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On the Krull dimension of rings of continuous

semialgebraic functions

José F. Fernando and José M. Gamboa

Abstract. Let R be a real closed field, S(M) the ring of continuous semi-
algebraic functions on a semialgebraic set M ⊂ Rm and S∗(M) its subring
of continuous semialgebraic functions that are bounded with respect to R.
In this work we introduce semialgebraic pseudo-compactifications of M
and the semialgebraic depth of a prime ideal p of S(M) in order to provide
an elementary proof of the finiteness of the Krull dimensions of the rings
S(M) and S∗(M) for an arbitrary semialgebraic set M . We are inspired
by the classical way to compute the dimension of the ring of polynomial
functions on a complex algebraic set without involving the sophisticated
machinery of real spectra. We show dim(S(M)) = dim(S∗(M)) = dim(M)
and prove that in both cases the height of a maximal ideal correspond-
ing to a point p ∈ M coincides with the local dimension of M at p. In
case p is a prime z-ideal of S(M), its semialgebraic depth coincides with
the transcendence degree of the real closed field qf(S(M)/p) over R.

1. Introduction

Let R be a real closed field. A subset M ⊂ Rm is semialgebraic if it has a de-
scription by a finite boolean combination of polynomial equations and inequalities,
which we will call a semialgebraic description. A map f : M → N is semialgebraic
if its graph is a semialgebraic set (in particular M and N are semialgebraic sets).
In case N = R, we say that f : M → R is a semialgebraic function. The sum
and product defined pointwise endow the set S(M) of continuous semialgebraic
functions on M with a natural structure of a unital commutative ring. It is obvi-
ous that the subset S∗(M) of continuous semialgebraic functions on M that are
bounded with respect to R is a real subalgebra of S(M).

In the following we denote either S(M) or S∗(M) by S�(M) if the involved
statements or arguments are valid for both rings simultaneously. For instance,
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if p ∈ M , we denote the maximal ideal of all functions in S�(M) vanishing at p
with m�

p. For each f ∈ S�(M) we denote its zero set with Z(f).

The rings S�(M) are particular cases of the so-called real closed rings intro-
duced by Schwartz [17] in the ’80s of the last century. The theory of real closed
rings has been deeply developed until now in a fruitful attempt to establish new
foundations for semialgebraic geometry with relevant interconnections with model
theory, see the results of Cherlin–Dickmann [6], [7], Schwartz [17], [18], [19], [20],
Schwartz with Prestel, Madden and Tressl [16], [22], [23] and Tressl [24], [25], [26].
This theory, which vastly generalizes the classical techniques concerning the semial-
gebraic spaces of Delfs–Knebusch [10], provides a powerful machinery to approach
problems about certain rings of real valued functions and contributes to achieve a
better understanding of the algebraic properties of such rings and the topological
properties of their spectra.

In this work we provide an elementary geometric proof of the fact that the
rings S�(M) have finite Krull dimension and that it is equal to the dimension
of M without involving the sophisticated machinery of real spectra.

Although they are neither Noetherian nor enjoy primary decomposition proper-
ties, these rings are closer to polynomial rings than to classical rings of continuous
functions. For example, the Lebesgue dimension of R is 1 (see Problem 16F in [15])
while the Krull dimension of the ring C(R) of real valued continuous functions on R

is infinite, see Problem 14I in [15].

In the polynomial context over an algebraically closed field C, Hilbert’s Nullstel-
lensatz assures that each radical ideal of C[x1, . . . , xm] is the ideal of all functions
vanishing identically on a certain algebraic subset of Cm. When handling chains
of prime ideals in rings of continuous semialgebraic functions, we are nearer to
the polynomial case over an algebraically closed field than to the polynomial case
having coefficients in a real closed field. This is why we follow similar guidelines to
those involved in the proof that the Krull dimension of a ring of polynomial func-
tions on an algebraic set Z ⊂ Cm coincides with the topological dimension of Z.
The key is the following: if P1 � P2 are two prime ideals of C[x], the dimension
of the zero set of P2 is strictly smaller than the one of P1 (see Lemma 2.2 for the
counterpart of this property in our setting). The dimension is the invariant that
bounds the number of possible jumps in a chain of prime ideals.

