := ZM(a) = ZM(f ) ∩ Bk(M) ⊂ Bk(M) is a closed subset of M , which contains

a non-empty open subset of Bk(M). Consider the semialgebraic set Z := δ(Y ) ∪ δ(Bk(M)) whose
dimension is by Definition 3.1 strictly smaller than dim(Y ) = dim(Bk(M)). Observe that since Y

and Bk(M) are closed in M , also Z is by Definition 3.1 closed in M . Moreover, Y \ Z is a Nash
manifold contained in the Nash manifold Bk(M) \ Z. As both manifolds have the same dimension,
Y \ Z is an open subset of Bk(M) \ Z; hence, of Bk(M). Therefore,

C := Bk(M) \ (Y \ Z) = (Bk(M) \ Y ) ∪ Z

is a closed semialgebraic set in Bk(M); hence, in M . By Lemma 2.1, there exists a semialgebraic
function c ∈ S(M) such that C = ZM(c). We claim that c 	∈ p. Otherwise, the sum b = c2 + a2 ∈ p

and its zeroset satisfies

ZM(b) = ZM(c) ∩ Y = C ∩ Y = Z ∩ Y ⊂ Z.

Thus, dim(ZM(b)) ≤ dim(Z) < dim(Bk(M)) and so b ∈ p but ZM(b) does not contain any non-
empty open subset of Bk(M), which is against the hypothesis; hence, c /∈ p. Observe also

ZM(cf ) = ZM(c) ∪ ZM(f ) ⊃ (Bk(M) \ Y ) ∪ Z ∪ ZM(a) = (Bk(M) \ Y ) ∪ Z ∪ Y = Bk(M).

Hence, cg ∈ S(M) \ p and f cg = 0. Consequently, p is a minimal prime ideal, as wanted. �
We proceed to prove Theorem 4.1 in the general setting. Namely,

Proof of Theorem 4.1 for arbitrary M Denote Y := ρ1(M), and Mlc := M \ Y , which is open and
dense in M (see Theorem 3.6). This together with Corollary 3.3 implies that the bricks of Mlc are
Bi (Mlc) = Bi (M) ∩ Mlc and Bi (Mlc) is open and dense in Bi (M) for i = 1, . . . , r .

Consider the inclusion map j : Mlc ↪→ M and recall that the induced map Specs(j) :
Specs(Mlc) → Specs(M) is a homeomorphism onto its image Specs(M) \ L(Y ) by Theorem
2.13(iii). Moreover, since Mlc � M is dense in M , this image Specs(M) \ L(Y ) contains all minimal
prime ideals of S(M).
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Let p be a minimal prime ideal of S(M). Then its preimage q := Specs(j)−1(p) is by
Lemma 2.14(ii) a minimal prime ideal of S(Mlc). Thus, since Mlc is locally compact, there exists
k = 1, . . . , r such that for each f ∈ q its zeroset ZMlc(f ) contains a non-empty open subset of
Bk(Mlc) = Bk(M) ∩ Mlc. Hence, since p = q ∩ S(M) and Bk(M) ∩ Mlc is open and dense in
Bk(M), we deduce that for each f ∈ p the zeroset ZM(f ) contains a non-empty open subset of
Bk(M).

Conversely, let p be a prime ideal of S(M) and suppose the existence of k = 1, . . . , r such that for
all f ∈ p the set ZM(f ) contains a non-empty open subset of Bk(M). Hence, p 	∈ L(Y ) because Mlc

is dense in M . Thus, Specs(j)−1(p) = pS(Mlc) is a prime ideal by Theorem 2.13(ii). Again, by the
density of Mlc in M , the set ZMlc(f ) contains a non-empty open subset of Bk(M) ∩ Mlc = Bk(Mlc)

for all f ∈ pS(Mlc). Hence, pS(Mlc) is a minimal prime ideal of S(Mlc) and p = Specs(j)(pS(Mlc))

is a minimal prime ideal of S(M) by Lemma 2.14(ii), as wanted. �
As a straightforward consequence of Theorem 4.1, we deduce the following: If the semialgebraic

depth of a prime ideal p of S(M) coincides with the dimension of M , then p is a minimal prime
ideal. Namely,

Corollary 4.5 Let M ⊂ Rm be a semialgebraic set and p a prime ideal of S(M) such that dM(p) =
dim(M). Then p is a minimal prime ideal of S(M).

It is worthwhile to mention that minimal prime ideals enjoy a nice behaviour with respect to
contraction.

Proposition 4.6 Let N ⊂ M ⊂ Rm be semialgebraic sets, j : N ↪→ M the inclusion and
Spec�

s (j) : Spec�
s (N) → Spec�

s (M) the induced map. Let q be a minimal prime ideal of S�(N)

and denote p := Spec�
s (j)(q). Then:

(i) If N is dense in M, then p is a minimal prime ideal of S�(M).
(ii) If N is open in M, then p is a minimal prime ideal of S�(M).

Proof . (i) Let B1(N), . . . ,Br (N) be the bricks of N . The bricks of M = ClM(N) are
ClM(B1(N)), . . . , ClM(Br (N)) by Corollary 3.3.

Note that the dimension of each non-empty open semialgebraic subset V of Bi (N) equals
dim(Bi (N)) while by [2, 2.8.13] and Theorem 3.6

dim(ρ1(Bi (N))) = dim(ρ0(ρ0(Bi (N)))) ≤ dim(Bi (N)) − 2.

On the other hand, observe that the set (Bi (N))lc = Bi (N) \ ρ1(Bi (N)) is open in ClRm(Bi (N)) by
Theorem 3.6 and so it is also open in ClM(Bi (N)). Hence, V ∩ (Bi (N))lc = V \ ρ1(Bi (N)) is a
non-empty open subset of ClM(Bi (N)). This together with Theorem 4.1 implies that p is a minimal
prime ideal of S�(M).

(ii) Let BM := {Bi (M) : 1 ≤ i ≤ r} be the family of bricks of M . Then BN := {Bj (N) =
Bij (M) ∩ N : 1 ≤ j ≤ s} is the family of bricks of N by Corollary 3.4, for those indices
1 ≤ i1 < · · · < is ≤ r such that Bij (M) ∩ N 	= ∅. Since q is a minimal prime ideal of S�(N), there
exists by Theorem 4.1 an index 1 ≤ j ≤ s such that the zeroset of each function in q contains a
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non-empty subset of Bj (N). Now, for every f ∈ p its restriction f |N ∈ q and so ZN(f ) contains a
non-empty open subset V of Bj (N). But since N is open in M , the set V is a non-empty subset of
Bij (M) contained in ZM(f ). Thus, p is by Theorem 4.1 a minimal prime ideal of S�(M). �

As one can expect, the minimal prime ideals of S(M) are z-ideals.

Corollary 4.7 Let M ⊂ Rm be a semialgebraic set and p a minimal prime ideal of S(M). Then p

is a z-ideal.

Proof . Let Y := M \ Mlc. Since p is a minimal prime ideal of S(M), we know by Theorem 2.13(iv)
and the fact that Mlc is dense in M (see Theorem 3.6) that p 	∈ L(Y ). Thus, by Theorem 2.13(iii)
there exists a prime ideal q of S(Mlc) such that p = q ∩ S(M). But as Mlc is locally compact, q is a
z-ideal (see Theorem 2.6), so p is by Remark 2.5 a z-ideal, too. �

4.2. Further properties about prime z-ideals and semialgebraic depth

The remaining part of this section is devoted to study the semialgebraic depth for prime z-ideals
that has already been introduced in Definition and Proposition 2.8 (see also [10, 4.4]). In particular,
we extend the properties in Paragraph 2.8.2 to the prime z-ideals of the ring S(M) of semialgebraic
functions on an arbitrary semialgebraic set M ⊂ Rm.

Definition 4.8 Let Y ⊂ M ⊂ Rm be semialgebraic sets such that Y is closed in M . The inclusion
map j : Y ↪→ M induces by Lemma 2.10(iii) a homeomorphism

Spec�
s (j) : Spec�

s (Y ) → ClSpec�
s (M)(Y ) ⊂ Spec�

s (M).

We say that a prime ideal p ∈ Spec�
s (M) is a minimal prime ideal in ClSpec�

s (M)(Y ) if Spec�
s (j)−1(p) is

a minimal prime ideal of the ring S�(Y ). Observe that if p is a minimal prime ideal in ClSpecs(M)(Y ),
then p is by Remarks 2.5 and Corollary 4.7 a z-ideal of S(M).

Lemma 4.9 Let M ⊂ Rm be a semialgebraic set and p ⊂ S(M) a prime z-ideal. Fix a function
F ∈ p and write N := ZM(F). Then:

(i) There exists a prime z-ideal q of S(N) such that S(M)/p ∼= S(N)/q.
(ii) If dM(p) = dim(N), then the ideal q is a minimal prime ideal of S(N) and dN(q) = dM(p).

Proof . (i) The map φ : S(M) → S(N), f �→ f |N is by Theorem 2.3 an epimorphism. Moreover,
ker φ ⊂ p because p is a z-ideal and F ∈ p. Therefore, q ≡ p/ ker φ is a prime ideal of S(N) and
since φ is an epimorphism, S(M)/p ∼= S(N)/q. Moreover, let us see that q is a z-ideal. Indeed, let
g ∈ S(N) and h ∈ q such that ZN(h) ⊂ ZN(g). There exist G ∈ S(M) and H ∈ p such that G|N = g

and H |N = h. Let G1 := G2 + F 2 ∈ S(M) and H1 := H 2 + F 2 ∈ p. Then ZM(H1) = ZN(h) ⊂
ZN(g) = ZM(G1) and therefore G1 ∈ p. Thus, G ∈ p and so g ∈ q. Consequently, q is a z-ideal.

(ii) Using Corollary 4.5, all is reduced to check the equality dN(q) = dM(p) = dim(N). For each
a ∈ q there exists A ∈ p such that a = A|N and as dM(p) = dim(N), we obtain

dim(N) = dM(p) ≤ dim(ZM(F 2 + A2)) = dim(ZN(a)) ≤ dim(N).

