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Abstract
A classical problem in real geometry concerns the representation of positive semidefinite
elements of a ring A as sums of squares of elements of A. If A is an excellent ring of
dimension≥ 3, it is already known that it contains positive semidefinite elements that cannot
be represented as sums of squares in A. The one dimensional local case has been afforded
by Scheiderer (mainly when its residue field is real closed). In this work we focus on the 2-
dimensional case and determine (under somemild conditions)which local excellent henselian
rings A of embedding dimension 3 have the property that every positive semidefinite element
of A is a sum of squares of elements of A.
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1 Introduction

In the study of positive semidefinite elements and sums of squares of a ring A one main
problem is to determine whether every positive semidefinite element is a sum of squares
(qualitative problem). The positive semidefinite elements of an arbitrary commutative ring
are defined by means of the theory of the real spectrum Sper(A) of the ring A, as follows: an
element f ∈ A is positive semidefinite if f ≥α 0 for every prime cone α ∈ Sper(A). Recall
that a prime cone α can be understood as a pair α := (pα,≤α) where pα is a prime ideal of
A (called the support supp(α) of α) and ≤α is an ordering of the quotient field qf(A/pα).
Alternatively, α is the preimage under the canonical homomorphism A → qf(A/pα) of
the set of non-negative elements of the ordered field (qf(A/pα),≤α). We denote the set of
positive semidefinite elements of A with P(A) and the set of all (finite) sums of squares of
A with �A2. The problem stated above consists of determining under which conditions the
equality P(A) = �A2 holds.

By [3, Thm.4.3.7] Sper(A) = ∅ if and only if −1 is a finite sum of squares in A. If this
is the case, we assume that all the elements of A are positive semidefinite. If in addition the
characteristic of A is different from 2 and 1

2 ∈ A, then each a ∈ A is a sum of squares in
view of the well-known relation

a =
(a + 1

2

)2 + (−1)
(a − 1

2

)2
.

An ideal a ⊂ A is real if for each sequence a1, . . . , ar ∈ A such that a21 + · · · + a2r ∈ a,
we have ai ∈ a for i = 1, . . . , r . The real-radical of an ideal a ⊂ A is the smallest real ideal
r
√
a of A that contains a. By [3, Prop.4.1.7]

r
√
a = {a ∈ A : ∃ a1, . . . , ar ∈ A,m ≥ 1 such that a2m + a21 + · · · + a2r ∈ a}.

A ring A is real (reduced) if the zero ideal is real. The real reduction of A is the quotient
A/ r

√
(0). In case A is a field, it is (formally) real if and only if −1 is not a sum of squares in

A (that is, if its real spectrum is non-empty). Thus, a prime ideal p of A is the support of a
prime cone α if and only if it is real.
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Background

The property P(A) = �A2 is true for the total quotient ring of fractions of a real (reduced)
ring A by the general theory of Artin-Schreier for (formally) real fields [3, Sect. 1], but
in the general case the situation is more complicated. In [35, Lem.6.3] it is proved that if
a noetherian ring A has a non-empty real spectrum (that is, not all the elements of A are
positive semidefinite) and the property P(A) = �A2 holds, then A is a real (reduced) ring.
In fact, strong dimensional restrictions appear even under mild hypotheses [35, Cor.1.3]. In
case we focus on excellent rings, we have the following result [24, Main Thm.1.1] (see also
[16, Thm.1.2]).

Theorem 1.1 [24, Main Thm.1.1] Let A be an excellent ring of real dimension ≥ 3. Then
P(A) 	= �A2.

The previous result involves the concept of real dimension. Given two prime cones α, β ∈
Sper(A), we say that α is a specialization of β (written β → α) if f >α 0 implies f >β 0
for each f ∈ A. This implies q := supp(β) ⊂ supp(α) =: p. We set dim(β → α) :=
dim(Ap/qAp), and define the real dimension of A as

dimr (A) := sup{dim(β → α): α, β ∈ Sper(A), β → α}.
Therefore, dimr (A) ≤ dim(A). Let us show that this inequality is an equality in case (A,m)

is a local henselian noetherian ring such that P(A) = �A2. By [1, Prop.II.2.4] each non-
refinable specialization chain finishes on a prime cone α whose support is m. If A is in
addition noetherian and has the property P(A) = �A2, then A is real (reduced), so all its
minimal prime ideals are real [3, Lem.4.1.5]. Thus, dimr (A) = sup{dim(A/ supp(β)) : β ∈
Sper(A)} = dim(A). Consequently, if A is a local excellent henselian ring with the property
P(A) = �A2, then dim(A) ≤ 2.

The one dimensional case was entirely solved by Scheiderer in [36, Sect. 3]. The most
conclusive case concerns the one when the residue field κ := A/m is real closed. Recall that
a prime ideal p of a ring A is associated to A if there exists a non-zero element x ∈ A such
that p = {a ∈ A : ax = 0}. The set of all associated prime ideals of A is denoted with
Ass(A).

Theorem 1.2 [36, Thm.3.9] Let (A,m) be a one-dimensional local Nagata ring with (for-
mally) real residue field κ and completion Â, and assumem /∈ Ass(A). Consider the following
conditions:

(i) P(A) = �A2.
(ii) P( Â) = � Â2.
(iii) There is n ≥ 1 such that Â ∼= κ[[x1, . . . ,xn]]/(xix j : i < j).

Then the following assertions hold:

(1) Each of these conditions implies that A is reduced.
(2) Conditions (i) and (ii) are equivalent, and both are implied by (iii).
(3) If κ is real closed, then all three conditions are equivalent.

Thus, wewill focus on determining all local excellent henselian rings (A,m) of dimension
≤ 2 and embedding dimension ≤ 3 with the property P(A) = �A2. In the 2-dimensional
regular case, the most general result is the following:

Theorem 1.3 [36, Thms.4.1 and 4.8] If A is a 2-dimensional regular semilocal ring, then
P(A) = �A2. In particular, for every field κ we have that P(κ[[x,y]]) = �κ[[x,y]]2.
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The 2-dimensional case, when A is an analytic ring of dimension 2 and embedding dimen-
sion ≤ 3 over the real numbers R, has been studied in [15,17,18,20,21,34]. The results
presented in that articles can be adapted straightforwardly to the local henselian excellent
case with real closed residue field [19]. We can summarize the main results as follows:

Theorem 1.4 [15, Thm.1.3], [17,18] Let (A,m) be a local henselian excellent ring of dimen-
sion 2 and embedding dimension 3. Assume that the residue field κ := A/m is real closed.
Then P(A) = �A2 if and only if the completion Â is isomorphic to

(1) κ[[x,y]] or
(2) κ[[x,y,z]]/(zx,zy) or
(3) κ[[x,y,z]]/(z2 − F(x,y))

where F ∈ κ[[x,y]] is one of the series in the following list:

(i) x2 + yk where k ≥ 2,
(ii) x2,
(iii) x2y + (−1)kyk where k ≥ 3,
(iv) x2y,
(v) x3 + xy3,
(vi) x3 + y4,
(vii) x3 + y5.

Main results

In this article we prove that if we do not impose that κ is a real closed field, the amount
of possible candidates increases because κ may have more than one ordering and kth roots
of positive elements of κ need not to belong to κ . In order to apply freely Rotthaus results
[33] on Artin’s approximation Theorem, one needs that the involved ring A we are working
with contains a copy of Q. As we deal with local henselian rings (A,m) with non-empty
real spectrum, it is enough to ask that 1

2 ∈ A (or equivalently that 2 /∈ m). If such is the
case, non-zero integers are units of A (or equivalently, non-zero integers do not belong tom)
and consequently A contains a copy of Q. Otherwise there exists an integer n ≥ 3 such that
n ∈ m and the roots of the polynomial equation t2 +n−1 = 0 modulom are±1. As 2 /∈ m,
both roots are simple. As A is a henselian ring, there exists a ∈ A such that a + m = 1 + m

and a2 + 12 + (n−2)· · · + 12 = a2 + n − 2 = −1 in A, against the fact that A has non-empty
real spectrum.

Theorem 1.5 (List of candidates) Let (A,m) be a local henselian excellent ring of dimension
2 and embedding dimension 3. Assume that A has non-empty real spectrum and 1

2 ∈ A. If
P(A) = �A2, then the completion Â is isomorphic to

(1) κ[[x,y]] or
(2) κ[[x,y,z]]/(zx,zy) or
(3) κ[[x,y,z]]/(z2 − F(x,y))

where F ∈ κ[[x,y]] is one of the series in the following list:

(i) ax2 + by2k where a /∈ −�κ2, b 	= 0 and k ≥ 1,
(ii) ax2 + y2k+1 where a /∈ −�κ2 and k ≥ 1,
(iii) ax2 where a /∈ −�κ2,
(iv) x2y + (−1)kayk where a /∈ −�κ2 and k ≥ 3,
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(v) x2y,
(vi) x3 + axy2 + by3 irreducible,
(vii) x3 + ay4 where a /∈ −�κ2,
(viii) x3 + xy3,
(ix) x3 + y5.

Remark 1.6 The assumption A has non-empty real spectrum and 1
2 ∈ A is equivalent to

the condition the residue field κ of A is (formally) real. The implication right to left is
clear. To prove the converse assume that there exist elements a1, . . . , ar ∈ A\m such that
a21 + · · · + a2r = −1 modulo m, so a1 is a simple root of the polynomial equation t2 + a22 +
· · · + a2r + 1 = 0 modulo m (because 2 /∈ m). As A is a henselian ring, we may assume
that a1 is a root of t2 + a22 + · · · + a2r + 1 = 0 in A, against the non-emptiness of the real
spectrum of A.

Pythagoras numbers and �-invariant.

An important invariant that allows us to useArtin’s approximation techniqueswhen approach-
ing a converse to the previous result is Pythagoras number. The Pythagoras number p(A)

of a ring A is the smallest integer p ≥ 1 such that every sum of squares of A is a sum of p
squares. We write p(A) = +∞ if such an integer does not exist. If we denote the elements
of A that are sums of p squares in A with �p A2, then p(A) = inf{p ≥ 1 : �A2 = �p A2}.
This is a very delicate invariant whose estimation (quantitative problem) has deserved a lot of
attention from specialists in number theory, quadratic forms, real algebra and real geometry
[3,7,8,30,31,35,36]. In [17,18] we proved that the local henselian excellent rings of dimen-
sion 2 and embedding dimension 3 with Pythagoras number 2 coincide essentially with those
in the list provided in Theorem 1.4. In [20] we showed ‘positive extension properties’ for the
elements of the list inside Theorem 1.4, whereas in [23] we analyze relations between the
Pythagoras numbers of real analytic germs.

In [14] we showed that a local henselian excellent ring of dimension ≤ 2 and real closed
residue field κ has a finite Pythagoras number. In [25] we improved the previous result and
proved the following.

Theorem 1.7 [25, Prop.2.7, Thm.2.9]Let (A,m) be a local henselian excellent ring of dimen-
sion 2 such that its residue field κ satisfies p(κ[t]) < +∞. Let m be the number of generators
of the completion Â as a κ[[x1,x2]]-module. Then p(A) ≤ 2p(κ[t])m.

For a higher dimension we proved in [14,24] that a real (reduced) ring A of dimension≥ 3
has an infinite Pythagoras number. The invariant p(κ[t]) has been bounded by Scheiderer
in [36] following [31]. For a (formally) real field κ define the invariant

τ(κ) := sup{s(F) : F |κ finite, non-real},
where s(F) denotes the level of F , that is, the minimum number of elements of F needed
to represent −1 as a sum of squares in F , which is always a power of 2, see [30, Pfister’s
Thm.XI.2.2]. Scheiderer proved in [36, Prop.5.17] (using in an essential way Pfister’s results
[31]) the following inequalities:

1 + τ(κ) ≤ p(κ[y]) ≤ p(κ[[x,y]]) ≤ p(κ[[x]][y]) ≤ 2τ(κ). (1.1)
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In addition, τ(κ) = τ(κ((x))), see [36, Lem.5.13]. The Pythagoras number p(κ[[x,y]]) has
been also studied by Hu in [28, Sect. 3] where he showed that

p(κ[[x,y]]) = p(κ[x][[y]]) = p(κ[[x]][y]) = p(κ((x,y))) = p(qf(κ[x][[y]]))
= p(κ((x))(y)) = sup{p(K (x)) : K |κ is a finite field extension}.

The last equality is due to Becher-Grimm-VanGeel [2]. It is conjectured in [2, Conj.4.16] that
the inequality p(κ[y]) ≤ p(κ((x))(y)) is in fact an equality or, equivalently, that p(K (x)) ≤
p(κ(x)) for each finite extension K |κ . Recall that 4 = p(Q) ≤ p(Q[y]) = p(Q((x,y))) =
p(Q[[x,y]]) = 5 (see [32] and [28, Rem.3.5]), so τ(Q) = 4 (use (1.1)).

As a kind of converse of Theorem 1.5 we prove the following result.

Theorem 1.8 (Affirmative cases) Let (A,m) be a local henselian excellent ring of dimension
2 and embedding dimension 3. Suppose that the residue field κ is (formally) real and τ(κ) <

+∞. Assume that the completion Â is isomorphic to:

(1) κ[[x,y]] or
(2) κ[[x,y,z]]/(zx,zy) or
(3) κ[[x,y,z]]/(z2 − F(x,y)),

where F ∈ κ[[x,y]] is one of the series in the following list:

(i) ax2 + by2k where a ∈ �κ2, a, b 	= 0 and k ≥ 1,
(ii) ax2 + y2k+1 where a ∈ �κ2, a 	= 0 and k ≥ 1,
(iii) ax2 where a ∈ �κ2 and a 	= 0,
(iv) x2y + (−1)kayk where a /∈ −�κ2 and k ≥ 3,
(v) x2y,
(vi) x3 + axy2 + by3 irreducible,
(vii) x3 + ay4 where a /∈ −�κ2,
(viii) x3 + xy3,
(ix) x3 + y5.

Then P(A) = �A2. In addition, p(A) ≤ 4τ(κ).

Theorems 1.5 and 1.8 can be understood as the necessary (list of candidates) and suffi-
cient (affirmative cases) conditions for a local henselian excellent ring of dimension 2 and
embedding dimension 3 to enjoy the property P(A) = �A2. In order to join both Theo-
rems 1.5 and 1.8 , we ask in addition that the residue field κ admits a unique ordering (that
is, κ = −�κ2 ∪ �κ2) and obtain straightforwardly the following full characterization.

Corollary 1.9 (Full characterization) Let (A,m) be a local henselian excellent ring of dimen-
sion 2 and embedding dimension 3. Suppose that the residue field κ admits a unique ordering
and τ(κ) < +∞. Then P(A) = �A2 if and only if the completion Â is isomorphic to:

(1) κ[[x,y]] or
(2) κ[[x,y,z]]/(zx,zy) or
(3) κ[[x,y,z]]/(z2 − F(x,y)),

where F ∈ κ[[x,y]] is one of the series in the following list:

(i) ax2 + by2k such that a, b > 0 and k ≥ 1,
(ii) ax2 + y2k+1 where a > 0 and k ≥ 1,
(iii) ax2 where a > 0,
(iv) x2y + (−1)kayk where a > 0 and k ≥ 3,
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(v) x2y,
(vi) x3 + axy2 + by3 irreducible,
(vii) x3 + ay4 where a > 0,
(viii) x3 + xy3,
(ix) x3 + y5.

In addition, p(A) ≤ 4τ(κ).

Remark 1.10 The case (3.vi) ‘F = x3+axy2+by3 irreducible’ requires a special comment.
Denote A := κ[[x,y,z]]/(z2 − F), the real closure of κ with R (endowed with its unique
ordering) and B := R[[x,y,z]]/(z2 − F).

(i) For simplicity suppose κ = Q and consider the irreducible polynomial F := x3 +
2y3 ∈ Q[x,y]. By Corollary 1.9 we have P(A) = �A2. On the other hand, F =
(x+ 3

√
2y)((x− 1

2
3
√
2y)2+ 3

4
3
√
4y2) is reducible in R[x,y] and x+ 3

√
2y ∈ P(B)\�B2.

(ii) This surprising situation can only appear in case (3.vi), because the condition of ‘irre-
ducibility of F’ disappears whenwe extend coefficients to the real closure R of κ because
F(x, 1) has degree 3, whereas the obstructions for the remaining elements of the list keep
the same when extending coefficients to the real closure. If F(x, 1) = x3 + ax + b has
only one root in R, then P(B)\�B2 	= ∅ is always true. If F(x, 1) has three roots
in R (which happens if and only if a < 0, 4a3 + 27b2 < 0, see Example A.1), then
P(B) = �B2 (case (3.iv) for k = 3).

Formally real fields with a unique ordering

Apart from real closed fields there are well-known examples of fields with a unique ordering.
The most simple one corresponds to the field Q of rational numbers (which has Pythagoras
number 4), but also each finite algebraic extension Q[θ ] ⊂ R of Q such that the irreducible
polynomial of θ over Q has odd degree and a unique root in R admits a unique ordering. The
field Q[θ ] has Pythagoras number either 3 or 4, see [42]. Other examples of fields with a
unique ordering are the real constructible numbers [30, Ex.p.236] or Euclidean fields, which
are those fields κ in which every element is either a square or the opposite of a square [30,
Prop.VIII.1.6]. The previous examples of fields contained in R that admit a unique ordering
are all archimedean, but it is not difficult to construct examples of non-archimedeanfieldswith
a unique ordering that are non-euclidean (and consequently non-real closed). An example
of this type of fields is Q((t1/2∗

)) := ⋃
n≥0 Q((t1/2n )), which is a field with Pythagoras

number 4. More generally, if κ is a field with a unique ordering and Pythagoras number p,
also κ((t1/2∗

)) := ⋃
n≥0 κ((t1/2n )) is a non-archimedean (formally) real field with a unique

ordering and Pythagoras number p. In [27, Thm.2] the existence of (formally) real fields
with a unique ordering and Pythagoras number p is proved for each p ≥ 1.

Applications: Principal saturated preorderings of low order.

In his articles [38,39] Scheiderer approached the problem of determining when a finitely
generated preordering T in an excellent regular ring (A,m)of dimension 2 is saturated. To that
end, he established criteria to decide when the saturation of the preordering T̂ generated by T
in the completion Â implies the saturation of T . Recall that if T is generated by h1, . . . , hr ,
then T := {∑ν∈{0,1}r σνh

ν1
1 · · · hνr

r : σi ∈ �A2}. We say that T is saturated if it contains
every f ∈ A such that f ≥α 0 for each α ∈ Sper(A) satisfying h1 ≥α 0, . . . , hr ≥α 0.
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Observe that

T̂ :=
{ ∑

ν∈{0,1}r
σνh

ν1
1 · · · hνr

r : σi ∈ � Â2
}
.

In [38, Cor.3.25] the following is proved:

Corollary 1.11 Let A be an excellent henselian local ring with p(A) < +∞ and let T be a
finitely generated preordering in A. Then T is saturated in A if and only if T̂ is saturated in
Â.

The previous result reduces the problem of studying the saturation of finitely generated
preorderings on an excellent henselian local ring with a finite Pythagoras number to the study
of the saturation of finitely generated preorderings on complete rings. Let R be a real closed
field. Taking advantage of [16,34], Scheiderer characterizes the saturated preorderings of
A := R[[x,y]] generated by an element h ∈ R[[x,y]] of order ≤ 3 and he obtains the same
list (up to right equivalence) as the one appearing in Theorem 1.4(3). In the same vein we
characterize in Sect. 6 (Corollaries 6.1 and 6.2 ) the saturated preorderings of A := κ[[x,y]]
generated by an element F ∈ κ[[x,y]] of order ≤ 3 (up to right equivalence), where κ is a
(formally) real field that has τ(κ) < +∞. In addition, we ask that κ admits a unique ordering
when ω(F) = 2. The lists obtained in these cases (for ω(F) = 2 and ω(F) = 3) coincide
with those proposed in Theorem 1.8(3).

Structure of the article

The article is organized as follows. In Sect. 2 we present the main finite determinacy tools
in order to prove Theorem 1.5 in Sect. 3. The proofs of some of the results in Sect. 2, which
are substantially different from the classical ones over the complex or the real numbers, are
included in Appendix 1 for the sake of completeness. In Sect. 4 we introduce the main tools
to prove Theorem 1.8 in Sect. 5. We highlight Theorem 5.5. In Sect. 6 we prove (see Corol-
laries 6.1, 6.2 ) the counterpart of the results of Scheiderer concerning principal preorderings
on an excellent henselian local ring with a finite Pythagoras number, when the residue field
is a field κ with a unique ordering (instead of a real closed field). Finally, in Appendix 1 we
present two additional examples: one concerning the ring Â in Theorem 1.8(3.iv) (Exam-
ple A.1) and another one (quite tricky!) concerning a ring A with the property P(A) = �A2

that does not appear in the list provided in Theorem 1.8(3) (Example A.2). Such example
suggests that there is still further work to do (surely with the aid of new techniques) when
the residue field κ admits more than one ordering and the series F ∈ κ[[x,y]] has order 2.

2 Basic tools when dealing with formal rings

As we work in the environment of excellent henselian local rings (A,m) (that contain Q)
with a finite Pythagoras number p, the qualitative problem P(A) = �A2 has an affirmative
solution in A if and only if the equation

f = X2
1 + · · · + X2

p

has a solution in the completion Â for each f ∈ P(A). This is a straightforward consequence
of Rotthaus Theorem on Artin’s approximation property [33, Thm.4.2]. Denote the residue
field of A with κ := A/m. As A contains Q, Cohen’s structure theorem [13, Thm.7.7] states
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that Â ∼= κ[[x1, . . . ,xn]]/a where a is an ideal of κ[[x1, . . . ,xn]] and n := dimκ (m/m2) is
the embedding dimension of A. In order to take advantage of formal rings, we recall some
useful properties.

2.1 Formal rings

A formal ring over a field κ is a ring A := κ[[x]]/a where a is an ideal of the ring κ[[x]]
of (formal power) series in the variables x := (x1, . . . ,xn). If f ∈ κ[[x]], we write f :=∑∞

k=0 fk where fk ∈ κ[x] is (either 0 or) an homogeneous polynomial of degree k. Denote
the order of f with ω( f ) := inf{k : fk 	= 0} and the initial form of f with In( f ) := fω( f ).
We write mn := (x1, . . . ,xn)κ[[x]] to refer to the maximal ideal of κ[[x]] and ‖x‖2 :=
x2
1 + · · · + x2

n . In addition, κ((x)) stands for the quotient field of κ[[x]]. Recall that a series
f ∈ κ[[x1, . . . ,xn]] is regularwith respect toxn (of orderd) if f (0, . . . , 0,xn) = adxd

n+· · ·
with ad 	= 0. Letx′ := (x1, . . . ,xn−1). AWeierstrass polynomial P ∈ κ[[x′]][xn] is amonic
polynomial of degree d such that P(0,xn) = xd

n . By [43, Ch.7. Sect. 1.Thm.5 and Cor.1]
the ring κ[[x]] enjoysWeierstrass division and preparation theorems, which are fundamental
tools when dealing with rings of series with coefficients in a field.

Theorem 2.1 (Weierstrass division theorem [43, Ch.7. Sect. 1.Thm.5]) Let f , g ∈ κ[[x]] be
series such that f is a regular series with respect toxn of order d. Then there exist Q ∈ κ[[x]]
and a polynomial R ∈ κ[[x′]][xn] of degree ≤ d − 1 such that f = gQ + R.

Theorem 2.2 (Weierstrass preparation theorem [43, Ch.7. Sect. 1.Cor.1]) Let f ∈ κ[[x]]
be a regular series with respect to xn of order d. Then there exist a Weierstrass polynomial
P ∈ κ[[x′]][xn] of degree d and a unit U ∈ κ[[x]] such that f = PU.

As a consequence of the previous results, Implicit and Inverse Function Theorems arise
standardly. We will use them freely in the article.

Theorem 2.3 (Implicit function theorem) Let f1, . . . , fm ∈ κ[[x,y]] be such that fi (0, 0) =
0 and det( ∂ fi

∂y j
(0, 0))1≤i, j≤m 	= 0. Then there exist unique series g1, . . . , gm ∈ κ[[x]] such

that g j (0) = 0 and fi (x, g1, . . . , gm) = 0 for i = 1, . . . ,m.

Theorem 2.4 (Inverse function theorem) Let f1, . . . , fn ∈ κ[[x]] be series such that fi (0) =
0 and det( ∂ fi

∂x j
(0))1≤i, j≤n 	= 0. Then there exist unique series g1, . . . , gn ∈ κ[[y]] such that

gi (0) = 0 and fi (g1, . . . , gn) = yi and gi ( f1, . . . , fn) = xi for i = 1, . . . , n.

Let κ be a (formally) real field andU ∈ κ[[x,y]] a unit such thatU (0, 0) ∈ �pκ
2. By the

Implicit Function Theorem the quotient U
U (0,0) is a square in κ[[x,y]], soU ∈ �pκ[[x,y]]2.

2.2 Equivalence of series and finite determinacy tools

In order to simplify the discussions when dealing with series, it is usual to use ‘equivalence
of series’. Let f , g ∈ m where m is the maximal ideal of κ[[x]]. We say that:

(i) f is right equivalent to g (and we write f ∼R g) if there exists an automorphism
� : κ[[x]] → κ[[x]] such that �( f ) = g.

(ii) f is contact equivalent to g (and we write f ∼C g) if there exists an automorphism
� : κ[[x]] → κ[[x]] such that (�( f )) = (g). This is equivalent to the existence of a
unit u ∈ κ[[x]] such that �( f ) = ug.
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Two series f , g are contact equivalent if and only if the κ-algebras κ[[x]]/( f ),
κ[[x]]/(g) are isomorphic. In relation to this we recall the meaning of k-determinacy and
k-quasideterminacy. A series f ∈ m is k-determined (resp. k-quasidetermined) if each
g ∈ κ[[x]] with f − g ∈ mk+1 is right equivalent to f (resp. contact equivalent to f ).
If f is k-determined (resp. k-quasidetermined) for some k ≥ 1, then f is right (resp. contact)
equivalent to a polynomial of κ[x]. This fact will be ‘squeezed to the extreme’ in the fol-
lowing sections. As it seems natural, it will be useful to have a criterion to determine when a
series is finitely determined (resp. quasi determined), that is, when it is k-determined (resp.
k-quasidetermined) for some k ≥ 1.

Theorem 2.5 (Finite determinancy and quasideterminancy theorem) Let f ∈ m2 ⊂ κ[[x]].
Suppose thatmk ⊂ mJ ( f ) (resp.mk ⊂ mJ ( f )+( f )) where J ( f ) := (

∂ f
∂x1

, . . . ,
∂ f
∂xn

). Then
f is k-determined (resp. k-quasidetermined).

The previous result is well-known when κ = C is the field of complex numbers and
it is easy to adapt when κ = R or, more generally, when κ is algebraically closed or real
closed. A quite straightforward proof of the previous result when κ = C can be found in
[26, Thm.I.2.23] and [29, Thm.9.1.7]. The details there can be adapted to approach the case
when κ is a field of characteristic 0. For the sake of completeness we provide an elementary
proof of Theorem 2.5 in Appendix 1.

Example 2.6 Let κ be a field of characteristic 0 and 0 	= a, b ∈ κ and write m :=
(x,y)κ[[x,y]]. We have:

(i) If F := ax2 + by where  ≥ 2, then J (F) = (x,y−1) and m ⊂ mJ (F). Thus, F
is -determined.

(ii) If F := ax2y+by with  ≥ 3, then J (F) = (xy, ax2+by−1) andm ⊂ mJ (F) =
(x2y,xy2,x3,y). Thus, F is -determined.

