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SUMS OF SQUARES IN REAL RINGS

JOSÉ F. FERNANDO, JESÚS M. RUIZ, AND CLAUS SCHEIDERER

Abstract. Let A be an excellent ring. We show that if the real dimension of
A is at least three then A has infinite Pythagoras number, and there exists a
positive semidefinite element in A which is not a sum of squares in A.

1. Introduction

In the study of positive semidefinite (= psd) elements and sums of squares, the
two main problems are these:

• Qualitative problem: To decide whether every positive semidefinite element
is a sum of squares.
• Quantitative problem: To decide whether there is p ∈ N such that every

sum of squares is a sum of p squares, and to estimate the smallest such p.
These two problems have a meaning over any commutative ring A: The set P(A)
of psd elements of A consists of all f ∈ A which satisfy ϕ(f) ≥ 0 for every homo-
morphism ϕ : A→ k into an ordered (or real closed) field k. Clearly, P(A) contains
Σ(A), the set of sums of squares in A, and the qualitative problem is whether
P(A) = Σ(A). The quantitative problem concerns the Pythagoras number, which
is the smallest integer p(A) = p ≥ 1 such that any sum of squares in A is a sum of
p squares. One puts p(A) = ∞ if such an integer does not exist. The Pythagoras
number is a very delicate invariant which has received considerable attention in
number theory, quadratic forms, real algebra and real geometry.

The study of psd elements and sums of squares has a long and rich history. For
further reading we refer to Pfister’s book on Quadratic Forms [Pf], to Bochnak,
Coste and Roy’s book on Real Algebraic Geometry [BCR], and to the important
paper [CDLR] by Choi, Dai, Lam and Reznick, which contains a wealth of infor-
mation and ideas. One of the main results of this latter paper was that p(A) =∞
holds whenever A has a real prime ideal p for which the local ring Ap is regular
of dimension ≥ 3 (loc. cit., Thm. 6.6). Moreover, P(A) 6= Σ(A) holds under the
same conditions on A ([Sch1, Cor. 1.3]). For example, this applies if A is a finitely
generated integral k-algebra of dimension ≥ 3 (where k is a field) whose quotient
field Quot(A) is real.

The proofs of these facts all use, in one way or another, the associated graded
ring of a regular local ring, which is a polynomial ring. If the local ring is singular,

Received by the editors November 5, 2002.
2000 Mathematics Subject Classification. Primary 14P99; Secondary 11E25, 32B10, 32S05.
All authors were supported by the European Research Training Network RAAG (HPRN-CT-

2001-00271). The first and second named authors were also supported by the Spanish Research
Project GAAR (BFM-2002-04797).

c©2003 American Mathematical Society

2663
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the situation becomes much more complicated in general. A case which has been
successfully studied is the class of local analytic rings A of real dimension ≥ 3 (see
below for the notion of real dimension). Here P(A) 6= Σ(A) and p(A) = ∞ have
been shown in general [Fe4].

These results suggest a negative answer for both the qualitative and the quanti-
tative problem, if the ring in question has dimension at least three. In fact, this is
essentially true, and is the content of our main result here. However, the notion of
dimension has to be replaced by the real dimension, whose definition we are going
to recall.

The real spectrum Specr(A) of A consists of all pairs α = (p, ω) where p is a
prime ideal of A and ω is an ordering of the residue field κ(p) of p. The prime ideal
p =: supp(α) is called the support of α. Alternatively, α can be defined through
a homomorphism ϕ : A → k into an ordered field; then p = ker(ϕ), and ω is the
restriction to κ(p) of the ordering of k. For f ∈ A one writes f(α) > 0 (resp.
f(α) ≥ 0, etc.) if the residue class f of f in κ(p) is > 0 (resp. ≥ 0, etc.) with
respect to ω. Thus we can see f as a function on Specr(A), and study its sign
changes. In particular, matching our previous definition, f is a psd element if and
only if f(α) ≥ 0 for all α ∈ Specr(A). Given a second prime cone β ∈ Specr(A),
we say that α is a specialization of β (written β → α) if f(α) > 0 implies f(β) > 0
for any f ∈ A. This is easily seen to imply q := supp(β) ⊂ supp(α) = p. We put
dim(β → α) := dim (Ap/qAp), and define the real dimension of A as

dimr(A) := sup
{

dim(β → α): α, β ∈ Specr(A), β → α
}

.
Therefore, dimr(A) ≤ dim(A). Equality holds, for example, if A is a domain with
real quotient field which is either a finitely generated k-algebra or a local analytic
ring.

The following is our main theorem. It encompasses the known results on rings
of dimension ≥ 3 mentioned above:

Main Theorem 1.1. Let A be an excellent ring of real dimension at least three.
Then P(A) 6= Σ(A) and p(A) =∞.

We enter here the class of excellent rings, which is widely considered as the
suitable general setting to work in. In fact, this class includes all interesting rings
in algebra and geometry, while being stable under all standard operations.

In Section 2 we will reduce our Main Theorem to the case of complete local
domains which are real reduced. Here we say that a ring A is real reduced if
a2

1 + · · · + a2
r = 0 (with ai ∈ A) implies that each ai = 0. The reduction step is

formulated as follows:

Theorem 1.2. Let k be a real field and A = k[[x1, . . . , xN ]], where N is a positive
integer. Let Q be a non-zero prime ideal of A such that the ring A/Q is real reduced
of dimension d ≥ 3. Let k0 ⊂ k be a subfield over which k is algebraic.

(i) There exists a polynomial M ∈ k0[x1, . . . , xd+1] with M(0) = 0 which is
psd in k0[x1, . . . , xd+1] and is not contained in the m-adic closure of the set
Σ(A) + Q (where m is the maximal ideal of A).

(ii) For every integer p ≥ 1 there exists a polynomial Np ∈ k0[x1, . . . , xd+1]
which is a sum of p squares of polynomials, but not a sum of p− 1 squares
in the ring A/Q.

Note that the hypotheses imply N > d, and so k[x1, . . . , xd+1] is naturally con-
tained in A. That M does not belong to the m-adic closure of Σ(A) + Q means
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that there exists an integer ω0 ≥ 0 such that (the residue class of) M + f is not a
sum of squares in A/Q for any power series f ∈ mω0 .

Thus, in order to prove the Main Theorem 1.1, it suffices to construct the key
polynomials M , Np of 1.2. This will be achieved in several steps:

1. First, we use local parametrization to replace Q by a principal ideal. The
geometric idea here is that every complete domain has a birational model
which is a hypersurface. However, the use of such a birational model carries
spurious denominators which must be controlled. This control is possible
because there is a universal denominator, and it is enough to keep track of
it. (See (2.1) and Lemma 2.2.)

2. Second, we perform sequences of blowings-up of points and lines over a
suitable real closure of k0 to uniformize the data and achieve a regular
situation. This amounts to desingularizing the hypersurface found in the
preceding step. In fact, we do not need desingularization in full, but only
local uniformization with a suitable description of strict transforms. The
necessary formalism is set up in Section 3, and the regularization is com-
pleted in Section 4.

3. Finally, we must address the difficulty that the regularization process in-
volves a ground field extension, so that the polynomials obtained are defined
over a finite field extension of k0. In order to bring those polynomials down
to k0, we take norms over k0 and use an extra blowing-up of a point. This
part is developed in Section 5.

Summing up, from a given domain, we get a birational hypersurface and then
a uniformization, to finally come back to the initial domain. This round trip is
only possible by a highly delicate control of all of the many data involved. The
main technical bulk of it is contained in Sections 4 (especially Proposition 4.4)
and 5. Needless to say, we use general ingredients like Cohen’s structure theorem
or Weierstraß’ preparation theorem. Some of these techniques and constructions
were already used before, in a less technical setting, by the first-named author [Fe4].

The polynomial M will be a variant of the celebrated Motzkin polynomial. (In
fact, any psd polynomial with rational coefficients which is not a sum of squares
of real polynomials would do.) The polynomials Np are variants of an ingenious
construction by Choi, Dai, Lam and Reznick in [CDLR], by which the authors
produced, for each p ≥ 1, a polynomial in R[x, y] (or in Z[x]) which is a sum of p,
but not of p− 1, squares.

To end this introduction, we give a brief (incomplete) outline of what is known
about the qualitative and the quantitative question for rings of real dimension ≤ 2.
Most known results concern rings of geometric significance. Generally, the answers
depend strongly on the particular structure of the ring. This makes the situation
quite distinct from the case of dimension ≥ 3.

Let us first consider the algebraic setting, and let us restrict ourselves to coor-
dinate rings A = R[V ] of affine real algebraic varieties V . For curves, we know
when P = Σ holds. This property depends on the real singularities of the curve
and on its points at infinity ([Sch1], [Sch3]). For surfaces, it has been proved that
P = Σ if V is non-singular and the set V (R) of real points is compact [Sch4]. As
for the Pythagoras number, it is known to be finite (but can be arbitrarily large)
for curves [CDLR]. The only Pythagoras number of an algebraic surface V (with
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V (R) Zariski-dense in V ) that seems to have been computed so far is that of the
affine plane, which is infinite [CDLR].

Coming to general local rings, P = Σ has been proved for any regular (semi-)
local ring A of dimension two [Sch2]. Moreover, the Pythagoras number p(A) is
estimated in terms of the Pythagoras number of the quotient field K = Quot(A);
in particular, p(A) < 4p(K) holds if p(K) <∞ (loc. cit.).