The common zero set Z(p) of the continuous semialgebraic functions in a prime
ideal p of S(M) is either empty or a point, so it makes no sense to work with its
dimension. We substitute it by the semialgebraic depth of p [11], that we define as

dM (p) := min{dim(Z(f)) : f ∈ p}.

Of course, in the real polynomial case the corresponding semialgebraic depth of a
prime ideal equals the dimension of the zero set of the ideal.

The main results proved in this article are stated next.

Theorem 1.1 (Dimension). The Krull dimensions of the rings S(M) and S∗(M)
coincide and are both equal to the topological dimension of M .
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Carral and Coste proved the equality dim(S(M)) = dim(M) for a locally closed
semialgebraic set M in [5] (see also [13], [19], and [21]) by proving that the real

spectrum of S(M) is homeomorphic to the constructible subset M̃ of the real
spectrum of the ring of polynomial functions on Rm associated to M (see Chapter 7
of [2] for the technicalities concerning the real spectrum). Gamboa–Ruiz extended
this equality to an arbitrary semialgebraic set in [14] using strong properties of the
real spectrum of excellent rings and some results of the theory of real closed rings
(see [19]).

As far as we know, the equality dim(S∗(M)) = dim(M) was unknown. The cru-
cial tool to approach the previous equality and to extend the results from the locally
closed case to the general case is the use of semialgebraic pseudo-compactifications
of M , which are studied in Section 3. One main property is the following: S∗(M)
is the direct limit of the rings S(X), where X runs over the semialgebraic pseudo-
compactifications of M (see 3.A.4).

Along this work we denote by ht(p) the height of a prime ideal p, and by qf(A)
the quotient field of the domain A.

Theorem 1.2 (Local dimension). Let p ∈ M and m�
p be the maximal ideal of S�(M)

associated to p. Then ht(m�
p) equals the local dimension d of M at p. Moreover,

there exists a chain of prime ideals p0 � · · · � pd := m�
p such that the transcen-

dence degree of the real closed field qf(S�(M)/pk) over R equals d − k. In case
S�(M) = S(M), the ideals pk can be chosen to be z-ideals.

An ideal a of S(M) is a z-ideal if given two continuous semialgebraic functions
f ∈ a and g ∈ S(M) such that Z(f) ⊂ Z(g) it holds that g ∈ a. Notice that each
z-ideal is a real ideal. It follows from Theorem 2.6.6 in [2] that if M is locally
closed, the z-ideals coincide with the radical ideals; in particular, all prime ideals
are z-ideals. Of course, this is no longer true if M is not locally closed. Even more,
it is proved in [12] that classical �Lojasiewicz’s inequality and Nullstellensatz for
S(M) hold if and only if M is locally closed. In [12] we present versions of such
results for S∗(M) when M is an arbitrary semialgebraic set.

In the algebraic case the transcendence degree of the quotient field of the ring of
polynomial functions on an irreducible algebraic set Z ⊂ Cm over an algebraically
real closed field C coincides with the dimension of Z (see Theorem 11.25 in [1]).
The counterpart in the semialgebraic setting is the following.

Theorem 1.3 (Transcendence degrees over R). Let p ⊂ S�(M) be a prime ideal.
Then,

(i) the transcendence degree of the real closed field qf(S�(M)/p) over R is finite
and upperly bounded by dim(M);

(ii) if p ⊂ S(M) is a prime z-ideal, dM (p) = tr degR(qf(S(M)/p)).

In the proof of this result semialgebraic pseudo-compactifications play again a
main role because for each prime ideal p of S�(M) there exists a ‘brimming’ semi-
algebraic pseudo-compactification X of M such that qf(S�(M)/p) = qf(S(X)/(p∩
S(X))) (see 3.A.7).
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The article is organized as follows. In Section 2 we provide elementary geomet-
ric proofs for the main results in this wok when M is locally closed. In Section 3
we develop the main properties concerning semialgebraic pseudo-compactifications
of M and show Theorem 1.3 as a byproduct. Finally, Theorems 1.1 and 1.2 are
proved in Section 4.