(iii) If F := x3 + axy2 + by3, then J (F) = (3x2 + ay2, 2axy + 3by2). We have
m3 ⊂ mJ (F) = (3x3 + axy2, 3x2y + ay3, 2ax2y + 3bxy2, 2axy2 + 3by3) if and
only if the cubic forms {3x3 + axy2, 3x2y + ay3, 2ax2y + 3bxy2, 2axy2 + 3by3}
are linearly independent or, equivalently, if 4a3 + 27b2 	= 0. Thus, F is 3-determined
if the discriminant 4a3 + 27b2 of F(x, 1) is non-zero.

(iv) If F := x3 + xy3, then J (F) = (3x2 + y3,xy2) and m5 ⊂ (x3,x2y2,xy3,y5) ⊂
mJ (F) = (3x3 + xy3, 3x2y + y4,x2y2,xy3). Thus, F is 5-determined.

(v) If F := x3 + ayk where k ≥ 3, then J (F) = (x2,yk−1) and

mk ⊂ mJ (F) = (x3,x2y,xyk−1,yk).

Thus, F is k-determined.
(vi) If F := x3 + axy + byk where 2 ≤  < k and 

k 	= 2
3 , then F is k-quasidetermined.

Observe that J (F) = (3x2 + ay, axy−1 + kbyk−1) and

mJ (F) + (F) = (3x3 + axy, 3x2y + ay+1, ax2y−1 + kbxyk−1,

axy + kbyk,x3 + axy + byk).

As 
k 	= 2

3 , we deduce x
3,x2y−1,xy,yk ∈ mJ (F) + (F), so mk ⊂ mJ (F) + (F)

and F is k-quasidetermined.
(vii) Let F := x3 + axy2ρ + by3ρ(1 + h) where ρ ≥ 2, 4a3 + 27b2 	= 0, h ∈ κ[[y]]

and either h = 0 or 1 ≤ ω(h) ≤ ρ − 1. If k := min{3ρ + 1 + ω( dhdy ), 4ρ − 1},
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then F is k-quasidetermined. Define g := 1 + h + y
3ρ

dh
dy and observe that J (F) =

(3x2 + ay2ρ, 2ρaxy2ρ−1 + 3ρby3ρ−1g), so

mJ (F) + (F) = (3x3 + axy2ρ, 3x2y + ay2ρ+1, 2ρax2y2ρ−1 + 3ρbxy3ρ−1g,

2ρaxy2ρ + 3ρby3ρg,x3 + axy2ρ + by3ρ(1 + h)).

In particular, y3ρ+1 dh
dy ∈ mJ (F)+(F). As 4a3+27b2 	= 0, also xy3ρ−1,x2y2ρ−1,x3

yρ−1,x4,y4ρ−1 ∈ mJ (F)+ (F), somk ⊂ mJ (F)+ (F) and F is k-quasidetermined.

Proof of (vii) First, observe that

y3ρ+1 dh

dy
= ρ

b (3x3 + axy2ρ) + 1
b (2ρaxy2ρ + 3ρby3ρg)

− 3ρ
b (x3 + axy2ρ + by3ρ(1 + h)) ∈ mJ (F) + (F).

Consequently, f1 := 2axy2ρ + 3by3ρ(1 + h) ∈ mJ (F) + (F). In addition,

f2 := 9bxy3ρ−1g − 2a2y4ρ−1 = 3(2ax2y2ρ−1

+3bxy3ρ−1g) − 2ay2ρ−2(3x2y + ay2ρ+1) ∈ mJ (F) + (F)

and we conclude

(4a3 + 27b2g(1 + h))y4ρ−1 = 9byρ−1g f1 − 2a f2 ∈ mJ (F) + (F).

As4a3+27b2 	= 0,we deducey4ρ−1 ∈ mJ (F)+(F). Thus, 9bxy3ρ−1g = f2+2a2y4ρ−1 ∈
mJ (F) + (F), so also xy3ρ−1 ∈ mJ (F) + (F). Now,

2ρax2y2ρ−1 = (2ρax2y2ρ−1 + 3ρbxy3ρ−1g) − 3ρbxy3ρ−1g ∈ mJ (F) + (F),

sox2y2ρ−1 ∈ mJ (F)+(F). Thenx4 = 1
3x(3x3+axy2ρ)− 1

3ay(x2y2ρ−1) ∈ mJ (F)+(F).
Finally, x3yρ−1 = 1

3y
ρ−1(3x3 + axy2ρ) − 1

3axy
3ρ−1 ∈ mJ (F) + (F). Now, as k :=

min{3ρ + 1 + ω( dhdy ), 4ρ − 1} ≥ ρ + 2, 2ρ + 1, 3ρ, we have

xyk− =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x4(x−4yk−) ∈ mJ (F) + (F) if 4 ≤  ≤ k,

x3yρ−1(yk−2−ρ) ∈ mJ (F) + (F) if  = 3,

x2y2ρ−1(yk−2ρ−1) ∈ mJ (F) + (F) if  = 2,

xy3ρ−1(yk−3ρ) ∈ mJ (F) + (F) if  = 1,

yk = y4ρ−1(yk−4ρ+1) ∈ mJ (F) + (F) if = 0,

so mk ⊂ mJ (F) + (F) and F is k-quasidetermined. ��

2.3 Exchanging positiveness

Along this work we will freely use the following facts.

Lemma 2.7 Let ϕ : A → B be a homomorphism of rings. We have:

(i) For each β ∈ Sper(B) there exists α ∈ Sper(A) such that signα(g) = signβ(ϕ(g)) for
each g ∈ A.

(ii) If f ∈ P(A), then ϕ( f ) ∈ P(B).

Proof By [3, Prop.7.1.7] the real spectral map Sper(ϕ) : Sper(B) → Sper(A), β �→ ϕ−1(β)

is well-defined.
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(i) Observe that ϕ(g) ∈ β if and only if g ∈ α := ϕ−1(β) and ϕ(g) ∈ supp(β) if and only
if g ∈ supp(α) = ϕ−1(supp(β)).

(ii) If β ∈ Sper(B), then f ∈ ϕ−1(β) (because f ∈ P(A)), so ϕ( f ) ∈ β. Thus, ϕ( f ) ∈
P(B), as required. ��
The following result will be useful when dealing with blow-ups in the proof of Theo-

rem 1.8.

Lemma 2.8 Let A, B be two rings and g ∈ B anon-nilpotent element.Denote the localization
of B at themultiplicative set S := {gn : n ≥ 0}with Bg. Letϕ : A → Bg be a homomorphism
of rings and f ∈ P(A). Write ϕ( f ) = b

g for some  ≥ 1 and assume g does not divide b.

Define

k :=
{
1 if  is odd,

2 if  is even.

Then gkb ∈ P(B).

Proof By Lemma 2.7 we deduce ϕ( f ) ∈ P(Bg). Let i : B → Bg, x �→ x
1 be the canonical

map. By [12, Thm.13.3.7 and Rem.13.3.8(ii)] the real spectrum Sper(Bg) is isomorphic via
Sper(i) to the constructible subset U := {α ∈ Sper(B) : g2 >α 0} of Sper(B). This means

that gkb >α 0 for each α ∈ U because gkb
gk+ ∈ P(Bg) and k +  is even. As k ≥ 1, we have

gkb ∈ supp(β) for each β ∈ Sper(B)\U = {α ∈ Sper(B) : g ∈ supp(α)}. We conclude
gkb ∈ P(B), as required. ��

2.4 Applications ofWeierstrass polynomials and Puiseux series

We prove next that series in two variables that are close enough in the m-adic topology have
similar structures.

Lemma 2.9 Let P ∈ κ[[y]][x] be Weierstrass polynomials of degree d, let U ∈ κ[[x,y]] be
a unit and set f := PU. For each m ≥ 1 there exists r ≥ 1 such that if Q ∈ κ[[y]][x] is
a Weierstrass polynomial of degree d, V ∈ κ[[x,y]] is a unit with V (0, 0) = U (0, 0) and
g := QV satisfies f − g ∈ mr

2, then P − Q,U − V ∈ mm
2 .

Proof Assume first ω( f ) = d and let r := d + 1. Pick Q, V satisfying the conditions of the
statement. We have

Q = V−1U P + V−1(g − f ) ≡ V−1U P mod mr
2.

We claim: Q ≡ P mod mr−1
2 .

Consider the homogeneous components of P, Q,W := V−1U and write:

P := pd + pd+1 + · · · + pd+k + · · · ,

Q := qd + qd+1 + · · · + qd+k + · · · ,

W := w0 + w1 + · · · + wk + · · · ,

where pd and qd are homogeneous polynomials of degree d monic with respect to x and

degx(pd+k), degx(qd+k) ≤ d − 1
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for k ≥ 1. As Q ≡ WP mod mr
2 for each k = 0, . . . , r − d − 1, we deduce

qd+k =
∑

i+ j=d+k

piw j .

Weclaim:qd+k = pd+k for k = 0, . . . , r−d−1,w0 = 1 andwk = 0 for k = 1, . . . , r−d−1.
For k = 0 we have qd = pdw0, so w0 = 1 and qd = pd . Assume qd+ j = pd+ j for

j = 0, . . . , k < r − d − 1 and w j = 0 for j = 1, . . . , k. Then:

qd+k+1 = pd+k+1w0 + pd+kw1 + · · · + pdwk+1 = pd+k+1 + pdwk+1.

If wk+1 	= 0,

d ≤ degx(pdwk+1) = degx(qd+k+1 − pd+k+1)

≤ max{degx(qd+k+1), degx(pd+k+1)} ≤ d − 1,

which is impossible. Consequently, wk+1 = 0 and qd+k+1 = pd+k+1.
Ifω( f ) < d , we substitutey = t for some 2 ≤  ≤ d such thatω( f (x,t)) = d . Define

r := m + 1 and let Q, V satisfy the conditions of the statement. Observe that by the pre-
vious case P(x,t) ≡ Q(x,t) mod (x,t)m and U (x,t) ≡ V (x,t) mod (x,t)m.
Consequently, P ≡ Q mod mm

2 and U ≡ V mod mm
2 , as required. ��

Let κ be a field of characteristic 0 and κ its algebraic closure. Let κ[[t∗]] =⋃
p≥1 κ[[t1/p]] be the ring of Puiseux series with coefficients in κ and κ((t∗)) its field

of fractions, which is an algebraically closed field.

Lemma 2.10 Let P ∈ κ[[y]][x] be a Weierstrass polynomial of degree d, let κ be the alge-
braic closure of κ and let α1, . . . , αd ∈ κ[[y∗]] be the roots of P in κ((y∗)). For each m ≥ 1
there exists r ≥ 1 such that if Q ∈ κ[[y]][x] is a Weierstrass polynomial of degree d with
roots β1, . . . , βd ∈ κ((y∗)) satisfying P − Q ∈ mr

2, then (after reordering the indices of the
roots βi ) ω(αi − βi ) ≥ m for each i = 1, . . . , n.

Proof Write P := xd + ∑d−1
j=0 a jx j , where a j ∈ κ[[y]]. Let Q := xd + ∑d−1

j=0 b jx j ∈
κ[[y]][x] be another Weierstrass polynomial of degree d . For each r ≥ 1

P − Q =
d−1∑
j=0

(a j − b j )x
j ∈ mr

2

if and only if a j −b j ∈ m
r− j
1 for j = 0, . . . , d−1 (wherem1 is the maximal ideal of κ[[y]]).

By [6, Prop.8.3.3] the roots α1, . . . , αd , β1, . . . , βd of P, Q in κ((y∗)) belong to κ[[y1/p]]
where p := d!. Let s j ∈ Z[z1, . . . ,zd ] be the j th symmetric elementary form and consider
the polynomial system

a j (y
p) − (−1) jsd− j (z1, . . . ,zd) = 0

for j = 1, . . . , d − 1. We have

a j (y
p) − (−1) jsd− j (β1, . . . , βd) = a j (y

p) − b j (y
p) ∈ m

(r− j)p
1

for j = 0, . . . , d − 1. By Artin’s approximation theorem there exists k ≥ 1 such that if
ω(a j (yp) − b j (yp)) ≥ k for j = 0, . . . , d , then α j − β j ∈ m

mp
1 . Thus, it is enough to take

r ≥ k
p + d . ��
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Corollary 2.11 Let f ∈ κ[[x,y]] be such that f (x, 0) 	= 0 and let m ≥ 1. Denote the
algebraic closure of κ with κ . There exists r ≥ 1 such that if g ∈ κ[[x,y]] and f − g ∈ mr

2,
then ω( f (ζ,y) − g(ζ,y)) > min{ω( f (ζ,y)),m} for each ζ ∈ κ[[y∗]]. In addition, if f , g
are Weierstrass polynomials, ω( f (ζ,y) − g(ζ,y)) > m.

Proof As f (x, 0) 	= 0 is a regular series with respect to x there exists by Weierstrass
preparation theorem a Weierstrass polynomial P ∈ κ[[y]][x] and a unit U ∈ κ[[x,y]] such
that f = PU . Let d := ω( f (x, 0)) and let α1, . . . , αd ∈ κ[[y1/(d!)]] be the roots of P in
κ((y∗)) (use [6, Prop.8.3.3]).

If r ≥ d + 1, we have In(g(x, 0)) = In( f (x, 0)) 	= 0 (so ω(g(x, 0)) = d) for each
g ∈ κ[[x,y]] such that f − g ∈ mr

2. For such a g there exists by Weierstrass prepa-
ration theorem a Weierstrass polynomial Q ∈ κ[[y]][x] and a unit V ∈ κ[[x,y]] such
that g = QV . In addition, V (0, 0)xd = In(g(x, 0)) = In( f (x, 0)) = U (0, 0)xd , so
c := U (0, 0) = V (0, 0) ∈ κ\{0}. By [6, Prop.8.3.3] the roots β1, . . . , βd of Q in κ((y∗))
belong to κ[[y1/(d!)]]. For each k ≥ 1 there exists by Lemma 2.9 an integer r := r(k) ≥ d+1
such that if f − g ∈ mr

2, then P − Q,U − V ∈ mk
2. We will see that there exists k large

enough such that the corresponding r(k) is the r sought in the statement.
By Lemma 2.10 if k ≥ 1 is large enough, the roots of Q suitably reordered satisfy

ω(β j − α j ) > m for each j = 1, . . . , d . If ζ ∈ κ[[y∗]], then

f (ζ,y) = U (ζ,y)

d∏
j=1

(ζ − α j ),

g(ζ,y) = V (ζ,y)

d∏
j=1

(ζ − β j ).

As δ j := (ζ − α j ) − (ζ − β j ) = β j − α j and ω(β j − α j ) > m, the difference

P(ζ,y) − Q(ζ,y) =
d∏
j=1

(ζ − α j ) −
d∏
j=1

(ζ − β j ) =
d∏
j=1

(ζ − β j + δ j ) −
d∏
j=1

(ζ − β j )

has order > m. Write U := c + h1, V := c + h2 and U − V = h3 where each hi ∈ m2. We
have f − g = P(U − V ) + V (P − Q), so

f (ζ,y) = P(ζ,y)(c + h1(ζ,y)),

f (ζ,y) − g(ζ,y) = P(ζ,y)h3(ζ,y) + (c + h2(ζ,y))(P(ζ,y) − Q(ζ,y))

and the latter series has order > min{ω( f (ζ,y)),m}. In addition, if f = P and g = Q, then
h3 = 0 and ω( f (ζ,y) − g(ζ,y)) > m, as required. ��

2.5 Applications of curve selection lemma and Puiseux series

We recall here the following version of the curve selection lemma, which has relevant con-
sequences for the prime cones of Sper(κ[[x,y]]). As usual we identify Sper(κ) with the
subspace of Sper(κ[[x,y]]) consisting of all prime cones of κ[[x,y]] with support m2.

Lemma 2.12 (Curve selection lemma)Letκ bea (formally) real field andβ ∈ Sper(κ[[x,y]])
a prime cone such that y >β 0 and dim(κ[[x,y]]/ supp(β)) = 1. Let α ∈ Sper(κ) be such
that β → α and let R(α) be the real closure of (κ,≤α). Then there exists a homomorphism
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φ : κ[[x,y]] → R(α)[[y]] such that φ(y) = yq for some q ≥ 1 and f ≥β 0 if and only if
φ( f ) = f (φ(x),yq) ≥ 0. In addition, f ∈ supp(β) if and only if f (φ(x),yq) = 0.

Proof Asht(supp(β)) = 1,we have supp(β) is a principal prime ideal.Write (P) := supp(β)

where P ∈ κ[[x,y]] is irreducible. As y /∈ supp(β), we have P(x, 0) 	= 0. By Weierstrass
preparation theorem we may assume P ∈ κ[[y]][x] is a Weierstrass polynomial with respect
to x. Thus,

j : κ[[y]] ↪→ κ[[x,y]]/ supp(β) ∼= κ[[y]][x]/(P).

Write α1 := j−1(β). By [1, Ex.II.3.13] the real closure of (κ((y)),≤α1) is R(α)((y∗)).
As (κ((y))[x]/(P),≤β) is a finite algebraic extension of (κ((y)),≤α1) and α1 = j−1(β),
we deduce ϕ : κ((y))[x]/(P) ↪→ R(α)((y∗)). As P ∈ κ[[y]][x] is a monic polynomial,
there exist ζ ∈ R(α)[[y]] and q ≥ 1 such that ϕ(x) = ζ(y1/q). Define φ : κ[[x,y]] →
R(α), f �→ f (ζ,yq) and observe that f ∈ κ[[x,y]] satisfies f ≥β 0 if and only if
φ( f ) ≥ 0, as required. ��

Corollary 2.13 Let f ∈ κ[[x,y]] and n ≥ 1. Let C ⊂ Sper(κ[[x,y]]) and assume f ≥β 0
for each β ∈ C with ht(supp(β)) = 1. We have:

(i) There exists r ≥ 1 and M ∈ κ\{0} such that if g ∈ κ[[x,y]] and f − g ∈ mr
2, then

g + M2(x2 + y2)n >β 0 for each β ∈ C with ht(supp(β)) = 1.
(ii) If in addition f (x, 0) 	= 0, there exists r ≥ 1 and M ∈ κ\{0} such that if f − g ∈ mr

2,
then g + M2y2n >β 0 for each β ∈ C with ht(supp(β)) = 1.

Proof We prove both statements simultaneously. Let β ∈ C with ht(supp(β)) = 1. We
distinguish two cases:
Case 1. If y ∈ supp(β), then supp(β) = (y) and f ≥β 0 if and only if f (x, 0) ≥β 0.
Assume first f (x, 0) = 0 and let r ≥ 2n + 1. Set h := g + M2(x2 + y2)n and observe that
h(x, 0) = M2x2nu2 for some unit u ∈ κ[[x]] such that u(0) = 1. Thus, h + supp(β) =
h(x, 0) + supp(β) > 0.

Assume next f (x, 0) 	= 0 and write f (x, 0) = axu2 where  ≥ 0, a ∈ κ\{0} and
u ∈ κ[[x]] is a unit such that u(0) = 1. If f − g ∈ m+1

2 , then g(x, 0) = axv2 where
v ∈ κ[[x]] is a unit such that v(0) = 1. Thus,

g + M2y2n + supp(β) = g(x, 0) + supp(β) = f (x, 0)
v2

u2
+ supp(β) > 0,

g + M2(x2 + y2)n + supp(β) = g(x, 0) + M2x2n + supp(β)

= f (x, 0)
v2

u2
+ M2x2n + supp(β) > 0.

By Lemma 2.11 there exists (maybe a larger) r ≥ 1 such that if f − g ∈ mr
2, then

ω( f (ζ,y) − g(ζ,y)) > min{ω( f (ζ,y)), 2n + 1 + ω( f (x, 0))} for each ζ ∈ κ[[y∗]].
Case 2.Assume next y /∈ supp(β) (without loss of generality we may assume that y >β 0).
Let α ∈ Sper(κ) be such that β → α and let R(α) be the real closure of (κ,≤α). By
Lemma 2.12 there exists a homomorphism φ : κ[[x,y]] → R(α)[[y]] such that φ(y) = yq

for some q ≥ 1 and h ≥β 0 if and only if φ(h) ≥ 0. Write ξ := ϕ(x) ∈ R(α)[[y]] and
ζ := ξ(y1/q) ∈ R(α)[[y1/q ]]. Consider the homomorphism

ψ : κ[[x,y]] → R(α)[[y1/q ]], h �→ h(ζ,y)
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and observe that h ≥β 0 if and only if ψ(h) ≥ 0. Denote

s := ω( f (ζ,y) − g(ζ,y)) > min{ω( f (ζ,y)), 2n + 1 + ω( f (x, 0))}
≥ min{ω( f (ζ,y)), 2n + 1}

and θ := g(ζ,y)− f (ζ,y)
ys ∈ κ[[y1/q ]] in case f (ζ,y) − g(ζ,y) 	= 0 and s := 2n + 1 and

θ := 0 otherwise. As f ≥β 0, we have

g(ζ,y) + M2y2n = f (ζ,y) + (g(ζ,y) − f (ζ,y)) + M2y2n

=
{
M2y2n + ysθ > 0 if f (ζ,y) = 0,

f (ζ,y) + M2y2n + ysθ > 0 if f (ζ,y) 	= 0,

g(ζ,y) + M2(ζ 2 + y2)n = f (ζ,y) + (g(ζ,y) − f (ζ,y)) + M2(ζ 2 + y2)n

=
{
M2(ζ 2 + y2)n + ysθ > 0 if f (ζ,y) = 0,

f (ζ,y) + M2(ζ 2 + y2)n + ysθ > 0 if f (ζ,y) 	= 0,

so g + M2y2n >β 0 and g + M2(x2 + y2)n >β 0, as required. ��
If we set

P+(κ[[x,y]]) := { f ∈ P(κ[[x,y]]) : f >α 0 ∀α ∈ Sper(κ[[x,y]]), supp(α) 	= m2},
we obtain the following result.

Corollary 2.14 Let f ∈ P+(κ[[x,y]]). There exists r ≥ 1 such that if g ∈ κ[[x,y]] and
f − g ∈ mr

2, then g ∈ P+(κ[[x,y]]).
Proof As f ∈ P+(κ[[x,y]]), we have f (x, 0) 	= 0. By Weierstrass preparation theorem
there exists a Weierstrass polynomial P ∈ κ[[y]][x] of degree d , c ∈ κ\{0} and a unit
U ∈ κ[[x,y]] such that f = cPU 2 and U (0, 0) = 1. A straightforward argument shows
that c ∈ �κ2 and d = 2k is even. If P = 1 (that is, d = 0), it is enough to take r = 2. So let
us assume d ≥ 2 and observe that P ∈ P+(κ[[x,y]]).

Let κ be the algebraic closure of κ and ξ ∈ κ[[y1/p]] (where p = d!) a root of P . Write
ξ := ∑

≥0 ay/p ∈ κ[[y1/p]].Denote Lξ := κ[a :  ≥ 0]. By [10,Thm.2.2] the extension
Lξ |κ is finite. As P ∈ P+(κ[[x,y]]), we deduce from Lemma 2.12 that ξ /∈ R(α)[[y∗]]
for each α ∈ Sper(κ). Thus, Lξ is not a (formally) real field. As Lξ |κ is finite, there exists
mξ such that Lξ = κ[a0, . . . , amξ ]. Consequently, each series ζ ∈ κ[[y1/p]] such that
ω(ζ − ξ) > mξ satisfies ζ /∈ R(α)[[y∗]] for each α ∈ Sper(κ).

Let ξ1, . . . , ξd ∈ κ[[y1/p]] be the roots of P and set m := max{mξk : k = 1, . . . , d} + 1.
By Lemmas 2.9 and 2.10 there exists r ≥ d + 1 such that if f − g ∈ mr

2 and we write
g = cQV 2 where Q := (x − θ1) · · · (x − θd) ∈ κ[[y]][x] is a Weierstrass polynomial,
V ∈ κ[[x,y]] is a unit with V (0, 0) = 1 and θ1, . . . , θd ∈ κ[[y1/p]] are the roots of
Q in κ((y∗)), then (after reordering the roots θk if necessary) ω(ξk − θk) ≥ m for each
k = 1, . . . , d . Thus, the roots of Q do not belong to R(α)[[y∗]] for each α ∈ Sper(κ). In
addition, the involution

σα : R(α)[√−1][[y1/p]] → R(α)[√−1][[y1/p]], λ + √−1μ �→ λ − √−1μ

satisfies: if η ∈ R(α)[√−1][[y1/p]] is a root of Q, then σα(η) is also a root of Q of the same
multiplicity.

Consequently, for each α ∈ Sper(κ) we deduce Q ∈ �2(R(α)[[y1/p]][x])2. By
Lemma 2.12 we deduce that Q >β 0 for each β ∈ Sper(κ[[x,y]])with ht(supp(β)) = 1. By
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[1, Prop.VII.5.1]we conclude Q >β 0 for eachβ ∈ Sper(κ[[x,y]]) such that supp(β) 	= m2.
As Q ∈ m2, we conclude Q ∈ P+(κ[[x,y]]), so also g = cQV 2 ∈ P+(κ[[x,y]]), as
required. ��

3 List of candidates

The purpose of this section is to prove Theorem 1.5. This will be conducted in several steps
after some preliminary preparation. Denote x := (x1, . . . ,xn) and ‖x‖2 := x2

1 + · · · + x2
n .

Lemma 3.1 Let κ be a (formally) real field and f ∈ κ[[x]] a series of order≥ 2s. Then there
exists M ∈ �κ2 such that M2‖x‖2s − f ∈ P(κ[[x]]).
Proof As ω( f ) ≥ 2s, we can write f = ∑

|ν|=2s bν(x)xν . Observe that bν(0)2 + 1 − bν ∈
�κ[[x]]2 for each ν, because the initial coefficient bν(0)2+1−bν(0) = (bν(0)− 1

2 )
2+3 1

22
∈

�κ2. In addition,

‖x‖2 − xix j =
∑
k 	=i, j

x2
k +

(
xi − x j

2

)2 + 3
(x j

2

)2 ∈ �κ[[x]]2

for each 1 ≤ i, j ≤ n. Let xν be a monomial such that |ν| = 2s. Write

xν =
∏

(i, j)∈�

xix j

where #� = s and 1 ≤ i, j ≤ n. As ‖x‖2 − xix j ∈ P(κ[[x]]), we deduce
‖x‖2s − xν = ‖x‖2s −

∏
(i, j)∈�

xix j ≥α 0

for each α ∈ Sper(κ[[x]]), so ‖x‖2s − xν ∈ P(κ[[x]]) for each ν with |ν| = 2s. Thus,

(bν(0)
2 + 1)‖x‖2s − bν(x)xν ∈ P(κ[[x]])

for each ν satisfying |ν| = 2s. Consequently,
∑

|ν|=2s

(bν(0)
2 + 1)‖x‖2s − f ∈ P(κ[[x]]).

If we set M := ∑
|ν|=2s(bν(0)2 + 1), we obtain M2‖x‖2s − f ∈ P(κ[[x]]), as required. ��

Given an ideal a ⊂ κ[[x]], we denote the minimal order of a series in a with ω(a).

Lemma 3.2 Let κ be a (formally) real field and A := κ[[x]]/a a formal ring such that
P(A) = �A2. Then ω(a) = 2.

Proof Let F ∈ a be a series of order r > 0. Set x′ := (x1, . . . ,xn−1) and ‖x′‖2 :=
x2
1 + · · · + x2

n−1. After a linear change of coordinates, we may assume by Weierstrass
preparation theorem

F := xrn + ar−1x
r−1
n + · · · + a1xn + a0,

where a j ∈ κ[[x′]] and ω(a j ) ≥ r − j for 0 ≤ j ≤ r − 1.
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[3.i]. We claim: There exists N ∈ �κ2 such that N 2‖x′‖2(r− j) − a2j ∈ P(κ[[x′]]) for each
0 ≤ j ≤ r − 1.