Hence, dN(q) = dM(p) = dim(N), as wanted. �
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Lemma 4.10 Let M ⊂ Rm be a semialgebraic set and p � q two prime z-ideals of S(M). Then the
number of prime ideals between p and q, when excluding p and q, is bounded above by dM(p) −
dM(q) − 1. In particular, if dM(p) = dM(q) + 1, there is no prime ideal between p and q.

Proof . Let us prove that we may assume that p is a minimal prime ideal of S(M) such
that d := dim(M) = dM(p). Let F ∈ p be such that dM(p) = dim(N), where N := ZM(F). By
Lemma 2.10(iii), the spectral map Specs(j) : Specs(N) → ClSpecs(M)(N) ⊂ Specs(M) induced by
the inclusion map j : N ↪→ M is a homeomorphism and by 4.8 and 4.9 p ∈ ClSpecs(M)(N) is a mini-
mal prime ideal in ClSpecs(M)(N). Thus, every chain of prime ideals of S(M) containing the prime ideal
p corresponds to a chain of prime ideals of S(N) of the same length via Specs(j)−1. Using this, we
may assume from the beginning that p is a minimal prime ideal of S(M) such that dM(p) = dim(M).

Let r := dM(p) − dM(q) − 1 and suppose there exist r + 1 prime ideals p1, . . . , pr+1 of S(M)

between p and q, that is, p = p0 � · · · � pr+1 � pr+2 = q. By [10, 4.11], there exists a semialgebraic
compactification (X,j1) of M and a chain of prime ideals q0 � · · · � qr+2 of S(X) such that pi ∩
S(X) = qi for 0 ≤ i ≤ r + 2. Now we obtain by Paragraph 2.8.2

d ≥ dX(q0) >
(r+2)· · · > dX(qr+2) ≥ dM(pr+2) = dM(q) = d − r − 1,

which is a contradiction. Thus, there are at most r prime ideals between p and q. �

Remark 4.11 The previous bound is not always sharp: for a counterexample see Example 5.5.

Lemma 4.12 Let M ⊂ Rm be a semialgebraic set and p a prime ideal of S(M). Then there exists
a unique prime z-ideal q of S(M) such that p ⊂ q and dM(p) = dM(q). The prime ideal q will be
denoted with pz.

Proof . Let f ∈ p such that dM(p) = dim(ZM(f )) and define N := ZM(f ) ⊂ M . The homomor-
phism φ : S(M) → S(N), g �→ g|N is surjective by Theorem 2.3. Consider the radical ideal
q := √

p + ker φ, which is a prime ideal by the ulterior result Corollary 5.4. Let us first see that
dM(q) = dM(p). The inequality dM(q) ≤ dM(p) is evident because p ⊂ q. For the converse let h ∈ q.
Then there exist � ≥ 1, a ∈ p and b ∈ ker φ such that h� = a + b. Therefore,

ZM(h) = ZM(h�) = ZM(a + b) ⊃ ZM(a) ∩ ZM(b) ⊃ ZM(a) ∩ ZM(f ) = ZM(a2 + f 2)

and so dim(ZM(h)) ≥ dim(ZM(a2 + f 2)) ≥ dM(p) because a2 + f 2 ∈ p. Thus, dM(q) = dM(p).
To prove that q is a z-ideal, it is sufficient to see that φ(q) is a prime z-ideal. Once this is done,

q = φ−1(φ(q)) is by Remark 2.5 a z-ideal. The primality of φ(q) ≡ q/ ker φ is immediate because q is
a prime ideal that contains ker φ. Moreover, φ(q) is by Corollary 4.7 a z-ideal because it is a minimal
prime ideal of S(N). Indeed, the equality dN(φ(q)) = dM(q) = dim(N) implies the minimality of
φ(q) by Corollary 4.5.

Concerning the uniqueness, let q1 be another prime z-ideal of S(M) such that p ⊂ q1 and
dM(q1) = dM(p). The collection of all prime ideals of S(M) containing p constitutes a chain by
Paragraph 2.4.2. Hence, we may assume that q ⊂ q1 and the equality dM(q) = dM(q1) implies by
Paragraph 2.8.1 that both ideals coincide. �

Now it is obvious that all maximal ideals of S(M) are z-ideals.
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Corollary 4.13 Let M ⊂ Rm be a semialgebraic set. Then all maximal ideals of S(M) are
z-ideals.

The next result extends Paragraph 2.8.2 for arbitrary semialgebraic sets.

Corollary 4.14 Let M ⊂ Rm be a semialgebraic set.

(i) Let p ⊂ q be two prime z-ideals of S(M). Then the coheight of p in q is ≤ dM(p) − dM(q).
In particular, the coheight of a prime z-ideal is bounded above by dM(p).

(ii) For every prime ideal p of S(M), the inequality dM(p) + ht(p) ≤ dim(M) holds. In fact, if
p is not a z-ideal, then the inequality is strict.

(iii) The height of a maximal ideal m of S(M) is less than or equal to the maximum of dM(p),

where p runs over the minimal prime ideals of S(M) contained in m.

Proof . Part (i) follows straightforwardly from Lemma 4.10.
(ii) Let p0 � · · · � pr := p be a chain of prime ideals in S(M) such that r = ht(p). Since p0 is a

minimal prime ideal, it is by Corollary 4.7 also a z-ideal. Let pz be the unique prime z-ideal of S(M)

such that p ⊂ pz and dM(p) = dM(pz). By (i), we have

ht(p) ≤ ht(pz) ≤ dM(p0) − dM(pz) ≤ dim(M) − dM(p).

Note that if p is not a prime z-ideal, then p � pz and so ht(p) < ht(pz) ≤ dim(M) − dM(p).
(iii) Let p be a minimal prime ideal of S(M) contained in m. Both p and m are z-ideals. By

(i), the coheight of p is bounded above by dM(p). Since ht(m) is the maximum of the lengths of
the non-refinable chains of prime ideals contained in m, which coincides with the maximum of the
coheights of the minimal prime ideals contained in m, we conclude that ht(m) is bounded above by
the maximum of dM(p), where p runs over the minimal prime ideals of S(M) contained in m, as
wanted. �

5. Chains of prime ideals

We analyse some properties of the chains of prime ideals in S�(M) for an arbitrary semialgebraic
set M . In the second part, we compare the spectra Spec�

s (M) and Spec�
s (X), where X is a suitable

semialgebraic compactification of a locally compact semialgebraic set M .

5.1. Structure of non-refinable chains and criterions of primality

We begin with the following result, which studies the structure of the non-refinable chains of prime
ideals of S∗(M). We refer the reader to [28] for a similar approach to the chains of prime ideals
for the o-minimal context in the exponentially bounded and polynomially bounded cases under the
assumption of local closedness.

Proposition 5.1 (Chains of prime ideals) Let M ⊂ Rm be a semialgebraic set and p0 � · · · � pr a
non-refinable chain of prime ideals in S∗(M). Then

(i) p0 is a minimal prime ideal of S∗(M) and there exists a minimal prime ideal of S(M) whose
intersection with S∗(M) is p0. Moreover, pr = m∗ is a maximal ideal of S∗(M).
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(ii) There exists 0 ≤ k ≤ r such that pk = m ∩ S∗(M), where m is the unique maximal ideal of
S(M) such that m ∩ S∗(M) ⊂ m∗.

(iii) If M is locally compact and pr = m∗ is a free ideal, then k < r and pk+1 is the set of
all functions f ∈ S∗(M) whose unique continuous extension f̂ : β*

s M → R vanishes on a
neighbourhood of m∗ in ∂M := β*

s M \ M .

Proof . The first assertion is immediate (its second part follows from Lemmas 2.9 and 4.3). Let us
have a look at the second one. By (i) and Lemma 4.3, q0 = p0S(M) is a minimal prime ideal of S(M)

and q0 ∩ S∗(M) = p0. By Paragraph 2.4.2 and [10, 4.1], the set of prime ideals of S(M) containing
q0 is a totally ordered set with respect to inclusion; denote such prime ideals with q0 � · · · � qk . Of
course, qk = n is a maximal ideal of the ring S(M).

By [22] (see also Paragraph 2.4.2 and [10, 4.1]), the set of prime ideals of S∗(M) containing p0

is a finite totally ordered set with respect to inclusion, which is p0 � · · · � pr = m∗. Moreover, the
intersection q� ∩ S∗(M) is a prime ideal of S∗(M) containing p0 for each � = 0, . . . , k. In particular,
since p0 is contained in pr = m∗, we have n ∩ S∗(M) ⊂ m∗ and so by Paragraph 2.5.2, n = m. Thus,
by Lemma 2.9 our chain of prime ideals of S∗(M) looks as follows:

p0 = q0 ∩ S∗(M) � · · · � pk−1 = qk−1 ∩ S∗(M) � pk = m ∩ S∗(M) � pk+1 � · · · � pr = m
∗.

Statement (iii) follows directly from Theorem 6.1. �

Remarks 5.2 (i) It follows straightforwardly from Paragraph 2.4.2 that if m∗ is a free maximal
ideal, the subchain

pk = m ∩ S∗(M) � pk+1 � · · · � pr = m
∗

is the same for any non-refinable chain of prime ideals in S∗(M) ending at m∗. Indeed,
ClSpec*

s (M)({pk}) = {pk, . . . , pr = m∗}.
(ii) Let W(M) := {f ∈ S∗(M) : ZM(f ) = ∅} and p ∈ Spec*

s (M) be a prime ideal such that
p ∩ W(M) 	= ∅. Let m∗ be the unique maximal ideal of S∗(M) containing p and m the unique
maximal ideal of S(M) such that m ∩ S∗(M) ⊂ m∗. Then m ∩ S∗(M) � p ⊂ m∗.

Indeed, consider a chain of prime ideals in S∗(M) admitting no refinement and having p and
m∗ as two of its members. By Proposition 5.1(ii), also p0 := m ∩ S∗(M) occurs in this chain. As
p0 ∩ W(M) = ∅, we deduce m ∩ S(M) � p ⊂ m∗.