Acknowledgements. The authors are deeply indebted to the anonymous refer-
ees for their careful reading and comments that have substantially improved the
exposition and simplified the proof of Theorem 2.1 (iii) in a significant way. The
authors are also grateful to S. Schramm for a careful reading of the final version
and for the suggestions to refine its writing.

2. The locally closed case

In this section we provide an elementary geometric proof of the following com-
piling result for a locally closed semialgebraic set M using basically �Lojasiewicz’s
inequality and cell decomposition of semialgebraic sets. Recall that a cell is a semi-
algebraic subset of Rm, which is semialgebraically homeomorphic to a cube (0, 1)d.

Theorem 2.1. Let M ⊂ Rm be a locally closed semialgebraic set. Then:

(i) All prime ideals of S(M) are z-ideals.

(ii) For each prime ideal p of S(M), dM (p) + ht(p) ≤ dim(M). Thus,

dim(S(M)) ≤ dim(M).

(iii) For each prime ideal p of S(M) the field qf(S(M)/p) is real closed and

tr degR(qf(S(M)/p)) = dM (p).

Two crucial facts concerning S�(M) we will use in this work are the following:

• Every closed semialgebraic subset Z of M is the zero set Z(h) of a (bounded
with respect to R) continuous semialgebraic function h on M . Take, for
instance,

h := min{1, dist(·, Z)} ∈ S∗(M).

• The restriction homomorphism S�(M) → S�(Z), f �→ f |Z is surjective for
each closed semialgebraic subset Z of M (see Theorem 3, p. 48, in [9]).

The key to prove Theorem 2.1 (ii) is the following.

Lemma 2.2. Let p, q be two prime ideals of S(M) such that q � p, where q is a
z-ideal. Then dM (p) < dM (q).

Proof. Suppose by contradiction that there exist two prime ideals p, q ⊂ S(M)
such that q � p, where q is a z-ideal, and dM (p) = dM (q). Let g ∈ q be such that
dM (q) = dim(Z(g)). Choose f ∈ p \ q and define f ′ := f2 + g2. Clearly, f ′ ∈ p \ q
and

dim(Z(f ′)) ≤ dim(Z(g)) = dM (q) = dM (p) ≤ dim(Z(f ′));
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hence, dim(Z(f ′)) = dim(Z(g)). Denote T := Z(g) \ Z(f ′) and let h ∈ S(M) be
such that ClM (T ) = Z(h). We have

Z(g) = ClM (T ) ∪ Z(f ′) = Z(f ′h).

Since g ∈ q and q is a z-ideal, f ′h ∈ q. As q is prime and f ′ 	∈ q, we deduce
h ∈ q ⊂ p. Therefore, h′ := h2 + f ′2 ∈ p, so dim(Z(h′)) ≥ dM (p). Now

Z(h′) = Z(h) ∩ Z(f ′) ⊂ ClM (T ) ∩ (M \ T ) = ClM (T ) \ T.

By Proposition 2.8.13 in [2] we have

dM (p) ≤ dim(Z(h′)) ≤dim(ClM (T ) \ T )

<dim(T ) ≤ dim(Z(g)) = dM (q) = dM (p),

which is a contradiction. We conclude dM (p) < dM (q), as required. �

Remark 2.3. Lemma 2.2 is false if M is not locally closed and q is not a z-ideal.
Indeed, consider the triangle M := {(x, y) ∈ R2 : 0 < y ≤ x ≤ 1}∪{p := (0, 0)} and
the prime ideal q of all semialgebraic functions f ∈ S(M) that extend continuously
by 0 to M ∪ ((0, ε]×{0}) for some ε > 0 (depending on f). Clearly, q � mp and a
straightforward computation shows that dM (q) = dM (mp) = 0.

Proof of statements (i) and (ii) in Theorem 2.1. (i) As the semialgebraic set M is
locally closed, the prime ideals of S(M) are z-ideals by �Lojasiewicz’s inequality
(Theorem 2.6.6 in [2]).