Asω(a2j ) ≥ 2(r− j), there exists byLemma3.1Mj ∈ �κ2 such thatMj‖x′‖2(r− j)−a2j ∈
P(κ[[x′]]). Denote M := M0 + · · · + Mr−1 and N := M + 1. Observe that N 2 − Mj =
(M + 1)2 − Mj = M2 + M + (M − Mj ) + 1 ∈ �κ2 for each 0 ≤ j ≤ r − 1. Thus,
N 2‖x′‖2(r− j) − a2j ∈ P(κ[[x′]]) for each 0 ≤ j ≤ r − 1, as claimed.

[3.ii]. Let us prove: The quadratic form q := (N 2r2 + 1)2‖x′‖2 − x2
n ∈ P(A).

Otherwise, there exists a prime cone β ∈ Sper(A) such that q <β 0. In particular,
xn /∈ supp(β) and ‖x′‖2 <β

1
(N2r2+1)2

x2
n . As A is a henselian ring, β induces by [1,

Prop.II.2.4] an orderingα ∈ Sper(κ) such thatβ → α. Consider theabsolute value associated
to β:

| . |β : A → A, a �→
{
a if a ≥β 0,

−a if a <β 0.

By claim [3.i] we obtain

a2j ≤β N 2‖x′‖2(r− j) <β

N 2

(N 2r2 + 1)2(r− j)
x2(r− j)
n � |a j |β <β

N

(N 2r2 + 1)r− j
|xn |r− j

β ,

for 0 ≤ j ≤ r − 1. As the Weierstrass polynomial F ∈ a, it holds F ∈ supp(β). Hence,

x2r
n =

( r−1∑
j=0

a j (x
′)x j

n

)2 =
r−1∑
j,k=0

a j (x
′)ak(x′)x j+k

n

≤β

r−1∑
j,k=0

|a j (x
′)|β |ak(x′)|β |xn | j+k

β ≤β N 2
r−1∑
j,k=0

1

(N 2r2 + 1)2r− j−k
|xn |2r− j−k

β |xn | j+k
β

<β N 2
r−1∑
j,k=0

|xn |2rβ
(N 2r2 + 1)2r− j−k

<β x2r
n

r−1∑
j,k=0

N 2

N 2r2 + 1

= x2r
n

N 2r2

N 2r2 + 1
.

As x2rn >β 0, we deduce 1 <β
N2r2

N2r2+1
, which is a contradiction.

[3.iii]. We claim: q ∈ P(A)\�A2 if ω(a) ≥ 3.
Otherwise, q ∈ �A2, so q = h21 + · · · + h2s + h for some hi ∈ κ[[x]] and h ∈ a satis-

fying ω(h) ≥ 3. Comparing initial forms in the previous expression, we find homogeneous
polynomials a1, . . . , ar ∈ κ[x] such that q = a21 + · · · + a2r , which is impossible because κ

is a (formally) real field and −1 is not a sum of squares in κ .
We conclude: ω(a) ≤ 2, as required. ��

Corollary 3.3 Let A := κ[[x,y,z]]/(ϕ) where ϕ ∈ κ[[x,y,z]] and κ is a (formally) real
field. AssumeP(A) = �A2. Then A is isomorphic to either κ[[x,y]] or κ[[x,y,z]]/(z2−F)

where −F ∈ κ[[x,y]] is not a sum of squares and ω(F) ≥ 2.

Proof By Lemma 3.2 we have ω(ϕ) ≤ 2. After a linear change of coordinates we may
assume (by Weierstrass preparation theorem) either ϕ = z + a(x,y) with ω(a) ≥ 1 or
ϕ = z2+2a1(x,y)+a2(x,y) = (z+a1(x,y))2+(a2(x,y)−a1(x,y)2)whereω(ak) ≥ k.
After the change of coordinates z1 := z+a(x,y) in the first case and z1 := z+a1(x,y) in
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the second,wemay assumeϕ = z in the first case andϕ = z2−F(x,y)where F ∈ κ[[x,y]]
has order ≥ 2 in the second. As κ is a (formally) real field, Sper(A) 	= ∅. By [35, Lem.6.3]
A is a real (reduced) ring, so −F /∈ �κ[[x,y]]2, as required. ��

In order to prove Theorem 1.5 let us find certain order restrictions for the series F ∈
κ[[x,y]] such that the ring A := κ[[x,y,z]]/(z2 − F) has the property P(A) = �A2.
Beforehand we need to characterize the positive semidefinite elements of A.

3.1 Characterization of positive semidefinite elements.

Let F ∈ m2 ⊂ κ[[x,y]]where κ is a (formally) real field and let A := κ[[x,y,z]]/(z2−F).
The ring A is a rank 2 free module over κ[[x,y]]. This means that the elements of A are
uniquely represented in the form f + zg where f , g ∈ κ[[x,y]]. The elements of A are
operated using the relationz2 = F(x,y). Consider the inclusioni : κ[[x,y]] ↪→ A. Denote

P({F ≥ 0}) := { f ∈ κ[[x,y]] : f ≥α 0, ∀α ∈ Sper(κ[[x,y]]) with F ≥α 0},
the maximal ideal of κ[[x,y]] with m2 and the maximal ideal of A with mA.

Lemma 3.4 Let α ∈ Sper(κ[[x,y]]) and let Sper(i) : Sper(A) → Sper(κ[[x,y]]) be
the real spectral map associated to i. There exists a prime cone β ∈ Sper(A) such that
Sper(i)(β) = α if and only if F ≥α 0. In addition, supp(β) = mA if and only if supp(α) =
m2.

Proof Let α ∈ Sper(κ[[x,y]]) and R(α) be the real closure of the ordered field

(K (α) := qf(κ[[x,y]]/ supp(α)),≤α).

Suppose there exists β ∈ Sper(A) such that Sper(i)(β) = α. Then F = z2 ≥β 0 in A
implies F ≥α 0. If supp(β) = mA, then supp(α) = supp(β) ∩ κ[[x,y]] = mA ∩ κ[[x,y] =
m2.

Suppose conversely that F ≥α 0. Define a := (supp(α),z2 − F)/(z2 − F). Then

A → A/a ∼= κ[[x,y,z]]/(supp(α),z2 − F) ∼= κ[[x,y]][z]/(supp(α),z2 − F)

∼= (κ[[x,y]]/ supp(α))[z]/(z2 − F + supp(α))

↪→ K (α)[z]/(z2 − F + supp(α)).

As F ≥α 0, the polynomialz2−F has two roots in R(α). Let ξ ∈ R(α) be one of them and
consider the evaluation homomorphism K (α)[z]/(z2−F+supp(α)) → R(α), P �→ P(ξ).
Thus, we have a homomorphism A → R(α) and the inverse image of the set of non-
negative elements of R(α) defines a prime cone β ∈ Sper(A) such that Sper(i)(β) = α. If
supp(α) = m2 and Sper(i)(β) = α, then (z2,m2) = (z2 − F,m2) ⊂ supp(β). As supp(β)

is prime, we deduce z ∈ supp(β) and supp(β) = mA, as required. ��
Corollary 3.5 An element f + zg ∈ A (where f , g ∈ κ[[x,y]]) belongs to P(A) if and only
if f ∈ P({F ≥ 0}) and f 2 − Fg2 ∈ P(κ[[x,y]]).
Proof Consider the involution σ : A → A, f +zg �→ f −zg. Thus, f +zg ∈ P(A) if and
only if f −zg ∈ P(A). These two elements are both positive semidefinite in A if and only if
2 f = ( f +zg)+( f −zg) and f 2−Fg2 = ( f +zg)( f −zg) are positive semidefinite in A.
As f , f 2 − Fg2 ∈ κ[[x,y]], we know by Lemma 3.4 that f , f 2 − Fg2 ∈ P(A) if and only
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if f , f 2 − Fg2 ∈ P({F ≥ 0}). Let α ∈ Sper(κ[[x,y]]) be such that F <α 0, so −F >α 0
and f 2 − Fg2 ≥α 0. Thus, f 2 − Fg2 ∈ P({F ≥ 0}) if and only if f 2 − Fg2 ∈ P(κ[[x,y]]).
Consequently, the statement follows. ��

3.2 Proof of Theorem 1.5

After this preliminarywork,weproveTheorem1.5 in several steps.Let A := κ[[x,y,z]]/(z2−
F)where κ is a (formally) real field and F ∈ κ[[x,y]]. Denote themaximal ideal of κ[[x,y]]
with m2.

Lemma 3.6 (General restriction) If P(A) = �A2, then ω(F) ≤ 3.

Proof Assume ω(F) ≥ 4. By Lemma 3.1 (applied for s = 2) there exists M ∈ �κ2 such
that M2(x2 + y2)2 − F ∈ P(κ[[x,y]]). As M(x2 + y2) ∈ P(κ[[x,y]]) ⊂ P({F ≥ 0}), we
deduce ϕ := M(x2+y2)+z ∈ P(A) = �A2. Thus, there exist a1, . . . , ar , b ∈ κ[[x,y,z]]
such that

ϕ = M(x2 + y2) + z = a21 + . . . + a2r + (z2 − F)b.

Comparing orders we conclude 1 = ω(M(x2 + y2) + z) = ω(a21 + . . . + a2r + (z2 − F)b),
which is a contradiction, so ω(F) ≤ 3, as required. ��
Lemma 3.7 (Order 2 restrictions) If ω(F) = 2 and P(A) = �A2, then F is right equivalent
to one of the following:

(i) ax2 where a /∈ −�κ2.
(ii) ax2 + y2k+1 where a /∈ −�κ2 and k ≥ 1.
(iii) ax2 + by2k where a /∈ −�κ2, b 	= 0 and k ≥ 1.

Proof After a linear change of coordinates, we may assume (by Weierstrass preparation
theorem) that there exist a ∈ κ\{0}, a unit U ∈ κ[[x,y]] such that U (0, 0) = 1 and a
Weierstrass polynomial P := x2+2a1(y)x+a2(y) ∈ κ[[y]][x] of degree 2 (withω(a1) ≥ 1
and ω(a2) ≥ 2) such that

F = a(x2 + 2a1x + a2)U
2 = a((x + a1)

2 + a2 − a21)U
2.

After the change of coordinates (x,y,z) �→ (x − a1,y,zU ), we may assume

F = ax2 + ψ(y)

where ω(ψ) ≥ 2. If ψ = 0, then F = ax2. Otherwise, write ψ = byu where b ∈ κ\{0}
and u ∈ κ[[y]] is a unit such that u(0) = 1. After the change of coordinates (x,y,z) �→
(x, y

u ,zU ), we may assume

F = ax2 + by

where a, b ∈ κ\{0}. If  = 2k + 1 is odd (where k ≥ 1), after the change of coordinates
(x,y,z) �→ (bk+1x, by, bk+1z) we can suppose F = ax2 + y2k+1. Let us explain now the
restrictions concerning the coefficients a, b ∈ κ\{0} in the statement:
Case 1. If F = ax2 and P(A) = �A2, then a /∈ −�κ2 by [35, Lem.6.3].
Case 2. If F = ax2 + by2 and P(A) = �A2, then either a or b /∈ −�κ2 by [35, Lem.6.3].
Interchanging x and y, we may assume a /∈ −�κ2.
Case 3. If F = ax2 + y2k+1 (where k ≥ 1) and a ∈ −�κ2, then y ∈ P({F ≥ 0})\�A2 ⊂
P(A)\�A2.
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Case 4. If F = ax2 + by2k (where k ≥ 2) and a ∈ −�κ2, let us find ϕ ∈ P(A)\�A2. We
get

(b2 + 1)2 − b = b4 + b2 +
(
b − 1

2

)2 + 3

4
∈ �κ2. (3.1)

Set a := −∑q
i=1 a

2
i where ai ∈ κ\{0}.

Assume first that k is even. Then

(b2 + 1)2y2k − a21x
2 = ((b2 + 1)2 − b)y2k +

q∑
k=2

a2kx
2 + (ax2 + by2k)

= ((b2 + 1)2 − b)y2k

+
q∑

k=2

a2kx
2 + z2 ∈ P(A) ∩ κ[[x,y]] = P({F ≥ 0}),

(b2 + 1)yk ∈ P(κ[[x,y]]) ⊂ P({F ≥ 0}).
Thus, ϕ := (b2 + 1)yk + a1x ∈ P({F ≥ 0})\�A2 ⊂ P(A)\�A2, because it has order 1.

Assume next that k is odd (and recall that k ≥ 2). Then

(b2 + 1)2y2k+2 − a21x
2y2 = ((b2 + 1)2 − b)y2k+2 +

q∑
k=2

a2kx
2y2 + (ax2 + by2k)y2

= ((b2 + 1)2 − b)y2k+2

+
q∑

k=2

a2kx
2y2 + z2y2 ∈ P(A) ∩ κ[[x,y]] = P({F ≥ 0}),

(b2 + 1)yk+1 ∈ P(κ[[x,y]]) ⊂ P({F ≥ 0}).
Thus, ϕ := (b2 + 1)yk+1 + a1xy ∈ P({F ≥ 0}). Let us check: ϕ /∈ �A2.

Otherwise, there exist h1, . . . , h p, h ∈ κ[[x,y,z]] such that

ϕ = (b2 + 1)yk+1 + a1xy =
p∑

i=1

h2i − (z2 − ax2 − by2k)h.

Comparing initial forms, we find c ∈ �κ2 such that the quadratic form ψ := a1xy+ cz2 −
cax2 is a sum of squares of linear forms in the variables x,y,z and coefficients in κ , so

− a21
2 (a + c)2 − 1 = ψ(a1,− c2

2 − a2
2 − 1

a21
, 0) ∈ �κ2, which is a contradiction because κ is

a (formally) real field. Thus, ϕ ∈ P({F ≥ 0})\�A2 ⊂ P(A)\�A2, as required. ��
Lemma 3.8 (Order 3 restrictions) If ω(F) = 3 and P(A) = �A2, then F is right equivalent
to one of the following series:

(i) x2y or x2y + (−1)kayk where a /∈ −�κ2 and k ≥ 3.
(ii) x3 + axy2 + by3 irreducible.
(iii) x3 + ay4, x3 + xy3 or x3 + y5 where a /∈ �κ2.

First part of the proof of Lemma 3.8 After a linear change of coordinates (Tschirnhaus trick)
we may assume that the initial form of F is of type P := λ(x3 + axy2 + by3) for some
λ ∈ κ\{0}. After the change of coordinates (x,y,z) �→ (λx, λy, λ2z), we may assume
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P := x3 + axy2 + by3. If P is reducible, after a linear change of coordinates that only
involves the variables x,y we can suppose that P is a homogeneous polynomial of one of
the following types:

x3,x2y,y(x2 − ay2)

where a 	= 0. If P is either irreducible or P = x(x2 +ay2)with a 	= 0, then its discriminant
is non-zero and P is 3-determined as we have seen in Example 2.6(iii). Thus, after a change
of coordinates we may assume F = P .

If F = y(x2 − ay2) and a ∈ −�κ2, then y ∈ P({F ≥ 0})\�A2 ⊂ P(A)\�A2. Thus,
F = x2y − ay3 where a /∈ −�κ2.

Assume next P := x2y, but F 	= x2y. Let s ≥ 4 be the degree of the next non-zero
homogeneous form of F and set F := x2y + ays + bxys−1 + x2ϕ where a, b ∈ κ and
ϕ ∈ ms−2

2 . After the change of coordinates (x,y) �→ (x − 1
2by

s−2,y − ϕ) we may assume
F := x2y + ays + ψ where ψ ∈ ms+1. If a 	= 0, after an additional change of coordinates
we can suppose F := x2y + ays because x2y + ays is s-determined (Example 2.6(ii)). If
a = 0, we iterate the previous process until we find  > s such that F is right equivalent to
x2y + a′y for some a′ 	= 0 or we conclude that F is right equivalent to x2y if such an 

does not exist.
If F := x2y+ ay2k+1 and a ∈ �κ2, then y ∈ P({F ≥ 0})\�A2 ⊂ P(A)\�A2. If F :=

x2y−ay2k and a ∈ �κ2, then x2y = z2 +ay2k and y ∈ P({F ≥ 0})\�A2 ⊂ P(A)\�A2.
��

Before finishing the proof of Lemma 3.8 we need an intermediate result.

Lemma 3.9 Let F ∈ κ[[x,y]] be a series with inital form x3. Then

(i) There exist a unit U ∈ κ[[x,y]] with U (0, 0) = 1, a unit W ∈ κ[[y]] with W (0) = 1,
b, c ∈ κ and k,  ≥ 0 such that F is right equivalent to (x3 + bxyk+3 + cy+4W )U 2.

(ii) If c 	= 0 and k ≥  + 1, we may assume b = 0 and W = 1.
(iii) If P(A) = �A2, then either k = 0 or  ≤ 1 and we may assume U = 1.

Proof (i) By the Weierstrass preparation theorem and the Tschirnhaus trick there exist a
Weierstrass polynomial P := x3 + B(y)x +C(y) ∈ κ[[y]][x] and a unitU0 ∈ κ[[x,y]]
such that F = PU0. As the initial form of F is x3, we have in addition U0(0, 0) = 1,
ω(B) ≥ 3 and ω(C) ≥ 4. Let b, c ∈ κ , let k,  ≥ 0 be integers and V ,W0 ∈ κ[[y]] units
such that V (0) = 1, W0(0) = 1 and F = (x3 + b(Vy)k+3x + cW0y+4)U0. After the
change of coordinates Vy �→ ywe assume V = 1, so F = (x3+byk+3x+cWy+4)U 2

for units U ∈ κ[[x,y]] and W ∈ κ[[y]] such that U (0, 0) = 1 and W (0) = 1.
(ii) If c 	= 0 and k ≥  + 1, then W ′ := W + b

cxy
k−−1 is a unit. After the change of

coordinates W ′y �→ y, we get F = (x3 + cy+4)U ′2 for a unit U ′ ∈ κ[[x,y]] with
U ′(0, 0) = 1.

(iii) After the change of coordinates z → Uz we assume F = x3 + bxyk+3 + cy+4W
with the restrictions described in (i) and (ii). We claim: If k ≥ 1 and  ≥ 2, there exists
M ∈ �κ2 such that ϕ = x + M2y2 ∈ P({F ≥ 0})\�A2 ⊂ P(A)\�A2.
It is enough to find M ∈ �κ2 such that: if α ∈ Sper(κ[[x,y]]) satisfies ϕ <α 0, then

F <α 0.
If y ∈ supp(α), then ϕ + supp(α) = x+ supp(α) and F + supp(α) = x3 + supp(α) and

both have the same sign with respect to α.
In order to find the suitable M ∈ �κ2, let us make first some computations valid for each

M ∈ �κ2. If y /∈ supp(α) and ϕ <α 0, then x <α −M2y2, so −x >α M2y2 >α 0. As
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k ≥ 1, we have ((b2 + 1)y4 + byk+3) >α 0. Thus,

−xbyk+3 >α −x(−(b2 + 1))y4) >α −(b2 + 1)M2y6,

so xbyk+3 <α (b2 + 1)M2y6 and x3 <α −M6y6. Consequently, as  ≥ 2,

F = (x3 + bxyk+3 + cy+4W ) <α (−M6 + (b2 + 1)M2 + (c2 + 1))y6 <α 0.

To guarantee the last inequality for each α ∈ Sper(κ[[x,y]]) such that ϕ <α 0, it is enough
to find M ∈ �κ2 such that M6 − (b2 + 1)M2 − (c2 + 1) ∈ �κ2. We choose M :=
2(b2 + 1)(c2 + 1) ∈ �κ2 and observe that

M6 − (b2 + 1)M2 − (c2 + 1)

= (c2 + 1)(16(b2 + 1)3(c2 + 1)4 − 1)(4(b2 + 1)3(c2 + 1) − 1) ∈ �κ2,

as required. ��
We are now ready to finish the proof of Lemma 3.8.

Second part of the proof of Lemma 3.8 If P(A) = �A2, there exist by Lemma 3.9 a unit
W ∈ κ[[y]] with W (0) = 1 and b, c ∈ κ such that F is one among

(i) x3 + bxy3 + cy4W where c 	= 0,
(ii) x3 + bxy3 + cy+5W where b 	= 0 and  ≥ 0,
(iii) x3 + bxy4 + cy5W where c 	= 0.

We now approach these three cases:

(i) If F = x3 + bxy3 + cy4W and c 	= 0, after the change of coordinates

x �→ x + b4

256c3
x2 − b3

24c2
xy + b2

8c
y2,

y �→ y − b

4c
x

andwemayassume F = x3+cy4+ψ whereψ ∈ m5
2.Asx

3+cy4 is byExample 2.6(v) 4-
determined, we can suppose after an additional change of coordinates that F = x3+cy4.
If c ∈ −�κ2, we have x3 = z2 − cy4 ∈ �A2, so x ∈ P({F ≥ 0})\�A2 ⊂ P(A)\�A2.
Thus, F = x3 + cy4 where c /∈ −�κ2.

(ii) If F = x3 + bxy3 + cy+5W and b 	= 0, after the change of coordinates (x,y,z) �→
(b2x, by, b3z) we can suppose b = 1. As x3 +xy3 is by Example 2.6(iv) 5-determined,
we can suppose after an additional change of coordinates that F = x3 + xy3 if  ≥ 1.
Otherwise  = 0, c 	= 0 and F = x3 + xy3 + cy5W . After the change of coordinates

x �→ x − cy2 − 1

3
c3x2 − c2xy − 1

3
c6x3 − 5

3
c5x2y − 2c4xy2 − 5

9
c3y3,

y �→ y + cx − 4

3
c2y2

there exists a series ψ ∈ m6
2 such that F = x3 +xy3 +ψ . As x3 +xy3 is 5-determined,

F is right equivalent to x3 + xy3 and we suppose F = x3 + xy3.
(iii) If F = x3 + bxy4 + cy5W and c 	= 0, after the change of coordinates

x �→ x − 4b5

9375c4
x3 + b4

125c3
x2y − 4b3

75c2
xy2 + 2b2

15c
y3,

y �→ y − b

5c
x,
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we assume F = x3 + cy5 + ψ where ψ ∈ m6
2. As x

3 + cy5 is by Example 2.6(v) 5-
determined, there exists an additional change of coordinates after which F = x3 + cy5.
After the linear change of coordinates (x,y,z) �→ (c2x, cy, c3z) we get F = x3 + y5,
as required. ��

3.2.1 The non-principal case

To finish the proof of Theorem 1.5 we explore the case of a ring A := κ[[x,y,z]]/a of
dimension 2 such that a is not a principal ideal, but A has the property P(A) = �A2. Before
we need the following example.

Example 3.10 Let κ be a (formally) real field and ϕ ∈ κ[[x,y]] such that A := κ[[x,y]]/(ϕ)

has dimension 1 and satisfies P(A) = �A2. Then A is isomorphic to either κ[[x]] or
κ[[x,y]]/(x2 − by2) where b /∈ −�κ2.

First, by Lemma 3.2 ω(ϕ) ≤ 2. If ω(ϕ) = 1, we may assume ϕ = y and A ∼= κ[[x]].
Assume next ω(ϕ) = 2. By Weierstrass preparation theorem we can suppose after a linear
change of coordinates ϕ = x2 + 2a1(y)x + a2(y) ∈ κ[[x,y]] where ω(ai ) ≥ i . We write

ϕ = (x + a1)
2 + a2 − a21

and after the change of coordinates x �→ x − a1 we assume

ϕ = x2 − byu

where b ∈ κ ,  ≥ 2 and u ∈ κ[[y]] is a unit such that u(0) = 1. After the change uy �→ y
we may assume u = 1. By [35, Lem.6.3] the ideal (ϕ) is real radical, so b 	= 0 and if  is
even, then b /∈ −�κ2.

If  ≥ 4, then by (3.1) (b2 + 1)2y4 − by ∈ P(κ[[y]]). By Lemma 3.5 adapted to two
variables ϕ := (b2 + 1)y2 + x ∈ P(A)\�A2 (because ϕ has order 1). Thus,  ≤ 3.

If  = 3, then x2 = (by)y2, so by ∈ P(A)\�A2 (because it has order 1). Consequently,
 = 2 and A is isomorphic to κ[[x,y]]/(x2 − by2) where b /∈ −�κ2, as required. ��
Theorem 3.11 Let a be a non-principal ideal of κ[[x,y,z]] such that A := κ[[x,y,z]]/a
has dimension 2. ThenP(A) = �A2 if and only if A is isomorphic to κ[[x,y,z]]/(zx,zy).

Proof Assume first that A = κ[[x,y,z]]/(zx,zy) and let f ∈ P(A). If f is a unit, then
f = bU 2 where b ∈ κ\{0} andU (0, 0, 0) = 1. Ifm is themaximal ideal of A, then A/m = κ .
As f ∈ P(A), then b ∈ P(κ) = �κ2, so f ∈ �A2. As a consequence, we assume that f
is not a unit. As zx = 0,zy = 0, we have f = f1(x,y) + f2(z) where f1 ∈ κ[[x,y]]
and f2 ∈ κ[[z]] satisfy f1(0, 0) = 0 and f2(0) = 0. Observe that f1 ∈ P(κ[[x,y]])
and f2 ∈ P(κ[[[z]]) because a := (zx,zy) = (z) ∩ (x,y), A/((z)/a) ∼= κ[[x,y]]
and A/((x,y)/a) ∼= κ[[z]]. Thus, there exist ai ∈ κ[[x,y]] and b j ∈ κ[z] such that
f = f1 + f2 = ∑

i a
2
i + ∑

j b
2
j ∈ �A2.

Assume next P(A) = �A2. By Lemma 3.2 we know ω(a) ≤ 2. If ω(a) = 1, we may
assume z ∈ a. But this is impossible because dim(A) = 2 and a is not a principal ideal. Thus,
ω(a) = 2 and by [35, Lem.6.3] a is a real radical ideal. Let a = p1∩· · ·∩pr ∩q1∩· · ·∩qs be
the irredundant primary decomposition of a and assume that ht(pi ) = 1 for each i = 1, . . . , r
and ht(q j ) = 2 for j = 1, . . . , s. Let a1 := p1 ∩ · · · ∩ pr and a2 := q1 ∩ · · · ∩ qs . As each
ideal pi is prime and has height 1, there exist ϕi ∈ κ[[x,y,z]] irreducible such that pi = (ϕi )

for i = 1, . . . , r . It holds a1 = (ϕ) where ϕ := ∏r
i=1 ϕi . We claim: a = (ϕ) · a2.
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The inclusion right to left is clear, so let f ∈ a = a1 ∩ a2. As a1 = (ϕ), there exists
h ∈ κ[[x,y,z]] such that f = ϕh. Let us check: h ∈ a2.

Otherwise, we may assume h /∈ q1. As (
∏r

i=1 ϕi )h = ϕh ∈ a2 ⊂ q1, we can suppose
ϕ1 ∈ q1, so p1 ⊂ q1, which is a contradiction because the primary decomposition of the real
radical ideal a is irredundant. Consequently, h ∈ a2 and f ∈ (ϕ) · a2, so a = (ϕ) · a2.

Thus, 2 = ω(a) = ω(ϕ) + ω(a2), so ω(ϕ) = ω(a2) = 1. We may assume ϕ = z and
there exists ψ ∈ a2 such that ω(ψ) = 1. We claim: The initial form of ψ is not a multiple of
z.