Next, we present a criterion to characterize prime ideals of S∗(M), which is strongly inspired by
Gillman and Jerison [15, 2.9] and Tressl [28, 2.7], and which uses the Nullstellensatz [11, 3.11] for
S∗(M) in a crucial way.

Lemma 5.3 Let M ⊂ Rm be a semialgebraic set and a a radical ideal of S∗(M). The following
conditions are equivalent:

(i) The ideal a is prime.
(ii) The ideal a contains a prime ideal p of S∗(M).

(iii) For all f, g ∈ S∗(M) such that fg ≡ 0 it holds either f ∈ a or g ∈ a.
(iv) For every function h ∈ S∗(M) there exists a function g ∈ a such that the sign of the

continuous extension ĥ : β*
s M → R of h is constant on Zβ*

s M(g).



914 J. F. FERNANDO

Proof . It is enough to show (ii) =⇒ (iii) =⇒ (iv) =⇒ (i). To prove (ii) =⇒ (iii), let f, g ∈ S∗(M)

with fg ≡ 0 ∈ p. Hence, either f ∈ p ⊂ a or g ∈ p ⊂ a.
For (iii) =⇒ (iv), define f := max{h, 0} and g := min{h, 0}. Clearly, both f, g ∈ S∗(M) and

fg ≡ 0. Thus, for instance, g ∈ a, and let us check that the sign of ĥ is constant on Zβ*
s M(g).

Observe that h = f + g and |h| = f − g. Hence, if m∗ ∈ Zβ*
s M(g), we have

ĥ(m∗) = h + m
∗ = f + g + m

∗ = f + m
∗ = f − g + m

∗ = |h| + m
∗ = (

√|h| + m
∗)2.

Therefore, the sign of ĥ is constant on Zβ*
s M(g), as wanted.

Finally, we prove (iv)=⇒ (i). Letf1, f2 ∈ S∗(M) such thatf1f2 ∈ a.We may assume the existence
of g ∈ a such that the continuous extension ĥ of h = |f1| − |f2| to β*

s M is non-negative on Zβ*
s M(g),

and so Zβ*
s M(g) ∩ Zβ*

s M(f1) ⊂ Zβ*
s M(f2). Therefore,

Zβ*
s M(g2 + f 2

1 f 2
2 ) ⊂ Zβ*

s M(g2 + f 2
2 ) ⊂ Zβ*

s M(f2).

By [11, 3.11], there exists an integer k ≥ 1 and a semialgebraic function a ∈ S∗(M) such that f k
2 =

(g2 + f 2
1 f 2

2 )a ∈ a and because the last is a radical ideal, we obtain f2 ∈ a. �
The following result is the counterpart of Lemma 5.3 for the ring S(M).

Corollary 5.4 Let M ⊂ Rm be a semialgebraic set and a a radical ideal of S(M). The following
conditions are equivalent:

(i) The ideal a is prime.
(ii) The ideal a contains a prime ideal of S(M).

(iii) For all f, g ∈ S(M) such that fg ≡ 0 it holds either f ∈ a or g ∈ a.

Proof . The implications (i) =⇒ (ii) =⇒ (iii) are straightforward. For (iii) =⇒ (i) observe that
p = a ∩ S∗(M) is a radical ideal. Given f, g ∈ S∗(M) such that fg = 0, then either f ∈ a or g ∈ a,
that is, either f ∈ p or g ∈ p. Thus, p is by Lemma 5.3 a prime ideal of S∗(M) and therefore
a = pS(M) is by Lemma 2.9 a prime ideal, too. �

We develop some examples to enlighten the behaviour of non-refinable chains of prime ideals in
S(M) or S∗(M).

Example 5.5 Consider the prime ideal

p := {f ∈ S(R2) : ∃ε > 0 | f (t, et ) = 0 ∀t ∈ [0, ε]}
in S(R2), which is contained in the maximal ideal mp of semialgebraic functions vanishing at the
point p := (0, 1) ∈ R2. Note first that dR2(p) = 2; to prove this fact, just observe ZR2(f )

zar = R2

for all f ∈ p. Thus, p is by Corollary 4.5 a minimal prime ideal of S(R2).
Let us sketch now the proof that there does not exist any prime ideal q of S(R2) between p

and mp. Since dim S(R2) = 2, such a prime ideal q should have by Paragraph 2.8.2 height one.
Moreover, since R2 is locally compact, 0 = dM(mp) < dM(q) < dM(p) = 2 (see Paragraph 2.8.1),
and so dM(q) = 1. Let g ∈ q be such that ZR2(g) is a semialgebraic curve through the point p. As the
parametrization t �→ (t, et ) is not semialgebraic, we find f ∈ p ⊂ q such that ZR2(f ) ∩ ZR2(g) =
{p}. Thus, h := f 2 + g2 ∈ q and ZR2(h) = {p}; hence, dM(q) = 0, which is a contradiction.
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Consequently, although mp is a maximal ideal of the bidimensional ring S(R2), the chain of prime
ideals p � mp admits no refinement and 0 = dM(mp) < dM(p) = 2.

Example 5.6 Let N := {(x, y) ∈ R2 : x > 0, y > 0} and define

n := {f ∈ S(N) : ∃ε > 0 such that ∀s ∈ (0, ε], ∃δ > 0 | f (t, st) = 0 ∀t ∈ (0, δ)}.

(5.6.1) Let us check first that n is a prime ideal of S(N) (we will show afterwards that it is in fact a
maximal ideal) such that dN(n) = 2, and so ht(n) = 0. Since n is a radical ideal, it is by Corollary 5.4
sufficient to find a prime ideal of S(N) contained in n. Let M := N ∪ {(x, 0) : x > 0} and consider
the inclusion map j : N ↪→ M as well as the closed semialgebraic subset Y := {(x, 0) : x > 0} =
M \ N of M . Since M is locally compact, the map Specs(j) : Specs(N) → Specs(M) \ ClSpecs(M)(Y )

is by Definition and Proposition 2.12 and Theorem 2.13(iii) a homeomorphism. Consider the semi-
algebraic map ϕ : M → M, (s, t) �→ (t, st), whose restriction ψ = ϕ|N : N → N is a homeomor-
phism. Consider the prime ideal

p1 := {f ∈ S(M) : ∃ε > 0 such that f (t, 0) = 0 ∀ t ∈ (0, ε)}

of S(M) and let p0 be a minimal prime ideal of S(M) contained in p1.
By Theorem 2.13(ii) and (iv), p0S(N) is a prime ideal of S(N). Thus, also q0 = φ(p0S(N)) is a

prime ideal of S(N) because φ : S(N) → S(N), g �→ g ◦ ψ−1 is an isomorphism. Now the reader
can check that q0 ⊂ n, which proves the primality of n.

Moreover, dN(n) = 2 since ZN(f )
zar = R2 for all f ∈ n; hence, n is a minimal prime ideal of

S(N).
(5.6.2) We next sketch the proof of the maximality of n in S(N). Thus, n is simultaneously a maximal
and a minimal prime ideal of S(N).

We must check that there exists no prime ideal q of S(N) such that n � q. Suppose by contradiction
that such an ideal exists. Hence, ht(q) ≥ 1, and this implies that dN(q) = 1 since n is free.

Let f ∈ q such that dim(ZN(f )) = 1. Since q is a prime ideal, we may assume that ZN(f ) is
a parametrizable Nash branch whose closure in R2 meets the line {y = 0} at the point p = (0, 0).
Now the reader can construct a semialgebraic function b ∈ n such that ZN(b) ∩ ZN(f ) = ∅; hence,
h := b2 + f 2 ∈ q is a unit in S(N), which is a contradiction. This example will be generalized later
in Theorem 7.1.
(5.6.3) Consider the set n∗ of all functions f ∈ S∗(N) such that

lim
s→0

Ff (s) = 0 where Ff (s) = lim
t→0

f (t, st) for s > 0, st > 0.

Let us check that n∗ is a maximal ideal of S∗(N). First, notice that Ff : R → R, s �→ Ff (s) is
a well-defined function and its graph is semialgebraic. Thus, there exists the lateral limit of Ff at
0+ (see [11, 2.6]), and so the function Ff is well-defined. Now, it follows straightforwardly that
S∗(N)/n∗ ∼= R and therefore n∗ is a maximal ideal.

To finish, let us see that ht(n∗) = 2. Let q be the subset of S∗(N) consisting of all bounded
semialgebraic functions f on N such that there exists a real number ε > 0 such that Ff (s) = 0 for all
s ∈ (0, ε). Arguing as above, one checks that q is a radical ideal. Observe also n ∩ S∗(N) � q � n∗,
where n is the maximal ideal of S(N) defined above. It follows from Lemma 5.3 that q is a prime
ideal of S∗(N) and so ht(n∗) = 2. In particular, n∗ is not the immediate successor of n ∩ S∗(N).
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Remarks 5.7

(i) The situation above will be generalized in Theorem 7.1 by proving that for each non-compact
pure dimensional semialgebraic set N of dimension d and for each 0 ≤ r < d, there exists a
free maximal ideal m of S(N) such that ht(m) = r and ht(m∗) = d.

(ii) All of the above shows that not all non-refinable chains of prime ideals in S�(M) have the
same length because there exist maximal ideals whose height is smaller than the dimension
of M . This is a well-known fact for rings of polynomial functions on a semialgebraic set
(see [2, 7.5.9 & 10.3.4]).

5.2. Comparing chains of prime ideals

The second goal in this section is to extract information about chains of prime ideals in S∗(M), where
M is a locally compact semialgebraic set, from the one given by the chains of prime ideals in S(X),
where X runs on the semialgebraic compactifications of M . Namely,

Corollary 5.8 Let M ⊂ Rm be a locally compact semialgebraic set and X a semialgebraic
compactification of M . Let m be a maximal ideal of S(M) and m∗ the unique maximal ideal of
S∗(M) containing m ∩ S∗(M). Let p0 � · · · � pr be a chain of prime ideals in S(X) such that
pk = m ∩ S(X) for some index 0 ≤ k ≤ r . Then pr ⊂ m∗ ∩ S(X) and r ≤ ht(m∗).