(ii) Let us denote d := dim(M). Given a chain of prime ideals p0 � · · · � pr
in S(M), we get by Lemma 2.2 that dM (pr) < · · · < dM (p0) ≤ d, and so dM (pr) ≤
d− r. Thus, ht(p) + dM (p) ≤ d for every prime ideal p ⊂ S(M), as required. �

2.A. Proof of Theorem 2.1 (iii)

A standard tool when dealing with prime z-ideals is its ultrafilter description [3], [4].
The prime z-ideals of S(M) are in natural bijection with the ultrafilters of semi-
algebraic subsets of Rm containing M . The ultrafilter Up associated with a prime
z-ideal p of S(M) admits a description in terms of d := dM (p): a semialgebraic set
S ⊂ Rm belongs to Up if and only if there exists f ∈ p such that dim(Z(f)\S) < d.
This ultrafilter provides a maximal ideal of the ring D(M) of (not necessarily
continuous) semialgebraic functions on M :

p̃ := {g ∈ D(M) : Z(g) ∈ Up}
= {g ∈ D(M) : ∃f ∈ p such that dim(Z(f) \ Z(g)) < d}.

2.A.1. As Up is an ultrafilter, it holds that p̃ is a maximal ideal. However, an easy
direct proof of this fact follows from the definition of p̃.
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To prove that p̃ is an ideal, only its closedness with respect to addition requires
a comment. If g1, g2 ∈ p̃ and f1, f2 ∈ p satisfy dim(Z(fi) \ Z(gi)) < d, then
f2
1 + f2

2 ∈ p, and

Z(f2
1 + f2

2 ) \ Z(g1 + g2) ⊂ Z(f1) ∩ Z(f2) \ (Z(g1) ∩ Z(g2))

⊂ (Z(f1) \ Z(g1)) ∪ (Z(f2) \ Z(g2)).

Consequently, the dimension of Z(f2
1 + f2

2 ) \ Z(g1 + g2) is strictly smaller than d,
so g1 + g2 ∈ p.

To check that p̃ is a maximal ideal, we show that D(M)/p̃ is a field. Indeed, if
f ∈ D(M) \ p̃, consider g ∈ D(M) that takes values 1 on Z(f) and 0 on M \Z(f).
As fg = 0 ∈ p̃ and f 	∈ p̃, we have g ∈ p̃. As Z(f + g) = ∅, it holds 1

f+g ∈ D(M),

so f + p̃ is a unit in D(M)/p̃.

2.A.2. Each f ∈ D(M) is determined modulo p̃ by its restriction to any S ∈ Up.

2.A.3. Given f ∈ D(M)\p̃, there exists a cell C ∈ Up of dimension d such that f |C
is continuous (even Nash) and never vanishes on C.

Let S ∈ Up be of dimension d. Let C := {C1, . . . , Cs} be a cell decomposition
of S such that f |Ci is continuous (even Nash) and either f |Ci = 0 or Z(f)∩Ci = ∅

(use Proposition 2.9.10 and Definition 9.1.11 in [2]). Assume C := C1 ∈ Up.
Clearly, dim(C) = d and as f 	∈ p̃, it holds Z(f) ∩ C = ∅.

2.A.4. As p̃ ∩ S(M) = p, we have S(M)/p ↪→ D(M)/p̃. In fact, D(M)/p̃ ∼=
qf(S(M)/p). It is enough to show that given f ∈ D(M) \ p̃, there exist g1, f1 ∈
S(M) \ p̃ such that g1f − f1 ∈ p̃.

Let C ∈ Up be a cell of dimension d such that f |C is continuous and Z(f) ∩ C
= ∅. As C is locally closed, ClRm(C) \C is a closed subset of Rm and there exists
g ∈ S(Rm) such that Z(g) = ClRm(C) \ C; clearly, g 	∈ p. By Theorem 2.6.6
in [2], there exists an integer k ≥ 1 such that gkf ∈ S(ClRm(C)). As ClM (C) is
closed in M , there exists f1 ∈ S(M) such that f1|ClM (C) = (gkf)|ClM (C). As C ⊂
Z(f1 − gkf), it holds f1 − gkf ∈ p̃, as wanted.

2.A.5. Some of the previous arguments become straightforward if one notes that
D(M) is the von Neumann regularization of S(M). However, as their proofs are
quite short and elementary we have included them for the sake of the reader.

2.A.6. It holds that tr degR(D(M)/p̃) = d.