Otherwise, we assume that the initial form of ψ is equal to z. By Weierstrass preparation
theorem we may write ψ = z+ 2g(x,y) for some g ∈ κ[[x,y]] of order ≥ 2. Observe that

z(z + 2g) = (z + g)2 − g2 ∈ a.

As ω(g) ≥ 2, there exists by Lemma 3.1 M ∈ �κ2 such that M2(x2 + y2)2 − g2 ∈
P(κ[[x,y]]). Using the chain of homomorphisms

κ[[x,y]] ↪→ κ[[x,y,z]] → A

one deduces (using that (z + g)2 − g2 ∈ a)

(M(x2 + y2) − g − z)(M(x2 + y2) + g + z) = M2(x2 + y2)2 − (g + z)2

= M2(x2 + y2)2 − g2 ∈ P(A)

and (M(x2 + y2) − g − z) + (M(x2 + y2) + g + z) = 2M(x2 + y2) ∈ P(A). Thus,

M(x2 + y2) − g − z, M(x2 + y2) + g + z ∈ P(A)\�A2

because they have order 1 and ω(a) = 2. As P(A) = �A2, we deduce the initial form of ψ

is not a multiple of z.
Thus, we assume x ∈ a2 and observe that κ[[x,y,z]]/a2 ∼= κ[[y,z]]/a′

2 for some ideal
a′
2 of κ[[y,z]]. As ht(a2) = 2, we deduce ht(a′

2) = 1, so a′
2 is a principal ideal and there

exists φ ∈ κ[[y,z]] such that a′
2 = (φ). Note that a2 = (x, φ) and a = (zx,zφ). Define

b := (zφ) and B := κ[[y,z]]/b. We claim: P(B) = �B2.
Consider the inclusion of rings B := κ[[y,z]]/b ↪→ A/a. If f ∈ P(B), then f ∈ P(A) =

�A2, so there exist a1, . . . , ap, b1, b2 ∈ κ[[x,y,z]] such that
f (y,z) = a21(x,y,z) + · · · + a2p(x,y,z) + zxb1(x,y,z) + zφ(y,z)b2(x,y,z).

Substituting x = 0 in the previous equality we deduce

f (y,z) = a21(0,y,z) + · · · + a2p(0,y,z) + zφ(y,z)b2(0,y,z),

so f ∈ �B2. Thus, P(B) = �B2.
By Example 3.10 we deduce that B is isomorphic to κ[[y,z]]/(z2 − by2) for some

b /∈ −�κ2. This means that φ ∈ κ[[y,z]] has order 1 and its initial form is not a multiple of
z. After a change of coordinates, we may assume φ = y. Consequently, a = (zx,zy), as
required. ��

4 Polynomial density and polynomial reduction

In this section we develop several tools that will be crucial to prove Theorem 1.8. We need to
analyze the good properties concerning ‘polynomial approximation’ of the positive definite
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elements of the rings κ[[x,y,z]]/(z2 − F) where F ∈ κ[[x,y]] and κ is a (formally) real
field.

4.1 Positive definite elements.

Let F ∈ κ[[x,y]] and A := κ[[x,y,z]]/(z2 − F). Denote

P+({F ≥ 0}) :={ f ∈ κ[[x,y]] : f ∈ P({F ≥ 0}), f >α 0

∀α ∈ Sper(κ[[x,y]]), supp(α) 	= m2, F ≥α 0},
P+(A) :={ f + zg ∈ A : f + zg ∈ P(A), f + zg >β 0

∀β ∈ Sper(A), supp(β) 	= mA},
P⊕(A) :={ f + zg ∈ A : f ∈ P+({F ≥ 0}), f 2 − Fg2 ∈ P+(κ[[x,y]])}.

The following result allows us to construct elements of P⊕(A) from elements of P(A)

that are very similar to the original ones (and as close as needed in the m2-adic topology).

Lemma 4.1 (Construction of positive semidefinite elements) We have:

(i) P⊕(A) ⊂ P+(A).

(ii) Let f + zg ∈ P(A) and let fi ∈ κ[[x,y]] be such that r
√

( f + ∑p
i=1 f 2i , g) = m2 and∑p

i=1 f 2i >β 0 for those β ∈ Sper(κ[[x,y]]) satisfying: supp(β) 	= m2, F ≥β 0 and
either f ∈ supp(β) or f 2 − Fg2 ∈ supp(β). Then f + ∑p

i=1 f 2i + zg ∈ P⊕(A).
(iii) Let f +zg ∈ P(A) be such that f (x, 0) 	= 0, f 2(x, 0)−F(x, 0)g2(x, 0) 	= 0 and g 	= 0.

For each M ∈ κ\{0} there exists a finite set S ⊂ N such that f + M2y2n +zg ∈ P⊕(A)

for each n ∈ N\S.
(iv) Let f +zg ∈ P(A) be such that g 	= 0. Fix M ∈ κ\{0} and let hn be either M2(x2+y2)n

or M2(x2n + y2n). There exists a finite set S ⊂ N such that f + hn + zg ∈ P⊕(A) for
each n ∈ N\S.

(v) If f ∈ P({F ≥ 0}), then f + z f = (1 + z) f ∈ P(A).

Proof (i) Assume f ∈ P+({F ≥ 0}) and f 2 − Fg2 ∈ P+(κ[[x,y]]). By Lemma 3.4 we
have

2 f ∈ P+({F ≥ 0}) ⊂ P+(A),

f 2 − Fg2 ∈ P+(κ[[x,y]]) ⊂ P+(A).

This means ( f +zg)+ ( f −zg) = 2 f ∈ P+(A) and ( f +zg)( f −zg) = f 2 − Fg2 ∈
P+(A), so both f + zg, f − zg ∈ P+(A).

(ii) As f ∈ P({F ≥ 0}) and
∑p

i=1 f 2i >β 0 for those β ∈ Sper(κ[[x,y]]) satisfying
supp(β) 	= m2, f ∈ supp(β) and F ≥β 0, we deduce f + ∑p

i=1 f 2i ∈ P+({F ≥ 0}).
We claim: h := ( f + ∑p

i=1 f 2i )2 − Fg2 ∈ P+(κ[[x,y]]).
Let β ∈ Sper(κ[[x,y]]) be such that supp(β) 	= m2. We distinguish two cases:

Case 1. If F ≥β 0, then f ≥β 0. As f 2 − Fg2 ∈ P(κ[[x,y]]), we obtain f 2 − Fg2 ≥β 0.
Consequently,

(
f +

p∑
i=1

f 2i

)2 − Fg2 = ( f 2 − Fg2) + 2 f
( p∑

i=1

f 2i

)
+

( p∑
i=1

f 2i

)2 ≥β 0.

If ( f + ∑p
i=1 f 2i )2 − Fg2 ∈ supp(β), then f 2 − Fg2 ∈ supp(β) and

∑p
i=1 f 2i ∈ supp(β),

which contradicts the hypothesis. Thus, ( f + ∑p
i=1 f 2i )2 − Fg2 >β 0.
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Case 2. If F <β 0, then ( f +∑p
i=1 f 2i )2−Fg2 ≥β 0 and ( f +∑p

i=1 f 2i

)2−Fg2 ∈ supp(β)

if and only if f + ∑p
i=1 f 2i , g ∈ supp(β). As supp(β) is a real prime ideal,

m2 = r

√√√√(
f +

p∑
i=1

f 2i , g
)

⊂ supp(β) 	= m2,

which is a contradiction. Thus, ( f + ∑p
i=1 f 2i )2 − Fg2 >β 0.

Consequently, ( f +∑p
i=1 f 2i )2−Fg2 ∈ P+(κ[[x,y]]) and f +∑p

i=1 f 2i +zg ∈ P⊕(A).
(iii) By (ii) it is enough to prove that:

(1) There exists S ⊂ N finite such that r
√

( f + M2y2n, g) = m2 for each n ∈ N\S.
(2) y2n >β 0 for those β ∈ Sper(κ[[x,y]]) satisfying: supp(β) 	= m2, F ≥β 0 and either

f ∈ supp(β) or f 2 − Fg2 ∈ supp(β).

As g 	= 0, if a := r
√

( f + M2y2n, g) � m2, the associated real prime ideals pi of a
are prime ideals of height 1. As f (x, 0) 	= 0, then pi 	= (y). As p1 is a real prime ideal,
there exists a prime cone β ∈ Sper(κ[[x,y]]) such that supp(β) = p1. By [1, Prop.II.2.4]
there exists α ∈ Sper(κ) such that β → α. Let R(α) be the real closure of (κ,≤α) and
κ := R(α)[√−1] the algebraic closure of κ . By Lemma 2.12 there exists a homomorphism
φ : κ[[x,y]] → R(α)[[y]] such that φ(y) = yq for some q ≥ 1 and h ≥β 0 if and only
if φ(h) ≥ 0 (for x > 0). As a ⊂ supp(β), we have φ( f + M2y2n) = 0 and φ(g) = 0.
Define ζ := φ(y) ∈ R(α)[[y]]. Observe that φ( f + M2y2n) = ( f + M2y2n)(ζ,yq) = 0
and φ(g) = g(ζ,yq) = 0, that is, ζ(y1/q) ∈ κ((y∗)) is a common root of f + M2y2n

and g in κ((y∗)). As g 	= 0, the series g has finitely many roots in κ((x∗)) and we denote
S := {ω( f (η,y))/2 : η ∈ κ((y∗)), g(η,y) = 0}.

If n ∈ N\S, the series f + M2y2n and g have no common root in κ((y∗)), so a = m2

(that is, (1) holds).
Let β ∈ Sper(κ[[x,y]]) be a prime cone such that supp(β) 	= m2, F ≥β 0 and either

f ∈ supp(β) or f 2 − Fg2 ∈ supp(β). If y2n ∈ supp(β), then y ∈ supp(β) 	= m2, so
supp(β) = (y). As f (x, 0) 	= 0 and f 2(x, 0) − F(x, 0)g2(x, 0) 	= 0, it holds f /∈ supp(β)

and f 2 − Fg2 /∈ supp(β), which is a contradiction. Consequently, y2n >β 0 (that is, (2)
holds).

(iv) As hn >β 0 for those β ∈ Sper(κ[[x,y]]) with supp(β) 	= m2, by (ii) it is enough to
prove:

(1) There exists S ⊂ N finite such that r
√

( f + hn, g) = m2 for each n ∈ N\S.
The proof of (1) is analogous to the one of (iii.1) and we leave the details to the reader.
(v) If f ∈ P({F ≥ 0}), then f + z f ∈ P(A) because (1 + z) is a positive unit of A. ��

4.2 Polynomial density

As an application of Lemma 2.13 we prove the following result that concerns ‘polynomial
approximation’ of certain distinguished elements of P⊕(A).

Lemma 4.2 (Local polynomial density) Suppose that P({F ≥ 0}) 	= ∅. We have:

(i) Let f + zg ∈ A be such that f (x, 0) 	= 0, f 2(x, 0) − F(x, 0)g2(x, 0) 	= 0 and
g 	= 0. Assume f ∈ P({F ≥ 0}) and let n ≥ 1 be such that ( f + M2y2n)2 − Fg2 ∈
P+(κ[[x,y]]). There exists r ≥ 1 such that if f1, g1 ∈ κ[[x,y]] satisfy f − f1, g− g1 ∈
mr

2, then f1 + M2y2n + zg1 ∈ P⊕(A).
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(ii) Let f + zg ∈ A be such that g 	= 0. Assume f ∈ P({F ≥ 0}) and let n ≥ 1 be
such that ( f + M2(x2 + y2)n)2 − Fg2 ∈ P+(κ[[x,y]]). There exists r ≥ 1 such that if
f1, g1 ∈ κ[[x,y]] satisfy f − f1, g−g1 ∈ mr

2, then f1+M2(x2+y2)n +zg1 ∈ P⊕(A).

Proof We prove both statements simultaneously. Let β ∈ Sper(κ[[x,y]]) be such that F ≥β

0. By [1, Prop.II.2.4] there exists α ∈ Sper(κ) such that β → α. Let R(α) be the real closure
of (κ,≤α). If supp(β) = m2, then α = β and for each r ≥ 1 we have

f + M2y2n + supp(β) = f1 + M2y2n + supp(β),

( f + M2y2n)2 − Fg2 + supp(β) = ( f1 + M2y2n)2 − Fg2 + supp(β),

f + M2(x2 + y2)n + supp(β) = f1 + M2y2n + supp(β),

( f + M2(x2 + y2)n)2 − Fg2 + supp(β) = ( f1 + M2(x2 + y2)n)2 − Fg2 + supp(β)

if f1, g1 ∈ κ[[x,y]] satisfy f − f1, g − g1 ∈ mr
2.

Assume supp(β) 	= m2. If supp(β) = 0, then by [1, Prop.VII.5.1] there exists β1 ∈
Sper(κ[[x,y]]) such that β → β1 → α and supp(β1) is a real prime ideal of height 1, so we
may assume ht(supp(β)) = 1. Observe that if r ≥ 1 and f − f1, g − g1 ∈ mr

2, then

( f + M2y2n)2 − Fg2 − (( f1 + M2y2n)2 − Fg21)

= ( f − f1)( f + f1) + 2M2y2n( f − f1) − F(g − g1)(g + g1) ∈ mr
2.

( f + M2(x2 + y2)n)2 − Fg2 − (( f1 + M2(x2 + y2)n)2 − Fg21)

= ( f − f1)( f + f1) + 2M2(x2 + y2)n( f − f1) − F(g − g1)(g + g1) ∈ mr
2.

By Lemmas 2.13 and 2.14 we find r ≥ 1 such that if f − f1, g−g1 ∈ mr
2, then the statements

hold, as required. ��
In the proof of Theorem 5.4 (which corresponds to a part of Theorem 1.8) we will make

use of quadratic transformations. To take advantage of them we need a global ‘polynomial
density’ result (Lemma 4.3) and a ‘polynomial reduction’ result (Corollary 4.4).

Lemma 4.3 (Global polynomial density) Let F ∈ κ[x,y] be such that F(0, 0) = 0, let
m := (x,y,z)κ[x,y,z] and B := κ[x,y,z]/(z2 − F). Let B̂ := κ[[x,y,z]]/(z2 − F)

be its m-adic completion and f + zg ∈ P(B̂). For each n ≥ 1 there exist polynomials
fn, gn ∈ κ[x,y] such that fn + zgn ∈ P(B) and ω( f − fn), ω(g − gn) ≥ n.

Proof By Lemmas 4.1 and 4.2 there exist polynomials f ′
n, g

′
n ∈ κ[x,y] such that f ′

n +zg′
n ∈

P⊕(B̂) and ω( f − f ′
n), ω(g−g′

n) ≥ n. Let us construct from f ′
n, g

′
n the desired polynomials

fn, gn ∈ κ[x,y] in the statement. Define U := {β ∈ Sper(B) : f ′
n + zg′

n <β 0}. If U = ∅,
we choose fn := f ′

n and gn := g′
n . Assume U 	= ∅ and pick β ∈ U. We claim: There exists

εβ ∈ κ\{0} such that ε4β <β x2 + y2 + z2.

Suppose that x2 + y2 + z2 <β ε4 for each ε ∈ κ\{0}. Then x2,y2,z2 <β ε4 for each
ε ∈ κ\{0}. Consider the absolute value associated to β:

| . |β : B → B, a �→
{
a if a ≥β 0,

−a if a <β 0.

We have |x|β <β ε2, |y|β <β ε2 and |z|β <β ε2 for each ε ∈ κ\{0}. Thus, if P ∈
κ[[x,y,z]] and P(0, 0, 0) 	= 0, then |P − P(0, 0, 0)|β <β |P(0, 0, 0)|β , so P ≥β 0 if and
only if P(0, 0, 0) >β 0. Let P1, P2 ≥β 0 be such that P1 + P2 ∈ m. If P1(0, 0, 0) 	= 0,
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then P2(0, 0, 0) 	= 0 and P1(0, 0, 0) = −P2(0, 0, 0). As Pi ≥β 0 and Pi (0, 0, 0) 	= 0, we
have Pi (0, 0, 0) >β 0, which is a contradiction because P1(0, 0, 0) = −P2(0, 0, 0). Thus,
Pi (0, 0, 0) = 0 and Pi ∈ m for i = 1, 2. By [3, Prop.4.3.8] there exists a specialization
β → α such that supp(α) = m. By [1, Thm.VII.3.2] there exists a specialization β̂ → α̂ of
B̂ lying over β → α, that is, α̂ ∩ B = α and β̂ ∩ B = β. As f ′

n + zg′
n ∈ P⊕(B̂), we deduce

f ′
n + zg′

n >β 0, which is a contradiction. Consequently, the claim holds.

As ε4β <β x2 + y2 + z2, we obtain 1 <β
x2+y2+z2

ε4β
. If xνyμzρ is a monomial and

ν + μ + ρ ≤ d ,

x2νy2μz2ρ ≤β (x2 + y2 + z2)ν+μ+ρ <β

(x2 + y2 + z2)2d

ε
4(2d−ν−μ−ρ)
β

� |xνyμzρ |β <β

(x2 + y2 + z2)d

ε
2(2d−ν−μ−ρ)
β

.

In addition, |a|β <β a2 + 1 for each a ∈ κ . Thus, if P ∈ κ[x,y, z] is a polynomial of
degree ≤ d , there exists Nβ ∈ �κ2 such that |P|β <β N 2

β(x2 + y2 + z2)d . In particular,

for P := f ′
n + zg′

n we find Mβ ∈ �κ2 such that | f ′
n + zg′

n |β ≤ M2
β(x2 + y2 + z2)d where

d := max{deg( f ′
n + zg′

n), n/2}. We deduce

f ′
n + zg′

n + M2
β(x2 + y2 + z2)d >β 0

for each β ∈ U. Define
Vβ := {γ ∈ Sper(B) : f ′

n + zg′
n + M2

β(x2 + y2 + z2)d >γ 0},
which is an open subset of Sper(B) that contains β. As U is by [3, Cor.7.1.13] compact, there
exist β1, . . . , βs ∈ U such that U ⊂ ⋃s

i=1 Vβi . Define

fn := f ′
n +

s∑
i=1

M2
βi

(x2 + y2 + F2)d ,

gn := g′
n .

As z2 − F = 0 in B, we deduce fn + zgn ∈ P(B), ω( f − fn) ≥ min{2d, n} = n and
ω(g − gn) = ω(g − g′

n) = n, as required. ��

4.2.1 Strong Artin’s approximation and bounded Pythagoras numbers.

To prove the property P(A) = �A2 for the rings A = κ[[x,y,z]]/(z2 − F) in the list
of Theorem 1.8 we need also that the Pythagoras numbers of the rings A are finite. This
is due to the use of Strong Artin’s approximation we make: To represent f + zg ∈ P(A)

as a sum of squares in A we find for each n ≥ 1 elements fn + zgn ∈ �A2 such that
ω( f − fn), ω(g− gn) ≥ n. Thus, there exist ani , bni , qn ∈ κ[[x,y]] for i = 1, . . . , pn such
that

fn + zgn =
pn∑
i=1

(ani + zbni )
2 + (z2 − F)qn .

Consequently, the polynomial equation

f + zg = (X1 + zY1)
2 + · · · + (Xpn + zYpn )

2 + (z2 − F)Z
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has a solution mod mn
2 in κ[[x,y]] for each n ≥ 1. To apply Strong Artin’s approximation

we need that the sequence of positive integers {pn}n≥1 is bounded by some positive integer
p < +∞. Indeed, this fact implies that the polynomial equation

f + zg = (X1 + zY1)
2 + · · · + (Xp + zYp)

2 + (z2 − F)Z

has a solution mod mn
2 in κ[[x,y]] for each n ≥ 1. Now, by Strong Artin’s approximation

there exist ai , bi , q ∈ κ[[x,y]] such that
f + zg = (a1 + zb1)

2 + · · · + (ap + zbp)
2 + (z2 − F)q,

so f + zg ∈ �p A2 ⊂ �A2.
To guarantee that the sequence of positive integers {pm}m≥1 associated to each f +zg ∈

P(A) is bounded, it seems natural to ask that the Pythagoras number p(A) of the ring A is
bounded. By Theorem 1.7 and Eq. (1.1) we have p(A) ≤ 4τ(κ) and thefore the hypothesis
τ(κ) < +∞ appears in the statements of Theorem 1.8 and Corollary 1.9.

We are ready to present the polynomial reduction.

Corollary 4.4 (Polynomial reduction) Let F ∈ κ[x,y] be such that F(0, 0) = 0, let m :=
(x,y,z)κ[x,y,z] and B := κ[x,y,z]/(z2 − F). Let B̂ := κ[[x,y,z]]/(z2 − F) be its
m-adic completion and i : B ↪→ B̂ the canonical map. If there exists an integer p ≥ 1 such
that i(P(B)) ⊂ �p B̂2, then P(B̂) = �p B̂2.

Proof Let f + zg ∈ P(B̂) and fix n ≥ 1. By Lemma 4.3 there exist polynomials fn, gn ∈
κ[x,y] such that fn+zgn ∈ P(B) andω( f − fn), ω(g−gn) ≥ n. By hypothesisi(P(B)) ⊂
�p B̂2 for some p ≥ 1. There exist ani , bni , qn ∈ κ[[x,y]] such that

fn + zgn =
p∑

i=1

(ani + zbni )
2 + (z2 − F)qn .

Consequently,

f + zg ≡
p∑

i=1

(ani + zbni )
2 + (z2 − F)qn mod mn

2 .

Thus, the polynomial equation

f + zg =
p∑

i=1

(Xi + zYi )
2 + (z2 − F)Z

has a solution mod mn
2 for each n ≥ 1. By Strong Artin’s approximation we conclude

f + zg ∈ �p B̂2, as required. ��

5 Proof of Theorem 1.8

In this section we prove Theorem 1.8. We may assume: A = κ[[x,y,z]]/a is a formal ring
and by Theorem 3.11 that a is a principal ideal generated by a series of the type z2−F where
F ∈ κ[[x,y]]. The strategy to prove [15, Thm.1.3] consists of startingwith two special cases:
the rings R{x,y} and R{x,y,z}/(z2 − x3 − y5). Both rings have the following common
property: They are factorial rings and their complexifications C{x,y} and C{x,y,z}/(z2 −
x3 − y5) are also factorial rings [9,41]. Using these two facts and that τ(R((t))) = 1,

123



Representation of positive semidefinite elements… Page 31 of 65    59 

one shows that every positive semidefinite element of these rings is a sum of two squares of
elements of such rings, see [8, Thm.2.5 (3)] and [34]. In our setting it would be natural to
choose as special cases: κ[[x,y]] and κ[[x,y,z]]/(z2−x3−y5)where κ is a (formally) real
field with τ(κ) < +∞. Both rings are factorial and if we tensor them by−⊗κ κ[√−1], these
new rings are again factorial [9,41]. The problem is that the property τ(κ((t))) = 1 does
not hold anymore! (if τ(κ) > 1) and we cannot imitate the same procedure. This means that
different ideas were needed (Theorem 5.5) and the problem stayed apart from any significant
progress for quite long. The case κ[[x,y]] where κ is any field was solved by Scheiderer in
[36, Thm.4.1] (in fact, he provedP(A) = �A2 for all 2-dimensional regular local rings). We
include for the sake of completeness here a slightly different proof of [36, Thm.4.1] when κ

is a (formally) real field.

Theorem 5.1 Letκ bea (formally) field. ThenP(κ[[x]][y]) = �κ[[x]][y]2 andP(κ[[x,y]]) =
�κ[[x,y]]2.
Proof Let f belong to either P(κ[[x]][y]) or P(κ[[x,y]]). By Lemma 4.3 and Corollary 4.4
we may assume

f ∈ P(κ[x,y]) ⊂ P(κ((x))[y]) ⊂ P(κ((x))(y)) = �κ((x))(y)2.

By [5, Thm.1] f ∈ �κ((x))[y]2. Thus, there exist a1, . . . , ap ∈ κ((x))[y] such that f =∑p
k=1 a

2
k . Let  ≥ 1 be such that bk = xak ∈ κ[[x]][y] for each k = 1, . . . , p. We have

x2 f =
p∑

k=1

b2k (x,y).

Settingx = 0,we deduce 0 = ∑p
k=1 bk(0,y)2.As κ is a (formally) real field, each bk(0,y) =

0, so x divides each bk . Thus, there exists b′
k ∈ κ[[x]][y] such that bk = xb′

k . Hence,

x2−2 f =
p∑

k=1

b′2
k (x,y).

Proceeding inductively we conclude f ∈ �κ[[x]][y]2 ⊂ �κ[[x,y]]2, as required. ��

5.1 Order two cases

Let κ be a (formally) real field such that τ(κ) < +∞. To prove the property P(A) = �A2

for those rings A = κ[[x,y,z]]/(z2 − F) where F ∈ κ[[x,y]] is one of the series in the
following list:

(i) ax2 + by2k where a ∈ �κ2, a, b 	= 0 and k ≥ 1,
(ii) ax2 + y2k+1 where a ∈ �κ2, a 	= 0 and k ≥ 1,
(iii) ax2 where a ∈ �κ2 and a 	= 0,

we develop a strategy similar to the one presented in [15] to prove its main result. Namely,
we relate the problem of proving P(A) = �A2 for each ring A above to the already known
property (Theorem 5.1) for the ring κ[[x,y]] via suitable blow-ups. During the process
certain ‘denominators’ appear that we have to ‘erase’. To that end we develop the following
procedure.

Lemma 5.2 (Erasure of denominators) Let κ be a (formally) real field, k ≥ 1 a positive
integer and h, g ∈ κ[[x,y]] relatively prime series such that h generates a real radical ideal.
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Suppose that there exist polynomials f , a1, . . . , ap, b ∈ κ[[x,y]][z] of degree≤ k−1 (with
respect to z) and an integer r ≥ 0 such that

h2r f = a21 + · · · + a2p − b(zk − hg). (5.1)

Then there exist polynomials a′
1, . . . , a

′
p, b

′ ∈ κ[[x,y]][z] of degree ≤ k − 1 (with respect

to z) such that f = a′2
1 + · · · + a′2

p − b′(zk − hg).

Proof Set ai := ∑k−1
j=0 ai jz

j , b := ∑k−1
j=0 b jz j and f := ∑k−1

j=0 f jz j where ai j , b j , f j ∈
κ[[x,y]]. Comparing coefficients with respect to z in (5.1) we find the following collection
of equalities

(0) h2r f0 − hgb0 = ∑p
i=1 a

2
i0,

(1) h2r f1 − hgb1 = 2
∑p

i=1 ai0ai1,
...

() h2r f − hgb = ∑p
i=1

( ∑
j+m= ai j aim

)
,

...

(k − 1) h2r fk−1 − hgbk−1 = ∑p
i=1

( ∑
j+m=k−1 ai j aim

)
,

(k) b0 = ∑p
i=1

( ∑
j+m=k ai j aim

)
,

...

(k + ) b = ∑p
i=1

( ∑
j+m=k+ ai j aim

)
,

...

(2k − 2) bk−2 = ∑p
i=1 a

2
ik−1,

(2k − 1) bk−1 = 0.

We claim: h divides ai and b for each  = 0, . . . , k − 1 and i = 1, . . . , p.
We use induction hypothesis to prove the claim. For  = 0 we have h2r f0 − hgb0 =∑p
i=1 a

2
i0. As h generates a real radical ideal and h, g are relatively prime, we deduce that

h divides each ai0 and b0. Let  < k and assume h divides ai j , b j for i = 1, . . . , p and
1 ≤ j ≤  − 1. If 2 ≤ k − 1,

h2r f2 − hgb2 =
p∑

i=1

( ∑
j+m=2, j 	=m

ai j aim
)

+
p∑

i=1

a2i.