Proof . By Lemma 2.15(v), there exists a chain of prime ideals q0 � · · · � qr in S∗(M) such that
each intersection qi ∩ S(X) = pi . Next, we prove qk = m ∩ S∗(M) for the index k such that pk =
m ∩ S(X). Then it follows from Paragraph 2.4.2 that each prime ideal occurring in a chain of prime
ideals of S∗(M) containing m ∩ S∗(M) is contained in m∗. Thus, qr ⊂ m∗ and therefore pr = qr ∩
S(X) ⊂ m∗ ∩ S(X) and r ≤ ht(m∗). So, we only have to prove qk = m ∩ S∗(M).

Indeed, as M is locally compact, M is an open and dense subset of X; hence, if j : M ↪→ X

denotes the inclusion map, then Specs(j) : Specs(M) → Specs(X) is by Theorem 2.13(ii) a homeo-
morphism onto its image Specs(X) \ L(Y ), where Y := X \ M . By Lemma 2.15(ii), the map
Spec*

s (j) : Spec*
s (M) → Spec*

s (X) is surjective and its restriction

Spec*
s (j) |: Spec*

s (M) \ Spec*
s (j)−1(ClSpec*

s (X)(Y )) → Spec*
s (X) \ ClSpec*

s (X)(Y )

is by Lemma 2.15(ii) a homeomorphism. Moreover, S(X) = S∗(X), Specs(X) = Spec*
s (X) and

L(Y ) = ClSpecs(X)(Y ). Moreover,

m ∩ S(X) ∈ Specs(X) \ L(Y ) = Specs(X) \ ClSpecs(X)(Y ) = Spec*
s (X) \ ClSpec*

s (X)(Y ).

By Lemma 2.15(iii), there exists a unique prime ideal q ∈ Spec*
s (M) such that q ∩ S(X) = p for each

p ∈ Specs(X) \ ClSpecs(X)(Y ). In particular, since the prime ideals m ∩ S∗(M) and qk satisfy

(m ∩ S∗(M)) ∩ S(X) = m ∩ S(X) = pk = qk ∩ S(X),

we deduce the equality m ∩ S∗(M) = qk and we are done. �
The previous result provides the following characterization of the height of a maximal ideal m∗

of S∗(M) (if M is locally compact) in terms of the lengths of those chains of prime ideals in S(X)
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passing through m ∩ S(X), where X runs along all semialgebraic compactifications of M . Its proof
follows straightforwardly from the proof of [10, 4.11], Proposition 5.1 and Corollary 5.8 and we leave
the details to the reader.

Corollary 5.9 Let M ⊂ Rm be a locally compact semialgebraic set. Let m be a maximal ideal
of S(M) and m∗ the unique maximal ideal of S∗(M) containing m ∩ S∗(M). For every semi-
algebraic compactification X of M denotes the maximum length of those chains of prime ideals
in S(X) passing through m ∩ S(X) with hX(m∗). Then ht(m∗) = maxX{hX(m∗)}, where X runs
along all the semialgebraic compactifications of M .

Remarks 5.10 (i) The previous result (Corollary 5.9) is false if we substitute hX(m∗) by ht(m∗ ∩
S(X)). Thus, the ‘important’ ideal in the previous result is m instead of m∗, contrary to what one
would expect. To show this, we propose two examples:

(1) Consider the compact semialgebraic subset X of R2 given by

X := {(x + 1)2 + y2 ≤ 1} ∪ {0 ≤ x ≤ 1, y = 0}

and the point p := (0, 0). Clearly, X is a compactification of the locally compact semi-
algebraic set M := X \ {p}. Let m∗ := {f ∈ S∗(M) : limt→0+ f (t, 0) = 0}, which is a max-
imal ideal of S∗(M). Then m∗ ∩ S(X) = mp, and so ht(m∗ ∩ S(X)) = 2 while ht(m∗) = 1.

(2) Let X be a closed disc centred at the origin p := (0, 0) ∈ R2, which is a semialgebraic com-
pactification of the locally compact semialgebraic set M := X \ {p}. Consider the analytic
path α : (0, ε) → M, t �→ (t, et − 1) and the maximal ideal

m
∗
α :=

{
f ∈ S∗(M) : lim

t→0
(f ◦ α)(t) = 0

}
of S∗(M). The maximality of m∗

α is proved straightforwardly. In fact, it also holds that

mα := {f ∈ S(M) : ∃ε > 0 such that (f ◦ α)|(0,ε] = 0}

is the unique maximal ideal of S(M) such that mα ∩ S∗(M) ⊂ m∗
α . Moreover, mα is a minimal

prime ideal of S(M) because dM(mα) = 2. As one can check, the chain mα ∩ S∗(M) � m∗
α is

non-refinable. Hence, ht(m∗
α) = 1. However, ht(m∗

α ∩ S(X)) = 2 because m∗
α ∩ S(X) = mp.

(ii) With the notation of Corollary 5.9, hX(m∗) < ht(m∗) for a suitable compactification X of M .
Indeed, consider Paragraph 5.6.3. There N := {(x, y) ∈ R2 : x > 0, y > 0} and n∗ is a maximal ideal
of S∗(N) of height 2 such that the unique maximal ideal n of S(N) with n ∩ S∗(N) ⊂ n∗ has height 0.
Let X be a semialgebraic compactification of N by one point p, the inclusion map j : M ↪→ X

and let mp be the maximal ideal of S(X) consisting of those functions of S(X) vanishing at p. It
follows from Lemma 2.15(i) that the induced map Specs(j) : Specs(N) → Specs(X) \ {p ≡ mp} is
a homeomorphism. Thus, since n is a minimal and maximal ideal of S(N), the chain n ∩ S(X) � mp

is the unique one in the ring S(X), in which the prime ideal n ∩ S(X) occurs. Thus, hX(n∗) = 1
while ht(n∗) = 2.
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6. Immediate successor

Given a free maximal ideal m of S(M), the set of prime ideals of S∗(M) containing m ∩ S∗(M) is
a chain (see Paragraph 2.4.2), and our goal is to describe the immediate successor of m ∩ S∗(M),
that is, the smallest prime ideal of S∗(M) containing properly m ∩ S∗(M). For technical reasons,
the existence of a semialgebraic equation of the remainder ∂M := β*

s M \ M of M in β*
s M will be

important, see Remark 6.4 and Lemma 6.5. This implies that ∂M is closed in β*
s M or equivalently

that M is locally compact. This is why we restrict ourselves to the locally compact case in the first
part of this section. In the second part, we show how far the previous description extends in case M

is an arbitrary semialgebraic set (see Theorem 6.8).

6.1. Immediate successor in the locally compact setting

The statement and proof of the next result is strongly inspired by Mandelker [17, 6] and by Gillman
and Jerison [15, 14.25-27], and it corresponds to the unsettled Proposition 5.1(iii).

Theorem 6.1 Let M ⊂ Rm be a locally compact but not compact semialgebraic set. Let m0 be a free
maximal ideal of S(M) and m∗

0 the only maximal ideal of S∗(M) containing m0 ∩ S∗(M). Then

(i) The set q0 of all semialgebraic functions f ∈ S∗(M), whose extension f̂ to β*
s M vanishes on

a neighbourhood of m∗
0 in ∂M is a prime ideal of S∗(M), which strictly contains m0 ∩ S∗(M).

(ii) Let q be a prime ideal of S∗(M), which strictly contains m0 ∩ S∗(M). Then q0 ⊂ q.

Before proving Theorem 6.1, we need to recall some results concerning compactifications of a semi-
algebraic set. These and other related results are studied in detail in [8, §9] and [13, §4] and we refer
the reader to them for further details.
(6.2) Compactifications of a semialgebraic set. Given two compactifications (X1,j1) and (X2,j2) of
a semialgebraic set M ⊂ Rm, we say that (X2,j2) dominates (X1,j1), and we write (X1,j1) �
(X2,j2) if there exists a continuous surjective map ρ : X2 → X1 such that ρ ◦ j2 = j1. Note
that since ji (M) is dense in Xi for i = 1, 2, the map ρ is unique with such property. The dom-
ination relation � is an order relation in the set of all compactifications of M that is up to a
homeomorphism compatible with the embeddings. In fact, given two compactifications (X1,j1)

and (X2,j2) of M such that (X1,j1) � (X2,j2) with X2 Hausdorff, the continuous surjection
ρ : X2 → X1 such that ρ ◦ j2 = j1 satisfies the equalities ρ−1(X1 \ j1(M)) = X2 \ j2(M) and
ρ(X2 \ j2(M)) = X1 \ j1(M). Recall that each semialgebraic compactification (X,j) of M satis-
fies by [13, 4.6] that (X,j) � (β*

s M, φ), where φ : M → β*
s M, p �→ m∗

p. Moreover, given
f1, . . . , fr ∈ S∗(M), there exist by [13, 4.1] a semialgebraic compactification (X,j) of M and
semialgebraic functions Fi ∈ S(X) such that Fi ◦ j = fi , for i = 1, . . . , r .

We also need to prove that if M is locally compact, then the closed subset ∂M := β*
s M \ M of

β*
s M has a semialgebraic equation. This will be very useful in order to prove Theorem 6.1. We verify

first the following more general result.

Lemma 6.3 Let M ⊂ Rm be a semialgebraic set. Then there exists a function f ∈ S∗(Rm), which
is positive at each point of Mlc such that ∂M ∪ ρ1(M) = Zβ*

s M(f |M).