Let C ∈ Up be a cell of dimension d. We may assume by Proposition 2.9.10
in [2] that there exists a Nash diffeomorphism h := (h1, . . . , hd) : C → (0, 1)d. Pick
fi ∈ D(M) such that fi|C = hi.

We claim: the R-homomorphism

R[x1, . . . , xd] → D(M)/p̃, P �→ P (f1, . . . , fd) + p̃

is injective. Consequently, tr degR(D(M)/p̃) ≥ d.
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Indeed, if P (f1, . . . , fd) ∈ p̃, there exists g2 ∈ p such that

dim(Z(g2) \ Z(P (f1, . . . , fd))) < d

and Z(g2) ⊂ ClM (C). Thus, P vanishes on a non-empty open subset of (0, 1)d,
so P = 0.

Next, if f ∈ D(M), we may assume that f |C is a Nash function, so there exists
a non-zero polynomial Q ∈ R[x1, . . . , xd, y] such that Q(f1, . . . , fd, f) ∈ p̃. Hence,
tr degR(D(M)/p̃) = d.

2.A.7. D(M)/p̃ is a real closed field. As the field D(M)/p̃ admits a unique ordering
(because (f − (

√|f |)2)(f + (
√|f |)2) = 0 ∈ p̃), it is enough to prove the following:

each monic polynomial F := y2n+1 +
∑2n

k=0(ak + p̃)yk ∈ (D(M)/p̃)[y] of odd degree
has a root in D(M)/p̃.

Consider the polynomial

P (a, y) = y2n+1 +

2n∑
k=0

aky
k ∈ R[a, y].

By Theorem 2.3.1 in [2], there exists a partition of R2n+1 into finitely many
semialgebraic sets A1, . . . , A� and finitely many continuous semialgebraic functions
ζij : Ai → R such that the roots of P (u, y) for each u ∈ Ai are ζij(u). Consider
the map a : M → R2n+1, x �→ (ak(x))k and the finite semialgebraic partition
{a−1(Ai)}i of M . Assume a−1(A1) ∈ Up, so ζ11 ◦ a is a root of F on a−1(A1) and
we are done.

3. Semialgebraic pseudo-compactifications

A semialgebraic pseudo-compactification of M is a pair (X, j) constituted of a
closed and bounded semialgebraic set X ⊂ Rn and a semialgebraic embedding
j : M ↪→ X whose image is dense in X . It holds that S(X) = S∗(X) because
the image of a bounded and closed semialgebraic set under a continuous semial-
gebraic function is again bounded and closed. It is well-known that a bounded
and closed subset of Rn is compact only if R = R. The embedding j induces an
R-monomorphism j� : S(X) ↪→ S�(M), f �→ f ◦ j and we will denote a∩S(X) :=
(j�)−1(a) for every ideal a of S�(M). Sometimes it will be useful to assume that
the semialgebraic set M is bounded. Namely, the semialgebraic homeomorphism
between the open ball Bm ⊂ Rm of center 0 and radius 1 and Rm,

h : Bm → Rm x �→ x√
1 − ‖x‖2 ,

induces an R-isomorphism S�(M) → S�(h−1(M)), f �→ f◦h. Thus, we may always
assume that M is bounded and in particular that the closure Cl(M) of M (in Rm)
is a semialgebraic pseudo-compactification of M .
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3.A. Properties of the semialgebraic pseudo-compactifications

The following properties are essential:

3.A.1. For each finite family F := {f1, . . . , fr} ⊂ S∗(M) there exist a semialge-
braic pseudo-compactification (XF, jF) of M and F1, . . . , Fr ∈ S(XF) such that
fi = Fi ◦ jF.

Assume that M is bounded and consider XF := Cl(graph(f1, . . . , fr)),

jF : M ↪→ XF, x �→ (x, f1(x), . . . , fr(x))

and Fi := πm+i|XF
where

πm+i : Rm+r → R, x := (x1, . . . , xm+r) �→ xm+i for i = 1, . . . , r.

3.A.2. Given a chain of prime ideals p0 � · · · � pr of S∗(M), there exists a
semialgebraic pseudo-compactification (X, j) of M such that the prime ideals qi :=
pi ∩ S(X) constitute a chain q0 � · · · � qr in S(X).