In the local analytic setting, the picture is somewhat more complete. In this
case we deal with the ring O(X) of germs of analytic functions on a real analytic
germ X . The property P = Σ holds very rarely. Indeed, for each n ≥ 1, the
germ X = {xixj = 0, 1 ≤ i < j ≤ n} is the unique curve germ of embedding
dimension n with this property [Sch2], and the embedded surface germs with P = Σ
form a small list of multiplicity two germs ([Rz2], [Fe1], [FeRz1]). There are a
few additional examples of arbitrary multiplicity in higher embedding dimension
[Fe3], but the affair seems very mysterious there. As for the Pythagoras number,
it is bounded by the multiplicity for curve germs ([Or], [CaRz], [Qz]), and by a
function of the multiplicity and the embedding dimension for surface germs [Fe2].
Curiously enough, the list of embedded surface germs with P = Σ is also the list of
embedded surface germs with Pythagoras number 2 (the minimal number possible)
([Rz2], [Fe3]). On the other hand, the Pythagoras number of a surface germ is the
maximum of the Pythagoras numbers of the curve germs it contains [FeRz2]. Let
us also mention that curve germs with high Pythagoras number are ubiquitous:
every semianalytic set germ of dimension ≥ 3 contains (punctured) curve germs
with arbitrarily large Pythagoras number (loc. cit.).

There are a variety of other rings (of ‘mixed type’) for which the Pythagoras
number has been computed in [CDLR], like k[x] [[y]] or k[[x]] [y].

2. Reduction to the complete case

The purpose of this section is to show how our Main Theorem 1.1 can be reduced
to the case of complete local domains formulated in 1.2. Before going into further
details we need some notation and terminology related to local parametrization of
complete rings. In what follows, k andK will always denote fields of characteristic 0.
As is well known, a complete noetherian local ring A with residue field K satisfies
A ∼= K[[x]]/I, where I is an ideal of the ring K[[x]] of formal power series in
the indeterminates x = (x1, . . . , xn) (to avoid trivial cases we will assume n ≥ 2
in what follows). If F ∈ K[[x]] we can write F =

∑∞
d=0 Fd, where Fd ∈ K[x]

is a homogeneous polynomial of degree d; we denote the order of F by ω(F ) =
min{d : Fd 6= 0} (or ∞ if F = 0) and the initial form of F by In(F ) = Fω(F ) (or
0 if F = 0). We recall that a power series F ∈ K[[x]] is said to be regular with
respect to the variable xi if the power series gi := F (0, . . . , 0, xi, 0, . . . , 0) ∈ K[[xi]]
is not identically zero. We will say that F is totally regular with respect to xi if in
addition ω(gi) = ω(F ). We have:

2.1. General local parametrization. Let q ⊂ K[[x]] = K[[x1, . . . , xn]] be a
nonzero prime ideal and d = dim(K[[x]]/q). We say that q is properly immersed if
for all d < i ≤ n there is a monic irreducible polynomial fi ∈ q∩K[[x1, . . . , xi−1]][xi]
with degxi(fi) = ω(fi) and (fd+1) = q ∩K[[x1, . . . , xd]][xd+1]. Thus,

q ∩K[[x1, . . . , xd]] = (0),



SUMS OF SQUARES IN REAL RINGS 2667

and the inclusion B0 = K[[x1, . . . , xd]] ⊂ K[[x]]/q = B is finite. Local parametriza-
tion [JP, 3.3.30] says that for any prime ideal q 6= (0) there exists a unipotent
triangular linear change of the type1

(x1 + a12x2 + · · ·+ a1nxn, x2 + a23x3 + · · ·+ a2nxn, . . . , xn)

with coefficients aij in Z which makes q properly immersed.
Assume now that q is properly immersed. Let f = fd+1, p = degxd+1

(f) = ω(f),
and let ∆ ∈ K[[x1, . . . , xd]] be the discriminant of f , all taken with respect to
the variable xd+1. Then θd+1 := xd+1 + q is a primitive element of Quot(B) over
Quot(B0), and

(∗) ∆ ·B ⊂ B0 +B0θd+1 + · · ·+B0θ
p−1
d+1
∼= B′,

where B′ = K[[x1, . . . , xd+1]]/(f) (for more details see [JP, 1.5.19]). Moreover, we
have the following:

Lemma 2.2. Let q ⊂ K[[x]] be a properly immersed ideal and let d, the fi and ∆
be as above. Then for any g ∈ K[[x]] there exists a polynomial

g′ ∈ K[[x1, . . . , xd]][xd+1],

with degxd+1
(g′) ≤ p − 1 and ω(g′) ≥ ω(g) −

∑n
i=d+1(deg(fi) − 1), such that g′ is

equivalent to ∆g modulo q.

Proof. Indeed, g is equivalent modulo q to a polynomial ĝ in xd+1, . . . , xn of order
≥ ω(g) of the type

ĝ =
∑

0≤νi≤λi
d+1≤i≤n

gν(x1, . . . , xd)x
νd+1
d+1 · · ·xνnn ,

where gν ∈ K[[x1, . . . , xd]], ν = (νd+1, . . . , νn) and λi = deg(fi)−1. To see this, just
divide g successively by fn, . . . , fd+1 and apply [JP, 3.3.31] to obtain the condition
about the order. Then ω(gν) ≥ ω(g)−

∑n
i=d+1 νi,

∆g ≡ ∆ĝ ≡
∑
νi≤λi

gν(x1, . . . , xd)
(
∆xνd+1

d+1 · · ·xνnn
)

mod q,

and by (∗) there exist polynomials Pν ∈ K[[x1, . . . , xd]][xd+1] of degree ≤ p − 1
such that ∆xνd+1

d+1 · · ·xνnn ≡ Pν mod q. Thus, ∆g ≡ g′ mod q, where g′ =∑
νi≤λi gν(x1, . . . , xd)Pν ∈ K[[x1, . . . , xd]][xd+1] is a polynomial in xd+1 of de-

gree ≤ p − 1. Finally, choose a multi-index ν0 = (ν0
d+1, . . . , ν

0
n) with ν0

i ≤ λi
(i = d+ 1, . . . , n) such that minν{ω(gν)} = ω(gν0); then

ω(g′) ≥ min
νi≤λi

{ω(gνPν)} ≥ min
νi≤λi

{ω(gν)} = ω(gν0)

≥ ω(g)−
n∑

i=d+1

ν0
i ≥ ω(g)−

n∑
i=d+1

λi. �

Now, we proceed with the announced reduction.

1The coefficients of the change of coordinates can be taken over Z because there is no non-zero
polynomial in n variables which vanishes on Zn; for more details see 4.2.
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2.3. Reduction of Theorem 1.1 to Theorem 1.2. Since the real dimension of
A is ≥ 3, there exists a specialization β → α of dimension d ≥ 3 in Specr(A). If we
write q = supp(β) and p = supp(α), then the excellent local domain B = Ap/qAp

has dimension d ≥ 3. Let k be the residue field and m the maximal ideal of B. Then
α induces an ordering on k ∼= Ap/pAp

∼= Quot(A/p), and β induces an ordering in
B with support (0). Thus, B is a real reduced local domain of dimension d ≥ 3
with real residue field. Moreover, there exists a quasi-coefficient field k0 in Ap, i.e,
k0 is a maximal subfield of Ap such that k is algebraic over k0 [Mt, 38.E-F]. Note
that k0 is a subfield of B.

Let B̂ be the m-adic completion of B and m̂ the maximal ideal of B̂. By [ABR,
VII.3.2], there exists a specialization β̂ → α̂ in Specr(B̂) lying over β → α. There-
fore supp(α̂) = m̂, and q̂ := supp(β̂) is a minimal prime ideal of B̂. Thus, since B
is excellent, dimB = dim(B̂/q̂). On the other hand, since A is noetherian, there
exist a1, . . . , aN ∈ p which generate p; therefore, a1, . . . , aN generate the maximal
ideal of B (where ai := ai + qAp). Since k has characteristic 0, we deduce, by
the structure theorem of complete local rings [Ng, V.31.1], that B̂ ⊃ k and the
homomorphism k[[x1, . . . , xN ]] → B̂, xi 7→ ai is surjective. Thus, if I is its kernel,
we have B̂ ∼= k[[x1, . . . , xN ]]/I. Let Q be the prime ideal of k[[x1, . . . , xN ]] such
that Q/I corresponds to q̂. We can assume Q 6= (0) by adding an extra variable
xN+1 if necessary. Therefore dim B̂ = d < N . By (2.1) we can suppose that Q is
properly immersed.2 Let n := d + 1 and x = (x1, . . . , xn) (note that 4 ≤ n ≤ N).
We have the following commuting diagram (where we write x := (x1, . . . , xN )):

k0[x]� _

��
A[x]� _

��

// Ap[x]� _

��
A[x]

xi 7→ai

����

// Ap[x]

����

// // B[x]

����

// // k[x]� _

��
k[[x]] // //

xi 7→ai
����

k[[x]]/Q

∼=
��

A // Ap
// // B = Ap/qAp

// B̂ // B̂/q̂

In the bottom row, the last three rings have the same dimension d; moreover,
k[[x]]/Q = k[[x1, . . . , xN ]]/Q is a real reduced domain. Now, there exist polyno-
mials M,Np ∈ k0[x] (p ≥ 1) satisfying conditions (i) and (ii) of Theorem 1.2. We
recall that condition (i) says that M is psd in k0[x] with M(0) = 0, and that there
exists an integer ω0 ≥ 0 such that M+f is not a sum of squares in k[[x1, . . . , xN ]]/Q
for any f ∈ mω0 .

2One of the advantages of a unipotent triangular linear change of coordinates with coefficients

in Z is that we keep in A the generators of the maximal ideal of B̂. We will need later, almost at
the end of the article, to have Q properly immersed, because this allows us to use 2.2.
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Using this, we prove first that p(A) = ∞. Recall that k0 is a maximal subfield
of Ap. Write Np = N2

1p + · · · + N2
pp with Nip ∈ k0[x]. Choose cp ∈ A \ p so that

cpNip has coefficients in A for i = 1, . . . , p, and let

Sp :=
p∑
i=1

c2pNip(a1, . . . , an)2 ∈ A.