Proof . If M is compact, we have M = Mlc = βs
∗ M , and so the constant semialgebraic function

1 ∈ S∗(M) does the work. In the following, we limit ourselves to a non-compact M . By Remark 2.2,
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we may assume that M is bounded. Moreover, Mlc is open and dense in the compact semialgebraic set
X := ClRm(M) = ClRm(Mlc). By Lemma 2.1, there exists g ∈ S∗(M) such that X \ Mlc = ZX(g),
and let f := g2. Let us check that ∂M ∪ ρ1(M) = Zβ*

s M(f |M). Note X \ Mlc = ZX(f ). On the other
hand, as we observed in 6.2, there exists a surjective continuous map ρ : β*

s M → X, which is the
identity on M and satisfies ∂M = ρ−1(X \ M) and ρ−1(ρ1(M)) = ρ1(M). Thus, ∂M ∪ ρ1(M) is the
zeroset of the continuous function f ◦ ρ. Note that the latter is the unique continuous extension f̂ |M
of f |M to β*

s M , and so ∂M ∪ ρ1(M) = Zβ*
s M(f |M), as wanted. �

Remark 6.4 In particular, if M ⊂ Rm is a locally compact but not compact semialgebraic set, there
exists a function f ∈ S∗(Rm), which is positive at each point of M and such that ∂M = Zβ*

s M(f |M).

Lemma 6.5 Let M ⊂ Rm be a locally compact but not compact semialgebraic set. Let m be a
maximal ideal of S(M) and p a prime ideal of S∗(M) such that m ∩ S∗(M) � p. Then there exists
a function b ∈ p, which is positive at each point of M and satisfies Zβ*

s M(b) = ∂M .

Proof . By Remark 6.4, there exists a function a ∈ S∗(M), which is positive at each point of M

such that Zβ*
s M(a) = ∂M . Now it is enough to find a function c ∈ p such that Zβ*

s M(c) ⊂ ∂M and
to choose b := ac. Pick a function f ∈ p \ m; hence, f ∈ S(M) \ m, and so there exists g ∈ S(M)

such that h := 1 − fg ∈ m. Then the function

c := 1

1 + g2 + h2
=

(
g

1 + g2 + h2

)
f + h

1 + g2 + h2

does the work because ZM(c) is empty and h
1+g2+h2 ∈ m ∩ S∗(M) ⊂ p. �

Another ingredient to prove Theorem 6.1 is the following elementary lemma whose proof is left
to the reader.

Lemma 6.6 Let M ⊂ Rm be a semialgebraic set and m a maximal ideal of S(M). Let m∗ be the
only maximal ideal of S∗(M) containing p := m ∩ S∗(M) and let h ∈ S∗(M). Then

(i) The canonical homomorphisms π∗ : S∗(M)/p → S∗(M)/m∗, f + p → f + m∗ and π :
S∗(M)/p ↪→ S(M)/m, f + p → f + m are order preserving.

(ii) If h + m∗ > 0 in S∗(M)/m∗, then h + m > 0 in S(M)/m.
(iii) If h + m > 0 in S(M)/m, then h + m∗ ≥ 0 in S∗(M)/m∗.

Now we are ready to prove Theorem 6.1.

Proof of Theorem 6.1 (i) It is obvious that q0 is a radical ideal. Thus, by Lemma 5.3 it is suffi-
cient to check that q0 strictly contains the prime ideal m0 ∩ S∗(M). Let 	 : βs M → β*

s M be the
homeomorphism that maps each maximal ideal m of S(M) to the unique maximal ideal m∗ of
S∗(M) containing m ∩ S∗(M) (see Paragraph 2.5.2). Since M is locally compact, there exists by
Remark 6.4 a function b ∈ S∗(M) that is positive at each point of M and such that ∂M = β*

s M \ M =
Zβ*

s M(b).
Let g ∈ m0 ∩ S∗(M) and let us prove that g ∈ q0. Consider the open subset of ∂M defined by

W := {m∗ ∈ ∂M : (b − g2) + m > 0}, where the positivity has its obvious meaning in the real closed
field S(M)/m. To show that g ∈ q0, it is enough to prove that m∗

0 ∈ W and ĝ vanishes on W , that
is, g ∈ m∗ for each m∗ ∈ W . Observe first that b is a positive unit in S(M) and so b + m0 > 0 in
S(M)/m0, while g2 + m0 = 0. Thus, (b − g2) + m0 = b + m0 > 0 and therefore m∗

0 ∈ W .
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Next, take m∗ ∈ W . The inequality (b − g2) + m > 0 implies by Lemma 6.6 that (b − g2) +
m∗ ≥ 0. But b ∈ m∗ and so −g2 + m∗ ≥ 0, that is, g ∈ m∗. Hence, m0 ∩ S∗(M) ⊂ q0 and all is
reduced to check that the inclusion is strict. But b ∈ q0 \ (m0 ∩ S∗(M)) because Zβ*

s M(b) = ∂M .
(ii) We may assume without loss of generality that M is bounded. Since m0 ∩ S∗(M) � q0 and

m0 ∩ S∗(M) � q, there exist by Lemma 6.5 functions a0 ∈ q0 and a ∈ q such that Zβ*
s M(a0) =

∂M = Zβ*
s M(a). Hence, the function c := a0a ∈ q0 ∩ q and Zβ*

s M(c) = ∂M . Let us see now that
q0 ⊂ q. Take a function g ∈ q0. To prove that g ∈ q, it is enough to see g1 := g2 + c2 ∈ q. Since
g1 ∈ q0, its extension ĝ1 : β*

s M → R vanishes on a neighbourhood of m∗
0 in ∂M . Therefore, there

exists f ∈ S∗(M) such that m∗
0 ∈ Dβ*

s M(f ) ∩ ∂M ⊂ Zβ*
s M(g1). After replacing f by f 2 + c2, we

may assume Zβ*
s M(f ) ⊂ ∂M . We claim:

(6.1.1) There exists a function h ∈ m0 ∩ S∗(M) such that h(x) ≥ 0 for each x ∈ M and

Zβ*
s M(h) ∩ ∂M ⊂ Dβ*

s M(f ) ∩ ∂M ⊂ Zβ*
s M(g1).

Indeed, each maximal ideal m∗ of S∗(M) containing f is distinct from m∗
0, which is the unique

one containing m0 ∩ S∗(M). Thus, for each m∗ ∈ Zβ*
s M(f ), there exists a function hm∗ ∈ m0 ∩

S∗(M) \ m∗, that is, Zβ*
s M(f ) ⊂ ⋃

m∗∈Z
β*

s M
(f ) Dβ*

s M(hm∗). By the compactness of Zβ*
s M(f ) there

exist h1, . . . , hr ∈ m0 ∩ S∗(M) such that

Zβ*
s M(f ) ⊂

r⋃
i=1

Dβ*
s M(hi) = Dβ*

s M(h),

where h := ∑r
i=1 h2

i ∈ m0 ∩ S∗(M). This function satisfies Paragraph 6.1.1.
By 6.2, there exist a semialgebraic compactification X of M and semialgebraic functions H, G1 ∈

S(X) such that H |M = h and G1|M = g1. Moreover there exists, also by 6.2, a surjective continuous
map γ : β*

s M → X, which is the identity on M , and γ (∂M) = X \ M . Recall that S(X) = S∗(X)

by the compactness of X and so all maximal ideals of this ring are fixed (see Subsection 2.5). Note
that ĥ = H ◦ γ and ĝ1 = G1 ◦ γ are by Paragraph 2.5.3 the unique continuous extensions of h and
g1 to β*

s M .
(6.1.2) The closed semialgebraic subsets of X

C1 := ZX(H) ∪ ZX(G1) and C2 := ClX(X \ (ZX(G1) ∪ M))

satisfy the following inclusions: C1 ∩ C2 ⊂ ZX(G1) and

X \ M ⊂ ZX(G1) ∪ ClX((X \ M) \ ZX(G1)) = ZX(G1) ∪ C2 ⊂ C1 ∪ C2.

The second one is not difficult. For the first one, suppose by contradiction the existence of a point
p ∈ (C1 ∩ C2) \ ZX(G1); hence,

p ∈ (ZX(H) \ ZX(G1)) ∩ (X \ IntX(ZX(G1) ∪ M)).

Recall that M is open in X and consequently

M = IntX(M) ⊂ IntX(ZX(G1) ∪ M).
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Thereforep ∈ X \ M , and so there exists a pointm∗ ∈ ∂M such thatγ (m∗) = p. Sincep ∈ (ZX(H) \
ZX(G1)) ∩ (X \ M), we deduce

m
∗ ∈ (Zβ*

s M(h) \ Zβ*
s M(g1)) ∩ ∂M (∗)

because the formulas

ĥ(m∗) = (H ◦ γ )(m∗) = H(p) = 0 and ĝ1(m
∗) = (G1 ◦ γ )(m∗) = G1(p) 	= 0

imply by 6.2 that h ∈ m∗ and g1 /∈ m∗. However, condition (∗) contradicts Paragraph 6.1.1, and so
Paragraph 6.1.2 holds.
(6.1.3) Consider the following semialgebraic function on C := C1 ∪ C2:

η : C → R, x �→
{

G1(x) if x ∈ C2,

0 if x ∈ C1.

By Theorem 2.3, there exists a semialgebraic function η : X → R such that η|C = η. Note that
by Paragraph 6.1.2 X \ M ⊂ ZX(G1) ∪ C2 ⊂ C, that is, η|X\M = η|X\M = G1|X\M , and therefore
X \ M ⊂ ZX(η − G1). Thus, (η − G1) ◦ γ vanishes identically on ∂M , that is,

Zβ*
s M(c) = ∂M ⊂ Zβ*

s M((η − G1) ◦ (γ |M)).

Applying the Nullstellensatz for S∗(M) (see [11, 3.11]) and because c ∈ q, we deduce (η − G1) ◦
(γ |M) ∈ q. On the other hand,

ZM(H) = ZX(H) ∩ M ⊂ C1 ∩ M ⊂ ZM(η).

Hence, ZM(h) = ZM(H ◦ γ ) ⊂ ZM(η ◦ γ ). Therefore, by Theorem 2.6, it holds η ◦ (γ |M) ∈ m0 ∩
S∗(M) ⊂ q because h ∈ m0 ∩ S∗(M) and m0 is a z-ideal. Finally, we obtain

g1 = G1 ◦ (γ |M) = η ◦ (γ |M) − (η − G1) ◦ (γ |M) ∈ q,

as wanted. �

Remark 6.7 A key point in the proof of Theorem 6.1 is the existence of a semialgebraic equation
of ∂M in β*

s M (or equivalently that M is locally compact). Such hypothesis is also essential in the
counterpart of Theorem 6.1 for rings of continuous functions (see [15, 14.25-27]).