It is enough to pick fi ∈ pi\pi−1 for 1 ≤ i ≤ r and to consider the semialgebraic
pseudo-compactification of M provided for the family F := {f1, . . . , fr} by 3.A.1.

3.A.3. Let FM be the collection of all semialgebraic pseudo-compactifications
of M . Given (X1, j1), (X2, j2) ∈ FM , we say (X1, j1) � (X2, j2) if there exists a
(unique) continuous (surjective) semialgebraic map ρ := ρX1,X2 : X2 → X1 such
that ρ ◦ j2 = j1. The uniqueness of ρ follows because ji(M) is dense in Xi and
ρ|j2(M) = j1 ◦ j−1

2 if we understand j2 as the homeomorphism M → j2(M). We
claim: (FM ,�) is an up-directed set.

Let (X1, j1), (X2, j2) ∈ FM and consider the continuous semialgebraic map

j3 : M → X3 := Cl((j1, j2)(M)), x �→ (j1(x), j2(x)).

Notice that (X3, j3) ∈ FM and (X1, j1) � (X3, j3) and (X2, j2) � (X3, j3).

3.A.4. We have a collection of rings {S(X)}(X,j)∈FM
and R-monomorphisms

ρ∗X1,X2
: S(X1) → S(X2), f �→ f ◦ ρX1,X2

for (X1, j1) � (X2, j2) such that

• ρ∗X1,X1
= id, and

• ρ∗X1,X3
= ρ∗X2,X3

◦ ρ∗X1,X2
if (X1, j1) � (X2, j2) � (X3, j3).

We conclude: the ring S∗(M) is the direct limit of the up-directed system
〈S(X), ρ∗X1,X2

〉 together with the R-homomorphisms j∗ : S(X) ↪→ S∗(M), where
(X, j) ∈ FM .
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3.A.5. On the other hand, the ring S(M) is the localization S∗(M)W(M) of S∗(M)
at the multiplicative set W(M) of those functions f ∈ S∗(M) such that Z(f) = ∅.
In particular, if p is a prime ideal of S∗(M) that does not meet W(M), then
qf(S∗(M)/p) = qf(S(M)/pS(M)).

This is pretty evident since each function f ∈ S(M) is the quotient f = g/h,
where g := f

1+|f | ∈ S∗(M) and h := 1
1+|f | ∈ W(M).

3.A.6. We conclude from 3.A.2 and 3.A.5 that

dim(S(M)) ≤ dim(S∗(M)) ≤ sup
(X,j)∈FM

{dim(S(X))}.

3.A.7. Let p be a prime ideal of S�(M). Then there exists a semialgebraic pseudo-
compactification (X, j) of M such that

qf(S(X)/(p ∩ S(X))) = qf(S�(M)/p).

We refer to (X, j) as a brimming semialgebraic pseudo-compactification of M for p.
In particular, qf(S�(M)/p) is a real closed field.

Proof. By 3.A.5 it is enough to consider the case S�(M) = S∗(M) and we assume
moreover that M is bounded. Consider the field F := qf(S∗(M)/p) and the R-
homomorphism

ϕ : S∗(M) → S∗(M)/p ↪→ F.

For each finite set F := {f1, . . . , fr} ⊂ S∗(M) consider the semialgebraic pseudo-
compactification (XF , jF) constructed in 3.A.1 and define pF := p ∩ S(XF ). Fix
a finite subset F0 of S∗(M) such that

(3.1) dXF0
(pF0) = max

F
{dXF (pF ))}

where F runs over all finite subsets of S∗(M) and denote X0 := XF0 . Clearly,
F0 := qf(S(X0)/(p ∩ S(X0))) ⊂ F . Next, fix f ∈ S∗(M) \ p and consider the
set F1 := F0 ∪ {f} and the semialgebraic pseudo-compactification X1 := XF1

of M . The projection onto all coordinates except the last one induces a surjective
semialgebraic map ρ : X1 → X0 whose restriction to M is a semialgebraic homeo-
morphism. This map induces the R-monomorphism S(X0) ↪→ S(X1), h �→ h ◦ ρ.
We have the following commutative diagrams:

S(X0) �
� ��

� �

����
��

��
��

�
S(X1)� �

��
S∗(M)