Then Sp is a sum of p squares in A. From the diagram and the conditions on Np
above we deduce that Sp is not a sum of p− 1 squares in A. Since this can be done
for all p, we conclude that p(A) =∞.

Second, in order to prove P(A) 6= Σ(A), we construct from M an element
R ∈ P(A) \ Σ(A). Choose b ∈ A \ p such that bM has coefficients in A, and
put P := b2M(a1, . . . , an) ∈ A. Clearly, since M(0) = 0, we have P ∈ p. Let
γ ∈ Specr(A) be a prime cone. First, if supp(γ) ⊂ p, we can see γ as an element of
Specr(Ap) = {η ∈ Specr(A) : supp(η) ⊂ p}. Since the map

k0[x] → Ap,
G 7→ G(a1, . . . , an),

is a homomorphism and b2M is psd in k0[x], we conclude that P (γ) ≥ 0. On the
other hand, if supp(γ) ⊃ p, then we have P (γ) = 0.

Now consider the open subset U = {P < 0} of Specr(A). For each γ ∈ U we have
p 6⊂ supp(γ) 6⊂ p; hence, (a2

1 + · · ·+ a2
N )(γ) > 0 (because if a2

1 + · · ·+ a2
N ∈ supp(γ)

then p = (a1, . . . , aN ) ⊂ supp(γ), impossible). Pick gγ ∈ supp(γ)\p. Then we have(
g2
γP + (a2

1 + · · ·+ a2
N )ω0

)
(γ) = (a2

1 + · · ·+ a2
N )ω0(γ) > 0

(where ω0 is as above). Therefore the open constructible sets

Uγ = {g2
γP + (a2

1 + · · ·+ a2
N )ω0 > 0} ⊂ Specr(A) (γ ∈ U)

cover U . Since U is quasi-compact [BCR, 7.1.13], there exist Uγ1 , . . . , Uγt covering
U . Therefore Specr(A) = {P ≥ 0} ∪ Uγ1 ∪ · · · ∪ Uγt . Put gj := gγj and consider

R :=
( t∏
j=1

g2
j

)
· P +

( t∑
j=1

∏
i6=j

g2
i

)
· (a2

1 + · · ·+ a2
N )ω0 .

We claim that R ∈ P(A) \Σ(A). Let γ ∈ Specr(A). If γ 6∈ U , then it is clear that
R(γ) ≥ 0, so we can suppose that γ ∈ U . Then γ ∈ Uγ` for some `, and we have

R =
(∏
j 6=`

g2
j

)
·
(
g2
`P + (a2

1 + · · ·+ a2
N )ω0

)
+
(∑
j 6=`

∏
i6=j

g2
i

)
· (a2

1 + · · ·+ a2
N )ω0 ,

which is clearly ≥ 0 at γ. If R ∈ Σ(A), then, since gj 6∈ p, we will conclude from
the diagram above that there exists ϑ ∈ k such that M(x) + ϑ(x2

1 + · · ·+ x2
N )ω0 is

a sum of squares in k[[x1, . . . , xN ]]/Q, against our construction. �

3. Transforms

The purpose of this section is to settle all the notation and terminology about
desingularization and strict transforms that we will need along the way. In what
follows we set x = (x1, . . . , xn), and K will denote a field of characteristic 0.
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3.1. Strict transforms. Given a field K, we will mainly use homomorphisms ϕ∗ :
K[[x]]→ K[[x]] induced by transforms ϕ : Kn → Kn of the following types:

(a) linear changes: ϕ(x) = Ax, A ∈ GLn(K),
(b) local blowings-up of points: ϕ(x) = (x1, x1x2, . . . , x1xn),
(c) local blowings-up of lines: ϕ(x) = (x1, x2, x1x3, . . . , x1xn).

A finite sequence of transforms ϕ1, . . . , ϕr will be denoted by T = [ϕ1, . . . , ϕr]. For
a series f ∈ K[[x]] we will denote f ·◦ϕ = ϕ∗(f) = f(ϕ(x)). Note that if f ∈ K[x]
is a polynomial, up to identification with the associated polynomial function, we
have f ·◦ϕ = f ◦ ϕ.

More generally, if h1, . . . , hn ∈ K[[x]] with hi(0) = 0 and h = (h1, . . . , hn), we
can also consider the homomorphism h∗ : K[[x]]→ K[[x]], xi 7→ hi. For any series
f ∈ K[[x]] we write f ·◦h = h∗(f) = f(h1, . . . , hn).

Let m be a positive integer. For any f = (f1, . . . , fm) ∈ K[[x]]m and any
sequence T = [ϕ1, . . . , ϕr] (the ϕi’s as above) we will denote f ·◦T = f ·◦ϕ1 ·◦ · · · ·◦ϕr.
We define the strict transform f̃ ·◦T of f via T inductively. First, if T = [ϕ1] and

(a) ϕ1 is a linear change: f̃ ·◦T := f ·◦ϕ1,
(b) ϕ1 is as in (b) or (c): f̃ ·◦T := (f ·◦ϕ1)/xµ1 , where µ is the greatest integer

such that xµ1 divides fi ·◦ϕ1 for all i.

Next, if T := [ϕ1, . . . , ϕr] with r ≥ 2 we define f̃ ·◦T as the strict transform of f̃ ·◦ϕ1

via [ϕ2, . . . , ϕr].
Notice that the strict transform of a tuple (via a finite sequence of transforms)

is not, in general, the tuple of the strict transforms of the components of the tuple.
If f ∈ K[[x]] is a series and ϕ a blowing-up of a point, then f ·◦ϕ = x

ω(f)
1 (f̃ ·◦ϕ)

and ω(f̃ ·◦ϕ) ≤ ω(f). Moreover, we have the following result whose proof, although
well known, is included here for the sake of the reader:

Lemma 3.2. Let r ≥ 2 and A = K[x] or K[[x]]. Let f, f1, . . . , fr ∈ A and T a
sequence of transforms. Then:

(i) if f has no multiple factors in A, then neither has f̃ ·◦T ;
(ii) if f1, . . . , fr are relatively prime in A, then so are f̃1 ·◦T , . . . , f̃r ·◦T .

We will only prove 3.2 for A = K[[x]], the case A = K[x] being similar (and, in
fact, easier).

Proof of Lemma 3.2. First, we recall that an element a of a domain A is reduced if
the ideal (a) is radical; if A is a UFD, this happens if and only if a has no multiple
factors.

It is enough to prove that if 1 ≤ m ≤ 2 and ϕ(y)=(y1, . . . , ym, y1ym+1, . . . , y1yn),
then (i) and (ii) hold for T = [ϕ]. This local blowing-up can be described as
follows. Write yi = xi if 1 ≤ i ≤ m, and yi = xi/x1 if m + 1 ≤ i ≤ n, and let
A′ = A [yr+1, . . . , yn](y1,...,yn), considered as a subring of Quot(A) = K((x)). Let

Â′ be the completion of A′ with respect to the (y1, . . . , yn)-adic topology. Then ϕ∗

is the composition

ϕ∗ : A = K[[x]] ⊂ A′ ⊂ Â′ ∼= K[[y]] = K[[y1, . . . , yn]].

We have Â′ ∼= K[[y]], since A′ is a regular local ring with regular system of param-
eters y1, . . . , yn and residue field K. Clearly, A′[1/y1] is a localization of A[1/y1];
hence an irreducible element of A is either irreducible in A′, or a unit, or a unit
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times a power of y1. Thus, if f is reduced in A it is so in A′, except maybe for a
power of y1, which is irrelevant for the strict transform. Finally, since A′ is excel-
lent, every element reduced in A′ is also reduced in Â′ [Mt, 33.B, Lemma 2], and
we conclude that f̃ ·◦T is also reduced.

Now we consider statement (ii). We first prove it for r = 2. For this particular
case it is enough to check that if f, g ∈ K[[x]] are non-associated irreducible series,
then the series f̃ ·◦T , g̃ ·◦T are relatively prime. Consider the reduced series fg ∈
K[[x]]. From the definition of the strict transform and from (i) it follows that
˜(fg) ·◦T = f̃ ·◦T · g̃ ·◦T is reduced. But this means that the series f̃ ·◦T , g̃ ·◦T are

relatively prime.
The general case r ≥ 3 follows from the case r = 2, since (1) ˜(fg) ·◦T = f̃ ·◦T ·

g̃ ·◦T for any series f, g ∈ A, and (2) if f ∈ A is irreducible and h ∈ Â′ is an
irreducible factor of f̃ ·◦T then (ϕ∗)−1(gÂ′) = fA. �

Lemma 3.3. Let T = [ϕ1, . . . , ϕr] be a sequence of transforms and m a positive
integer. Then there exist finitely many polynomials q1, . . . , q` ∈ K[x] ⊂ K[[x]] such

that for every f = (f1, . . . , fm) ∈ K[[x]]m we have f ·◦T = qν1
1 · · · qν`` (̃f ·◦T ) for

suitable integers ν1, . . . , ν` ≥ 0. Moreover, f̃ ·◦T = (g1, . . . , gm) is relatively prime
with all qi’s, that is, gcd(g1, . . . , gm, qi) = 1 for each i.

Proof. We proceed by induction on r. For r = 1:
(i) if ϕ1 is a linear change, then f ·◦T = f̃ ·◦T , and
(ii) if ϕ1 is a local blowing-up then f ·◦T = xν1

1 f̃ ·◦T , and then x1 and f̃ ·◦T are
relatively prime.