6.2. Immediate successor in the non-locally compact setting

In this section, we study to what extent the description for the immediate successor of m ∩ S∗(M)

in Spec*
s (M) proposed in Theorem 6.1, where m is a free maximal ideal of S(M), still works if M is

not locally compact.

Theorem 6.8 Let M ⊂ Rm be a semialgebraic set and m a free maximal ideal of S(M). Let Y :=
ρ1(M) and let h ∈ S∗(M) be an equation of ∂M ∪ Y (see Lemma 6.3). Let a be the set of all bounded
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semialgebraic functions f ∈ S∗(M) whose extension f̂ to β*
s M vanishes on a neighbourhood of m∗

in ∂M . The following properties hold:
(i) If m∗ ∈ ∂M \ Clβ*

s M(Y ), then a is the immediate successor of m ∩ S∗(M) in any non-
refinable chain of prime ideals of S∗(M) ending at m∗.

(ii) If m∗ ∈ Clβ*
s M(Y ) \ Y, then a equals the intersection of all prime ideals q of S∗(M) such

that h ∈ q ⊂ m∗. Moreover, if F denotes the collection of all prime ideals p ∈ ClSpec*
s (M)(Y )

contained in m∗, then a ⊂ ⋂
p∈F p ⊂ m ∩ S∗(M).

Proof . Recall first that if j : Mlc ↪→ M denotes the inclusion map, the induced maps Spec*
s (j) :

Spec*
s (Mlc) → Spec*

s (M) and β*
s j : β*

s Mlc → β*
s M are surjective (see [12, 5.1 & 6.7]). Moreover,

if rM : Spec*
s (M) → β*

s M denotes the natural continuous retraction, which maps each prime ideal
of S∗(M) onto the unique maximal ideal of S∗(M) containing it, the diagram

Spec*
s (Mlc) \ Spec*

s (j)−1(ClSpec*
s (M)(Y ))

∼= ��

rMlc

��

Spec*
s (M) \ ClSpec*

s (M)(Y )

rM

��
β*

s Mlc \ (β*
s j)−1(Clβ*

s M(Y ))
∼= ��

��

jMlc

��

β*
s M \ Clβ*

s M(Y )
��

jM

��

is commutative and the map in the upper row is a homeomorphism that extends the homeomorphism
in the bottom row (see [12, 6.7]). By Corollary 2.11, m ∩ S∗(M) ∈ ClSpec*

s (M)(Y ) if and only if
m∗ ∈ Clβ*

s M(Y ). In this way, statement (i) follows from Theorem 6.1. Before entering into the proof
of statement (ii), we need the following.
(6.8.1) Clβ*

s M(∂M) = β*
s M \ Mlc.

Indeed, observe that U := β*
s M \ Clβ*

s M(∂M) ⊂ β*
s M \ ∂M = M is an open subset of β*

s M ,
hence of M , and it is locally compact because β*

s M is so. Thus, each point in U admits a compact
neighbourhood in M . Therefore, we have by Theorem 3.6(iii) U = β*

s M \ Clβ*
s M(∂M) ⊂ Mlc or

equivalently β*
s M \ Mlc ⊂ Clβ*

s M(∂M). Conversely, Mlc is open in β*
s M = Clβ*

s M(Mlc) and it does
not meet ∂M; hence, Clβ*

s M(∂M) ∩ Mlc = ∅, and so Clβ*
s M(∂M) = β*

s M \ Mlc.

We proceed with (ii). Let m∗ ∈ Clβ*
s M(Y ) \ Y and f ∈ a. Then f̂ vanishes on a neighbourhood

V of m∗ in ∂M .
(6.8.2) We claim: f̂ also vanishes on a neighbourhood of m∗ in β*

s M \ Mlc.
Indeed, let W be a neighbourhood of m∗ in β*

s M \ Mlc such that ∂M ∩ W = V and let us check
W ⊂ Clβ*

s M(V ) ⊂ Zβ*
s M(f̂ ). Using Paragraph 6.8.1,

W = (β*
s M \ Mlc) ∩ W = Clβ*

s M(∂M) ∩ W

= Clβ*
s M(∂M ∩ W) ∩ W ⊂ Clβ*

s M(V ) ⊂ Zβ*
s M(f̂ ),

which proves our claim.
(6.8.3) Now let i : Y ↪→ M denote the inclusion map and consider the ring homomorphisms
φ1 : S(M) → S(Y ), g �→ g|Y and φ2 : S∗(M) → S∗(Y ), g �→ g|Y as well as the following
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commutative diagram:

Spec*
s (Y )

Spec*
s (i)

∼=
�� ClSpec*

s (M)(Y ) � � �� Spec*
s (M)

Specs(Y )
Specs(i)

∼=
��

��

��

ClSpecs(M)(Y )
��

��

� � �� Specs(M)
��

��

Since Y is a closed semialgebraic subset of M , both φ1 and φ2 are by Theorem 2.3 surjective while
the first maps in the rows of the diagram are by Lemma 2.10(iii) homeomorphisms.
(6.8.4) We claim: For every prime ideal p ⊂ m∗ of S∗(M) that is minimal in ClSpec*

s (M)(Y ) we have
a ⊂ p ⊂ m ∩ S∗(M).

We begin by proving the inclusion a ⊂ p. Given f ∈ a, there exists by Paragraph 6.8.2 a function
g ∈ S∗(M) \ m∗ such that Dβ*

s M(g) ∩ (β*
s M \ Mlc) ⊂ Zβ*

s M(f ) ∩ (β*
s M \ Mlc); hence, ∂M ∪ Y =

β*
s M \ Mlc ⊂ Zβ*

s M(fg). Therefore, ZY (fg) = Y , which implies fg ∈ p. Since g 	∈ m∗ and p ⊂ m∗,
it follows f ∈ p.

Next, we prove the second inclusionp ⊂ m ∩ S∗(M). Defineg := Spec*
s (i)−1(p) andb := gS(Y );

observe that asg is a minimal prime ideal ofS∗(Y ), it follows from Lemma 4.3 thatb is a minimal prime
ideal of S(Y ). Let n be the unique maximal ideal of S(Y ) that contains b and observe Specs(i)(b) =
φ−1

1 (b) ⊂ φ−1
1 (n) = Specs(i)(n); in fact, the last one is a maximal ideal of S(M) because φ1 is

surjective. Moreover,

p = Spec*
s (i)(g) = Spec*

s (i)(b ∩ S∗(Y )) = Specs(i)(b) ∩ S∗(M) ⊂ Specs(i)(n) ∩ S∗(M).

Since p ⊂ m∗, we deduce by Paragraph 2.4.2 that Spec(i)(n) ∩ S∗(M) ⊂ m∗. As Specs(i)(n) is
a maximal ideal of S(M), we conclude by Paragraph 2.5.2 that Specs(i)(n) = m. Therefore, p ⊂
m ∩ S∗(M) and Paragraph 6.8.4 is proved. Observe that the last part of statement (ii) is an immediate
consequence of Paragraph 6.8.4.
(6.8.5) To finish, let {qλ}λ∈� be the collection of all prime ideals of S∗(M) satisfying h ∈ qλ ⊂ m∗.
We have to check a = ⋂

λ∈� qλ.
We prove first that a ⊂ ⋂

λ∈� qλ. Fix λ ∈ � and let f ∈ a and g ∈ S∗(M) \ m∗ such that
Dβ*

s M(g) ∩ (∂M ∪ Y ) ⊂ Zβ*
s M(f ) ∩ (∂M ∪ Y ) (see Paragraph 6.8.2); hence, Zβ*

s M(h) = ∂M ∪
Y ⊂ Zβ*

s M(fg). By the Nullstellensatz for the ring S∗(M) [11, 3.11], the prime ideal qλ contains
fg ∈ S∗(M) but it does not contain g; hence, f ∈ qλ. Therefore, a ⊂ ⋂

λ∈� qλ.
Conversely, let f ∈ ⋂

λ∈� qλ and let us denote a maximal ideal of S(Mlc) with b0 such that
β*

s j(b∗
0) = m∗. Let b∗

1 be the immediate successor of b0 ∩ S∗(Mlc) in Spec*
s (Mlc) and let us check

first that Spec*
s (j)(b∗

1) = qλ for some λ ∈ �. Since Spec*
s (j)(b∗

1) ⊂ β*
s j(b∗

0) = m∗, it is sufficient
to check h ∈ Spec*

s (j)(b∗
1); in fact, by the Nullstellensatz [11, 3.11] for the ring S∗(M), it is enough

to check that Zβ*
s M(a) = ∂M ∪ Y for some a ∈ Spec*

s (j)(b∗
1). Since b∗

1 is the immediate succes-
sor of b0 ∩ S∗(Mlc) in Spec*

s (Mlc), there exists, by Lemma 2.9 a bounded semialgebraic function
a0 ∈ b∗

1 such that ZMlc(a0) = ∅. As a0 is bounded and h vanishes identically on Y , the bounded semi-
algebraic function a0(h|Mlc) ∈ S∗(Mlc) admits a bounded semialgebraic extension a ∈ S(M) such
that ZM(a) = ZM(h) = Y ; in fact, one can check that Zβ*

s M(a) = ∂M ∪ Y and because a0 ∈ b∗
1, it

follows readily that a ∈ Spec*
s (j)(b∗

1), as desired.
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In this way, we have proved the existence of λ ∈ � such that Spec*
s (j)(b∗

1) = qλ, so f ∈
Spec*

s (j)(b∗
1). Thus, f |Mlc ∈ b∗

1 and by Theorem 6.1 there exists an open neighbourhood V b∗
0 ⊂ ∂Mlc

of b∗
0 in ∂Mlc such that V b∗

0 ⊂ Zβ*
s Mlc(f |Mlc).