�

S(X0)/(p ∩ S(X0)) � � ��
� �

�����
����

����
����

�
S(X1)/(p ∩ S(X1))� �

��
S∗(M)/p

so F0 ⊂ F1 := qf(S(X1)/(p ∩ S(X1))) ⊂ F . As f admits an extension f̂ to X1, to

see that f + p is algebraic over F0 it is enough to prove that f̂ + (p ∩ S(X1)) is
algebraic over F0.
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For this it is sufficient to show that the transcendence degrees of F0 and F1

over R coincide. Since F0 ⊂ F1, it follows, from Theorem 2.1 (iii) and equa-
tion (3.1), that

tr degR(F0) ≤ tr degR(F1) = dX1(pF1)

≤ max
F

{dXF (pF ))} = dX0(pF0) = tr degR(F0).

As both F0 and F1 are real closed fields, we conclude that F0 = F1, so f + p ∈ F0

and F = F0. �

Remark 3.1. Observe that not all semialgebraic pseudo-compactifications X of M
are in general brimming semialgebraic pseudo-compactifications for a given prime
ideal p of S∗(M). Indeed, consider the triangle M := {(x, y) ∈ R2 : 0 < y ≤
x ≤ 1} and the prime ideal p of all semialgebraic functions f ∈ S∗(M) that extend
continuously by 0 to M∪((0, ε]×{0}) for some ε > 0 (depending on f). As one can
check, qf(S∗(M)/p) is isomorphic to the field R((t∗))alg of algebraic Puiseux series
with coefficients in R. Let (X, j) be the (semialgebraic) Alexandroff’s pseudo-
compactification of M and denote {∞} := X \ j(M). It holds p∩ S(X) = m∗∞, so
S(X)/(p ∩ S(X)) ∼= R.

3.B. Proof of Theorem 1.3

Now we are ready to prove Theorem 1.3. Assertion (i) follows readily from Theo-
rem 2.1 (iii) and paragraph 3.A.7. In order to prove (ii), pick a brimming semial-
gebraic pseudo-compactification (X, j) of M for p. By Theorem 2.1 (iii),

dX(p ∩ S(X)) = tr degR(qf(S(X)/(p ∩ S(X)))) = tr degR(qf(S(M)/p)).

It only remains to check dX(p ∩ S(X)) = dM (p). The inequality dX(p ∩ S(X)) ≥
dM (p) is clear. For the converse inequality, let f ∈ p be such that dM (p) =
dim(Z(f)) and pick a function g ∈ S(X) such that ClX(Z(f)) = Z(g). As p is a
z-ideal, g ∈ p, so g ∈ p ∩ S(X). Therefore,

dM (p) = dim(Z(f)) = dim(Z(g)) ≥ dX(p ∩ S(X)),

as required.

4. Krull dimension of rings of continuous semialgebraic func-
tions

In this section we prove Theorems 1.1 and 1.2 for a general semialgebraic set M .
We begin with the following key example, which is very close to Lemma 8.8 in [8],
although the latter is focused on the real spectrum of a polynomial ring. We denote
the relative interior of a simplex σ with σ0.
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Example 4.1. (i) Let X := [0, 1]n and define p as the set of all continuous semi-
algebraic functions f ∈ S(X) satisfying the following: for each semialgebraic tri-
angulation (K,Φ) of X compatible with Z(f) it holds Φ(σ) ⊂ Z(f) where

(4.1.1) σ ∈ K is an n-dimensional simplex such that for each d = 0, . . . , n there
exists a d-dimensional face τd of σ such that Φ(τd) ⊂ {xd+1 = 0, . . . , xn = 0}.

Using the straightforward property (4.1.2) stated below, one shows that σ is
uniquely determined by (4.1.1). We call σ the indicator simplex for (K,Φ).

(4.1.2) Let τ ⊂ Rd be a simplex of dimension d and η1, η2 be two simplices
contained in Rd × [0,∞) that have τ as a common face. Then η01 ∩ η02 	= ∅.

(4.1.3) It holds that p is a prime ideal of S(X) and as dim(σ) = n, it is clear
that dX(p) = n.