Now suppose r > 1, and let T1 = [ϕ1, . . . , ϕr−1]. By the induction hypothesis
there exist finitely many polynomials p1, . . . , p` ∈ K[x] such that for every f ∈
K[[x]]m

f ·◦T1 = pν1
1 · · · pν`` (f̃ ·◦T1), ν1, . . . , ν` ≥ 0,

and f̃ ·◦T1 is relatively prime with all pi. Therefore,

f ·◦T = f ·◦T1 ·◦ϕr = (p1 ·◦ϕr)ν1 · · · (p` ·◦ϕr)ν`(f̃ ·◦T1 ·◦ϕr).
Again we distinguish two cases:

(i) If ϕr is a linear change, we take qi = pi ·◦ϕr ∈ K[x] for all i.
(ii) If ϕr is a local blowing-up, factoring out all x1’s we get

f ·◦T = x
ν`+1
1 (p̃1 ·◦ϕr)ν1 · · · (p̃` ·◦ϕr)ν`(f̃ ·◦T )

and we take qi = p̃i ·◦ϕr ∈ K[x] for i = 1, . . . , ` and q`+1 = x1.
It is clear from (ii) above and 3.2(ii) that f̃ ·◦T is relatively prime with qi for

i = 1, . . . , `, and with q`+1 by the definition of the strict transform. �

3.4. Reduced polynomial transforms. Let T = [ϕ1, . . . , ϕr] be a sequence of
transforms with coefficients in a field K. The polynomial map ϕ1 ◦ · · · ◦ ϕr :
Kn → Kn, which is in fact a birational map, induces a K-automorphism Φ of
K(x) which leaves K[x] invariant, by Φ(f) = f ·◦T (f ∈ K[x]). Let Φ−1 be the
inverse automorphism of K(x). There exist polynomials 0 6= f1, . . . , fn, g ∈ K[x]
with gcd(f1, . . . , fn, g) = 1 and Φ−1(xi) = fi

g (i = 1, . . . , n). Note that f1, . . . , fn, g
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are unique up to a common factor in K∗. Now consider the birational map T−1 :
Kn 99K Kn inverse to ϕ1 ◦ · · · ◦ ϕr defined by

T−1(x) =
(
f1(x)
g(x)

, . . . ,
fn(x)
g(x)

)
for x /∈ {g = 0}. In what follows we will identify the tuple

(
f1
g , . . . ,

fn
g

)
with the

birational map T−1. Now, given a homogeneous polynomial P ∈ K[x] of degree d,
we define a reduced polynomial transform of P with respect to T−1 by

(P ·◦T−1)∨ := gdΦ−1(P ) = P (f1, . . . , fn) ∈ K[x].

Note that (P ·◦T−1)∨ is unique up to multiplication by a value in (K∗)d.

Remarks 3.5. Let T be a sequence of transforms. By 3.3 there exist finitely many
polynomials q1, . . . , q` ∈ K[x] ⊂ K[[x]] such that for every f ∈ K[[x]] we have

f ·◦T = qν (̃f ·◦T ) for suitable integers ν1, . . . , ν` ≥ 0, where qν = qν1
1 · · · qν`` , and

f̃ ·◦T is relatively prime with all qj ’s. Let f1, . . . , fn, g ∈ K[x] be relatively prime

polynomials such that T−1 =
(
f1
g , . . . ,

fn
g

)
. Then g̃ ·◦T = u ∈ K∗. Moreover,

let us prove that if P ∈ K[x] is a homogeneous polynomial of degree d with
gcd

(
P,
∏`
j=1 qj

)
= 1, then the strict transform of (P ·◦T−1)∨ via T is udP .

Indeed, since Φ(fi) = qµi f̃i ·◦T and Φ(g) = qµ0 g̃ ·◦T , where µi = (µi1, . . . , µi`)
and µij ≥ 0 are integers for i = 0, . . . , n and j = 1, . . . , `, then

xi = Φ
(
fi
g

)
= qµi−µ0

f̃i ·◦T
g̃ ·◦T

for i = 1, . . . , n.

By 3.2(ii) for A = K[x], the polynomials f̃1 ·◦T , . . . , f̃n ·◦T , g̃ ·◦T are relatively prime
because so are the polynomials f1, . . . , fn, g. Thus, since g̃ ·◦T is relatively prime to
all the qj ’s, we deduce that g̃ ·◦T must be a unit of K[x]. Hence, g̃ ·◦T = u ∈ K∗.

On the other hand,

P = Φ ◦ Φ−1(P ) = Φ
(

(P ·◦T−1)∨

gd

)
=

Φ
(
(P ·◦T−1)∨

)
qµ0ud

and then Φ
(
(P ·◦T−1)∨

)
= (g ·◦T )dP = qµ0udP . Hence, since gcd

(
P,
∏`
j=1 qj

)
=

1, we conclude that the strict transform of (P ·◦T−1)∨ via T is udP .

4. Local uniformization of a hypersurface

In this section we prove several technical results about local uniformization of
hypersurfaces which will allow us to prove 1.2. Let k always be a field.

Lemma 4.1. Let x = (x1, . . . , xn), and let f ∈ k[[x]] be a series with f(0) = 0
and without multiple factors and such that the ring k[[x]]/(f) is real reduced. Then,
there exists an ordering α of k and a finite sequence T of transforms with coefficients
in the real closure R of (k, α), such that the strict transform of f via T in R[[x]] is

f̃ ·◦T = (x1 − h(x2, . . . , xn))U,

where h ∈ R[[x2, . . . , xn]] has order ≥ 2 and U ∈ R[[x]] is a unit.
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Proof. After a linear change of coordinates we can suppose that f is regular with
respect to xn of order ω(f). By Weierstraß’ Preparation Theorem, there exist a
Weierstraß polynomial P ∈ k[[x1, . . . , xn−1]][xn] and a unit V ∈ k[[x]] such that
f = PV ; hence k[[x]]/(f) = k[[x]]/(P ). We claim that there exists a prime cone
β ∈ Specr(k[[x]]) such that P (β) < 0. Otherwise, P would be a sum of squares of
meromorphic series. Thus, there would exist relatively prime series a, a1, . . . , ar ∈
k[[x]] such that a2P = a2

1 + · · · + a2
r. Since k[[x]]/(P ) is a real reduced ring,

P divides a1, . . . , ar and therefore P 2 divides a2P . Thus, P (which is reduced)
divides a, contradicting gcd(a, a1, . . . , ar) = 1.

Now, since k[[x]] is a local henselian ring with residue field k, there exists an
ordering α of k such that β → α [ABR, II.2.4]. Next, by the curve selection
lemma [ABR, VII.4.1], there exist formal power series x(t) = (x1(t), . . . , xn(t))
with coefficients in the real closure R = κ(α) of (k, α) and xi(0) = 0 for all i such
that P (x(t)) = ctq + higher order terms, with c < 0. On the other hand, if we
substitute x1 = 0, . . . , xn−1 = 0, xn = t into P , we get P (0, t) = tdegxn (P ). Hence,
P takes both strictly positive and strictly negative values on the real spectrum of
R[[x]]. Moreover, since P has no multiple factors in k[[x]], the same is true in R[[x]].
Finally, proceeding as in the proof of [Fe4, 2.2,2.3] (just replace R{x} by R[[x]] and
the ordinary composition ◦ by ·◦), we obtain the desired result. �

We recall the following fact, whose proof is an easy exercise:

Lemma 4.2. Let R ⊂ S be an extension of rings such that S is a domain of
characteristic zero, and let f ∈ S[x1, . . . , xm] be a nonzero polynomial. Then there
exists c ∈ Rm such that f(c) 6= 0.

Lemma 4.3. Let P,Q,R ∈ K[[x]] be nonzero series. Then gcd(P + cQ,R) =
gcd(P,Q,R) for all c ∈ K except maybe for finitely many values.

Proof. Let D = gcd(P,Q,R) and P1, Q1, R1 ∈ K[[x]] such that P = P1D, Q =
Q1D, R = R1D; then we have that gcd(P1, Q1, R1) = 1. If gcd(P1 + cQ1, R1) 6= 1
for infinitely many c ∈ K, then there exist c1 6= c2 in K and an irreducible factor
F ∈ K[[x]] of R1 such that F |P1 + ciQ1 for i = 1, 2. Hence, F |P1 and F |Q1, a
contradiction. �

We finish this section with the following key result for 1.2.

Proposition 4.4. Let k be a real field and k0 a subfield of k over which k is
algebraic. Let x = (x1, . . . , xn), and let f ∈ k[[x]] be a non-unit such that the ring
k[[x]]/(f) is real reduced. Let ∆ ∈ k[[x]] be a series relatively prime to f . Then,
there exist:

• an ordering α of k with real closure R,
• a finite Galois extension L|k0 (L ⊂ R

[√
−1
]
),

• a sequence of transforms T = [ϕ1, . . . , ϕr] with coefficients in L ∩R, and
• a power series h ∈ R[[x2, . . . , xn]] with ω(h) ≥ 2,

such that, given

F a field E ⊂ L ∩R that contains k0,
F finitely many automorphisms σ1, . . . , σs ∈ Gal(L|k0) with σi|E 6= id, and
F (ψ10, ψ11, . . . , ψ1n), . . . , (ψs0, ψs1, . . . , ψsn) ∈ L[[x]]n+1,
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there exists a linear change Γc(x2, . . . , xn) = (x2, x3 + c3x2, . . . , xn + cnx2), where
c = (c3, . . . , cn) ∈ En−2, that has the following properties A) and B). In what follows
we write τ(x2, . . . , xn) := (h, x2, . . . , xn) and ρ(x2, . . . , xn) := (x2, x2x3, . . . , x2xn).