As h divides ai0, . . . , ai,−1, we deduce h divides ai for each i . If 2 > k − 1, then:

b2−k =
p∑

i=1

( ∑
j+m=2, j 	=m

ai j aim
)

+
p∑

i=1

a2i.

As  ≤ k − 1, we have 2 − k ≤  − 1 and by induction hypothesis h divides b2−k . By
induction hypothesis also h divides ai0, . . . , ai,−1, so h divides ai for each i . Using equation
() we conclude that h divides b, as claimed.

Nowwe use equations (k), . . ., (2k−2) to prove that in fact h2 divides b for 0 ≤  ≤ k−2.
Thus, we can divide Eq. (5.1) by h2 (use here that κ[[x,y]][z] is an integral domain).
Repeating the previous process r − 1 times one proves the required statement. ��

Before proving Theorem 1.8 for the order two cases we need an additional result.
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Lemma 5.3 Let κ be a (formally) real field, let a ∈ �κ2\{0} and ϕ,ψ ∈ κ[[x,y,z]] be
such that ψ is a sum of squares in B := κ[√a][[x,y,z]]/(ϕ). Then ψ is a sum of squares
in A := κ[[x,y,z]]/(ϕ).

Proof If
√
a ∈ κ , the result is trivial, so we assume

√
a /∈ κ . Consider the κ-involution

σ : κ[√a] → κ[√a], b + √
ac �→ b − √

ac

and the induced κ-involution

(·)σ : κ[√a][[x,y,z]]/(ϕ) → κ[√a][[x,y,z]]/(ϕ),

f :=
∑
ν

aνx
ν1yν2zν3 �→ f σ :=

∑
ν

σ (aν)x
ν1yν2zν3

where ν := (ν1, ν2, ν3). As ψ ∈ �B2, there exist ai , bi , q1, q2 ∈ κ[[x,y,z]] such that

ψ =
p∑

i=1

(ai + √
abi )

2 + (q1 + √
aq2)ϕ

=
p∑

i=1

a2i + a
( p∑

i=1

b2i

)
+ q1ϕ + √

a
(
q2ϕ + 2

p∑
i=1

aibi
)
.

We apply the κ-involution (.)σ to the previous equality and obtain

ψ =
p∑

i=1

(ai − √
abi )

2 + (q1 − √
aq2)ϕ

=
p∑

i=1

a2i + a
( p∑

i=1

b2i

)
+ q1ϕ − √

a
(
q2ϕ + 2

p∑
i=1

aibi
)
.

Adding both equalities and dividing by 2 we achieve

ψ =
p∑

i=1

a2i + a
( p∑

i=1

b2i

)
+ q1ϕ.

As a ∈ �κ2, we deduce ψ ∈ P(A), as required. ��
We are now ready to prove Theorem 1.8 for the rings A = κ[[x,y,z]]/(z2 − F) where

F ∈ κ[[x,y]] is one of the series of order two quoted in its statement.

Theorem 5.4 (Order two) Let κ be a (formally) real field such that τ(κ) < +∞. Set A :=
κ[[x,y,z]]/(z2 − F) where F ∈ κ[[x,y]] is one of the following series:

(i) ax2 + by2k where a ∈ �κ2, b 	= 0 and k ≥ 1,
(ii) ax2 + y2k+1 where a ∈ �κ2 and k ≥ 1,
(iii) ax2 where a ∈ �κ2.

Then P(A) = �A2 and p(A) ≤ 4τ(κ).

Proof We denote B := κ[x,y,z]/(z2 − F) in such a way that B̂ = A. As τ(κ) < +∞, it
holds P(κ[[x,y]]) = �p0κ[[x,y]]2 and P(κ[[x]][y]) = �p0κ[[x]][y]2 for p0 := 2τ(κ).
Let i : B → B̂ = A. Along the proof it is enough to show that i(P(B)) ⊂ �p A2 for
p := 4τ(κ).
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(i) and (ii) Assume first a = 1 and F := x2 + byk . After the linear change of coordinates
(x,y,z) �→ (z−x

2 ,y, z+x
2 ) we assume that our equation is byk − xz. Consider the rational

substitution (y,z) �→ ( by
k

z ,y,z). Take P ∈ P(B) (of degree ≤ k−1 with respect to y) and
write

P
(yk

z
,y,z

)
= Q

zr

where r ≥ 1 and Q ∈ κ[y,z]. By Lemma 2.8 the product zr Q ∈ P(κ[y,z]) ⊂
P(κ[[y,z]]) = �pκ[[x,y]]2. Thus, there exist a1, . . . , ap ∈ κ[[y,z]] such that

z2r P
(yk

z
,y,z

)
= zr Q = a21 + · · · + a2p.

We rewrite the previous equation as

z2r P(x,y,z) = a21(y,z) + · · · + a2p(y,z) + (byk − xz)q(x,y,z),

where q ∈ κ[[x,y,z]]. By Weierstrass division theorem there exist a′
1, . . . , a

′
p, q

′ ∈
κ[[x,z]][y] of degree ≤ k − 1 with respect to y such that

z2r P(x,y,z) = a′2
1 + · · · + a′2

p + (byk − xz)q ′.

By Lemma 5.2 P is a sum of p squares in A.
In the following we approach the case when a ∈ �κ2\{0}. Consider the inclusion

i : A := κ[[x,y,z]]/(z2 − F) ↪→ A′ := κ[√a][[x,y,z]]/(z2 − F)

and the isomorphism of rings

� : A′ → B ′ := κ[√a][[x,y,z]]/(z2 − F ′), h �→ h
( x√

a
,y,z

)
,

where

F ′ =
{
x2 + by2k if F = ax2 + by2k,

x2 + y2k+1 if F = ax2 + y2k+1.

Let f , g ∈ κ[[x,y]] be such that f + zg ∈ P(A). Then �( f + zg) ∈ P(B ′) = �B ′2 (as
we have proved above, when we assumed a = 1 and F = x2 +byk). Thus, f +zg ∈ �A′2,
so by Lemma 5.3 f + zg ∈ �A2. In addition, by [25, Prop.2.7] p(A) ≤ 4τ(κ).

(iii) We use a ‘limit argument’. Let f + zg ∈ P(A) and n ≥ 1. As a ∈ �κ2\{0},
f ∈ P({ax2 ≥ 0}) = P(κ[[x,y]]),
f 2 − ax2g2 ∈ P(κ[[x,y]]).

If k ≥ 2n + 1, we have 2k − 4n ≥ 2 and

( f + x2n + y2n)2 − (ax2 + y2k)g2 = ( f 2 − ax2g2) + 2 f (x2n + y2n)

+x4n + 2x2ny2n + y4n(

√
1 − y2k−4ng2)2 ∈ P(κ[[x,y]]).

As f +x2n +y2n ∈ P(κ[[x,y]]) = P({ax2 +y2k ≥ 0}), we deduce f +x2n +y2n +zg ∈
P(Ak)where Ak := κ[[x,y,z]]/(z2−ax2−y2k). AsP(Ak) = �p Ak

2 where p := 4τ(κ),
there exist ain, bin, qn ∈ κ[[x,y]] such that

f + (x2n + y2n) + zg = (a1n + zb1n)
2 + · · · + (apn + zbpn)

2 − (z2 − ax2 − y2k)qn .
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Consequently,

f + zg ≡ (a1n + zb1n)
2 + · · · + (apn + zbpn)

2 − (z2 − ax2)qn mod m2n
2 .

By Strong Artin’s approximation there exist ai , bi , q ∈ κ[[x,y]] such that

f + zg = (a1 + zb1)
2 + · · · + (ap + zbp)

2 − (z2 − ax2)q ∈ �A2,

as required. ��

5.2 Order three cases

Let κ be a (formally) real field such that τ(κ) < +∞. To prove the property P(A) = �A2

for those rings A = κ[[x,y,z]]/(z2 − F) where F ∈ κ[[x,y]] is one of the series in the
following list:

(iv) x2y + (−1)kayk where a /∈ −�κ2 and k ≥ 3,
(v) x2y,
(vi) x3 + axy2 + by3 irreducible,
(vii) x3 + ay4 where a /∈ −�κ2,
(viii) x3 + xy3,
(ix) x3 + y5,

we develop a substantially different strategy to the one presented in [15]. As commented
above if τ(κ) > 1, the classical procedure to face the qualitative problem for Brieskorn’s
singularity A := κ[[x,y,z]]/(z2 − x3 − y5) does not work and new ideas are needed. In
fact, we are going to provide a general tool (Theorem 5.5) that allows to solve all the cases
of the list in Theorem 1.8 when F ∈ κ[[x,y]] has order three.

The formulation of this tool is quite technical (because it also points out the obstructions to
obtain the property P(A) = �A2 for the rings A satisfying the hypotheses in Theorem 5.5).
We suggest the reader the following initial interpretation of Theorem 5.5 for a better under-
standing: If F ∈ κ[[y]][x] is a Weierstrass polynomial of order and degree 3 that satisfies
some mild conditions and all the positive elements of f +zg ∈ A := κ[[x,y,z]]/(z2 − F)

such that f (x, 0) 	= 0 satisfies ω( f (x, 0)) ≥ 2, then P(A) = �p A2 for p := 4τ(κ). In
addition, the rings A (satisfying the hypotheses of Theorem 5.5) such that P(A) 	= �A2

arise when there exist positive semidefinite elements f +zg ∈ A such that f (x, 0) 	= 0 and
ω( f (x, 0)) = 1.

Theorem 5.5 (Elephant’s Theorem) Let F ∈ κ[[x,y]] be a series of order 3 with
ω(F(x, 0)) = 3 and F(0,y)) = byρv where v ∈ κ[[y]] is a unit such that v(0) = 1,
b ∈ κ\{0} and ρ ≥ 3 is either odd or if it is even, we have in addition b /∈ −�κ2. Let
A := κ[[x,y,z]]/(z2 − F) and f + zg ∈ P(A)\{0}. We obtain:
(i) There exist s ≥ 1 and f1 + zg1 ∈ P(A) such that f1(x, 0) 	= 0 and f + zg =

y2s( f1 + zg1). In addition, if ω( f1(x, 0)) = q ≥ 2, then ω(g1) ≥ 1.
(ii) If ω( f (x, 0)) = q ≥ 2 and F is ρ-quasidetermined, then f + zg ∈ �p A2 where

p := 4τ(κ).

Before proving this theorem, we develop some preliminary results.

Lemma 5.6 Let A be a ring of characteristic 0 and P := a0 + a1z + a2z2 ∈ A[z]. Then
P ∈ P(A[z]) if and only if a0, a2, 4a0a2 − a21 ∈ P(A).
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Proof Suppose first that P ∈ P(A[z]). Let α ∈ Sper(A) and let us check: a0 ≥α 0, a2 ≥α 0
and 4a0a2 − a21 ≥α 0.

Set (K (α) := qf(A/ supp(α)),<α) and denote θi := ai + supp(α) for i = 0, 1, 2.
Consider the homomorphism φ : A[z] → K (α), Q(z) �→ Q(0) + supp(α). We have
φ(P) = θ0 ≥α 0, so a0 ≥α 0. We claim: If θ2 = 0, then θ1 = 0. If such is the case, then
4θ0θ2 − θ21 = 0.

Otherwise, consider the homomorphism

γ : A[z] → K (α), Q �→ Q
(−θ0 − 1

θ1

)

and observe that −1 = γ (P) ≥α 0, which is a contradiction.
Assume in the following θ2 	= 0. Consider the homomorphism

ϕ : A[z] → K (α), Q(z) �→ Q
(θ21

θ22
+ θ20

θ22
+ 1

)
.

We have

ϕ(P) =θ2

((θ21

θ22
+ θ20

θ22
+ 1

)2 + θ1

θ2

(θ21

θ22
+ θ20

θ22
+ 1

)
+ θ0

θ2

)

=θ2

(θ21

θ22

(θ1

θ2
+ 1

2

)2 +
(θ20

θ22
+ θ1

2θ2

)2 +
(θ1

θ2
+ 1

2

)2 +
(θ0

θ2
+ 1

2

)2

+ 2θ21 θ20

θ42
+ θ21

2θ22
+ θ20

θ22
+ 1

2

)
.

As ϕ(P) ≥α 0, we deduce a2 ≥α 0.
We prove next that 4a0a2 − a21 ≥α 0. Write

θ2z
2 + θ1z + θ0 = θ2

((
z + θ1

2θ2

)2 + θ0

θ2
− θ21

4θ22

)
.

Consider the homomorphism

ψ : A[z] → K (α), Q �→ Q
(

− θ1

2θ2

)

and, asψ(P) = θ2((− θ1
2θ2

+ θ1
2θ2

)2+ θ0
θ2

− θ21
4θ22

) = 4θ0θ2−θ21
4θ2

≥α 0, we conclude 4a0a2−a21 ≥α

0.
Assume in the following that a0, a2, a0a2 − a21 ∈ P(A) and let us check: P ∈ P(A[z]).
Let β ∈ Sper(A[z]) and consider the natural inclusion j :A ↪→ A[z]. Then α :=

j−1(β) ∈ Sper(A), and we consider the ordered field (K (α) := qf(A/ supp(α)),<α).
Denote ηi := ai + supp(α) for i = 0, 1, 2. We distinguish two cases:
Case 1. η2 = 0. As η0η2 − η21 ≥α 0, we deduce η1 = 0. Thus, P + supp(β) = η0 ≥α 0.
Consequently, P ≥β 0.
Case 2. η2 	= 0. As η2 ≥α 0, to prove that P ≥β 0 it is enough to check η2P ≥β 0. We
have

η2P + supp(β) = η2(η2z
2 + η1z + η0) + supp(β) =

(
η2z + 1

2
η1

)2 + 1

4
(4η0η2 − η21) ≥β 0.

Thus, P ≥β 0.
We conclude P ∈ P(A[z]), as required. ��
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The previous result has its counterpart for sums of squares, which we include for the sake
of completeness.

Lemma 5.7 Let A bean integral domainof characteristic0and P := a0+a1z+a2z2 ∈ A[z].
Then P ∈ �p A[z]2 if and only if the following polynomial system has a solution in A2p:

p∑
i=1

x2
i = a0,

p∑
j=1

y2
j = a2,

∑
1≤i< j≤p

(2xiy j − 2x jyi )
2 = 4a0a2 − a21 .

Proof We will make use of Lagrange’s identity in the proof:

( p∑
i=1

x2
i

)( p∑
j=1

y2
j

)
−

( p∑
k=1

xkyk

)2 =
p∑

i=1

p∑
j=1

x2
i y

2
j −

p∑
i, j=1

xiyix jy j

=
n∑

i, j=1, i 	= j

x2
i y

2
j − 2

∑
1≤i< j≤p

xiyix jy j =
∑

1≤i< j≤p

(xiy j − x jyi )
2.

Suppose first P ∈ �p A[z]2. Then there exist αi , βi ∈ A such that

a0 + a1z + a2z
2 =

p∑
i=1

(αi + zβi )
2. (5.2)

Thus,

p∑
i=1

α2
i = a0,

p∑
j=1

β2
j = a2, 2

p∑
k=1

αkβk = a1.

We deduce

4a0a2 − a21 = 4
( p∑

i=1

α2
i

)( p∑
j=1

β2
j

)
− 4

( p∑
k=1

αkβk

)2 =
∑

1≤i< j≤p

(2αiβ j − 2α jβi )
2.

Suppose next that the polynomial system

p∑
i=1

x2
i = a0,

p∑
j=1

y2
j = a2,

∑
1≤i< j≤p

(2xiy j − 2x jyi )
2 = 4a0a2 − a21

has a solution (α1, . . . , αp, β1, . . . , βp) ∈ A2p . Observe that

a21 = 4
( p∑

i=1

α2
i

)( p∑
j=1

β2
j

)
− 4

∑
1≤i< j≤p

(αiβ j − α jβi )
2 =

(
2

p∑
k=1

αkβk

)2
.

Consequently,

(
a1 − 2

p∑
k=1

αkβk

)(
a1 + 2

p∑
k=1

αkβk

)
= 0
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and there exists ε = ±1 such that a1 = 2ε
∑p

k=1 αkβk . Thus,

a0 + a1z + a2z
2 =

p∑
i=1

(αi + zεβi )
2 ∈ �p A[z]2,

as required. ��
We formalize the following result, which is a consequence of the main result of [25].

Lemma 5.8 Let κ be a (formally) real field with τ(κ) < +∞ and Q := a0 + a1z + a2z2 ∈
κ[[x,y]][z] a positive semidefinite quadratic polynomial. Then Q is a sum of p := 4τ(κ)

squares of polynomials of degree ≤ 1 (with respect to z) and coefficients in κ[[x,y]].
Proof By Lemma 5.6 we have a0, a2, 4a0a2 − a21 ∈ P(κ[[x,y]]). Fix n ≥ 1 and observe
that a0 + (x2 + y2)n, a2 + (x2 + y2)n ∈ P+(κ[[x,y]]). In addition,

4(a0 + (x2 + y2)n)(a2 + (x2 + y2)n) − a21

= (4a0a2 − a21) + 4(a0 + a2)(x
2 + y2)n + 4(x2 + y2)2n ∈ P+(κ[[x,y]]).

By Lemma 2.14 there exists r ≥ 1 such that if ai − a′
i ∈ mr

2, then

a′
0 + (x2 + y2)n, a′

2 + (x2 + y2)n, 4(a′
0 + (x2 + y2)n)

(a′
2 + (x2 + y2)n) − a′2

1 ∈ P+(κ[[x,y]]).
In particular, we may assume that each a′

i is a polynomial and proceeding similarly to the
proof of Lemma 4.3, we find M ∈ �κ2 such that

a′
0 + M2(x2 + y2)n, a′

2 + M2(x2 + y2)n, 4(a′
0 + M2(x2 + y2)n)

(a′
2 + M2(x2 + y2)n) − a′2

1 ∈ P+(κ[x,y]).
By Lemma 5.6

Q′ := a′
0 + M2(x2 + y2)n + a′

1z + (a′
2 + M2(x2 + y2)n)z2

∈ P(κ[x,y][z]) ⊂ P(κ((x))[y][z]).
As τ(κ((x))) = τ(κ) < +∞, we deduce by [25, Thm.1.2] that Q′ is a sum of p squares of
polynomials Ai ∈ κ((x))[y][z] of degree ≤ 1 with respect to z, that is,

Q′ = A2
1 + · · · + A2

p.

Let m ≥ 1 be such that A′
i := xm Ai ∈ κ[[x]][y][z] for each i , so

x2mQ′ = A′2
1 + · · · + A′2

p .

As κ is a (formally) real field and x generates a real prime ideal of κ[[x]][y][z], we deduce
x divides each A′

i . Proceeding inductively (m times), we conclude Q′ is a sum of p squares
of polynomials Bi ∈ κ[[x]][y][z] of degree ≤ 1 with respect to z. Thus,

Q = a0 + a1z + a2z
2 = (X1 + zY1)

2 + · · · + (Xp + zYp)
2 (5.3)

has a solution modulo mn
2 in κ[[x,y]] for each n ≥ 1. By Strong Artin’s approximation Eq.

(5.3) has a solution in κ[[x,y]], so Q is a sum of p squares of polynomials of degree ≤ 1
(with respect to z) and coefficients in κ[[x,y]], as required. ��

We are now ready to prove Theorem 5.5.
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Proof of Theorem 5.5 By Weierstrass preparation theorem and Tschirnhaus trick there exist
a, b, c ∈ κ with b, c 	= 0, a unit U ∈ κ[[x,y]] with U (0, 0) = 1, units u, v ∈ κ[[y]] with
u(0) = 1 and v(0) = 1 and a Weierstrass polynomial P := x3 + axyu + byρv such that
 ≥ 2,ρ ≥ 3 and F = cU 2P . In addition, eitherρ is odd orρ is even and b /∈ −�κ2.After the
change of coordinates (x,y,z) �→ (cx, cy, c2Uz)we assume F = x3 +a′xyu′ +b′yρv′
where a′, b′ ∈ κ and u′, v′ ∈ κ[[y]] are units such that u′(0) = 1 and v′(0) = 1. Again,
either ρ is odd or ρ is even and b′ /∈ −�κ2. After the change of coordinates yu′ �→ y we
suppose from the beginning F = x3 + axy + byρw(y) where a, b ∈ κ , b 	= 0 and w is a
unit such that w(0) = 1. In addition, either ρ is odd or ρ is even and b /∈ −�κ2.

(i) As f +zg ∈ P(A)\{0}, we know that f ∈ P({F ≥ 0}) and f 2 − Fg2 ∈ P(κ[[x,y]]).
Let u ∈ κ[[x]] be a unit such that F(x, 0) = x3u. As −F is not positive semidefinite, if
f = 0, then g = 0, so f 	= 0. Assume f (x, 0) = 0. We claim: y2 divides f .
Otherwise, f = y f ′ where f ′ ∈ κ[[x,y]] and f ′(x, 0) 	= 0. Thus, there exists a

Weierstrass polynomial Q := xq + ∑q−1
k=0 ybk(y)xk (where bk ∈ κ[[y]] for each k), μ ∈

κ\{0} and a unit V ∈ κ[[x,y]] with V (0, 0) = 1 such that f ′ = QμV 2.
For each m ≥ 1 consider the homomorphism

ϕ : κ[[x,y]] → κ[[t]], h �→ h(t2,tm).

If m is odd and large enough,

ϕ(F) = t6 + atm+2 + btρmw(tm) = t6(1 + atm−4 + btρm−6w(tm)),

ϕ( f ) = ϕ(y f ′) = tm
(
t2q +

q−1∑
k=0

tm+2kbk(t
m)

)
μV 2(t2,tm)

= μtm+2q
(
1 +

q−1∑
k=0

tm+2k−2qbk(t
m)

)
V 2(t2,tm).

Observe that ϕ(F) ∈ �κ[[t]]2, whereas ϕ( f ) /∈ �κ2, as it has odd order. There exists a
prime coneα ∈ Sper(κ[[t]]) such thatϕ(F) >α 0,whereasϕ( f ) <α 0 (consider an ordering
of κ and define the sign of t to getμt < 0). This is a contradiction because f ∈ P({F ≥ 0}).

We conclude f ′(x, 0) = 0, so f = y2 f ′′ where f ′′ ∈ κ[[x,y]], as claimed.
Consequently,

f 2 − Fg2 = y4 f ′′2 − Fg2 = y4 f ′′2 − (x3 + a′xyu′ + b′yρv′)g2 ∈ P(κ[[x,y]]).
Setting y = 0, we have −x3g2(x, 0) ∈ P(κ[[x]]), so g(x, 0) = 0 and there exists g′ ∈
κ[[x,y]] such that g = yg′. Thus,

f 2 − Fg2 = y2(y2 f ′′2 − Fg′2) � y2 f ′′2 − Fg′2 ∈ P(κ[[x,y]]).
Setting again y = 0, we have −x3g′2(x, 0) ∈ P(κ[[x]]), so g′(x, 0) = 0 and there exists
g′′ ∈ κ[[x,y]] such that g = y2g′′. This means f +zg = y2( f ′′ +zg′′) where f ′′ +zg′′ ∈
P(A). Proceeding recursively we find s ≥ 1 and f1 + zg1 ∈ P(A) such that f1(x, 0) 	= 0
and f + zg = y2s( f1 + zg1).

Assume ω( f1(x, 0)) = q ≥ 2. Substitute y = 0 in f 21 − Fg21 ∈ P(κ[[x,y]]) and observe
that

( f 21 − Fg21)(x, 0) = f 21 (x, 0) − x3g21(x, 0) ∈ P(κ[[x,y]]).
Thus, ω(−x3g21(x, 0)) ≥ 2q , that is, ω(g1(x, 0)) ≥ q − 3

2 > 0, so ω(g1) ≥ 1.
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(ii) The proof of this part is conducted in several steps. For the sake of simplicity once
we have finished a step, we reset the local notation involved in such step. Recall that F =
x3 + axy + byρw(y) where a, b ∈ κ , b 	= 0,  ≥ 2, ρ ≥ 3 and w is a unit such that
w(0) = 1. In addition, either ρ is odd or ρ is even and b /∈ −�κ2.

As F is ρ-quasidetermined, there exists a constant c ∈ κ\{0} and a unit U ∈ κ[[x,y]]
such that F is right equivalent to (x3 + axy + byρ)cU 2. After the additional change of
coordinates (x,y,z) �→ (cx, cy, c2Uz), we may assume F = x3 + axy + byρ for some
a, b ∈ κ , b 	= 0,  ≥ 2 and ρ ≥ 1. In addition, either ρ is odd or ρ is even and b /∈ −�κ2.
[5.i]. Let f +zg ∈ P(A) be such that ω( f (x, 0)) = k ≥ 2 and let us prove f +zg ∈ �p A2.
If g = 0, then f ∈ P(A)\{0}. Thus, f + z f = f (1 + z) ∈ P(A) and f 	= 0. As 1

1+z is a
square in A, changing f +zg by f +z f , wemay assume g 	= 0. ByLemma5.8 it is enough to
find η ∈ P(κ[[x,y]])\{0} such that f +zg + η(z2 − F) ∈ P(κ[[x,y]][z]). By Lemma 5.6
this is equivalent to find η ∈ P(κ[[x,y]])\{0} such that 4η( f − ηF) − g2, f − ηF ∈
P(κ[[x,y]]). We claim that to prove (ii) in the statement (of Theorem 5.5): It is enough to
find η ∈ P(κ[[x,y]]) such that 4η( f − ηF) − g2 ∈ P(κ[[x,y]]). We have to check that
under such hypotheses, also f − ηF ∈ P(κ[[x,y]]).

Let β ∈ Sper(κ[[x,y]]) and α ∈ Sper(κ) be such that β → α (see [1, Prop.II.2.4]). If
supp(β) = m2, then f , F ∈ supp(β) and f −ηF ∈ supp(β), sowe assume supp(β) 	= m2. If
supp(β) = 0, by [1, Prop.VII.5.1] there exists β1 ∈ Sper(κ[[x,y]]) such that β → β1 → α

and supp(β1) is a real prime ideal of height 1, so we may assume ht(supp(β)) = 1. We
obtain

η + supp(β) ≥β 0 and 4η( f − ηF) − g2 + supp(β) ≥β 0.

Assume first supp(β) = (y). If f − ηF + supp(β) = f (x, 0) − η(x, 0)F(x, 0) <β 0,
then η(x, 0) = 0 and g(x, 0) = 0 (because 4η(x, 0)( f (x, 0)−η(x, 0)F(x, 0))−g2(x, 0)+
supp(β) ≥β 0), so f (x, 0) <β 0. Letm ≥ 1 be such that η = y2mη′ where η′ ∈ P(κ[[x,y]])
and η′(x, 0) 	= 0. As 4η( f − ηF) − g2 ∈ P(κ[[x,y]]), we deduce that ym divides g, so
there exists g′ ∈ κ[[x,y]] such that g = ymg′. Thus, 4η′( f − Fη) − g′2 ∈ P(κ[[x,y]]).
Hence, 4η′(x, 0) f (x, 0) − g′2(x, 0) ≥β 0, so η′(x, 0) f (x, 0) ≥β 0 and η′(x, 0) ≥β 0. This
means f (x, 0) ≥β 0, which is a contradiction. Consequently, f − ηF + supp(β) ≥β 0.