Only the primality of p requires a comment. Indeed, let f1, f2 ∈ S(X) be
such that f1f2 ∈ p and (K,Φ) be a semialgebraic triangulation of X compatible
with Z(f1) and Z(f2). Let σ be an indicator simplex for (K,Φ). Since Φ(σ) ⊂
Z(f1f2) and (K,Φ) is compatible with Z(fi), we may assume Φ(σ0) ⊂ Z(f1);
hence, Φ(σ) ⊂ Z(f1). Thus, f1 ∈ p, so p is a prime ideal.

(ii) Write Xn := [0, 1]n. We claim: there is a chain of prime ideals q0 � · · · �
qn := m0 in S(Xn) such that dXn(qk) = n− k for k = 0, . . . , n.

For each k = 1, . . . , n define Xk := [0, 1]k ×{0}n−k ⊂ Rn. Clearly, {0} � X1 �

· · · � Xn is a chain of closed subsets of Xn. The restriction R-homomorphism ϕk :
S(Xn) → S(Xk), f �→ f |Xk

is surjective, so the prime ideal pk constructed for Xk

in (i) provides a prime ideal qn−k := ϕ−1
k (pk) such that dXn(qn−k) = dXk

(pk) = k.
In addition it holds q0 � · · · � qn := m0.

4.A. Proof of the main results

We are ready to address the proofs of Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Combining Theorem 2.1 (ii) and 3.A.6, it holds

dim(S(M)) ≤ dim(S∗(M)) ≤ sup
(X,j)∈FM

{dim(S(X))} = dim(M).

It remains to show dim(M) ≤ dim(S(M)). This follows from Theorem 1.2, which
we prove next. �

Proof of Theorem 1.2. Let B be a closed ball centered in p such that dimp(M) =
dim(M ∩B). The R-homomorphism ϕ : S(M) → S(M ∩B) is surjective and kerϕ
is contained in each prime ideal p ⊂ mp, so htS(M)(mp) = htS(M∩B)(ϕ(mp)). Thus,
substituting M by M ∩B, we may assume dimp(M) = dim(M).

4.A.1. There is a semialgebraic embedding h : [0, 1]d ↪→ M such that h(0) = p.

Indeed, let C := {C1, . . . , Cs} be a (finite) semialgebraic cellular decomposition
of M compatible with {p} (see Definition 9.1.11 and Proposition 9.1.12 [2]). With-
out loss of generality suppose p ∈ ClM (C1), C1 ⊂ M , dim(C1) = d := dimp(M).
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Denote the characteristic map of the cell C1 by g : [0, 1]d → X . The restriction
g|(0,1)d : (0, 1)d → C1 is a semialgebraic homeomorphism onto C1 and we may
assume g(0) = p. Consider the d-dimensional bounded and closed affine paral-
lelepiped

T0 :=
{ d∑

i=1

λipi : 0 ≤ λi ≤ 1
}
⊂ {0} ∪ (0, 1)d

generated by the origin and the points pi := 1
d+2 (1, . . . , 1, 2(i), 1, . . . , 1) for i =

1, . . . , d. Of course,

h0 : [0, 1]d → T0, λ := (λ1, . . . , λd) �→
d∑

i=1

λipi

is a semialgebraic homeomorphism and satisfies h0(0) = 0. The semialgebraic map
h := g ◦ h0 : [0, 1]d ↪→ M does the job.

4.A.2. By Example 4.1 there exists a chain of prime ideals q0 � · · · � qd := n�
p

in S(T ) where T = im(h). The surjective R-homomorphism

ϕ : S�(M) → S(T ), f �→ f |T
provides a chain of prime ideals p0 � · · · � pd := m�

p in S�(M) where each
pk := ϕ−1(qk); hence, d ≤ ht(m�

p) ≤ dim(S�(M)) ≤ d.

4.A.3. In case S�(M) = S(M), each prime ideal pk constructed in 4.A.2 is a z-
ideal because it is the inverse image of the prime z-ideal qk under the surjective
R-homomorphism ϕ. It follows from Theorem 1.3 and Example 4.1 that

tr degR(qf(S(M)/pk)) = tr degR(qf(S(T )/qk)) = dT (qk) = d− k,

as required. �
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