A) Let g ∈ k[[x]] be such that g ·◦T ·◦ τ 6= 0 and let g̃ be the strict transform of
g̃ ·◦T ·◦ τ via [Γc, ρ]. Then:

i) There exist an integer dg ≥ 0 and a unit Ug ∈ R[[x2, . . . , xn]] such that

g ·◦T ·◦ τ ·◦Γc ·◦ ρ = x
dg
2 Ugg̃.

ii) Let

Γ ′c := (x1, Γc(x2, . . . , xn)), ρ′ := (x1, ρ(x2, . . . , xn)),

τ ′ := (h′, x2, . . . , xn),

where h′ = h ·◦Γc ·◦ ρ and let T ′c = [ϕ1, . . . , ϕr, Γ
′
c, ρ
′]. Then, there is an

integer δg ≥ 0 such that g̃ ·◦T ′c ·◦ τ ′ = x
δg
2 g̃.

iii) There is an integer ω1 ≥ 0 such that if there exists an equation of the type

∆2g + ζ = h2
1 + · · ·+ h2

p + fQ, where h1, . . . , hp, Q, ζ ∈ k[[x]],

and ω(ζ) ≥ ω1, then there is a series ξ ∈ R[[x2, . . . , xn]] with ω(ξ) > ω(g̃)
such that either g̃ + ξ or −(g̃ + ξ) is a sum of p squares in R[[x2, . . . , xn]].
Moreover, if ζ = 0 then we can asume ξ = 0, that is, either g̃ or −g̃ is a
sum of p squares in R[[x2, . . . , xn]].

B) Let Ψi = (ψi1, ψi2, ψi3 − σi(c3)ψi0, . . . , ψin − σi(cn)ψi0), 1 ≤ i ≤ s, and let
Ψ̃i be the strict transform of Ψ̃i ·◦T ·◦ τ via [Γc, ρ]. Then:

− if Ψ̃i ≡ 0, the series ψi0, ψi1, . . . , ψin share a factor which is not a unit;
− if Ψ̃i 6≡ 0, each nonzero component of Ψ̃i is a unit times a power of x2 and

some component is in fact a unit (Ψ̃i(0) 6= 0).

Proof. First, by 4.1, there exist an ordering α of k and a sequence T = [ϕ1, . . . , ϕr]
with coefficients in the real closure R of (k, α) and a series h ∈ R[[x2, . . . , xn]] of
order ≥ 2 such that f̃ ·◦T = (x1− h)U , where U ∈ R[[x1, . . . , xn]] is a unit. Choose
a finite normal extension L ⊃ k0 contained in R

[√
−1
]

such that the sequence T
is defined over L ∩ R. We will see that α, R, L, T and h satisfy the assertions in
Proposition 4.4.

In view of 3.3, there exist finitely many polynomials q1, . . . , q` ∈ R[x1, . . . , xn]
such that for every g ∈ R[[x1, . . . , xn]]

g ·◦T = qν1
1 · · · qν`` g̃ ·◦T for ν1, . . . , ν` ≥ 0,

and gcd(g̃ ·◦T ,
∏`
l=1 ql) = 1. Therefore, ql is relatively prime to f̃ ·◦T = (x1 − h)U

for all l, and so q′l := ql ·◦ τ 6= 0 for all l. Furthermore, since f and ∆ are relatively
prime, so are f̃ ·◦T and ∆̃ ·◦T . In particular, x1 − h does not divide ∆̃ ·◦T , and so
∆̂ := ∆ ·◦T ·◦ τ 6= 0.

Let E, ψij , σi be given as in Proposition 4.4. Consider for i = 1, . . . , s and
j = 3, . . . , n the sets

Zij := {ζ ∈ E : gcd(ψij + ζψi0, ψi2) 6= gcd(ψij , ψi0, ψi2)}.

By 4.3, the sets Zij are finite; hence, the sets Sj :=
⋃s
i=1 σ

−1
i (Zij) are also finite.
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Let Γc(x2, . . . , xn) = (x2, x3 + c3x2, . . . , xn + cnx2) for each c = (c3, . . . , cn), and
let ψ̂ij := ψij ·◦T ·◦ τ for all i = 1, . . . , s and j = 1, . . . , n. Now, we proceed in
several steps:

Step 1. There exists c = (c3, . . . , cn) ∈ En−2 such that:
(a) cj 6∈ Sj for j = 3, . . . , n,
(b) the series q′1 ·◦Γc, . . . , q′` ·◦Γc, ∆̂ ·◦Γc are all totally regular with respect to x2,
(c) the series ψ̂i1 ·◦Γc, ψ̂i2 ·◦Γc are totally regular with respect to x2 or are iden-

tically zero, and
(dij) the series ψ̂ij ·◦Γc − σi(cj)ψ̂i0 ·◦Γc is totally regular with respect to x2 or is

identically zero (i = 1, . . . , s and j = 3, . . . , n).
Let c ∈ En−2. For any series F ∈ L[[x2, . . . , xn]], the series F ·◦Γc is totally

regular with respect to x2 if and only if In(F )(1, c3, . . . , cn) 6= 0. Therefore, for
each of the condictions (a), (b), (c) and (dij) above, the set of c ∈ En−2 satisfying
this condition is open in the k0-Zariski topology of En−2. Thus, it suffices to show
that each of these conditions is satisfied by at least one c ∈ En−2. The only case
which is not immediate is (dij) when ω(ψ̂ij) = ω(ψ̂i0) < ∞. Write Fij = In(ψ̂ij),
Fi0 = In(ψ̂i0) and assume that

(∗) Fij(1, c)− σi(cj)Fi0(1, c) = 0

for all c ∈ En−2. Since σi|k0 = id, by 4.2, we have

Fij(1, x3, . . . , xn) = xjFi0(1, x3, . . . , xn).

So (∗) says that (cj − σi(cj))Fi0(1, c) = 0 for every c ∈ En−2. But neither one of
the two factors vanishes identically on En−2, so this is a contradiction.

This completes the proof of Step 1. In the rest of the proof we will show that if
c ∈ En−2 satisfies the conditions of Step 1, then the linear change Γc has properties
A) and B) of Proposition 4.4. We will start with

Step 2. If c ∈ En−2 is as in Step 1, then statements A.i), A.ii) and B) hold for
Γc.

We begin by proving that A.i) and A.ii) hold. First, notice that since the series
q′1 ·◦Γc, . . . , q′` ·◦Γc are totally regular with respect to x2, we have that q′l ·◦Γc ·◦ ρ =
x
ω(q′l)
2 Vl, where Vl ∈ R[[x2, . . . , xn]] is a unit, for all l. This follows from the

Weierstraß Preparation Theorem and the fact that if P is a Weierstraß polynomial
totally regular with respect to x2 (that is, of degree with respect to x2 equal to its
order), then P̃ ·◦ ρ is a unit.

Let g ∈ k[[x]] be a power series such that g ·◦T ·◦ τ 6= 0. As we have seen
above, there exist positive integers ν1, . . . , ν` ≥ 0 such that g ·◦T = qν1

1 · · · qν`r (g̃ ·◦T ).
Hence,

g ·◦T ·◦ τ ·◦Γc ·◦ ρ =
∏̀
l=1

(ql ·◦ τ ·◦Γc ·◦ ρ)νl · (g̃ ·◦T ·◦ τ ·◦Γc ·◦ ρ) = x
dg
2 Ugg̃,

where dg =
∑`
l=1 ω(q′l)νl + ω(g̃ ·◦T ·◦ τ) and Ug =

∏`
l=1 V

νl
l . (Recall that g̃ is the

strict transform of g̃ ·◦T ·◦ τ via [Γc, ρ]).
On the other hand, we recall that T ′c denotes the sequence of transforms obtained

by adding ϕr+1 = Γ ′c, ϕr+2 = ρ′ to T . Note that τ ·◦Γc ·◦ ρ = Γ ′c ·◦ ρ′ ·◦ τ ′; hence,
T ·◦ τ ·◦Γc ·◦ ρ = T ·◦Γ ′c ·◦ ρ′ ·◦ τ ′ = T ′c ·◦ τ ′. Note also that, by the definition of the
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strict transform, the series g̃ and x2 are relatively prime. There exist integers
µ, ν1, . . . , ν` ≥ 0 such that

x
dg
2 Ugg̃ = g ·◦T ·◦ τ ·◦Γc ·◦ ρ = g ·◦T ·◦Γ ′c ·◦ ρ′ ·◦ τ ′

=
∏̀
l=1

(ql ·◦Γ ′c ·◦ ρ′ ·◦ τ ′)νl · (g̃ ·◦T ·◦Γ ′c ·◦ ρ′ ·◦ τ ′)

=
∏̀
l=1

(ql ·◦ τ ·◦Γc ·◦ ρ)νl · (g̃ ·◦T ·◦Γ ′c ·◦ ρ′ ·◦ τ ′)

= xµ2
∏̀
l=1

V νll · (g̃ ·◦T ′c ·◦ τ
′) = xµ2Ug(g̃ ·◦T ′c ·◦ τ ′).

Then, since g̃ and x2 are relatively prime, we conclude that there exists an integer
δg ≥ 0 such that g̃ ·◦T ′c ·◦ τ ′ = x

δg
2 g̃.