Assume next y /∈ supp(β) and f − ηF <β 0. Without loss of generality we suppose
y >β 0. Let R(α) be the real closure of (κ,≤α). By Lemma 2.12 there exist ζ ∈ R(α)[[y]]
and q ≥ 1 such that ( f − ηF)(ζ,yq) < 0, η(ζ,yq) ≥ 0 and (4η( f − ηF)− g2)(ζ,yq) ≥ 0
(for y > 0). Thus, η(ζ,yq) = 0 and g(ζ,yq) = 0, so f (ζ,yq) < 0. Write η = y2mη′ where
m ≥ 0 and η′ ∈ κ[[x,y]] satisfies η′(x, 0) 	= 0. Thus, η′ is a regular series with respect to
x and there exist a Weierstrass polynomial Q ∈ κ[[y]][x] and a unit V ∈ κ[[x,y]] such
that η′ = QV and η = y2mQV . As y2mQ(ζ(y1/q),y)V (ζ(y1/q),y) = η(ζ(y1/q),y) = 0,
we deduce Q(ζ(y1/q),y) = 0 and ζ(y1/q) ∈ R(α)[[y1/q)]] is integral over κ[[y]]. Thus,
the minimal polynomial of ζ(y1/q) over κ((y)) is an irreducible Weierstrass polynomial
Q0 ∈ κ[[y]][x]. As η ∈ P(κ[[x,y]]) ⊂ P(R(α)[[x,y]]), we conclude there exist μ ≥ 1
and η1 ∈ P(κ[[x,y]]) such that η = Q2μ

0 η1 and η1(ζ(y1/q),y) 	= 0. As 4η( f −ηF)−g2 ∈
P(κ[[x,y]]) ⊂ P(R(α)[[x,y]]), we have Qμ

0 divides g, so there exists g1 ∈ κ[[x,y]] such
that g = Qμ

0 g1. Thus, 4η1( f −FQ2μ
0 η1)−g21 ∈ P(κ[[x,y]]). Hence, 4η1(ζ,yq) f (ζ,yq)−

g21(ζ,yq) ≥ 0, so η1(ζ,yq) f (ζ,yq) ≥ 0. As η1(ζ,yq) > 0, we deduce f (ζ,yq) ≥ 0, which
is a contradiction. Consequently, f − ηF + supp(β) ≥β 0, as claimed.

[5.ii] We may assume: f , g ∈ κ[x,y]\{0}, f is a Weierstrass polynomial with respect to
x and there exists r > q such that f − y2r + zg ∈ P⊕(A).
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Write f (x, 0) := cxq + · · · for some c ∈ κ\{0}. Let α ∈ Sper(κ) and R(α) be the real
closure of (κ,≤α). Consider the homomorphism ϕ : κ[[x,y]] → R(α)[[y]], h �→ h(x2, 0).
As ϕ(F) = x6 > 0, we have f (x2, 0) = cx2q + · · · > 0, so c ≥α 0. Thus, c is non-negative
for each ordering of κ , so c ∈ P(κ) = �κ2. Hence, we divide f + zg by c and assume in
the following c = 1.

By Weierstrass preparation theorem there exist a Weierstrass polynomial P ∈ κ[[y]][x]
of degree q = ω( f (x, 0)) and a unit U ∈ κ[[x,y]] such that U (0, 0) = 1 and f = PU 2.
We divide f + zg by U 2 and assume that f is a Weierstrass polynomial with respect
to x of degree q . Observe that f (x, 0) = xq and f 2(x, 0) − F(x, 0)g2(x, 0) = x2q −
x3g2(x, 0) ≥ 0, so f 2(x, 0) − F(x, 0)g2(x, 0) 	= 0. As also g 	= 0, if n is large enough,
then f +y2n +zg ∈ P⊕(A) (use Lemma 4.1(iii)). By Corollaries 2.13 and 2.14 there exists
r > max{2n, q} such that for each fn, gn ∈ κ[x,y] satisfying f − fn, g − gn ∈ mr

2 it holds
fn + y2n − y2r + zgn ∈ P⊕(A). As f is a Weierstrass polynomial with respect to x, also
fn + y2n is a Weierstrass polynomial with respect to x.
If we show that each fn + y2n + zgn ∈ �p A2, Strong Artin’s approximation guarantees

that f + zg ∈ �p A2. Thus, we assume in the following that [5.ii] holds.
[5.iii]. StrongArtin’s approximation implies the following: Let f , g ∈ κ[x,y]\{0} and r > q
be such that f is aWeierstrass polynomial with respect tox and f −y2r+zg ∈ P⊕(A).There
exists n0 ≥ 1 such that if f + 2x2n + zg ∈ �p A2 for some n ≥ n0, then f + zg ∈ �p A2.
[5.iv]. To prove [5.iii] it is enough by [5.i] to show: Let f , g ∈ κ[x,y]\{0} and r > q be such
that f is a Weierstrass polynomial with respect to x and f −y2r +zg ∈ P⊕(A). Then there
exist η ∈ κ[x,y]∩P(κ[[x,y]]) and n ≥ n0 such that 4η( f +2xn−ηF)−g2 ∈ P(κ[[x,y]]).

To find η we need some preliminary work. Write f ∗ := f − y2r := xq +∑q−1
k=0 yλk(y)xk ∈ κ[[y]][x]. We have

f ∗(x,uxq) = xq +
q−1∑
j=0

xquλ j (ux
q)x j = xq

(
1 +

q−1∑
j=0

λ j (ux
q)ux j

)
(5.4)

F(x,uxq) = x3(1 + axq−2u + bxρq−3uρ) (5.5)

Define W := 1 + axq−2u + bxρq−3uρ ∈ κ[x,u], which satisfies W (0, 0) = 1 and
F(x,uxq) = x3W . Define A′ := κ[[x,u,v]]/(v2 −xW ) and consider the homomorphism

ψ : A → A′, h(x,y,z) �→ h(x,uxq ,vx).

As f ∗ + zg ∈ P(A), we have

ψ( f ∗ + zg) = f ∗(x,uxq) + vxg(x,uxq) ∈ P(A′).

As W (0, 0) = 1, there exists by the Implicit Function Theorem ϕ(u,v) ∈ κ[[u,v]] such
that x = ϕ(u,v) is the unique solution of the equation v2 −xW = 0 satisfying ϕ(0, 0) = 0.
As ψ( f ∗ + zg) ∈ P(A′), we get

h(u,v) := f ∗(ϕ(u,v),uϕ(u,v)q) + vϕ(u,v)g(ϕ(u,v),uϕ(u,v)q) ∈ P(κ[[u,v]])
= �pκ[[u,v]]2,

so there exist hi ∈ κ[[u,v]] such that h = ∑p
i=1 h

2
i .

Using the relation v2 − xW , we find series ai , bi , c ∈ κ[[x,u]] satisfying

f ∗(x,uxq) + vxg(x,uxq) =
p∑

i=1

(ai + vbi )
2 − (v2 − xW )c.
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Comparing coefficients with respect to v, we obtain

c =
p∑

i=1

b2i , (5.6)

f ∗(x,uxq) =
p∑

i=1

a2i + xWc, (5.7)

xg(x,uxq) = 2
p∑

i=1

aibi . (5.8)

As g 	= 0, we have c 	= 0. If we set x = 0 in (5.7), we obtain 0 = ∑p
i=1 a

2
i (0,u),

so ai (0,u) = 0 for each i and there exists a′
i ∈ κ[[x,u]] such that ai = xa′

i . As
q := ω( f (x, 0)) ≥ 2, we deduce x2 divides f ∗(x,uxq). Thus, x2 divides f ∗(x,uxq) −∑p

i=1 a
2
i = xWc, so x divides c = ∑p

i=1 b
2
i . Hence, x divides bi for each i , so bi = xb′

i for
some b′

i ∈ κ[[x,u]]. Write c′ := ∑p
i=1 b

′2
i ∈ �κ[[x,u]]2, so c = x2c′. Rewrite Eqs. (5.7)

and (5.8) as

f ∗(x,uxq) =
p∑

i=1

(xa′
i )
2 + x3Wc′,

xg(x,uxq) = 2x2
p∑

i=1

a′
i b

′
i .

As c′ ∈ P(κ[[x,u]]) and

f ∗(x,uxq) + vxg(x,uxq) + (v2 − xW )x2c′ =
p∑

i=1

(ai + vbi )
2 ∈ P(κ[[x,u]][v]),

we deduce by Lemma 5.6

4x2c′( f ∗(x,uxq) − xWx2c′) − (xg(x,uxq))2 ∈ P(κ[[x,u]]),

f ∗(x,uxq) − x3Wc′ =
p∑

i=1

(xa′
i )
2 ∈ P(κ[[x,u]]).

As f ∗ = f − y2r , we have f ∗(x,uxq) = f (x,uxq) − (uxq)2r . As in addition c′ 	= 0, we
deduce

4x2c′( f (x,uxq) − xWx2c′) − (xg(x,uxq))2 ∈ P(κ[[x,u]])\{0},

f (x,uxq) − x3Wc′ = (uxq)2r +
p∑

i=1

(xa′
i )
2 ∈ P(κ[[x,u]])\{0}.

Consequently,

ξ := 4c′( f (x,uxq) − F(x,xqu)c′) − (g(x,uxq))2 ∈ P(κ[[x,u]])\{0}, (5.9)

ψ := f (x,uxq) − F(x,xqu)c′ ∈ P(κ[[x,u]])\{0}. (5.10)

[5.v]. One would like to construct η ∈ κ[x,y] ∩ P(κ[[x,y]]) from c′ substituting u by y
xq .

But at this point this does not work because c′ ∈ κ[[x,u]] and the desired substitution is not
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possible. We need to modify first both c′ and ξ to have polynomials instead of series, but
keeping both inside P(κ[[x,y]]).

Let ,m ≥ 1 be such that x2 divides c′ but x2+1 does not and x2m divides ξ but x2m+1

does not. Write c′′ := c′
x2

∈ P(κ[[x,u]]) and ξ ′ := ξ

x2m
∈ P(κ[[x,u]]), so c′ = c′′x2

and ξ = ξ ′x2m . Observe that c′′(0,u) 	= 0 and ξ ′(0,u) 	= 0. Thus, c′′ + x2n, ξ ′ + x2n ∈
P+(κ[[x,u]]) for each n ≥ 1. Write k := n0 + . We have

ξ∗ : = 4(c′ + x2k+2m )( f (x,uxq ) + 2x2k+2m − F(x,xqu)(c′ + x2k+2m )) − (g(x,uxq ))2

= ξ+4(x4k+4m+x2k+2mc′(2 − F(x,xqu))+x2k+2mψ+x4k+4m (1 − F(x,xqu)))

= x2m (ξ ′ + 4(x4k+2m + x2kc′(2 − F(x,xqu)) + x2kψ + x4k+2m (1 − F(x,xqu)))).

(5.11)

As ξ ′ + x4k+2m ∈ P+(κ[[x,u]]) and ψ ∈ P(κ[[x,u]]), also
ξ ′′ := ξ ′ + 4(x4k+2m + x2kc′(2 − F(x,xqu)) + x2kψ

+x4k+2m(1 − F(x,xqu))) ∈ P+(κ[[x,u]]).
Wehave ξ∗ = x2mξ ′′ and c′′+x2k+2m−2 ∈ P+(κ[[x,u]]). As f is aWeierstrass polynomial,
write

f (x,uxq) = xq
(
1 +

d∑
i=1

xi fi (u)
)
,

g(x,uxq) = xs
( e∑

j=0

x j g j (u)
)
,

c′′(x,u) =
∑
i≥0

xi c′′
i (u)

where fi , g j ∈ κ[u], c′′
i ∈ κ[[u]], g0, fd , ge 	= 0 and c′′

0 = c′′(0,u) 	= 0. Let us collect
more information concerning the structure and the properties of c′.
[5.vi]. Denote ε = 1 if q is odd and ε = 0 if q is even.We claim: f (x,uxq)−F(x,xqu)c′ =
xq+εH where H ∈ P(κ[[x,u]]) and c′′

i ∈ κ[u] for i = 0, . . . , 2m − 2 − q − 1. Recall that
c′ = c′′x2.

We have

ξ = 4c′( f (x,uxq ) − F(x,xqu)c′) − (g(x,uxq ))2

= 4x2
(∑
i≥0

xi c′′i (u)
)(

xq
(
1 +

d∑
i=1

xi fi (u)
)

− (x3W )x2
( ∑
i≥0

xi c′′i (u)
))

− x2s
( e∑

j=0

x j g j (u)
)2

= 4x2+q
(∑
i≥0

xi c′′i (u)
)(

1 +
d∑

i=1

xi fi (u) − x2+3−qW
( ∑
i≥0

xi c′′i (u)
))

− x2s
( e∑

j=0

x j g j (u)
)2

.

(5.12)

Although we have not yet proved it, we will also see:

2 + 3 − q ≥ 0 and 2m − 2 − q ≥ 0. (5.13)

We distinguish two cases:
Case 1. q is odd. As

xq
(
1 +

d∑
i=1

xi fi (u)
)

− x2+3W
( ∑

i≥0

xi c′′
i (u)

)
∈ P(κ[[x,u]]), (5.14)
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its initial form is positive semidefinite, so it cannot have degree q odd. As c′′
0(u) 	= 0

and W = 1 + axq−2u + bxρq−3uρ (where  ≥ 1, ρ ≥ 3 and q ≥ 2), we deduce
xq − x2+3c′′

0(u) = 0, so q = 2 + 3 and c′′
0(u) = 1. Thus, f (x,uxq) − F(x,xqu)c′ =

xq+1H where H ∈ P(κ[[x,u]]).
As ξ ∈ P(κ[[x,u]]), we deduce 2+q +1 ≤ 2s (see (5.12)). WriteW = 1+x2� where

� := axq−4u +bxρq−5uρ ∈ κ[x,u] (as q ≥ 2,  ≥ 2 and ρ ≥ 3, we have q −4 ≥ 0 and
ρq −5 ≥ 1). We obtain from (5.12) (using that q = 2+3, 2+q +1 ≤ 2s and c′′

0(u) = 1)

x2mξ ′ = ξ = 4x2+q
((

1 +
∑
i≥1

xi c′′
i (u)

)(
1 +

d∑
i=1

xi fi (u) − (1 + x2�)
(
1 +

∑
i≥1

xi c′′
i (u)

))

− x2s−2−q
( e∑

j=0

x j g j (u)
)2) = 4x2+q+1

((
1 +

∑
i≥1

xi c′′
i (u)

)

·
( d∑

i=1

xi−1 fi (u) −
∑
i≥1

xi−1c′′
i (u) − x�

(
1 +

∑
i≥1

xi c′′
i (u)

))

− x2s−2−q−1
( e∑

j=0

x j g j (u)
)2)

.

Consequently, 2m − 2 − q − 1 ≥ 0 and

4
(
1 +

∑
i≥1

xi c′′
i (u)

)( d∑
i=1

xi−1( fi (u) − c′′
i (u)) − x�

(
1 +

∑
i≥1

xi c′′
i (u)

))

−x2s−2−q−1
( e∑

j=0

x j g j (u)
)2 = x2m−2−q−1ξ ′,

or equivalently,

∑
i≥1

xi−1( fi − c′′
i ) + x

(( ∑
i≥1

xi−1c′′
i

)( ∑
i≥1

xi−1( fi − c′′
i )

)
− �

(
1 +

∑
i≥1

xi c′′
i

)2)

−x2s−2−q−1 1

4

( e∑
j=0

x j g j (u)
)2 = x2m−2−q−1 1

4
ξ ′ (5.15)

where fi = 0 for i ≥ d + 1. Observe that the coefficient of xi on the right hand side of Eq.
(5.15) is zero for 0 ≤ i ≤ 2m − 2 − q − 2.

Recall that � ∈ κ[x,u] and c′′
0 = 1. If one compares coefficients with respect to x in

Eq. (5.15), one realizes that c′′
i − Pi ( f1, . . . , fd , g0, . . . , ge, c′′

1 , . . . , c
′′
i−1) = 0 for some

polynomial

Pi ∈ κ[x1, . . . ,xd ,y0, . . . ,ye,z1, . . . ,zi−1]
if i = 1, . . . , 2m − 2− q − 1. We conclude inductively that c′′

i ∈ κ[u] for i = 0, . . . , 2m −
2 − q − 1.
Case 2. q is even. As

xq
(
1 +

d∑
i=1

xi fi (u)
)

− x2+3W
( ∑

i≥0

xi c′′
i (u)

)
∈ P(κ[[x,u]])

123



Representation of positive semidefinite elements… Page 45 of 65    59 

and c′′
0(u) 	= 0, we have q < 2 + 3, so f (x,uxq) − F(x,xqu)c′ = xq H where H ∈

P(κ[[x,u]]).
As ξ ∈ P(κ[[x,u]]) and ξ = x2mξ ′, we deduce 2 + q ≤ 2s and 2 + q ≤ 2m (see

(5.12)). Thus,

(∑
i≥0

xi c′′
i (u)

)(
1 +

d∑
i=1

xi fi (u) − x2+3−qW
( ∑

i≥0

xi c′′
i (u)

))

−x2s−2−q 1

4

( e∑
j=0

x j g j (u)
)2 = x2m−2−q 1

4
ξ ′. (5.16)

Observe that the coefficient of xi on the right hand side of Eq. (5.16) is zero for 0 ≤ i ≤
2m − 2 − q − 1.

Recall that W ∈ κ[x,u]. If one compares coefficients with respect to x in Eq. (5.16), one
realizes that c′′

i − Qi ( f1, . . . , fd , g0, . . . , ge, c′′
1 , . . . , c

′′
i−1) = 0 for some polynomial

Qi ∈ κ[x1, . . . ,xd ,y0, . . . ,ye,z1, . . . ,zi−1]

if i = 0, . . . , 2m − 2− q − 1. We conclude inductively that c′′
i ∈ κ[u] for i = 0, . . . , 2m −

2 − q − 1, as claimed.
[5.vii]. We are ready to modify c′, ξ in order to obtain polynomials c•, ξ• ∈ κ[x,u] ∩

P(κ[[x,u]]) (from which we will construct η ∈ κ[x,y] ∩ P(κ[[x,y]]) and n ≥ n0 in the
statement of [5.iv]) instead of the positive semidefinite series c′, ξ .

As ξ ′′, c′′ + x2k+2m−2 ∈ P+(κ[[x,u]]), there exists by Corollary 2.14 r ′ ≥ 1 such that
if ζ, θ ∈ κ[[x,u]] satisfy ζ − ξ ′′, θ − c′′ ∈ mr ′

2 , then ζ, θ +x2k+2m−2 ∈ P+(κ[[x,u]]). We
may assume r ′ is strictly greater than the maximum of the degrees of the polynomials xi c′′

i
for i = 0, . . . , 2m − 2 − q − 1.

Let c◦ ∈ κ[x,u] be a polynomial such that ω(c◦ − c′′) ≥ r ′ + 2m. Then c◦ =∑2m−2−q−1
i=0 c′′

i x
i +x2m−2−qh for some polynomial h ∈ κ[x,u], so c◦ = c′′+x2m−2−qh′

for some h′ ∈ κ[[x,u]] and x2c◦ = c′ + x2m−qh′. Observe that

ω(c◦ + x2k+2m−2 − (c′′ + x2k+2m−2)) = ω(c◦ − c′′) ≥ r ′ + 2m > r ′.

Thus, c◦ + x2k+2m−2 ∈ κ[x,u] ∩ P+(κ[[x,u]]) and c• := x2c◦ + x2k+2m ∈ κ[x,u] ∩
P(κ[[x,u]]). Consider the polynomial

ξ• := 4c•( f (x,uxq) + 2x2k+2m − F(x,xqu)c•) − (g(x,uxq))2. (5.17)

We claim: ξ• − ξ = x2mE for some E ∈ κ[[x,u]].
By (5.9) and [5.vi] we have:

4c′( f (x,uxq) − F(x,xqu)c′) − (g(x,uxq))2 = ξ,

f (x,uxq) − F(x,xqu)c′ = xq+εH .
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As F(x,xqu) = x3W , x2c◦ = c′ + x2m−qh and c• = x2c◦ + x2k+2m = c′ + x2m−qh′ +
x2k+2m , we conclude

ξ• = 4c•( f (x,uxq) + 2x2k+2m − F(x,xqu)c•) − (g(x,uxq))2

= 4(c′ + x2m−qh′ + x2k+2m)( f (x,uxq) + 2x2k+2m

− F(x,xqu)(c′ + x2m−qh′ + x2k+2m)) − (g(x,uxq))2

= 4c′( f (x,uxq) − F(x,xqu)c′) − (g(x,uxq))2 + 4(x2m−qh′

+ x2k+2m)( f (x,uxq) − F(x,xqu)c′)
+ 4(c′ + x2m−qh′ + x2k+2m)(2x2k+2m − x3W (x2m−qh′ + x2k+2m))

= ξ + 4(x2m−qh′ + x2k+2m)xq+εH + 4(c′ + x2m−qh′

+ x2k+2m)(2x2k+2m − x3W (x2m−qh′ + x2k+2m)).

Thus, to justify that

ξ• − ξ = 4x2m+ε(h′ + x2k+q)H + 4x2k+2m(2x2k+2m − x3W (x2m−qh′ + x2k+2m))

+4(c′ + x2m−qh′)(2x2k+2m − x3Wx2k+2m) + 4(c′ + x2m−qh′)(−x3Wx2m−qh′)

is divisible by x2m , we only have to clarify why the product

4(c′ + x2m−qh′)(−x3W (x2m−qh′)) =4(x2c′′ + x2m−qh′)(−x3W (x2m−qh′))
= − 4x2m+2+3−qc′′Wh′ − 4x4m+3−2qWh′2

is divisible by x2m . The first addend on the right hand side is divisible by x2m because q ≤
2+3 (see (5.13)), whereas the second addend is divisible byx2m because, as 2m−2−q ≥ 0
and 2 + 3 − q ≥ 0 (see (5.13)),

4m + 3 − 2q = 2m + (2m − 2 − q) + (2 + 3 − q) ≥ 2m.

We conclude ξ• − ξ = x2mE for some E ∈ κ[[x,u]].
As x2m divides ξ , also x2m divides ξ•, so there exists a polynomial ξ◦ ∈ κ[x,u] such

that ξ• = x2mξ◦. By (5.11) and (5.17)

ξ• − ξ∗ = 4x2( f (x,uxq) + 2x2k+2m − F(x,xqu)x2k+2m)(c◦ − c′′)
−4x2k+2m+2F(x,xqu)(c◦ − c′′) − 4x4F(x,xqu)(c◦ + c′′)(c◦ − c′′),

so ω(ξ• − ξ∗) ≥ ω(c◦ − c′′). As ξ• − ξ∗ = x2m(ξ◦ − ξ ′′), we have ω(ξ◦ − ξ ′′) =
ω(ξ• −ξ∗)−2m. Asω(c◦ −c′′) ≥ r ′ +2m, it holdsω(ξ◦ −ξ ′′) ≥ r ′, so ξ◦ ∈ P+(κ[[x,u]]).
This means that ξ• = x2mξ◦ ∈ P(κ[[x,u]]).

[5.viii]. Write u := y
xq in ξ•(x, y

xq ) ∈ κ[x,u]:
ξ•(x,

y

xq

)
= 4c•(x,

y

xq

)(
f (x,y) + 2x2k+2m − F(x,y)c•(x,

y

xq

))
− (g(x,y))2,

where c• ∈ κ[x,u]. After clearing denominators, by Lemma 2.8 we find an integer μ ≥ 1
and a polynomial B ∈ κ[x,y] ∩ P(κ[[x,y]]) such that

4B(x2μ f + 2x2k+2m+2μ − FB) − x4μg2 ∈ κ[x,y] ∩ P(κ[[x,y]]).
Thus, there exist series Ai ∈ κ[[x,y]] satisfying

4B(x2μ f + 2x2k+2m+2μ − FB) − x4μg2 =
p∑

i=1

A2
i . (5.18)
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Setting x = 0 in (5.18), we deduce

−4F(0,y)B2(0,y) = −4byρB2(0,y) =
p∑

i=1

A2
i (0,y).

As ρ is either odd or it is even and b /∈ −�κ2, we deduce B(0,y) = 0 and Ai (0,y) = 0,
so there exist B ′, A′

i ∈ κ[[x,y]] such that B = x2B ′ (recall that B ∈ P(κ[[x,y]])) and
Ai = xA′

i . We deduce

4x4B ′(x2μ−2 f + 2x2k+2m+2μ−2 − FB ′) − x4μg2 = x2
p∑

i=1

A′2
i . (5.19)

Dividing (5.19) by x2 and setting x = 0 next, we deduce A′
i (0,y) = 0, so there exists

A′′
i ∈ κ[[x,y]] such that Ai = xA′′

i . Consequently,

4B ′(x2μ−2 f + 2x2k+2m+2μ−2 − FB ′) − x4μ−4g2 =
p∑

i=1

A′′2
i .

Proceeding recursively with μ we find the sought polynomial η ∈ κ[x,y] ∩ P(κ[[x,y]])
such that

4η( f + 2x2k+2m − Fη) − g2 ∈ κ[x,y] ∩ P(κ[[x,y]])
and n := k + m ≥ n0 + , as required. ��

We are ready to prove Theorem 1.8 for the rings A = κ[[x,y,z]]/(z2 − F) where
F ∈ κ[[x,y]] is one of the series of order three quoted in its statement.

Theorem 5.9 (Order three) Let κ be a (formally) real field such that τ(κ) < +∞. Denote
A := κ[[x,y,z]]/(z2 − F) where F ∈ κ[[x,y]] is one of the following series:

(iv) x2y + (−1)kayk where a /∈ −�κ2 and k ≥ 3,
(v) x2y,
(vi) x3 + axy2 + by3 irreducible,
(vii) x3 + ay4 where a /∈ −�κ2,
(viii) x3 + xy3,
(ix) x3 + y5.

Then P(A) = �A2 and p(A) ≤ 4τ(κ).

Proof The general strategy to prove this result (except for case (v)) is to show that (maybe
after a suitable change of coordinates when needed) there exists no positive semidefinite
element f + zg ∈ P(A) such that f (x, 0) has order 1, whereas F(x, 0) has order 3 and
F satisfies the remaining hypotheses in the statement of Theorem 5.5. Once this is done,
Theorem 5.5 applies and we conclude P(A) = �A2 and p(A) ≤ 4τ(κ).

We use Lemma 2.7 freely along the proof. We do not have to care about positive semidef-
inite units of A, because they can be written as cU 2 for some c ∈ κ\{0} and some unit
U ∈ A with U (0, 0, 0) = 1. Thus, c ∈ P(A), so c >α 0 for each α ∈ Sper(A) such that
supp(α) = m. Such prime cones are in bijection with the orderings of κ , so c ∈ �κ2.

(iv) This case is somehow special because with the current coordinates F(x, 0) = 0, so a
suitable change of coordinates is needed to apply Theorem 5.5. We prove first: if f + zg ∈
P(A), then ω( f ) ≥ 2.
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Suppose that f + zg ∈ P(A) and ω( f ) = 1. Observe that f ∈ P({F ≥ 0}). If
ω( f (x, 0)) = 1, there exist ζ ∈ κ[[y]] of order ≥ 1, b ∈ κ\{0} and a unit U ∈ κ[[x,y]]
such that U (0, 0) = 1 and f = (x − ζ(y))bU 2. Consider the homomorphism

ϕ : κ[[x,y]] → κ[[t]], h �→ h(ζ(t3) − bt2,t3).