Consider the closed subset C := β*
s Mlc \ ⋃

b∗∈(β*
s j)−1(m∗) V b∗

of β*
s Mlc whose image β*

s j(C)

under the proper map β*
s j : β*

s Mlc → β*
s M is a closed subset of β*

s j(∂Mlc) = β*
s M \ Mlc that

does not contain m∗. Moreover, since
⋃

b∗∈(β*
s j)−1(m∗) V b∗ ⊂ Zβ*

s Mlc(f |Mlc), it follows m∗ ∈ ∂M \
β*

s j(C) ⊂ Zβ*
s M(f ) and so f ∈ a, as wanted. �

Remarks 6.9 (i) Observe that Clβ*
s M(Y ) = Y if and only if Y is compact. Thus, if such is the case,

Theorem 6.8(ii) never happens. So for each free maximal ideal m of S(M), the ideal a of all bounded
semialgebraic functions f ∈ S∗(M) whose extension f̂ to β*

s M vanishes on a neighbourhood of
m∗ in ∂M is the immediate successor of m ∩ S∗(M) for every non-refinable chain of prime ideals
ending at m∗.

(ii) If Y is not compact, there exist maximal ideals m∗ ∈ β*
s M such that the description for the

immediate successor of m ∩ S∗(M) proposed in Theorem 6.1 does not work in any non-refinable
chain of prime ideals in Spec*

s (M) ending at m∗.

7. Maximal ideals of prefixed height

We are now in a position to prove that for each non-compact pure dimensional semialgebraic set M

and for each 0 ≤ r < d := dim(M) there exists a free maximal ideal m of S(M) such that ht(m) = r

but ht(m∗) = d where, as above, m∗ is the unique maximal ideal of S∗(M) containing m. In fact,
we prove the following stronger result, which is somehow related to Bröcker’s ultrafilter theorem
([4, §4]) mainly if M is closed in Rm (see [10, 4.9]) and, as a consequence of [2, 2.2.9], also in the
locally compact case. Recall that we denote the local dimension of the semialgebraic set M at its
point p with dimp(M) (see [2, 2.8.11] for further details).

Theorem 7.1 (Maximal ideals of prefixed height) Let M ⊂ Rm be a bounded non-compact semi-
algebraic set. Then

(i) The semialgebraic set ClRm(M) \ (ClRm(ρ1(M)) ∪ M) is non-empty.
(ii) Let p ∈ ClRm(M) \ (ClRm(ρ1(M)) ∪ M) and denote d := dimp ClRm(M). Let g ∈ S∗(M) be

such that g(p) 	= 0 and let 0 ≤ k ≤ d − 1. Then there exists a free maximal ideal mk of S(M)

such that ht(mk) = k, g 	∈ m∗
k and ht(m∗

k ) = d.

In particular, there exist free maximal ideals of S(M) of height zero, that is, they are also minimal
prime ideals of S(M).

Proof of Part (i) in Theorem 7.1 Suppose by contradiction

ClRm(M) = ClRm(ρ1(M)) ∪ M.

Subtracting M on both sides, we obtain

ρ0(M) = ClRm(M) \ M = ClRm(ρ1(M)) \ M ⊂ ClRm(ρ1(M)) = ClRm(ρ0(ρ0(M))).

But this is impossible because dim(ClRm(ρ0(ρ0(M)))) = dim(ρ0(ρ0(M))) < dim(ρ0(M)) (see for
instance [2, 2.8.13]). �
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Next, we show Theorem 7.1(ii) under the assumption that M is a locally compact semialgebraic
set. Afterwards, we approach the general case.

7.1. Proof of Theorem 7.1(ii) for a locally compact M

The proof of this result is conducted in several steps:
Step 1. We are going to find a bounded semialgebraic set M1 that is semialgebraically homeomor-
phic to M such that X1 = ClRm(M1) contains a semialgebraic subset C1 that is semialgebraically
homeomorphic to the hypercube I := [0, 1]d and whose intersection C0 := M1 ∩ C1 with M1 is
semialgebraically homeomorphic to [0, 1]d−1 × (0, 1]. We do this in such a way that there exist
h, h1 ∈ S∗(X1) such that h|C1 ≥ c > 0 for some positive real number c, dim(ZM(h1)) = d and
hh1 = 0. Of course, S(M) ∼= S(M1) and S∗(M) ∼= S∗(M1).

Indeed, after a change of coordinates we may assume that p is the origin of Rm. Since
dimp ClRm(M) = d , there exists a compact semialgebraic neighbourhood V of p in Rm such that
dim(ClRm(M) ∩ V ) = d . By Lemma 2.1, there exist g1, g2 ∈ S∗(Rm) such that ZRm(g1) = V and
ZRm(g2) = Rm \ IntRm(V ). Substitute g by the product (gg2)

2. Then g(p) > 0 and gg1 = 0.
When applying [2, 9.3.6] to the semialgebraic set E = M ∪ {p}, there exists ε > 0 and a

semialgebraic homeomorphism ϕ : B̄m(p, ε) → B̄m(p, ε) such that

(i) ‖ϕ(y) − p‖ = ‖y − p‖ for every y ∈ B̄m(p, ε),
(ii) ϕ|Sm−1(p,ε) is the identity map,

(iii) ϕ−1(M ∩ B̄m(p, ε)) is the cone with vertex p and basis N := M ∩ Sm−1(p, ε) after taking
out the vertex p.

Since g(p) > 0, we may assume g(x) ≥ g(p)/2 =: c > 0 for every x ∈ M ∩ B̄m(p, ε). We extend
ϕ to a semialgebraic homeomorphism ψ : Rm → Rm defined as

ψ(x) :=
{

x if x ∈ Rm \ B̄m(p, ε),

ϕ(x) if x ∈ B̄m(p, ε).

In the following, we identify M with ψ−1(M). As dimp ClRm(M) = d, it follows that N is a
semialgebraic set of dimension d − 1. By [2, 2.3.6], N is a finite union of semialgebraic sets Bi , each of
them semialgebraically homeomorphic to an open hypercube (0, 1)k ⊂ Rk for some 0 ≤ k ≤ d − 1,
and by [2, 2.8.9] it holds dim(Bi) = d − 1 for some index i. We denote B := Bi and consider a
compact semialgebraic subset K ⊂ B that is semialgebraically homeomorphic to the hypercube
[0, 1]d−1 and the cone C of vertex p and basis K that satisfies C \ {p} ⊂ M ∩ B̄m(p, ε). Thus,
g(x) ≥ c > 0 for each point x ∈ C. Consider the semialgebraic map

η : Rm \ Bm(p, 1) → Rm, y �→
(

1 − 1

‖y‖
)

y

whose restriction θ to Rm \ B̄m(p, 1) is a semialgebraic homeomorphism onto its image Rm \ {p}
with inverse

θ−1 : Rm \ {p} → Rm \ B̄m(p, 1), x �→
(

1 + 1

‖x‖
)

x.
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Observe that θ−1 preserves the lines through p and transforms spheres centred at p into spheres
centred at p. Moreover, it transforms bounded subsets of Rm \ {p} into bounded subsets of Rm \
B̄m(p, 1).

Define M1 := θ−1(M), which is semialgebraically homeomorphic to M . This set M1 contains a
semialgebraic set C0 := θ−1(C), which is semialgebraically homeomorphic to [0, 1]d−1 × (0, 1] and
whose closure C1 in Rm, which is clearly contained in the compact semialgebraic set X1 := ClRm(M1),
is semialgebraically homeomorphic to I := [0, 1]d . Clearly, C0 = C1 ∩ M1.

Moreover, note that M1 is a locally compact and bounded subset of Rm \ B̄m(p, 1) and h :=
g ◦ η|X1 ∈ S∗(X1) satisfies h(x) ≥ c > 0 for every x ∈ C1. On the other hand, since dim(ClRm(M) ∩
V ) = d and gg1 = 0, the semialgebraic function h1 := g1 ◦ η|X1 ∈ S∗(X1) satisfies dim(ZM1(h1)) =
d and hh1 = 0.
Step 2. Construction of a suitable chain of polynomial prime ideals. Let 0 ≤ k ≤ d and consider the
independent linear forms

yi :=
{
xi if i = 1, . . . , k,

xd+k+1−i if i = k + 1, . . . , d.

Consider the chain of prime ideals of length d of the polynomial ring A := R[x1 . . . ,xd ]
(0) = p0 � · · · � pk � · · · � pd ,

where pi := (y1, . . . ,yi )A for i = 1, . . . , d. For each i = 1, . . . , d, we have the following commu-
tative diagram:

R[yi+1, . . . ,yd ] � � �� R[yi , . . . ,yd ]

A/pi

∼=
��

� �
φi �� A/pi−1

∼=
��

where φi(yj + pi ) :=
{

pi−1 if 1 ≤ j ≤ i,

yj + pi−1 if i + 1 ≤ j ≤ d.

Let αi be the cone of positive elements of an ordering of the quotient field κ(pi ) of the domain
A/pi , chosen in such a way that (κ(pi−1), αi−1) is an ordered extension of (κ(pi ), αi) for i = 0, . . . , d.
By [10, 4.10], there exists a chain of prime ideals P0 � · · · � Pd in S(I ) such that Pi ∩ A = pi and
dI (Pi ) = d − ht(Pi ) = d − i for i = 0, . . . , d.
Step 3. Construction of the maximal ideal mk . Observe that S(C1) and S(I ) are isomorphic and fix an
isomorphism � between them. Consider the ideal in S(C1) that corresponds via � to Pi and denote
it again with Pi . Recall that C1 is a closed semialgebraic subset of X1 and so the homomorphism
φ : S(X1) → S(C1), f �→ f |C1 is by Theorem 2.3 surjective. In this way, we get a chain of prime
ideals in S(X1) of length d , namely

Q0 � · · · � Qd where Qi := φ−1(Pi ) for 1 ≤ i ≤ d.