Next we prove that B) holds. Since for all i the series

ψ̂i1 ·◦Γc, ψ̂i2 ·◦Γc, ψ̂i3 ·◦Γc − σi(c3)ψ̂i0 ·◦Γc, . . . , ψ̂in ·◦Γc − σi(cn)ψ̂i0 ·◦Γc
are totally regular with respect to x2 or are identically 0, the strict transforms
with respect to ρ of the ones which are not zero are again units. Let us see first
that for each i = 1, . . . , s we have either Ψ̃i ·◦T ·◦ τ ≡ 0 or Ψ̃i(0) 6= 0. Suppose
that Ψ̃i(0) = 0. As one can deduce from our previous assertions, the non-zero
coordinates of Ψi ·◦T ·◦ τ ·◦Γc ·◦ ρ are the product of a unit of R[[x2, . . . , xn]] times
a power of x2. This means that if Ψ̃i(0) = 0, then x2 divides all the non-zero
components of Ψ̃i. But this is impossible by the definition of the strict transform,
and so Ψ̃i ≡ 0; hence, Ψ̃i ·◦T ·◦ τ ≡ 0.

This last fact means that x1−h divides all the components of Ψ̃i ·◦T . Now, since
q′l = ql ·◦ τ 6= 0 for all l, we conclude that x1 − h divides the strict transforms via T
of all the components of Ψi. By 3.2(ii), we deduce that the power series

ψi1, ψi2, ψi3 − σi(c3)ψi0, . . . , ψin − σi(cn)ψi0,

which are the components of Ψi, share an irreducible factor.
Moreover, since cj 6∈ Sj for j = 3, . . . , n, we have in particular σi(cj) 6∈ Zij for

all j = 3, . . . , n. Thus,

gcd(ψij + σi(cj)ψi0, ψi2) = gcd(ψij , ψi0, ψi2)

for all j = 3, . . . , n. Hence,

gcd(ψi1, ψi2, ψi3 − σi(c3)ψi0, . . . , ψin − σi(cn)ψi0)

= gcd(ψi1, gcd(ψi2, ψi3 − σi(c3)ψi0, . . . , ψin − σi(cn)ψi0))

= gcd(ψi1, gcd(ψi0, ψi2, ψi3, . . . , ψin))

= gcd(ψi0, ψi1, . . . , ψin),

and we conclude that the series ψi0, ψi1, . . . , ψin share an irreducible factor.
Step 3. If c ∈ En−2 is as in Step 1, then statement A.iii) holds for Γc.
We recall that ∆̂ denotes ∆ ·◦T ·◦ τ and that this series is totally regular with

respect to x2. Hence, again, ∆̂ ·◦Γc ·◦ ρ = x
ω(∆̂)
2 W , where W ∈ R[[x2, . . . , xn]] is a

unit. Again, let g ∈ k[[x]] be a power series such that g ·◦T ·◦ τ 6= 0. By A.i), there
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exist an integer dg ≥ 0 and a unit Ug ∈ R[[x2, . . . , xn]] such that g ·◦T ·◦ τ ·◦Γc ·◦ ρ =
x
dg
2 Ug g̃. Let µ := dg + 2ω(∆̂) and ω1 := ω(g̃) + µ+ 1 > 0.

Assume we have an equation

(?) ∆2g + ζ = h2
1 + · · ·+ h2

p + fQ, where g, h1, . . . , hp, Q, ζ ∈ k[[x]]

with ω(ζ) ≥ ω1. Let λζ := ω(ζ ·◦T ·◦ τ ·◦Γc). If ζ ·◦T ·◦ τ = 0, take ξ = 0 (in particu-
lar, this happens if ζ = 0). Otherwise, there exists a series ξ1 ∈ R[[x2, . . . , xn]] such
that ζ ·◦T ·◦ τ ·◦Γc ·◦ ρ = x

λζ
2 ξ1 and x2 does not divide ξ1. Noting that λζ ≥ ω(ζ) ≥

ω1, we put ξ := x
λζ−µ
2 (UgW 2)−1ξ1. Then ω(ξ) ≥ λζ − µ ≥ ω1 − µ = ω(g̃) + 1, and

ζ ·◦T ·◦ τ ·◦Γc ·◦ ρ = xµ2UgW
2ξ

by definition. If we plug T into equation (?), we obtain

(∆ ·◦T )2 (g ·◦T ) + ζ ·◦T = (h′1)2 + · · ·+ (h′p)
2 + (f̃ ·◦T )Q′

= (h′1)2 + · · ·+ (h′p)
2 + (x1 − h(x2, . . . , xn))UQ′

with h′1, . . . , h
′
p, Q

′ ∈ R[[x]]. If we make the substitution τ : x1 = h and plug the
sequence [Γc, ρ] into the previous equation, we get

(∆̂ ·◦Γc ·◦ ρ)2(g ·◦T ·◦ τ ·◦Γc ·◦ ρ) + ζ ·◦T ·◦ τ ·◦Γc ·◦ ρ
= (h′1 ·◦ τ ·◦Γc ·◦ ρ)2 + · · ·+ (h′p ·◦ τ ·◦Γc ·◦ ρ)2.

Note that the left hand side is xµ2 W
2 Ug (g̃+ξ). Thus, there exist series a1, . . . , ap ∈

R[[x2, . . . , xn]] and ε = ±1 such that

xµ2 ε (g̃ + ξ) = a2
1 + · · ·+ a2

p (resp. xµ2 ε g̃ = a2
1 + · · ·+ a2

p, if ζ = 0).

It follows that xµ2 divides a2
i for each i, and we are done. �

5. Proof of the Main Theorem

The purpose of this section is to prove our Main Theorem 1.1. First, we need
some preliminary results:

Lemma 5.1. Let K be a field and P ∈ K[x] = K[x1 . . . , xn] a homogeneous
psd polynomial. Let T be a sequence of transforms with coefficients in K and let
P1 = (P ·◦T−1)∨ ∈ K[x] be a reduced polynomial transform of P . Then P1 is psd
in K[x].

Proof. Let Φ be the K-automorphism of K(x) induced by T , see (3.4). Since
d = deg(P ) is even, it follows from P1 = gdΦ−1(P ) that P1 is psd in K(x), hence
in K[x]. �

Lemma 5.2. Let K ⊂ E be a finite separable field extension and let P1 ∈ E[x] =
E[x1, . . . , xn] be a psd polynomial. Let L be the Galois hull of K ⊂ E, G :=
Gal(L|K) and H := {σ ∈ G : σ|E = id}. Write G =

⋃s
i=0 σiH as disjoint union

of cosets of H (where σ0 = id). Then P = P σ0
1 · · ·P

σs
1 ∈ K[x] is psd in K[x].

Proof. First, note that P is the E|K-norm of P1. It is generally true for any finite
étale algebra A→ B that NB|A maps psd elements of B to psd elements of A. (For
the proof one immediately reduces to the case where A is a real closed field, and
then the statement is obvious). �
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The following is a modest generalization of [CDLR, Thm. 4.10], which is the key
construction by which [CDLR] proved the infinity of the Pythagoras number for
many rings:

Lemma 5.3. Let R be a real closed field. For every r, p ≥ 2 we define the polyno-
mials ∆1 = x2, ∆r = x2

∏r
s=2(x2 − sx1) ∈ Z[x1, x2], f1 = y2

1 and

fp(y1, . . . , yp;x1, x2) = y2
p +

p∑
j=2

y2
p−j+1

j∏
k=2

∆2
2p−k .

Then for every a1, . . . , ap ∈ R \ {0} we have that fp(a1, . . . , ap;x1, x2) is a sum of
p squares in R[x1, x2] but it is not a sum of p− 1 squares.

Proof. The proof of this result is done using induction. First, note that the fp can
be defined recursively in the following way:

f1 = y2
1 ,

f2 = y2
1∆2

1 + y2
2 = f1∆2

1 + y2
2 ,

f3 = y2
1∆2

1∆2
2 + y2

2∆2
2 + y2

3 = f2∆2
2 + y2

3 ,
f4 = y2

1∆2
1∆2

2∆2
4 + y2

2∆2
2∆2

4 + y2
3∆2

4 + y2
4 = f3∆2

4 + y2
4 ,

...
...

...
fp =

∑p
j=2 y

2
p−j+1

∏j
k=2 ∆2

2p−k + y2
p = fp−1∆2

2p−2 + y2
p,

...
...

...

Notice that for every p, q ≥ 1 and a1, . . . , ap ∈ R \ {0} the polynomial

fp(a1, . . . , ap;x1, x2)

is a sum of p squares and that fp(a1, . . . , ap;x1, x2) is a sum of q squares if and
only if the polynomial

1
a2
p

fp(a1, . . . , ap;x1, x2) = fp

(
a1

ap
, . . . ,

ap−1

ap
, 1;x1, x2

)
is a sum of q squares. Therefore, it is enough to show that for a1, . . . , ap−1 ∈ R\{0}
the polynomial fp(a1, . . . , ap−1, 1;x1, x2) is not a sum of p − 1 squares. This is
clear for p = 1, so we can suppose p > 1. Using induction on p (and the previous
remark), we may assume that fp−1(a1, . . . , ap−1;x1, x2) is not a sum of p−2 squares.
Now, proceeding analogously to the proofs of [PD, 8.1.2] or [CDLR, 4.10-11,16],
we conclude that if there exist a1, . . . , ap−1 ∈ R \ {0} such that the polynomial
fp(a1, . . . , ap−1, 1;x1, x2) is a sum of p− 1 squares, then fp−1(a1, . . . , ap−1;x1, x2)
is a sum of p− 2 squares, against the induction hypothesis. �

Now we are finally ready to prove 1.2.