We have ϕ(F) = (ζ(t3) − bt2)2t3 + (−1)kat3k and ϕ( f ) = −b2t2ϕ(U )2 ∈ −�κ[[t]]2.
As b 	= 0 and k ≥ 3, we deduce ω(ϕ(F)) = 7 and ϕ(F) = b2t7 + · · · . Fix an ordering
α ∈ Sper(κ) and let β0 ∈ Sper(κ[[t]]) be a prime cone that extends α such that t >β 0.
Thus, ϕ(F) >β0 0, whereas ϕ( f ) = −b2t2ϕ(U )2 <β0 0, which is a contradiction because
f ∈ P({F ≥ 0}). Consequently, ω( f (x, 0)) ≥ 2.
Assume next ω( f (x, 0)) ≥ 2 and ω( f (0,y)) = 1. There exist ξ := ∑

≥2 ξx ∈
κ[[x]] of order ≥ 2, c ∈ κ\{0} and a unit V ∈ κ[[x,y]] such that V (0, 0) = 1 and
f = (y − ξ(x))cV 2. Let α ∈ Sper(κ) and M := ξ22 + 1. Consider the homomorphism

φ : κ[[x,y]] → κ[[t]], h �→ h(t, Mt2).

Wehaveφ(F) = Mt4−a(−1)kt2k > 0 because k ≥ 3, soφ( f ) = c(Mt2−ξ(t))φ(V )2 >

0. As M > ξ2, we deduce c >α 0. As this holds for each α ∈ Sper(κ), we conclude
c ∈ �κ2\{0}.

Thus, we may assume f = y − ξ(x). As the coefficient a /∈ −�κ2, there exists α ∈
Sper(κ) such that a >α 0. Consider the homomorphism

ψ : κ[[x,y]] → κ[[t]], h �→ h(tk,−t2).

We have ψ(F) = −t2k+2 + at2k > 0 and ψ( f ) = −t2 − ξ(tk) < 0 because k ≥ 3. Thus,
there exists a prime cone β1 ∈ Sper(κ[[t]]) extending α such that ψ(F) >β1 0, whereas
ψ( f ) <β1 0, which is a contradiction because f ∈ P({F ≥ 0}).

Consequently, ω( f ) ≥ 2. By Example 2.6(ii) we know that F is k-determined. After a
linear change of coordinates y �→ λx+y (for some λ ∈ κ) the series F becomes F(x,y) =
x2(λx+ y) + (−1)ka(λx+ y)k and satisfies F(x, 0) = λx3 + (−1)kaλkxk and F(0,y) =
(−1)kayk . In case k ≥ 4, we choose λ = 1, whereas in case k = 3, we choose λ such that
λ(1 − aλ2) 	= 0 (in such a way that in both cases ω(F(x, 0)) = 3). As we have already
proved, there exist no elements f + zg ∈ P(A) such that ω( f ) = 1.

(v) For this case we use a ‘limit argument’. Let f + zg ∈ P(A). We may assume g 	= 0
(Lemma 4.1(iv)). Then by Corollary 3.5

f ∈ P({x2y ≥ 0}) ⊂ P({y ≥ 0}),
f 2 − x2yg2 ∈ P(κ[[x,y]]).

By Lemma 4.1 if n is large enough, then f + (x2 +y2)n +zg ∈ P⊕(A), that is, by Sect. 4.1

f + (x2 + y2)n ∈ P+({x2y ≥ 0}) ⊂ P({y ≥ 0}),
( f + (x2 + y2)n)2 − x2yg2 ∈ P+(κ[[x,y]]).

By Corollary 2.14 we deduce that if r ≥ 1 is large enough, then

( f + (x2 + y2)n) − (x2y + y2r )g2 ∈ P+(κ[[x,y]]).
Let us check: if r ≥ 2n + 2 is large enough, then f + (x2 + y2)n ∈ P+({x2y + y2r ≥ 0}).

As f + (x2 + y2)n ∈ P+({x2y ≥ 0}), the series f + (x2 + y2)n is positive for each
γ ∈ Sper(κ[[x,y]]) such that supp(γ ) = (x). This means that there exist 1 ≤ s ≤ n,
c ∈ �κ2\{0} and a unit u ∈ κ[[y]] such that u(0) = 1 and f (0,y) + y2n = y2scu2. Let
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β ∈ Sper(κ[[x,y]]) be such that y(x2 +y2r−1) ≥β 0. If y ≥β 0, then x2y ≥β 0, so f ≥β 0
and f + (x2 + y2)n ≥β 0. If y <β 0, then x2 + y2r−1 ≤β 0 and y /∈ supp(β). Thus, as
2r − 1 ≥ 4n + 3,

x2 ≤β −y2r−1 ≤β y4n+2 ≤β y4s+2.

As y <β 0, then |x|β <β −y2s+1 where

|h|β :=
{
h if h ≥β 0,

−h if h <β 0

for each h ∈ κ[[x,y]]. Write

f + (x2 + y2)n = f (0,y) + y2n + xξ = y2scu2 + xξ

where ξ ∈ κ[[x,y]]. We have

f + (x2 + y2)n = y2scu2 + xξ ≥β y2scu2 − |x|β |ξ |β
≥ y2scu2 + y2s+1(1 + ξ2(0, 0)) >β 0.

Thus, f + (x2 + y2)n ∈ P+({x2y + y2r ≥ 0}), so f + (x2 + y2)n + zg ∈ P⊕(Ar ) where
Ar := κ[[x,y,z]]/(z2−x2y−y2r ).AsP(Ar ) = �p Ar

2, there existain, bin, qn ∈ κ[[x,y]]
such that:

f + (x2n + y2n) + zg = (a1n + zb1n)
2 + · · · + (apn + zbpn)

2 − (z2 − x2y − y2r )qn .

Consequently,

f + zg ≡ (a1n + zb1n)
2 + · · · + (apn + zbpn)

2 − (z2 − x2y)qn mod m2n
2 .

By Strong Artin’s approximation there exist ai , bi , q ∈ κ[[x,y]] such that

f + zg ≡ (a1 + zb1)
2 + · · · + (ap + zbp)

2 − (z2 − x2y)q,

that is, f + zg ∈ �p A2.
(vi) In this case F(x, 0) = x3, F(0,y) = by3 and F is 3-determined (Example 2.6(iii)).

We have to prove: if f + zg ∈ P(A) and f (x, 0) 	= 0, then ω( f (x, 0)) ≥ 2.
Assume ω( f (x, 0)) = 1. There exist ζ ∈ κ[[y]] of order ≥ 1, c ∈ κ\{0} and a unit

U ∈ κ[[x,y]] such thatU (0, 0) = 1 and f = (x−ζ(y))cU 2. Consider the homomorphism

ϕ : κ[[x,y]] → κ[[t]], h �→ h(ζ(t) − ct2,t).

We have ϕ(F) = (ζ(t) − ct2)3 + at2(ζ(t) − ct2) + bt3 and ϕ( f ) = −c2t2U 2(ζ(t) −
ct2,t). As b 	= 0, we deduce

ω((ζ(t) − ct2)3 + at2(ζ(t) − ct2) + bt3) =
{

ω(F(d, 1)t3 + · · · ) = 3 if ω(ζ ) = 1,

ω(bt3 + · · · ) = 3 if ω(ζ ) ≥ 2,

for some d ∈ κ\{0}. We only have to explain the first row. As ζ ∈ κ[[t]] and ω(ζ ) = 1, then
ζ = dt + · · · , so
ϕ(F) = (ζ(t) − ct2)3 + at2(ζ(t) − ct2) + bt3 = (d3 + ad + b)t3 + · · · = F(d, 1)t3 + · · · .

As F(x, 1) ∈ κ[x] is an irreducible polynomial, F(d, 1) 	= 0 and ϕ(F) has order 3.
Fix an ordering α of κ and let β ∈ Sper(κ[[t]]) be a prime cone that extends α such that

F(d, 1)t > 0 in the first case and bt > 0 in the second case. Thus, ϕ(F) >β 0, whereas
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ϕ( f ) = −c2t2U 2(ζ(t) − ct2,t) <β 0. This is a contradiction because f ∈ P({F ≥ 0}).
Consequently, ω( f (x, 0)) ≥ 2.

(vii) In this case F(x, 0) = x3, F(0,y) = ay4 and F is 4-determined (Example 2.6(v)).
We have to prove: if f + zg ∈ P(A) and f (x, 0) 	= 0, then ω( f (x, 0)) ≥ 2.

Assume ω( f (x, 0)) = 1. There exists ζ ∈ κ[[y]] of order ≥ 1, b ∈ κ\{0} and a unit
U ∈ κ[[x,y]] such that U (0, 0) = 0 and f = (x − ζ(y))bU 2. As a /∈ −�κ2, there exists
an ordering α ∈ Sper(κ) such that a >α 0. Consider the homomorphism

ϕ : κ[[x,y]] → κ[[t]], h �→ h(ζ(t) − bt2,t).

We have ϕ(F) = (ζ(t)−bt2)3+at4 and ϕ( f ) = −b2t2ϕ(U )2 ∈ −�κ[[t]]2. In addition,

ω((ζ(t) − bt2)3 + at4) =
{
3 if ω(ζ ) = 1,

4 if ω(ζ ) ≥ 2.

Let β ∈ Sper(κ[[t]]) be a prime cone that extends α and satisfies (ζ(t)−bt2)3+at4 >β 0.
Observe that ϕ( f ) = −b2t2ϕ(U )2 <β 0. This is a contradiction because f ∈ P({F ≥ 0}).
Consequently, ω( f (x, 0)) ≥ 2.

(viii) We prove first: if f + zg ∈ P(A), then ω( f (x, 0)) ≥ 2.
Suppose that f + zg ∈ P(A) and ω( f (x, 0)) = 1. There exist ζ ∈ κ[[y]] of order ≥ 1,

a ∈ κ\{0} and a unit U ∈ κ[[x,y]] such that U (0, 0) = 1 and f = (x + ζ(y))aU 2. Let
α ∈ Sper(κ) and consider the homomorphism

ϕ : κ[[x,y]] → κ[[t]], h �→ h(t2, 0).

We have ϕ(F) = t6 > 0, so ϕ( f ) = at2φ(U )2 > 0. This means that a >α 0 and as this
holds for each α ∈ Sper(κ), we conclude a ∈ �κ2\{0}. Thus, wemay assume f = x+ζ(y).
Consider the homomorphism

ϕ : κ[[x,y]] → κ[[t]], h �→ h(0,t).

We have ϕ(F) = 0 and ϕ( f ) = ζ(t). As f ∈ P({F ≥ 0}) and ϕ(F) = 0, we deduce
ζ(t) ∈ P(κ[[t]]) = �κ[[t]]2. In particular, ω(ζ(t)) ≥ 2 and we choose M := ζ 2

2 + 1
where ζ(t) := ∑

k≥2 ζktk . Consider the homomorphism

ϕ : κ[[x,y]] → κ[[t]], h �→ h(−Mt2,−t).

Choose β ∈ Sper(κ[[t]]) such thatt >β 0. Then ϕ(F) = −M3t6+Mt5 >β 0 and ϕ( f ) =
−Mt2 + ζ(t) <β 0 because M >β ζ2. This is a contradiction because f ∈ P({F ≥ 0}).
Consequently, ω( f (x, 0)) ≥ 2.

By Example 2.6(iv) F is 5-determined. After the change of coordinates x �→ x + y2

the series F becomes F(x,y) = (x + y2)3 + (x + y2)y3 and satisfies F(x, 0) = x3 and
F(0,y) = y5 + y6. As we have already proved, there exists no element f + zg ∈ P(A)

such that ω( f (x, 0)) = 1 (and this enough in our situation, because the performed change
of coordinates was x �→ x + y2).

(ix) In this case F(x, 0) = x3, F(0,y) = y5 and F is 5-determined (Example 2.6(v)).
We have to prove: if f + zg ∈ P(A) and f (x, 0) 	= 0, then ω( f (x, 0)) ≥ 2.

Assume ω( f (x, 0)) = 1. There exists ζ ∈ κ[[y]] of order ≥ 1, b ∈ κ\{0} and a unit
U ∈ κ[[x,y]] such thatU (0, 0) = 1 and f = (x−ζ(y))bU 2. Consider the homomorphism

ϕ : κ[[x,y]] → κ[[t]], h �→ h(ζ(t) − bt2,t).
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We have ϕ(F) = (ζ(t)− bt2)3 +t5 and ϕ( f ) = −b2t2ϕ(U )2 ∈ −�κ[[t]]2. In addition,

ω((ζ(t) − bt2)3 + t5) =
{
3 if ω(ζ ) = 1,

5 if ω(ζ ) ≥ 2.

Fix an ordering α ∈ Sper(κ) and let β ∈ Sper(κ[[t]]) be a prime cone that extends α such
that (ζ(t) − bt2)3 + t5 > 0. Thus, ϕ(F) >β 0, whereas ϕ( f ) = −b2t2ϕ(U )2 <β 0. This
is a contradiction because f ∈ P({F ≥ 0}). Consequently, ω( f (x, 0)) ≥ 2, as required. ��
Remark 5.10 (i) AlthoughTheorem 5.5 has been thought as amain tool to prove Theorem5.9,
it provides further information. If A = κ[[x,y,z]]/(z2 − F) where

• κ is a (formally) real field such that τ(κ) < +∞,
• F(0,y)) = byρv where v ∈ κ[[y]] is a unit such that v(0) = 1, b 	= 0 and ρ ≥ 3 is

either odd or ρ is even and b /∈ −�κ2,
• ω(F(x, 0)) = 3 and F is ρ-quasidetermined,

then the possible elements belonging to the differenceP(A)\�A2 are series of order 1. Thus,
for this type of rings there exist either none or ‘few’ series that are positive semidefinite but
they are not sums of squares.

(ii) In the statement of Theorem 5.5(ii) we have required that the series F ∈ κ[[x,y]] is
ρ-quasidetermined where ρ = ω(F(0,y)). In fact, it is enough that it is k-quasidetermined
for some k ≥ 1. The reason for our assumption is that under such hypotheses the proof has a
simpler presentation and all the cases towhichwe applyTheorem5.5(ii) to proveTheorem5.9
are included. However, the alternative formulation provides further singularities to which we
can apply the previous remark, see Examples 2.6(iii)-(vii).

(iii) In [40] Scheiderer gives a negative answer (if n ≥ 2) to the following question
raised by Sturmfels: Let f ∈ Q[x1, . . . ,xn] be a polynomial, which is a sum of squares in
R[x1, . . . ,xn]. Is f necessarily a sum of squares in Q[x1, . . . ,xn]?

We can formulate a similar question for the rings A = κ[[x,y,z]]/(z2 − F) where
κ admits a unique ordering, τ(κ) < +∞ and F ∈ κ[[x,y]] satisfies the hypotheses of
Theorem 5.5(ii) (even the relaxed ones quoted in the previous remark). Let R be the real
closure of κ (endowed with its unique ordering) and B := R[[x,y,z]]/(z2 − F). By
Lemma 2.7, an adapted version of Lemma 2.12 and [1, Prop.VII.5.1] one deduces that
P(A) = P(B) ∩ A. Let f + zg ∈ A ∩ �B2 ⊂ A ∩P(B) = P(A). By Theorem 5.5(i) there
exists  ≥ 0 and f1 +zg1 ∈ P(A) such that f1(x, 0) 	= 0 and f + zg = y2( f1 + zg1). As
f + zg ∈ �B2, there exist ai , bi , q ∈ R[[x,y]] such that

y2( f1 + zg1) =
p∑

i=1

(ai + zbi )
2 − (z2 − F)q, (5.20)

y2 f1 =
p∑

i=1

a2i + F
p∑

i=1

b2i , (5.21)

y2g1 = 2
p∑

i=1

aibi . (5.22)

Observe that q = ∑p
i=1 b

2
i . If  ≥ 1, we set y = 0 in (5.21) and deduce

0 =
p∑

i=1

a2i (x, 0) + x3
p∑

i=1

b2i (x, 0),
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so ai (x, 0) = 0 and bi (x, 0) = 0 for each i . There exist a′
i , b

′
i , q

′ ∈ R[[x,y]] satisfying
ai = ya′

i , bi = yb′
i and q = ∑p

i=1 b
2
i = y2q ′. This means that we can divide (5.20) by y2.

Proceeding recursively we conclude f1 + zg1 ∈ A ∩ �B2. Thus, either f1 + zg1 is a unit
in A and f1 + zg1 ∈ �A2 (see the beginning of the proof of Theorem 5.9) or there exist
series ci , di ∈ R[[x]] such that f1(x, 0) = ∑p

i=1 c
2
i + x3 ∑p

i=1 d
2
i (set y = 0,z = 0 in a

representation of f1 +zg1 as a sum of squares in B). Consequently, ω( f1(x, 0)) ≥ 2 and by
Theorem 5.5(ii) f1 +zg1 ∈ �A2, so f +zg ∈ �A2. Thus, the answer to the corresponding
Sturmfels question for this family of rings is positive!

6 Applications: Principal saturated preorderings of low order

In this section we generalize some results of [38,39] concerning the characterization of the
principal saturated preorderings T := PO(F) := {s1 + s2F : s1, s2 ∈ �A2} of low order in
a 2-dimensional excellent henselian regular local ring (A,m) whose residue field κ := A/m

is (formally) real and has τ(κ) < +∞. If we denote X(T ) := {α ∈ Sper(A) : f ≥α

0 ∀ f ∈ T }, the saturation of T is Sat(T ) := { f ∈ A : f ≥α 0 ∀α ∈ X(T )}. As one
can expect, T is saturated if T = Sat(T ). If F ∈ A\m2, then T is always saturated [37,
Lem.3.1], so we focus our attention on elements F ∈ m2. A general strategy in [38,39] to
prove that a principal preordering T := PO(F) of κ[[x,y]] is saturated is to consider the
extended ring B := κ[[x,y,z]]/(z2−F) and to observe that Sat(T ) = P({F ≥ 0}) ⊂ P(B)

(Corollary 3.5). If f ∈ Sat(T ) and P(B) = �B2, then there exist ai , bi , q ∈ κ[[x,y]] for
i = 1, . . . , p such that

f =
p∑

i=1

(ai + biz)2 − (z2 − F)q � f =
p∑

i=1

a2i + F
p∑

i=1

b2i ∈ T .

The previous implication is used in the sketches of proofs of the following results.

Corollary 6.1 (Order two) Let (A,m) be an excellent henselian regular local ring of dimen-
sion 2 such that its residue field κ := A/m admits a unique ordering and has τ(κ) < +∞.
Let F ∈ m2\m3 and T be the principal preordering of A generated by F. Then T is saturated
in A if and only if there exists c ∈ κ\0 such that c2F is right equivalent in Â ∼= κ[[x,y]] to
one of the following series:

(i) ax2 + by2k such that a > 0, b 	= 0 and k ≥ 1,
(ii) ax2 + y2k+1 where a > 0 and k ≥ 1,
(iii) ax2 where a > 0.

Sketch of proof The result follows straightforwardly from Corollary 1.11, the proof of The-
orem 3.7 and Theorem 5.4. A key fact for our purposes is that in the proof of Theorem 3.7
if the difference P(A)\�A2 	= ∅, then P({F ≥ 0})\�A2 	= ∅. As a guideline, the reader
can have a look at [38, Sect. 5.7]. ��

In the case of order 3 the result is even more satisfactory, because we do not need to
impose that κ admits a unique ordering, but only that κ is a (formally) real field.

Corollary 6.2 (Order three) Let (A,m) be an excellent henselian regular local ring of dimen-
sion 2 such that its residue field κ := A/m is a (formally) real field and has τ(κ) < +∞. Let
F ∈ m3\m4 and T be the principal preordering of A generated by F. Then T is saturated
in A if and only if there exists c ∈ κ\0 such that c2F is right equivalent in Â ∼= κ[[x,y]] to
one of the following series:
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(iv) x2y + (−1)kayk where a > 0 and k ≥ 3,
(v) x2y,
(vi) x3 + axy2 + by3 irreducible,
(vii) x3 + ay4 where a > 0,
(viii) x3 + xy3,
(ix) x3 + y5.

Sketch of proof The result follows straightforwardly from Corollary 1.11, the proof of The-
orem 3.8 and Theorem 5.9. A key fact for our purposes is that in the proof of Theorem 3.8 if
the difference P(A)\�A2 	= ∅, then P({F ≥ 0})\�A2 	= ∅. As a guideline the reader can
have a look at [39, Sect. 6.5]. ��

In [39, Rem.6.8] Scheiderer explains that going beyond order three seems difficult because
we do not even know whether the saturatedness of PO(F) depends only on the pair ( Â, F).
In [39, Thm.6.3 and Thm.6.6] Scheiderer extends the analogous results to Corollaries 6.1 and
6.2 when κ is a real closed field to the setting of excellent regular local rings of dimension
2, that is, he erases the ‘henselian condition’. The strategy proposed there uses strongly
the fact that the residue field is real closed. It seems to us that the extension of our results
(Corollaries 6.1 and 6.2 ) to the setting of an excellent regular local ring of dimension 2 when
the residue field κ is (formally) real and has τ(κ) < +∞ needs a new strategy, even if we
impose that κ admits a unique ordering.
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Appendix A. Examples

We revisit case (3.vi) of Theorem 1.8. Recall that κ is a (formally) real field such that
τ(κ) < +∞. We follow similar ideas to those proposed in Lemma 5.3.
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Example A.1 We prove alternatively the property P(A) = �A2 for the ring

A := κ[[x,y,z]]/(z2 − F)

where F := x3 + axy2 + by3 is an irreducible polynomial in κ[x,y] under the additional
assumption −a,−4a3 − 27b2 ∈ �κ2\{0}.

A Sturm’s sequence for the polynomial F(x, 1) is

{
F(x, 1), 3x2 + a,−2ax − 3b,−4a3 − 27b2 if a 	= 0,
F(x, 1),x2,−b if a = 0.

As F is irreducible, −4a3 − 27b2, b 	= 0. If −a,−4a3 − 27b2 ∈ �κ2\{0}, then F has
three roots in each real closure of κ endowed with the corresponding ordering (use Sturm’s
Theorem [3, Cor.1.2.10]). Let ζ1, ζ2, ζ3 ∈ κ be the roots of F(x, 1) in the algebraic closure
κ of κ . For each α ∈ Sper(κ) let us denote the real closure of (κ,≤α) with R(α). By Sturm’s
Theorem [3, Cor.1.2.10] ζ1, ζ2, ζ3 ∈ R(α) for each α ∈ Sper(κ). Consider the extension
κ(ζ1)|κ and the polynomial

P(x,y) := (x − ζ2y)(x − ζ3y) = x2 − (ζ2 + ζ3)xy + ζ2ζ3y
2

∈ κ(ζ1)[x,y] � ζ2 + ζ3, ζ2ζ3 ∈ κ(ζ1).

We claim: (ζ2 − ζ3)
2 ∈ �κ(ζ1)

2.
Observe that (ζ2 − ζ3)

2 = (ζ2 + ζ3)
2 − 4ζ2ζ3 ∈ κ(ζ1) ⊂ R(α) for each α ∈ Sper(κ).

Thus, (ζ2 − ζ3)
2 is positive in all the orderings of the field κ(ζ1), so (ζ2 − ζ3)

2 ∈ �κ(ζ1)
2.

Denote u := x − ζ1y, c := ζ1 − ζ2, d := ζ1 − ζ3, v := y + ( 1
2c + 1

2d )u. We have

cd = (ζ1 − ζ2)(ζ1 − ζ3) = P(ζ1, 1) ∈ κ(ζ1),

1

2c
+ 1

2d
= c + d

2cd
= 2ζ1 − ζ2 − ζ3

2P(ζ1, 1)
= 3ζ1

2P(ζ1, 1)
∈ κ(ζ1),

( 1

2c
− 1

2d

)2 =
(d − c

2cd

)2 = (ζ2 − ζ3)
2

4P2(ζ1, 1)
∈ �κ(ζ1)

2.

Note that u,v ∈ κ(ζ1)[x,y] and

F = (x − ζ1y)(x − ζ2y)(x − ζ3y) = u(u + (ζ1 − ζ2)y)(u + (ζ1 − ζ3)y)

= u(u + cy)(u + dy) = cdu
(
y + 1

c
u
)(

y + 1

d
u
)

= cdu
((

y +
( 1

2c
+ 1

2d

)
u
)

+
( 1

2c
− 1

2d

)
u
)((

y +
( 1

2c
+ 1

2d

)
u
)

−
( 1

2c
− 1

2d

)
u
)

= cdu(v2 − θ2u2) ∈ κ(ζ1)[u,v]

where θ := 1
2c − 1

2d and θ2 ∈ �κ(ζ1)
2. Using the additional change of coordinates

(u,v,z) �→ (cdu, cdv, (cd)2z), we deduce

A ↪→ B := κ(ζ1)[[x,y,z]]/(z2 − F) ∼= B ′ := κ(ζ1)[[u,v,z]]/(z2 − u(v2 − θ2u2)).
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By Theorem 1.8 P(B ′) = �B ′2, so P(A) ⊂ P(B) = �B2. If ψ ∈ P(A), there exist
ai , bi , ci , d j ∈ κ[[x,y,z]] satisfying

ψ =
p∑

i=1

(ai + ζ1bi + ζ 2
1 ci )

2 + (d1 + ζ1d2 + ζ 2
1 d3)(z

2 − F)

=
p∑

i=1

(a2i + ζ 2
1 b

2
i + ζ 4

1 c
2
i + 2aibiζ1 + 2ai ciζ

2
1 + 2bi ciζ

3
1 )

+ (d1 + ζ1d2 + ζ 2
1 d3)(z

2 − F).

Let σ j : κ(ζ1) → κ(ζ j ) be the κ-isomorphism such that σ j (ζ1) = ζ j . We apply σ j to the
previous equality and obtain

ψ =
p∑

i=1

(a2i + ζ 2
j b

2
i + ζ 4

j c
2
i + 2aibiζ j + 2ai ciζ

2
j + 2bi ciζ

3
j )

+(d1 + ζ j d2 + ζ 2
j d3)(z

2 − F)

for j = 2, 3. We add the three equations:

3ψ =
p∑

i=1

(3a2i + (ζ 2
1 + ζ 2

2 + ζ 2
3 )b2i + (ζ 4

1 + ζ 4
2 + ζ 4

3 )c2i

+2aibi (ζ1 + ζ2 + ζ3) + 2ai ci (ζ
2
1 + ζ 2

2 + ζ 2
3 ) + 2bi ci (ζ

3
1 + ζ 3

2 + ζ 3
3 ))

+(3d1 + (ζ1 + ζ2 + ζ3)d2 + (ζ 2
1 + ζ 2

2 + ζ 2
3 )d3)(z

2 − F). (A.1)

After elementary computations, we obtain

ζ1 + ζ2 + ζ3 = 0,

ζ 2
1 + ζ 2

2 + ζ 2
3 = −2a,

ζ 3
1 + ζ 3

2 + ζ 3
3 = −3b,

ζ 4
1 + ζ 4

2 + ζ 4
3 = 2a2.

We substitute these values in (A.1) and deduce

3ψ =
p∑

i=1

(3a2i − 2ab2i + 2a2c2i − 4aai ci − 6bbi ci ) + (3d1 − 2ad3)(z
2 − F)

=
p∑

i=1

(
3
(
a2i − 2a

3
ci

)2 − 2a
(
bi + 3b

2a
ci

)2 + 6

36a2
(−a)(−4a3 − 27b2)c2i

)

+ (3d1 − 2ad3)(z
2 − F).

As −a,−4a3 − 27b2 ∈ �κ2, we conclude (after multiplying the previous equation by 3
9 )

that ψ ∈ �A2, so P(A) = �A2, as required.

In the following, we approach an example of a different nature. We prove P(A) = �2A2

for the case (3.iii) of the list of Theorem 1.5 in a more general situation than the one we are
able to solve in Theorem 5.4 (we do not require that the coefficient a ∈ �κ2). The proof
is inspired by some constructions of Ruiz developed in [34, Sect. 3, pages 6–7] related to
Whitney’s umbrella singularity.
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Example A.2 Let κ be a (formally) real field with τ(κ) = 1 and A := κ((t))[[x,y,z]]/(z2−
ψx2) where ψ ∈ κ((t)) is a series of odd order. Then P(A) = �A2.