Note that if q ∈ C1 ⊂ X1 is the point corresponding to the origin 0 of I via the semialgebraic
homeomorphism between I and C1, then d = dim0 I = dimq C1 = dimq X1.
(7.1.1) Hence, dX1(Qi ) = d − i for 0 ≤ i ≤ d and the chain of prime ideals Q0 � · · · � Qd is
non-refinable by Theorem 2.6 and Paragraph 2.8.1.
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Consider now the monomorphisms S(X1) ↪→ S∗(M1) ↪→ S(M1). By the construction of the
ideals Qi , we have
(7.1.2) ZX1(f ) ∩ M1 	= ∅ ∀f ∈ Qi ⇐⇒ 0 ≤ i ≤ k.

Thus, by Lemma 2.15(iv), we obtain that q0 := Q0S(M1) � · · · � QkS(M1) is a chain of prime
ideals in S(M1) of length k. Moreover, by Theorem 2.13(ii),

dM1(q0) = dX1(Q0) = d = dimq X1 = dimq M1 (�)

and we deduce from Theorem 4.1 that q0 is a minimal prime ideal of S(M1). In fact, we claim: q0 is
a free prime ideal.

Indeed, suppose there exists a point y ∈ M1 such that f (y) = 0 for all f ∈ q0. Hence, f (y) = 0 for
all f ∈ Q0, which contradicts Paragraph 2.5.4 because all functions in Q0 vanish at the point q 	= y.
(7.1.3) By Paragraph 2.4.2, the collection of all prime ideals of S(M1) containing q0 constitutes
a chain. Let q0 � · · · � qr =: m be such a collection; observe k ≤ r . As M1 and X1 are locally
compact, the map Specs(j) : Specs(M1) → Specs(X1) induced by the inclusion j : M1 ↪→ X1 is
by Theorem 2.13(iii) a homeomorphism onto its image Specs(X1) \ ClSpecs(X1)(Y1), where Y1 :=
X1 \ M1. Thus,

q0 ∩ S(X1) � · · · � qr ∩ S(X1) (��)

is a chain of prime ideals in S(X1) such that qr ∩ S(X1) 	∈ ClSpecs(X1)(Y1). Since the chain q0 � · · · �

qr = m does not admit a refinement, the chain in (��) does not admit a refinement, either.
(7.1.4) We claim: Q0S(M1) ∩ S(X1) = Q0. This implies: Each qi ∩ S(X1) /∈ ClSpecs(X1)(Y1) is a
prime ideal of S(X1) containing Q0; in particular, r ≤ k.

By Theorem 2.13(ii), it is enough to see Q0 	∈ L(Y1) = ClSpecs(X1)(Y1), where the equality holds
true because X1 is locally compact. Suppose by contradiction Q0 ∈ ClSpecs(X1)(Y1). Then there exists
by Lemma 2.10(ii) a function f ∈ Q0 such that ZX1(f ) ⊂ Y1. Since Q0 is a minimal prime ideal
of S(X1), there exists a function g ∈ S(X1) \ Q0 such that fg = 0. This implies g = 0, which is a
contradiction, because

X1 = ClX1(M1) = ClX1(X1 \ Y1) ⊂ ZX1(g).

(7.1.5) Now we deduce from Paragraph 7.1.1 to Paragraph 7.1.4 that r = k, Qi = qi ∩ S(X1) and
qi = QiS(M1) for i = 1, . . . , k. In particular, mk = qk is a maximal ideal of S(M1) of height ≥ k. On
the other hand, since Qk = Specs(j)(qk), it follows from Theorem 2.13(i) that dM1(qk) = dX1(Qk) =
d − k.
Step 4. The equality ht(mk) = k and further properties concerning m∗

k . Let m∗
k be the unique prime

ideal of S∗(M1) such that mk ∩ S∗(M1) ⊂ m∗
k . Let us check first that h|M1 = g ◦ η|M1 	∈ m∗

k . We
keep the notation φ : S(X1) → S(C1), f → f |C1 introduced in Step 2 and consider the mono-
morphism ψ : S(X1) ↪→ S∗(M1), f �→ f |M1 induced by the inclusion map j : M1 ↪→ X1. From
Paragraph 2.5.3, it follows that ψ−1(m∗

k ) = m∗
k ∩ S(X1) is a maximal ideal of S(X1) containing

mk ∩ S(X1) = qk ∩ S(X1) = Qk . Thus, ψ−1(m∗
k ) = Qd and n = φ(ψ−1(m∗

k )) is a maximal ideal of
S(C1). Since h|C1 ≥ c > 0 (see Step 1), it follows from Paragraph 2.4.1 that φ(h) is a unit in S(C1)

and so φ(h) 	∈ n; therefore, h|M1 	∈ m∗
k .

Now we are ready to check ht(mk) = k. By Paragraph 2.8.2(iii), ht(mk) is bounded above by the
maximum of the set

F := {dM1(p) − dM1(mk) : p ⊂ mk is a minimal prime ideal of S(M1)}
= {dM1(p) + k − d : p ⊂ mk is a minimal prime ideal of S(M1)}.
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Fix a minimal prime ideal p ⊂ mk . Since (h|M1) · (h1|M1) = 0 and h|M1 	∈ mk , we deduce h1|M1 ∈
p. Thus, dM1(p) ≤ dim(ZM1(h1)) = d and therefore ht(mk) ≤ max F ≤ k.

To finish the proof of Theorem 7.1 in the locally compact case, we need to check the equality
ht(m∗

k ) = d.
Step 5. Height of m∗

k . Since Q0 and Q0S(M1) ∩ S∗(M1) are minimal prime ideals of S(X1) and
S(M1), respectively, it follows from [12, 5.10] that ht(m∗

k ) ≥ ht(Qd) = d. To prove the converse
inequality, let X ⊂ Rm be a semialgebraic compactification of M1. Observe that m∗

k ∩ S(X) is a
maximal ideal of S(X) by Paragraph 2.5.3 and let x ∈ X be such that mx = m∗

k ∩ S(X). Consider
a chain of prime ideals in S(X) passing through the prime ideal mk ∩ S(X) (see Corollary 5.9). By
Theorem 2.13(ii), mk = (mk ∩ S(X))S(M1) and dX(mk ∩ S(X)) = dM1(mk) = d − k.

Using Paragraph 2.8.2, the length of those chains of prime ideals of S(X) having mk ∩ S(X) as its
first member is ≤ d − k. On the other hand, by Lemma 2.15(iv) each chain of prime ideals of S(X)

whose members are contained in mk ∩ S(X) can be extended to a chain of prime ideals of S(M1)

of the same length, which cannot be greater than k = ht(mk). Thus, hX(m∗
k ) ≤ d and consequently

ht(m∗
k ) ≤ d (see Corollary 5.9). Hence, ht(m∗

k ) = d, as wanted.

7.2. Proof of Theorem 7.1 for an arbitrary M

Let U be a closed semialgebraic neighbourhood of p in Rm such that the dimension of the closed
semialgebraic subset N := U ∩ M of M equals d := dimp M , and U ∩ ClRm(ρ1(M)) = ∅. Consider
the locally compact semialgebraic set Mlc := M \ ρ1(M), see Theorem 3.6. Then N = U ∩ Mlc is
locally compact because it is a closed subset of a locally compact space. Note p ∈ ClRm(N) \ N . By
Lemma 2.1, there exists h ∈ S∗(Rm) such that ZRm(h) = Rm \ IntRm(U). Clearly, h(p) 	= 0.

As the result is already proved for the locally compact case, for each 0 ≤ k ≤ d − 1, there exists
a maximal ideal nk of S(N) such that ht(nk) = k, (gh)|N 	∈ n∗

k and ht(n∗
k ) = d.

On the other hand, since N is a closed semialgebraic subset of M , the homomorphism η : S(M) →
S(N), f �→ f |N is by Theorem 2.3 surjective. Thus, mk = η−1(nk) is a maximal ideal of S(M)

of height ≥ k. Let us see that the later inequality is in fact an equality and ht(m∗
k ) = d. Observe

(gh)|M 	∈ m∗
k , so h|M 	∈ m∗

k and g|M 	∈ m∗
k .

As N is closed in M , the closure ClSpec�
s (M)(N) is homeomorphic to Spec�

s (N) by Lemma 2.10(iii).
Thus, everything is left to show that ClSpec�

s (M)(N) contains all prime ideals contained in m�
k . Indeed,

let p ⊂ m�
k and f ∈ S�(M) \ p, that is, p ∈ DSpec�

s (M)(f ), and suppose N ∩ DSpec�
s (M)(f ) = ∅. Then

f |N ≡ 0, which implies (h|M)f = 0 ∈ p, and so h|M ∈ p. This is false because h|M 	∈ m�
k and we

are done.

7.3. Ulterior consequences

To finish, we show that the height operator behaves quite different in the case of rings of bounded
semialgebraic functions. Recall that by [10, 4.1] dim S∗(M) = dim(M).

Corollary 7.2 Let M ⊂ Rm be a semialgebraic set and m∗ a maximal ideal of S∗(M). Then
ht(m∗) = 0 if and only if there exists an isolated point p ∈ M such that m∗ = m∗

p.

Proof . Let m be the unique maximal ideal of S(M) such that m ∩ S∗(M) ⊂ m∗. If m∗ is a free
maximal ideal, then by Paragraph 2.5.4 m ∩ S∗(M) � m∗ and so ht(m∗) ≥ 1. Hence, m∗ is a fixed
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ideal and let p ∈ M such that m∗ = m∗
p. If p is not isolated in M , there exists by the Curve Selection

Lemma [2, 2.5.5] a semialgebraic path γ : [0, 1] → Rm such that γ (0) = p and γ ([0, 1]) ⊂ M \ {p}.
Then the set

p := {f ∈ S∗(M) : (f ◦ γ )|(0,ε) ≡ 0 for some 0 < ε < 1}
is a prime ideal of S∗(M), which is strictly contained in m∗

p. Thus, ht(m∗
p) ≥ 1.

Conversely, it is straightforward to check that the fixed maximal ideal corresponding to an isolated
point of M has height 0. �

Corollary 7.3 Let M ⊂ Rm be a semialgebraic curve without isolated points. Then ht(m∗) = 1
for every maximal ideal m∗ of S∗(M).
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