Proof of Theorem 1.2. First, by (2.1) we can suppose that Q is properly immersed.
Let B = k[[x1, . . . , xN ]]/Q, which is a real reduced domain of dimension d ≥
3. By local parametrization (2.1) there is an irreducible Weierstraß polynomial
f ∈ k[[x1, . . . , xd]][xd+1] whose degree p is equal to its order, with discriminant
∆ ∈ k[[x1, . . . , xd]], such that (f) = Q ∩ K[[x1, . . . , xd]][xd+1]. The canonical ho-
momorphism A = k[[x1, . . . , xd]] → B is injective and finite. Moreover, if θd+1 is
the class of xd+1 mod Q, then

∆ ·B ⊂ A+Aθd+1 + · · ·+Aθp−1
d+1
∼= B′,
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where B′ = k[[x1, . . . , xd, xd+1]]/(f). Note also that B′ is a real reduced domain,
since B is one and B′ ↪→ B. Furthermore, since Q is properly immersed, by 2.2,
there exists an integer Λ > 0 such that for all g ∈ k[[x1, . . . , xN ]] there exists a
polynomial g′ ∈ k[[x1, . . . , xd]][xd+1] of degree ≤ p − 1 and order ≥ ω(g)− Λ such
that ∆g ≡ g′ mod Q.

Let n = d + 1 and α,R,L, T, h be as in 4.4 for the power series f,∆. In what
follows we denote

τ(x2, . . . , xn) := (h, x2, . . . , xn)
and

ρ(x2, . . . , xn) := (x2, x2x3, . . . , x2xn).

We write T−1 =
(
f1
g , . . . ,

fn
g

)
, where f1, . . . , fn, g ∈ (L ∩ R)[x] are relatively

prime, and consider the subgroup of G = Gal(L|k0) given by H = {σ ∈ G :
(fσ1 , . . . , f

σ
n , g

σ) = (f1, . . . , fn, g)}. Let E ⊂ L ∩ R be the fixed field associated to
H . Write G =

⋃s
i=0 σiH as a disjoint union of cosets of H , where σ0 = id. For each

c = (c3, . . . , cn) ∈ En−2 consider the sequence of transforms T ′c = [ϕ1, . . . , ϕr+2]
obtained by adding to T the transforms

ϕr+1 = Γ ′c := (x1, Γc(x2, . . . , xn)) = (x1, x2, x3 + c3x2, . . . , xn + cnx2)

and
ϕr+2 = ρ′ := (x1, ρ(x2, . . . , xn)) = (x1, x2, x2x3, . . . , x2xn).

Then, we have

(T ′c)
−1 =

(
f1

g
,
f2

g
,
f3 − c3f2

f2
, . . . ,

fn − cnf2

f2

)
=
(
f1f2

gf2
,
f2

2

gf2
,
g(f3 − c3f2)

gf2
, . . . ,

g(fn − cnf2)
gf2

)
.

Hence, there exist polynomials F0, F1, . . . , Fn ∈ E[x], not depending on c, such that

(T ′c)
−1 =

(
F1

F0
,
F2

F0
,
F3 − c3F0

F0
, . . . ,

Fn − cnF0

F0

)
and gcd(F0, F1, . . . , Fn) = 1.

Let ψij := F σij for i = 1, . . . , s and j = 0, . . . , n, and let c ∈ En−2 and Γc
be as in 4.4 for the field E, the series ψij and the automorphisms σi. Since
gcd(F0, F1, . . . , Fn) = 1, we also have gcd(F σi0 , F σi1 , . . . , Fσin ) = 1 for i = 1, . . . , s.
Let

Ψi := (F σi1 , F σi2 , F σi3 − σi(c3)F σi0 , . . . , Fσin − σi(cn)F σi0 )

for i = 0, . . . , s. Note that Ψi = Ψσi
0 for all i. On the other hand, if Ψ̃i is the strict

transform of Ψ̃i ·◦T ·◦ τ via [Γc, ρ] for i = 1, . . . , s, then, by 4.4 B), we have Ψ̃i 6≡ 0.
Moreover, each nonzero component of Ψ̃i is the product of a unit and a power of
x2, and Ψ̃i(0) 6= 0. Hence, using 4.4 A.i), it follows that for i = 1, . . . , s there exist
an integer di ≥ 0 and a unit Ui ∈ R[[x2, . . . , xn]] such that

Ψi ·◦T ·◦ τ ·◦Γc ·◦ ρ = xdi2 UiΨ̃i.

Next, let us prove the existence of polynomials M,Np ∈ k0[x], p ≥ 1, such that:
(i) M is psd in k0[x] and there exists an integer ω0 ≥ 0 such that if ω(ζ) ≥ ω0

then M + ζ is not a sum of squares in k[[x1, . . . , xN ]]/Q; and
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(ii) Np is a sum of p squares in k0[x] but it is not a sum of p − 1 squares in
k[[x1, . . . , xN ]]/Q.

For that, we proceed in several steps. In what follows, given a series g ∈ R[[x]], we
will denote by g̃ the strict transform of g̃ ·◦T ·◦ τ via [Γc, ρ].

Step 1. Key construction to prove the existence of M : Let P0 ∈ k0[x′] =
k0[x2, . . . , xn] be a homogeneous polynomial of degree m. There exist a polyno-
mial P ∈ k0[x], a linear change π in kn−1

0 and a value u0 ∈ R \ {0} such that
In(P̃ ) = u0 · P0 ·◦π. Moreover, if P0 is psd in k0[x′], then P is also psd in k0[x].

Indeed, let π(x′) be a linear change in kn−1
0 (with coefficients in k0) and v ∈ kn−1

0

such that x2 does not divide P0 ·◦π and (P0 ·◦ π′)(Ψ̃i(0)) 6= 0 for all i, where π′ : kn0 →
kn−1

0 is defined by π′(x) := π(x′)+x1v. Let P1 := ((P0 ·◦π′) ·◦(T ′c)−1)∨ = P0 ·◦ π′ ·◦Ψ0

and
P := P σ0

1 · · ·P σs1 = P1P
σ1
1 · · ·P σs1 ∈ k0[x].

Note that if P0 is psd in k0[x′], hence in k0[x], then, by 5.1, the polynomial P1 is
psd in E[x] and, by 5.2, the polynomial P is psd in k0[x]. Moreover, we have

P σi1 = (P0 ·◦π′ ·◦Ψ0)σi = P0 ·◦ π′ ·◦Ψσi
0 = P0 ·◦π′ ·◦Ψi, for i = 0, . . . , s

and, by (3.4), P1 ·◦T ′c = (F0 ·◦T ′c)m(P0 ·◦π′).
Next, by 3.5 we have F̃0 ·◦T ′c = u ∈ R \ {0}. We also recall that if τ ′ :=

(h′, x2, . . . , xn), where h′ := h ·◦Γc ·◦ ρ, then τ ·◦Γc ·◦ ρ = Γ ′c ·◦ ρ′ ·◦ τ ′. Hence,

T ·◦ τ ·◦Γc ·◦ ρ = T ·◦Γ ′c ·◦ ρ′ ·◦ τ ′ = T ′c ·◦ τ ′.

Let F̃0 be the strict transform of F̃0 ·◦T ·◦ τ via [Γc, ρ]. By 4.4 A.i), there exist a unit
U ′0 ∈ R[[x2, . . . , xn]] and an integer d0 ≥ 0 such that xd0

2 U
′
0F̃0 = F0 ·◦T ·◦ τ ·◦Γc ·◦ ρ =

F0 ·◦T ′c ·◦ τ ′. By A.ii), there exists an integer δ0 ≥ 0 such that u = F̃0 ·◦T ′c ·◦ τ ′ =
xδ02 F̃0. Hence F̃0 = u, and we get

F0 ·◦T ·◦ τ ·◦Γc ·◦ ρ = xd0
2 U0,

where U0 ∈ R[[x2, . . . , xn]] is the unit uU ′0. Again by 4.4 A.i), there exist a unit UP
and an integer dP ≥ 0 such that xdP2 UP P̃ = P ·◦T ·◦ τ ·◦Γc ·◦ ρ. Computing a little,
we have

xdP2 UP P̃ = P ·◦T ·◦ τ ·◦Γc ·◦ ρ = P ·◦T ·◦Γ ′c ·◦ ρ′ ·◦ τ ′ = P ·◦T ′c ·◦ τ ′

= (P1 ·◦T ′c ·◦ τ ′)
s∏
i=1

(P σi1 ·◦T ′c ·◦ τ ′)

= (F0 ·◦T ′c ·◦ τ ′)m(P0 ·◦ π′ ·◦ τ ′)
s∏
i=1

(P σi1 ·◦T ·◦ τ ·◦Γc ·◦ ρ)

= (F0 ·◦T ′c ·◦ τ ′)m(P0 ·◦ π′ ·◦ τ ′)
s∏
i=1

(P0 ·◦π′ ·◦Ψi ·◦T ·◦ τ ·◦Γc ·◦ ρ)

= (F0 ·◦T ′c ·◦ τ ′)m(P0 ·◦ π′ ·◦ τ ′)
s∏
i=1

(P0 ·◦π′(xd1
2 UiΨ̃i))

= x
m(d0+···+ds)
2 Um0 U

m
1 · · ·Ums

(
P0 ·◦π′ ·◦ τ ′

) s∏
i=1

(P0 ·◦ π′(Ψ̃i)).
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Since (P0 ·◦π′)(Ψ̃i(0)) 6= 0 for i = 1, . . . , s, we deduce that every factor P0 ·◦π′(Ψ̃i)
is a unit. Since ω(h′) ≥ 2, we have In(P0 ·◦π′ ·◦ τ ′) = In(P0 (π(x′) + h′v)) = P0 ·◦π.
Since x2 divides neither P̃ nor P0 ·◦π = In(P0 ·◦π′ ·◦ τ ′), we conclude that:

(1) There exists a unit UP0 ∈ R[[x]] such that P̃ = UP0 ·P0 ·◦π′ ·◦ τ ′. Hence, there
exists a value u0 ∈ R \ {0} such that In(P̃ ) = u0 · In(P0 ·◦π′ ·◦ τ ′) = u0 · (P0 ·◦ π).