Proof As ψ has odd order, there exists a series ζ ∈ κ((t)) such that ψ = tζ 2. After the
change of coordinates (x,y,z) �→ ( 1

ζ
x,y,z)weassume A = κ((t))[[x,y,z]]/(z2−tx2).

Now, consider the ring homomorphism

� : κ((t))[[x,y,z]] → κ((s))[[x,y]], f (t,x,y,z) �→ f (s2,x,y,sx).

The kernel of the previous homomorphism is the ideal generated by z2 − tx2. Thus, �

induces an inclusion � : A ↪→ κ((s))[[x,y]].
Let ϕ := f + zg ∈ P(A) and ψ := �(ϕ) = f (s2,x,y) + sxg(s2,x,y) ∈

P(κ((s))[[x,y]]). By (1.1) and Theorem 5.1 ψ is a sum of two squares in κ((s))[[x,y]],
that is, there exist a, b ∈ κ((s))[[x,y]] such that ψ = a2 + b2. To prove that ϕ ∈ �A2, it is
enough to show ψ ∈ �2�(A)2. We will find below a′, b′ ∈ �(A) such that 2ψ = a′2 + b′2.
Once this is done,

ψ = 2

4
(a′2 + b′2) =

(a′ + b′

2

)2 +
(a′ − b′

2

)2 ∈ �2�(A)2.

Each h ∈ κ((s))[[x,y]] can be written uniquely as h = h0 + sh1 where h0, h1 ∈
κ((s2))[[x,y]] and h ∈ �(A) if and only if x divides h1 or, equivalently, if h(s, 0,y) ∈
κ((s2))[[y]]. Thus, let us find a′, b′ ∈ κ((s))[[x,y]] such that 2ψ = a′2 + b′2 and
a′(s, 0,y), b′(s, 0,y) ∈ κ((s2))[[y]].

Write a := a0 + sa1 and b := b0 + sb1 where ai , bi ∈ κ((s2))[[x,y]]. Denote
Ai (s2,y) := ai (s2, 0,y) and Bi (s2,y) := bi (s2, 0,y). If we set x = 0, we get

ϕ(s2, 0,y, 0) = ψ(s, 0,y) = (A0 + sA1)
2 + (B0 + sB1)

2

= A2
0 + B2

0 + s2(A2
1 + B2

1 ) + 2s(A0A1 + B0B1).

We deduce

• ϕ(s2, 0,y, 0) = A2
0(s

2,y) + B2
0 (s

2,y) + s2(A2
1(s

2,y) + B2
1 (s

2,y)).
• A0A1 + B0B1 = 0.

If u, v ∈ κ((s))[[x,y]], we have
(u2 + v2)(a2 + b2) = (ua − vb)2 + (va + ub)2.

Let us find u(s,y), v(s,y) ∈ κ((s))[[y]] such that

ua − vb, va + ub ∈ �(A), u2 + v2 ∈ κ((s2))[[y]] ⊂ �(A),

(u2 + v2)(s2, 0) ∈ κ[[s2]], (u2 + v2)(0, 0) = k

where k is either 1 or 2. The latter condition implies that u2 + v2 is a unit of κ((s2))[[y]]
and

w :=
√
u2 + v2

k
∈ κ((s2))[[y]].

Write u =: u0 + su1 and v := v0 + sv1, where ui , vi ∈ κ((s2))[[y]]. It holds
ua − vb = (u0a0 + s2u1a1 − v0b0 − s2v1b1) + s(u0a1 + u1a0 − v0b1 − v1b0),

va + ub = (v0a0 + s2v1a1 + u0b0 + s2u1b1) + s(v0a1 + v1a0 + u0b1 + u1b0).
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Recall that ua − vb, va + ub ∈ A if and only if
{
u0A1 + u1A0 − v0B1 − v1B0 = (u0a1 + u1a0 − v0b1 − v1b0)(s, 0,y) = 0,

v0A1 + v1A0 + u0B1 + u1B0 = (v0a1 + v1a0 + u0b1 + u1b0)(s, 0,y) = 0.

Let us write the equalities above as the system of linear equations
{
A0u1 − B0v1 = −A1u0 + B1v0,

B0u1 + A0v1 = −B1u0 − A1v0.

Using that A0A1 + B0B1 = 0

(A2
0 + B2

0 )

(
u1
v1

)
=

(−(A0A1 + B0B1) A0B1 − A1B0

−(A0B1 − A1B0) −(A0A1 + B0B1)

)(
u0
v0

)

=
(

0 A0B1 − A1B0

−(A0B1 − A1B0) 0

)(
u0
v0

)
. (A.2)

As ϕ ∈ P(A), also

ϕ(t, 0,y, 0) = A2
0(t,y) + B2

0 (t,y) + t(A2
1(t,y) + B2

1 (t,y)) ∈ P(κ((t))[y]).(A.3)
If A2

0+B2
0 = 0, thenϕ(t, 0,y, 0) = t(A2

1(t,y)+B2
1 (t,y)) ∈ P(κ((t))[[y]]), so A1, B1 =

0. If we take u = 1, v = 0, we choose a′ := a, b′ := b, which are both elements of �(A),
so ψ = a2 + b2 ∈ �2�(A)

2
and ϕ ∈ �2A2.

Suppose next A2
0 + B2

0 	= 0. As A0A1 + B0B1 = 0, we have

A0B1 − A1B0 = B1

A0
(A2

0 + B2
0 ) = − A1

B0
(A2

0 + B2
0 )

(whenever the previous expressions make sense, that is, A0 	= 0 or B0 	= 0). Denote λ :=
B1
A0

= − A1
B0

∈ κ((s2))((y)) and rewrite (A.2) as

(A2
0 + B2

0 )

(
u1
v1

)
=

(
0 λ(A2

0 + B2
0 )−λ(A2

0 + B2
0 ) 0

)(
u0
v0

)

= (A2
0 + B2

0 )

(
0 λ

−λ 0

)(
u0
v0

)
.

Consequently, u1 = λv0, v1 = −λu0. We claim: λ ∈ κ((s2))[[y]] and λ(s2, 0) ∈ κ[[s2]].
Denote the order of a series with respect to the variable ywith ωy(.). By (A.3) we deduce

ωy(A
2
0(t,y) + B2

0 (t,y)) ≤ ωy(A
2
1(t,y) + B2

1 (t,y)).

We distinguish two cases:
(1) If ωy(A2

0(t,y) + B2
0 (t,y)) < ωy(A2

1(t,y) + B2
1 (t,y)), then ωy(A0(t,y)) <

ωy(B1(t,y)) or ωy(B0(t,y)) < ωy(A1(t,y)). Consequently,

ωy(λ) = ωy

( B1

A0

)
= ωy

(
− A1

B0

)
> 0,

so λ ∈ κ((s2))[[y]] and λ(s2, 0) = 0 ∈ κ[[s2]].
(2) If ωy(A2

0(t,y) + B2
0 (t,y)) = ωy(A2

1(t,y) + B2
1 (t,y)) = 2r , then ωy(λ) ≥ 0. If

ωy(λ) > 0, we have λ ∈ κ((s2))[[y]] and λ(s2, 0) = 0 ∈ κ[[s2]], so we assumeωy(λ) = 0,
hence λ ∈ κ((s2))[[y]]. By (A.3)

ϕ(t, 0, 0, 0) = (A2
0(t, 0) + B2

0 (t, 0)) + t(A2
1(t, 0) + B2

1 (t, 0)) ∈ P(κ((t))),
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soω(A2
0(t, 0)+B2

0 (t, 0)) ≤ ω(A2
1(t, 0)+B2

1 (t, 0)). Thus,ω(λ(s2, 0)) ≥ 0 andλ(s2, 0) ∈
κ[[s2]].

If we take u0 = v0 = 1, we obtain u1 = λ(s2,y) and v1 = −λ(s2,y), so

u := 1 − sλ(s2,y) and v := 1 + sλ(s2,y).

Note that u2+v2 = 2+2s2λ(s2,y)2 ∈ κ((s2))[[y]], (u2+v2)(s2, 0) = 2+2s2λ(s2, 0) ∈
κ[[s2]] and (u2 + v2)(0, 0) = 2. Define

a′ := au − bv

w
∈ �(A) and b′ := av + bu

w
∈ �(A)

where w :=
√

u2+v2

2 ∈ κ((s2))[[y]]. We obtain

a′2 + b′2 = (au − bv)2 + (av + bu)2

w2 = 2(a2 + b2)(u2 + v2)

u2 + v2
= 2(a2 + b2) = 2ψ,

as required. ��

Appendix B. Finite determinacy

The purpose of this appendix is to present an elementary explicit proof of Theorem 2.5 (see
also [11,22]). Beforehand, we need some preliminary results:

Example B.1 Let A be a ring containing Q and let u ∈ A[[t]]. Then for each a ∈ A the
differential equation dy

dt = uy has a unique solution y ∈ A[[t]] such that y(0) = a.
We write u := ∑

j≥0 u jt j and y := ∑
≥0 yt. In order to obtain a solution of the

differential equation dy
dt = uy such that y(0) = a, it is enough to find a solution (yk)k≥0 of

the recursive family of equations:
{
y0 = a,

yk = 1
k

∑
j+=k−1 u jy ∈ Q[u0, . . . ,uk−1,y0,y1, . . . ,yk−1] for k ≥ 1.

(B.1)

Proceeding by induction one can check that for each k ≥ 1 there exists a polynomial Fk ∈
Q[u0, . . . ,uk−1,y0] such that (yk)k≥0 is a solution of the family of equations (B.1) if and
only if yk = Fk(u0, . . . , uk−1, a) for each k ≥ 1. Thus, for each a ∈ A there exists a unique
solution y ∈ A[[t]] of the previous differential equation such that y(0) = y0 = a. ��

In the same way we reach the following result.

Lemma B.2 Let A be a ring containing Q and denote x := (x1, . . . ,xn). Let a10, . . . , an0 ∈
A[[x]] and b1, . . . , bn ∈ A[[x,t]] be such that ai0(0) = 0 and bi (0, 0) = 0 for i = 1, . . . , n.
Then there exist unique series φ1, . . . , φn ∈ A[[x1, . . . ,xn,t]] such that

∂φi

∂t
= bi (φ1, . . . , φn,t) (B.2)

and φi (x, 0) = ai0 for i = 1, . . . , n.

Proof Write φi := ∑
k≥0 aikt

k and ∂φi
∂t = ∑

k≥1 kaikt
k−1 where the aik are undetermined

for i = 1, . . . , n and k ≥ 1. Observe that φ1, . . . , φn satisfy the equalities (B.2) if and only
if

aik = 1

k!
∂kφi

∂tk
(0) = 1

k!
∂k−1

∂tk−1

(∂φi

∂t

)
(0) = 1

k!
∂k−1

∂tk−1 (bi (φ1, . . . , φn,t))(0).
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Denote ν := (ν1, . . . , νn) ∈ N
n and μ ∈ N. Using the chain rule recursively, we find

polynomials

Pi,k−1 ∈ Q[zν,μ,y j : 0 ≤ |ν| + μ ≤ k − 1, 0 ≤  ≤ k − 1, 1 ≤ j ≤ n]
such that

∂k−1

∂tk−1 bi (φ1, . . . , φn,t) = Pi,k−1

(∂ |ν|+μbi
∂xν∂tμ

(φ1, . . . , φn,t),
∂φ j

∂t

)

where 0 ≤ |ν| + μ ≤ k − 1, 0 ≤  ≤ k − 1, 1 ≤ j ≤ n and zν,μ,y j are variables.
Consequently,

aik = 1

k! Pi,k−1

(∂ |ν|+μbi
∂xν∂tμ

(a10, . . . , an0, 0), a j

)
.

We find recursively polynomials

Qi,k ∈ Q[zν,μ,y j : 0 ≤ |ν| + μ ≤ k − 1, 1 ≤ j ≤ n]
such that

aik = Qi,k

(∂ |ν|+μbi
∂xν∂tμ

(a10, . . . , an0, 0), a j0

)

where 0 ≤ |ν| + μ ≤ k − 1 and 1 ≤ j ≤ n. Thus, each aik is completely determined by
b1, . . . , bn and a10, . . . , an0 ∈ A. This means that Eq. (B.2) has a unique solution φ1, . . . , φn

such that φi (x, 0) = ai0 for i = 1, . . . , n. ��

Lemma B.3 Let F ∈ κ[[x,y]] where x := (x1, . . . ,xn), y := (y1, . . . ,ym) and let c ≥ 0
be an integer. The following conditions are equivalent:

(1) ∂F
∂y j

∈ (x)c( ∂F
∂x1

, . . . , ∂F
∂xn

) + (F) for each j = 1, . . . ,m.

(2) There exist ϕ1, . . . , ϕn, u ∈ κ[[x,y]] such that:

• u(x, 0) = 1,
• ϕi (x, 0) = xi ,
• ϕi − xi ∈ (x)cκ[[x,y]],
• F(x,y) = uF(ϕ, 0) where ϕ := (ϕ1, . . . , ϕn).

If in addition ∂F
∂y j

∈ (x)c( ∂F
∂x1

, . . . , ∂F
∂xn

) for j = 1, . . . ,m, we can choose u = 1.

Proof of the implication (2) �⇒ (1)
As ϕi (x, 0) = xi , the homomorphism

� : κ[[x,y]] → κ[[x,y]], f �→ f (ϕ,y)

is by the Inverse Function Theorem an automorphism of κ[[x,y]]. Letψ := (ψ1, . . . , ψn) ∈
κ[[x,y]]n be such that

� : κ[[x,y]] → κ[[x,y]], g �→ g(ψ,y)

is the inverse automorphismof�. Asxi−ϕi ∈ (x)cκ[[x,y]], it holdsψi−xi = �(xi−ϕi ) ∈
(x)cκ[[x,y]], so ∂ψi

∂y j
∈ (x)cκ[[x,y]].
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ByhypothesisuF(ϕ, 0) = F(x,y) and applying�,weobtain F(x, 0) = u−1(ψ,y)F(ψ,y)

(resp. F(x, 0) = F(ψ,y) if u = 1). The derivative of the series u−1(ψ,y)F(ψ,y) with
respect to y j is zero for j = 1, . . . ,m, that is,

u−1(ψ,y)
( n∑

i=1

∂F

∂xi
(ψ,y)

∂ψi

∂y j
+ ∂F

∂y j
(ψ,y)

)
+ ∂

∂y j
(u−1(ψ,y))F(ψ,y) = 0.

We apply the automorphism � to the previous equality and obtain

u−1
( ∂F

∂y j
+

n∑
i=1

∂F

∂xi

∂ψi

∂y j
(ϕ,y)

)
+ ∂

∂y j
(u−1(ψ,y))(ϕ,y)F = 0.

Thus, ∂F
∂y j

∈ (x)c( ∂F
∂x1

, . . . , ∂F
∂xn

) + (F) (resp. ∂F
∂y j

∈ (x)c( ∂F
∂x1

, . . . , ∂F
∂xn

) if u = 1), as
required. ��
Proof of the implication (1) �⇒ (2)

Write y(k) := (y1, . . . ,yk). Assume that we have series ψ1, . . . , ψn ∈ κ[[x,y]] such
that

(1) ψi (x,y(k), 0) = xi for i = 1, . . . , n,
(2) ψi − xi ∈ (x)cκ[[x,y]] for i = 1, . . . , n.

We rewrite the previous conditions as follows

(1) ψi = xi + ∑m
=k+1 aiy where ai ∈ κ[[x,y]] for i = 1, . . . , n,

(2) ψi − xi = ∑
ν,|ν|=c x

νbν,i ∈ (x)cκ[[x,y]] where bν,i ∈ κ[[x,y]] for i = 1, . . . , n.

[B.i]. Define G := F(ψ,y(k), 0). We claim: ∂G
∂y j

∈ (x)c( ∂G
∂x1

, . . . , ∂G
∂xn

) + (G) for each

j = 1, . . . ,m. In addition, if ∂F
∂y j

∈ (x)c( ∂F
∂x1

, . . . , ∂F
∂xn

), then ∂G
∂y j

∈ (x)c( ∂G
∂x1

, . . . , ∂G
∂xn

).
Observe that

∂G

∂xp
=

n∑
i=1

∂F

∂xi
(ψ,y(k), 0)

∂ψi

∂xp
,

∂G

∂y j
=

n∑
i=1

∂F

∂xi
(ψ,y(k), 0)

∂ψi

∂y j
+

{
∂F
∂y j

(ψ,y(k), 0) if j = 1, . . . , k,

0 if j = k + 1, . . . ,m.

In addition,

∂ψi

∂xp
= δi p +

m∑
=k+1

∂ai
∂xp

y,

∂ψi

∂y j
=

∑
ν,|ν|=c

xν ∂bν,i

∂y j
∈ (x)cκ[[x,y]],

where δi p is the Kronecker-δ. As G := F(ψ,y(k), 0), we get

∂G

∂y j
∈ (x)c

( ∂F

∂x1
(ψ,y(k), 0), . . . ,

∂F

∂xn
(ψ,y(k), 0)

)
+ (G).

In the additional case we can erase the addend (G) above. Thus, for our purposes it is enough
to check

( ∂F

∂x1
(ψ,y(k), 0), . . . ,

∂F

∂xn
(ψ,y(k), 0)

)
=

( ∂G

∂x1
, . . . ,

∂G

∂xn

)
.
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But this follows from the fact that

det
( ∂ψi

∂xp

)
= det

(
δi p +

m∑
=k+1

∂ai
∂xp

y

)
∈ κ[[x,y]]

is a unit (set yk+1 = 0, . . . ,ym = 0 to check this).
[B.ii]. Let φ1, . . . , φn ∈ κ[[x,y]] be such that

(1) φi (x,y(k−1), 0) = xi for i = 1, . . . , n,
(2) φi − xi ∈ (x)cκ[[x,y]] for i = 1, . . . , n.

Denote φ := (φ1, . . . , φn) and ψ ′
i := ψi (φ,y). It is straightforward to check:

(1) ψ ′
i (x,y(k−1), 0) = ψi (φ(x,y(k−1), 0),y(k−1), 0) = xi for i = 1, . . . , n,

(2) ψ ′
i − xi = ψi (φ,y) − xi ∈ (x)cκ[[x,y]] for i = 1, . . . , n.

[B.iii]. Recall that y(m−1) := (y1, . . . ,ym−1). We claim: There exist u, φ1, . . . , φn ∈
κ[[x,y]] such that
• u = 1 if ∂F

∂y j
∈ (x)c( ∂F

∂x1
, . . . , ∂F

∂xn
) for j = 1, . . . ,m,

• u(x,y(m−1), 0) = 1,
• φi (x,y(m−1), 0) = xi for i = 1, . . . , n,
• φi − xi ∈ (x)cκ[[x,y]] for i = 1, . . . , n,
• F(φ,y(m−1), 0) = uF(x,y) where φ := (φ1, . . . , φm).

Let ξ1, . . . , ξn ∈ (x)cκ[[x,y]] and ζ ∈ κ[[x,y]] be such that

∂F

∂ym
= −ζ F +

n∑
i=1

ξi
∂F

∂xi
(B.3)

(the case ζ = 0 is included). Consider the formal differential system of equations

∂�i

∂t
= ξi (�1, . . . , �n,y(m−1),ym − t),

and �i (x,y, 0) = xi for i = 1, . . . , n. By Lemma B.2 the previous formal differential
system has a unique solution �1, . . . , �n ∈ κ[[x,y,t]]. As ξi ∈ (x)cκ[[x,y]], we deduce

∂�i

∂t
∈ (x)cκ[[x,y,t]].

Write ∂�i
∂t = ∑

k≥0 aikt
k with aik ∈ κ[[x,y]]. We have ai0 = xi and

aik = 1

k!
∂k+1�i

∂tk+1 (0) ∈ (x)cκ[[x,y]]
for each k ≥ 1. Consequently, �i − xi ∈ (x)cκ[[x,y,t]] for i = 1, . . . , n.

If � := (�1, . . . , �n), we deduce by the chain rule and (B.3)

∂F(�,y(m−1),ym − t)

∂t
=

n∑
i=1

∂F

∂xi
(�,y(m−1),ym − t)

∂�i

∂t
− ∂F

∂ym
(�,y(m−1),ym − t)

=
n∑

i=1

( ∂F

∂xi
ξi

)
(�,y(m−1),ym − t) − ∂F

∂ym
(�,y(m−1),ym − t)

= (ζ F)(�,y(m−1),ym − t). (B.4)
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By Example B.1 there exists a series U ∈ κ[[x,y]][[t]] such that
∂U

∂t
= ζ(�,y(m−1),ym − t)U (B.5)

and U (0) = 1 (note that U = 1 if ζ = 0).
By (B.4) and (B.5) both UF(x,y) and F(�,y(m−1),ym − t) are solutions of the differ-

ential equation

∂z

∂t
= ζ(�,y(m−1),ym − t)z and z(0) = F(x,y).

By Example B.1

F(�,y(m−1),ym − t) = UF(x,y). (B.6)

Substitute t = ym and define
{

φi := �(x,y,ym),

u := U (x,y,ym).

We have:

• u = 1 if ∂F
∂y j

∈ (x)c( ∂F
∂x1

, . . . , ∂F
∂xn

) for j = m because in this case ζ = 0,
• u(x,y(m−1), 0) = 1 because U (x,y, 0) = 1,
• φi (x,y(m−1), 0) = �i (x,y, 0) = xi ,
• φi − xi ∈ (x)cκ[[x,y]] because �i − xi ∈ (x)cκ[[x,y,t]],
• F(φ,y(m−1), 0) = F(�(x,y,ym),y(m−1), 0) = U (x,y,ym)F(x,y) = uF(x,y).

[B.iv]. Let us show how we can construct the series φ1, . . . , φn ∈ κ[[x,y]] recursively
using [B.i], [B.ii] and [B.iii] . For k = m we take u(m) := 1 andψ

(m)
i := xi for i = 1, . . . , n.

Assume there exist u(k), ψ(k) := (ψ
(k)
1 , . . . , ψ

(k)
n ) ∈ κ[[x,y]] such that

• u(k) = 1 if ∂F
∂y j

∈ (x)c( ∂F
∂x1

, . . . , ∂F
∂xn

) for j = 1, . . . ,m,

• u(k)(x,y(k), 0) = 1,

• ψ
(k)
i (x,y(k), 0) = xi for i = 1, . . . , n,

• ψ
(k)
i − xi ∈ (x)cκ[[x,y]] for i = 1, . . . , n,

• F(ψ(k),y(k), 0) = u(k)F(x,y).

Denote G := F(ψ(k),y(k), 0) ∈ κ[[x,y]] and y′ := (yk+1, . . . ,ym). By [B.iii] there
exist u, φ := (φ1, . . . , φn) ∈ κ[[x,y]] such that
• u = 1 if ∂G

∂y j
∈ (x)c( ∂G

∂x1
, . . . , ∂G

∂xn
) for j = 1, . . . ,m,

• u(x,y(k−1), 0,y′) = 1,
• φi (x,y(k−1), 0,y′) = xi for i = 1, . . . , n,
• φi − xi ∈ (x)cκ[[x,y]] for i = 1, . . . , n,
• G(φ,y(k−1), 0,y′) = uG(x,y).

Observe that

F(ψ(k)(φ,y(k−1), 0,y
′)),y(k−1), 0) = G(φ,y(k−1), 0,y

′)
= uG(x,y) = uF(ψ(k),y(k), 0) = uu(k)F(x,y).

If we take u(k−1) := uu(k) and ϕ(k−1) := (ϕ
(k−1)
1 , . . . , ϕ

(k−1)
n ) := ψ(k)(φ,y(k−1), 0,y′)),

the reader can check using [B.i] and [B.ii] that u(k−1), ϕ
(k−1)
1 , . . . , ϕ

(k−1)
n satisfy the desired
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properties in this step. The series in the statementu, ϕ1, . . . , ϕn ∈ κ[[x1, . . . ,xn]] correspond
to the final step k = 0 when we have got rid of all the variables y1, . . . ,ym , as required. ��

Now we are ready to prove Theorem 2.5.

Proof of the Theorem 2.5 We approach the case mk ⊂ mJ ( f ) + ( f ) (and we indicate in
the precise points the differences to the case mk ⊂ mJ ( f )). Let us prove that f is k-
quasidetermined (resp. k-determined). Let g ∈ κ[[x]] be such that h := g − f ∈ mk+1.
Then there exist series h1, . . . , hn ∈ mk such that h = x1h1 + · · · + xnhn . We introduce
new variables y := (y1, . . . ,yn) and consider the series

F(x,y) := f +
n∑

i=1

(xi + yi )hi ∈ κ[[x,y]], (B.7)

which satisfies F(x, 0) = f + h = g. Denote the maximal ideal of κ[[x,y]] with n.
We claim: ∂F

∂y j
∈ m( ∂F

∂x1
, . . . , ∂F

∂xn
) + (F) (resp. ∂F

∂y j
∈ m( ∂F

∂x1
, . . . , ∂F

∂xn
)).

We differentiate F with respect to x j in (B.7) and obtain

∂F

∂x j
− ∂ f

∂x j
= h j +

n∑
i=1

(xi + yi )
∂hi
∂x j

∈ nmk−1. (B.8)

Consequently, by (B.7) and (B.8) we deduce

mJ ( f )κ[[x,y]] + ( f )κ[[x,y]] ⊂ mJ (F) + (F) + nmk

⊂ mJ (F) + (F) + n(mJ ( f )κ[[x,y]] + ( f )κ[[x,y]])
(resp. mJ ( f )κ[[x,y]] ⊂ mJ (F) + nmk ⊂ mJ (F) + n(mJ ( f )κ[[x,y]]) if mk ⊂ mJ ( f )).
By Nakayama’s Lemma (for inclusions) [4, Lem.6.13, p.25] we conclude

mJ ( f )κ[[x,y]] + ( f )κ[[x,y]] ⊂ mJ (F) + (F)

(resp. mJ ( f )κ[[x,y]] ⊂ mJ (F)). Thus,

∂F

∂y j
= h j ∈ mk ⊂ mJ ( f ) + ( f ) ⊂ mJ ( f )κ[[x,y]] + ( f )κ[[x,y]] ⊂ mJ (F) + (F)

(resp. ∂F
∂y j

= h j ∈ mJ (F)) for j = 1, . . . , n.
By Lemma B.3 there exist ϕ1, . . . , ϕn, u ∈ κ[[x,y]] such that

• u(x, 0) = 1,
• ϕi (x, 0) = xi ,
• ϕi − xi ∈ mκ[[x,y]],
• F(x,y) = uF(ϕ, 0), where ϕ = (ϕ1, . . . , ϕn).

In addition, if ∂F
∂y j

∈ m( ∂F
∂x1

, . . . , ∂F
∂xn

) for j = 1, . . . , n (that is, if mk ⊂ mJ ( f )), we can
choose u = 1. As ϕi (x, 0) = xi and ϕi − xi ∈ mκ[[x,y]], we write

ϕi = xi +
n∑

j,=1

x jyζ j(x,y)

where ζ j ∈ κ[[x,y]]. Thus, the map

� : κ[[x]] → κ[[x]], h �→ h(ϕ(x,−x))
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is an automorphism of κ[x]. We obtain

f = F(x,−x) = u(x,−x)F(ϕ(x,−x), 0)

= u(x,−x)( f + h)(ϕ(x,−x)) = u(x,−x)�( f + h) = u(x,−x)�(g),

where u = 1 ifmk ⊂ mJ ( f ). Thus, f is k-quasidetermined (resp. k-determined), as required.
��
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