(2) In addition, dP = m(d0 + · · ·+ dm) = d(m) only depends on m = deg(P0).
Step 2. Key construction to prove the existence of Np: Let Q01, . . . , Q0p ∈

k0[x′] = k0[x2, . . . , xn] be homogeneous polynomials of the same degree m. There
exist a polynomial Q ∈ k0[x] which is a sum of p squares in k0[x], a linear change
π in kn−1

0 and values u0, u1, . . . , up ∈ R \ {0} such that In(Q̃) = u0(u1 ·Q01 ·◦ π)2 +
· · ·+ u0(u1 ·Q0p ·◦π)2.

Let a linear change π(x′) in kn−1
0 (with coefficients in k0) and v ∈ kn−1

0 be
such that x2 does not divide Q0` ·◦π and (Q0` ·◦ π′)(Ψ̃i(0)) 6= 0 for all i, `, where
π′ : kn0 → kn−1

0 is defined by π′(x) := π(x′) + x1v. Perform the construction in
Step 1, with this π′, for each P0 = Q0`, and denote in each case by Q` the final
polynomial P obtained. Let Q := Q2

1 + · · ·+Q2
p ∈ k0[x], which is a sum of p squares

in k0[x].
By 4.4 A.i), there are units UQ` and integers dQ` ≥ 0 such that

x
dQ`
2 UQ`Q̃` = Q` ·◦T ·◦ τ ·◦Γc ·◦ ρ.

As we have seen in the proof of Step 1, the integer dQ` only depends on degQ0` = m.
Hence, dQ1 = · · · = dQp = d. Moreover, we have also seen that there exist values
u0` ∈ R \ {0} such that In(Q̃`) = u0` · (Q0` ·◦ π). Again by 4.4 A.i), there are a unit
UQ and an integer dQ ≥ 0 such that xdQ2 UQQ̃ = Q ·◦T ·◦ τ ·◦Γc ·◦ ρ. Thus, we have

x
dQ
2 UQQ̃ = Q ·◦T ·◦ τ ·◦Γc ·◦ ρ

=
p∑
`=1

(Q` ·◦T ·◦ τ ·◦Γc ·◦ ρ)2 =
p∑
`=1

(x
dQ`
2 UQ`Q̃`)

2 = xd2

p∑
`=1

(UQ`Q̃`)
2.

Since x2 divides neither Q̃ nor
∑p

`=1(UQ`Q̃`)
2, we deduce that there exists a unit

V ∈ R[[x2, . . . , xn]] such that Q̃ = V
∑p
`=1(UQ`Q̃`)

2. Hence, comparing initial
forms, we conclude that there exist nonzero values u0, u1, . . . , up ∈ R \ {0} such
that In(Q̃) = u0(u1 ·Q01 ·◦π)2 + · · ·+ u0(u1 ·Q0p ·◦π)2.

Step 3. Construction of M . Let P0 = x6
2+x4

3x
2
4 +x2

3x
4
4−3x2

2x
2
3x

2
4 be the Motzkin

polynomial which is a psd form in Q[x2, x3, x4], hence in k0[x′] = k0[x2, . . . , xn],
but it is not a sum of squares of polynomials over any real closed field [BCR, 6.3.6].
By Step 1 there exist a psd polynomial P ∈ k0[x], a linear change π in kn−1

0 and a
value u0 ∈ R \ {0} such that In(P̃ ) = u0 · P0 ·◦π. We take M := P .

As for ω0, pick ω1 from 4.4 A.iii) and set ω0 = ω1 + Λ, where Λ > 0 is the
integer introduced at the beginning of this proof which has the property that, if
g ∈ k[[x1, . . . , xN ]], then ∆g ≡ g′ mod Q for some g′ ∈ k[[x1, . . . , xd]][xd+1] of
degree ≤ p− 1 and order ≥ ω(g)− Λ.

If ω(ζ) ≥ ω0 andM+ζ was a sum of squares in B = k[[x1, . . . , xN ]]/Q, then, since
∆·B ⊂ B′, the element ∆2·(M+ζ) would be a sum of squares inB′. By the property
of Λ, there exists a polynomial ζ′ ∈ k[[x1, . . . , xd]][xd+1] of degree ≤ p−1 and order
≥ ω(ζ)−Λ ≥ ω0−Λ = ω1 such that ∆ζ ≡ ζ′ mod Q. Thus, ∆2M+∆ζ′ would be a
sum of squares in B′, and ω(∆ζ′) ≥ ω1. By 4.4 A.iii), if M̃ is the strict transform of
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M̃ ·◦T ·◦ τ via [Γc, ρ], there would exist a series ξ ∈ R[[x2, . . . , xn]] of order > ω(M̃)
such that either M̃ + ξ or −(M̃ + ξ) would be a sum of squares in R[[x2, . . . , xn]].
Comparing initial forms, we would have that either In(M̃+ξ) = In(M̃) = u0 ·P0 ·◦π
or − In(M̃ + ξ) is a sum of squares of (homogeneous) polynomials in R[x2, . . . , xn].
Hence, we would conclude, after composing with π−1, that either P0 or −P0 is a
sum of squares of (homogeneous) polynomials in R[x2, . . . , xn], a contradiction.

Step 4. Construction of Np. For p = 1 take Np := 1, so we can fix p ≥ 2. Let
fp1(y1, . . . , yp;x1, x2) := y2

p and fp`(y1, . . . , yp;x1, x2) := y2
p−`+1

∏`
i=2 ∆2

2p−i where

∆1 := x2 and ∆2p−i := x2

∏2p−i

s=2 (x2 − sx1) ∈ Z[x1, x2] for ` = 2, . . . , p. Then
fp := f2

1p + · · ·+ f2
pp is the polynomial of 5.3. Let

Q0` := x
deg fp
4 fp`

(
1, . . . , 1;

x2

x4
,
x3

x4

)
for ` = 1, . . . , p. The polynomials Q0` ∈ Q[x2, x3, x4] ⊂ Q[x] ⊂ k0[x] are ho-
mogeneous of the same degree deg(fp). By Step 2 there exist a polynomial Q ∈
k0[x] which is a sum of p squares in k0[x], a linear change π in kn−1

0 and values
u0, u1, . . . , up ∈ R \ {0} such that In(Q̃) = u0(u1 ·Q01 ·◦π)2 + · · ·+u0(u1 ·Q0p ·◦π)2.
We take Np := Q.

We claim that Np is not a sum of p − 1 squares in B = k[[x1, . . . , xN ]]/Q.
Otherwise, since ∆ · B ⊂ B′, the element ∆2 ·Np would be a sum of p− 1 squares

in B′. Let Ñp denote the strict transform of ˜(Np ·◦T ) ·◦ τ via [Γc, ρ]. By 4.4 A.iii),
either Ñp or −Ñp would be a sum of p − 1 squares in R[[x2, . . . , xn]]. Comparing
initial forms, we would have that either In(Ñp) or − In(Ñp) is a sum of p−1 squares
of (homogeneous) polynomials in R[x2, . . . , xn]. Since

In(Ñp) ·◦ π−1 = u0(u1 ·Q01)2 + · · ·+ u0(u1 ·Q0p)2

= u0x
deg fp
4 fp

(
u1, . . . , up;

x2

x4
,
x3

x4

)
,

we would have that either gp := fp(u1, . . . , up;x2, x3) or −gp is a sum of p − 1
squares of polynomials in R[x2, . . . , xn]. Since −gp cannot be a sum of squares in
R[x2, . . . , xn], we would conclude that gp is a sum of p− 1 squares of polynomials
in R[x2, . . . , xn], which is a contradiction by 5.3. Thus, we have seen that Np is not
a sum of p− 1 squares in k[[x1, . . . , xN ]]/Q, and the proof of 1.2 is complete. �

Remark 5.4. Let A be an excellent reduced ring of real dimension d ≥ 3 and let
Quot(A) be its total ring of fractions. Then p(Quot(A)) ≥ d+ 1.

Indeed, since A is reduced and noetherian, we have by [JP, 1.4.27]

Quot(A) =
r⊕
i=1

Quot(A/pi),

where the pi are the minimal ideals of A. Therefore it is enough to consider the case
when A is a domain. Now, take an element R ∈ P(A) similar to the one in (2.3)
but beginning in this case from a polynomial M ∈ k0[x] such that: M is a sum of
d+ 1 squares in k0(x) (hence, psd in k0[x]), M(0) = 0, and there exists an integer
ω0 ≥ 0 such that if ζ ∈ k[x1, . . . , xN ] and ω(ζ) ≥ ω0, then M + ζ is not a sum of d
squares in Quot(k[[x1, . . . , xN ]]/Q). Since R ∈ P(A), we have R ∈ Σ(Quot(A)). If
R were a sum of d squares in Quot(A), we would deduce (proceeding similarly to
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(2.3)) that there exists a series ζ ∈ k[[x1, . . . , xN ]] with ω(ζ) ≥ ω0 such that M + ζ
is a sum of d squares in Quot(k[[x1, . . . , xN ]]/Q), a contradiction.

To construct this polynomial M , we proceed similarly as in the proof of Theorem
1.2(i). Here we start with a homogeneous polynomial P0 ∈ Q[x2, . . . , xd+1] which is
a sum of d+ 1, but not of d, squares in R(x2, . . . , xd+1), for any real closed field R.
For the existence of such P0, the essential case is d = 3. This was first established
in a beautiful and difficult paper by Cassels, Ellison and Pfister [CEP], who showed
that the Motzkin polynomial is not a sum of three squares of rational functions.
See [BCR, 6.4.8, 6.4.20] for how to deduce the case of general d ≥ 3 from this.
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